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In this paper the mutual impedance of two thin circular plates with non-axisymmetric,
time-harmonic free vibrations is analyzed. It is assumed that plates clamped at the cir-
cumference are placed in a rigid, planar baffle and radiate into a lossless and homogeneous
fluid medium. Damping in plates is ignored.

Using the Cauchy theorem on residues and asymptotic formulae for the Bessel functions,
an approximate expression is derived for a normalized mutual resistance and reactance for
high frequencies.

1. Introduction

The practical application of a system of two plates as a sound transmitter or receiver
of acoustic waves requires the knowledge of frequency characteristics of its acoustic
parameters. One of them is the mutual impedance describing the influence of the plates
vibrations on each other. In general case the vibrations of plates are non-axisymmetric
so the mutual impedance concerns non-axisymmetric modes.

Hitherto the problem of interactions of non-axisymmetric modes was considered only
for one plate [4, 8].

The problem of the mutual impedance of two elastic circular pistons was investigated
in 1964 by PORTER (5] and CHAN [1] in 1967. They expressed an axially symmetric dis-
tribution of velocity in terms of the radial variable by a power series. In the paper [6],
the mutual impedance of two circular co-planar sources with nonuniform velocity dis-
tributions: gaussian, parabolic and bessel has been considered. In paper [2], expressions
were presented for acoustic power of two sources with parabolic velocity distribution for
high frequencies.

The present paper deals with the mutual impedance of circular plates supporting
non-axisymmetric free vibrations. By using the LEVINE and LEPPINGTON’S method [3],
which is based on the Cauchy theorem, an elementary formula is derived for a normalized
mutual impedance.
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2. Mutual impedance of two circular plates

An acoustic radiator vibrating in an elastic medium encounters a counteraction of
the medium. The measure of the source loading is the acoustic impedance defined as

follows:
1

Zo= oo [ p(r, @) v* (1, 0) do (2.1)
where ;

%) = 7 [ vlr ) v (r0) do (22)
a
is the mean value of the second power of the normal velocity of points on the source
surface 0. Values p(r, ), v(r, ) stand for the surface distribution of pressure and normal
velocity, respectively, r, ¢ denote the radial and angular coordinates of a point of the
source with respect to the polar reference system. Now we find the analytical form of
the definition (2.1) for two plates on which the distribution of velocity is defined as a
superposition of free vibrations.
Let us consider two thin plates of the radii a;, ag, fixed on the rim in a rigid and
flat acoustic baffle. The plates radiate into lossless and homogeneous fluid medium. The
distance between the centres of the plates is denoted by [ (Fig.1).

L

i

Fig. 1. The geometry of plates.

The normal velocity of the first plate is given in the form of a double, infinite sum:
V(r,p) = Z Z 1) 4 (1) ) (r, ), (2.3)
m=0 n=1

where c( ), is an expansion coefficient of velocity in a series of eigenfunctions for the first
plate and v,(nL(r, ) are the normal velocity mode functions

200 =V 0 Y [ (o) - ot (e ] 20

where J,,(+) denotes the Bessel function of the m-th order, I,,( ) is the modified Bessel
function of the m-th order, vm, stands for the roots of the characteristic equation
Jm('Tmn)I:-n(’}'mn) = Im(’Ymn)J;n(’Ymn) =0.
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In general case, the expansion coefficients of velocity in a series of eigenfunctions are
complex, e.g. when we take into account the losses into material of the plates or the
influence of radiated wave on the vibrations of the plates. The normalization factors

Y= Vm o i (2.5)
27a1 I (Ymn) 2, m>1,

are chosen such that the eigenfunctions are orthonormal.

Each of the normal velocity modes “u of the second plate gives rise to an extra
acoustic pressure on the surface of the first plate, p}}. The total such a pressure is equal
to an infinite sum of particular pressures pﬁ

P (r,¢) Zcﬁj’ P (r,0), (2.6)

where cﬁ) is an expansion coefficient of the velocity on the second plate. Substituting
the velocity (2.3) and the pressure (2.6) into the definition (2.1), we get:

(2.7)

where

Z% = -“_——[PH (r, ) viak (r, ) do, (2.8)

1)2 2)2
oy (R e o
g =Tai1a3, 01 = Tfa.%.

The quantity Z2}, is the mutual impedance of two circular plates excited with radi-

ating non-axisymmetric modes.
The pressure p?} is calculated with using the Huygens-Rayleigh formula [6]. It has
the following integral form:

T
T 00 21

Pﬂ i (P) s koQt;‘-;(i)k [ / Wk(:f) (ﬂ)eikursin 9 cos(p—)
0

o} N otsinoconr Gng g ay,  (29)
cos(kv)

where

az
. r " f r
w? ) = v [ (Kot sin ) [Jk (ma—";) - _—I:((”:::))Ik (ma—";)] rodra,  (2.10)
0

ko denotes the wave number in the gaseous medium, go is the equilibrium density of the
gaseous medium, w stands for the angular frequency of the v1brat10ns

Upon performing the integration in (2.8) with pi and oS replaced by (2.9) and
(2.4), respectively, and referring the impedance Z2L, to the specific resistance of a fluid

mn
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medium pgcp, the normalized mutual impedance between (k,l) and (m,n) modes is
obtained as follows

i . koay sind )
CZ]_ B \fém?kgamz( l)k %/mamn.]m(koal SlIlT.?) = %Jm+l(kga1 SlIl'L?)
o YmnYkl ( koaq sim?) ’
0 U s o S
Tmn
k in 9
aqu(koag sin 19) b Ua:i&.]k+1(koaz sin 19)
ki
1 (koaz sim9)4
TYmn
X [(=1)"Ji—m(kolsin®d) £ Jgim (kol sind)] sind dd, (2.11)
where amn = Jmt1(Ymn)/Jm(Ymn). The signs plus and minus in the last term corrre-

spond to the choice of the cosine and sine functions, respectively, in the normal velocity
distribution function (2.4).

This solution (2.11) is a generalization of the pattern obtained in [7] where k = m =0,
a; = ag.

3. Acoustic resistance for high frequencies

The normalized mutual impedance (2.11) has no exact analytical solution. But there
is a possibility to calculate its value using an approximate method.

As shown below, one can obtain an approximate representation for the mutual re-
sistance by replacing the Bessel functions with their asymptotic expansions and then
making use of the method of stationary phase.

19/1‘

o [\pl;‘

Fig. 2. The integration contour in the complex plate ¥ = ¢’ + 9"

In order to separate the mutual resistance from impedance (2.11) let us substitute
¥ = 9’ +49" and consider the integral along the segment (0, 7/2) of the real axis (Fig. 2).
Let us substitute z = sin®’ and use the abbreviations: s = a;/as, p = l/a1, B8 = koa1,



THE MUTUAL IMPEDANCE OF TWO CIRCULAR PLATES 467

Smn = Ymn/koa1, 8kt = Yki/koa1. Then we get the expression:
1

: Qm d n, ;6?1: —zdn (ﬁ.’L‘)
0
B\ _ B
sagOpr Ji (S:c zJpp1 3° s

X

[(_l)m']k—-m()ﬁpx) = Jk+m(ﬁp$)] (31)

3'54 ey (S(SH)4

Let us introduce the function of a complex variable z [3]
F(z) = [@mnbmnIm(B2) — 2Jm41(Bz)] [sauészk (gZ) - zJks1 (gzn

x [(~)mHY,, (Bp2) £ B (Bp2)] . (32)

Now, let us consider the complex integral:

Vi—z2

F(z)zdz
c/ V=22 2% = 54,] (2 = (s8)"] 48]

The contour (Fig.3) by-passes singular points of the integrand d,nn, 58k, i16mn, 150k
and branch point at z = 0 (of the Hankel function H,E,;zm(-) = Jrgm() + iNgtm(+)).
Part of the contour follows the upper side of the branch cut between z =1 and z = oo

(of the function V1 — 22).

3

(D)
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(T P ZiZz

Fig. 3. The integration contour C.

The Cauchy theorem implies that the following is true for the integrals:

pf+/+ f +pf :‘}TiZIESf(Zj), (3.4)
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where p [ denotes the principal value of an integral, f(z) is equal to the integrand in
(3.3), zj = bmn, 10mn, 50k, i50) are the first order poles.

The integral along a large circle vanish with increasing its radius. Also, integrals
along small circles around the points z = 0 and z = 1 vanish when their radii tend to
Zero.

Then it remains:

80/1 (z)z dz + T (:c)a:da:
J V1-z?[z 4zt — (s6r2)Y] —ivz? — 1[z* — 82, ] [z — (s6k)?]

F(iy)iy d(iy)
f \/1 T 0 = 5 1 — (sdn)® =i Z resf(z;). (3.5)

Taking the real part of the left-hand side of (3.5), we arrive at the integral (3.1)

jamn mndm (ﬁ-’”) — 2Jm+1(8z)
=iy
0

(1) o (2
2% — (s0m)" (=)™ k- (BPE) + Jitm(Bp2)] —mes

X

JIm(Bz) — zJmt1(Bz)

4
- 6mn

I
HL“‘%S
Q
3
3
O

o8] ()
x zt — (s6)* [(=1)™Ni—m (Bpz) £ Niym(Bpz)] = \/— (3.6)

The sum of residues in the right-hand side of (3.5) is equal zero, what is a consequence of
F(6mn) = F(80mn) = F(i6mn) = F(i80;mn) = 0. Also the real part of the third integral
in the left-hand side of Eq. (3.5) is equal 0, what results from relation ReF(iy) = 0. To
prove this, we use the properties: Jy, (iy) = I (y)i™, H (iy) = Ez'“('"‘“}Km(y), where
K., (y) is the cylindrical MacDonald function of the m-th order.w

So, the integral (3.1) is transformed into other one with limits of integration from 1
to infinity, for which the integrand is determind.

All cylindrical functions in the integrand on the right-hand side of (3.6) we expand
asymptotically [4] as z tends to infinity

cos (:c i 1'rr),
4

(3.7)

=
3
3]
S
12
8w 3w
w
m,
=
FTTTN
|
[
3
+
—_
.
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After computing the integral on the right-hand side of (3.6) by using the method of
stationary-phase, we get finally:

352 £2
s 6ki5mn

mB2 /P (1 - 85n) [1 — (s6k)]

sing(ps ~8 +1)

21
e Kl = 2V5k5m
mn

. B
5 i
k+msm - (ps +s—1)

A -1
% vps—s+1 +1) vps+s—1
B g
Zps—s+1 i ~1
- cos s(ps s+1) L e <% S(ps—}— s—1)
ps—s+1 vVps+s—1
cosg(ps+s+1) cosg(ps—s—l)
-C (_l)m S _l)k S
vps+s+1 ps — s — 1
sing(ps+s+1) ksing(ps—s—l)
D™ -1 i 3.8
i (=1) vVps+s+1 ) Vps—s—1 34

where

= (saklamnékiémn + 1)1

(saki0x — Amndmn), 3.9)

(sakt amnék! 6mn - 1) )

9o & x
Il

(saki0k1 + Amndmn).

4. Acoustic reactance for high frequencies

Acoustic reactance, which is the imaginary part of impedance (2.11), has the form:

21 2,/€k£mk§a1a2 k
X = ——(-1)
mn Ymn Ykl

. koay coshd”

% Xy Jm (koay cosh9") Jm+1(koay cosh9")

x /‘ mn 1
i (kgal cosh " )

0
TYmn

k ho" ,
ki Ji(koas cosh9") — i“—"‘-f/oS—JkH (koas cosh9")
ki
X
Yiae (koaz COSh 9" ) 1
Tkl

 [(=1)™J—m (Kol cosh®") £ Jiym (kol cosh9")] coshd” dd”.  (4.1)
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By substituting z = cosh?” and using the same notations as for resistance, we get
the expression:

X = 2v/EkEm s205,02,.(-1)F

o f amﬂéanm(ﬁm) — TJm41(Bx) $daiady (;m) g (;m)

J zt — 54 zt — (s0p1)*
(D)™ (Bp0) £ Jeam(Bpo)] s (42)

The calculation of this integral is much easier then that of the resistance because
we do not have to change the limits of integrations. We can immediately change all
cylindrical functions in (4.2) by inserting their asymptotic forms (3.7) and using the
stationary phase method. In this way we arrive at the following equation:

21 2\/? ss‘siléfnn
G B /B — 8l [1— (s8k)]
Cosé(ps—s-{-l) cosg(ps'l"s"l)
s L] o (_1 k+m S8
Vps—s+1 vps+s—1
sing(ps—s+1) Sing(ps"'s"l)
+B 8 )2
Vps—s+1 vps+s—1
siné(ps+s+1) Sing(Ps—s—l)
+c | (-)m—= = af—
Vost+s+1 vVps—s—1
cosg(ps+s+1) kcosg(ps—s—l)
L m —1 ¥ 4'3
R T Y et )
where
A = (sarimndridmn + 1),
B = (sak;5k1 . amnémn): (4_4)
C = (s0kmnOridmn — 1),
D = (sapdi + @mnbmn).

5. Conclusions

The theoretical analysis makes it possible to obtain an integral formula for normalized
mutual impedance with non-axisymmetric modes of free vibrations. It can be calculated
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for short acoustic waves with approximate methods. The obtained formulae for acoustic
resistance (3.8) and reactance (4.3) are similar to each other in the form and have
“oscillatory” character of variations.

The expression obtained for normalized impedance (2.11) can be used in the anal-

ysis of more complicated vibrations, e.g. with taking into account losses in the plate
material [3].
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