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The current analysis addresses the reflection of finite amplitude sound waves at
a stationary surface. The analysis develops a two-orders perturbation solution for the
nonlinear wave equation governing the velocity potential. The expression for the acoustic
pressure derived from the potential lacked uniform validity. Hence it was corrected by
employing coordinate straining transformations and thereby a uniformly accurate expres-
sion was obtained. Then, the strained coordinate transformations are eliminated by
a Fourier analysis and a series representation solution is derived.

1. Introduction

It has been known for some time that finite amplitude acoustic waves will distort as
it propagates [1 —2]. This means that many harmonics are progressively generated even
if the initial wave is purely monochromatic. The analysis of nonlinear propagation and
distortion of finite amplitude acoustic waves has been given much attention in the
literature. This is because the role of nonlinearities in generation and propagation of
acoustical waves has many practical applications in addition to theoretical interest [3].

The present paper aims at studying the reflection of finite amplitude plane sound
waves at a stationary plane target for which the nonlinearities of the medium are
sufficient to alter the linear propagation of the waves. These alterations may play an
important role in the processes employing acoustic devices using purposely intense
sound waves such as devices used in ultrasonic measurements and in medical
diagnostics.

If a finite amplitude wave travelling in a homogeneous medium reaches an
interface where the properties of the medium change abruptly, various frequency
components generated before incidence on the interface might be in part reflected and
transmitted. The finite amplitude sound beam generated by a piston source and
reflected at a pressure-release surface was investigated experimentally by MELLEN and
BrownNinG [4]. A pulse technique was used by Van Buren and BREAZEALE [5—6] to
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measure the propagation and the phase shift reflection. Experimental evidence of the
nonlinear effects in the reflection of parametric radiation from a finite planar targets
was reported by Muir et al. [7] and by Karasutova et al. [8]. GARRETT et al. [9] studied
theoretically and experimentally the difference frequency wave that generated by the
interaction of two finite amplitude primary waves and reflected from finite size planar
targets at normal incidence. The propagation of a thin finite amplitude acoustic beam
generated by an oscillating piston and its reflection from a plane pressure-release
surface was considered by HamiLTon ef al. [10]. Their analysis used The Kuzentosv’
equation in sound pressure, which is the parabolic approximation of the wave
equation. The reflected waveform was shown to be different from that of the incident
signal.

In this paper we investigate the behaviour of finite amplitude plane sound waves
reflected at a stationary surface. This problem has previously been treated by Quam
[11]. The method applied by him was straight perturbation expansion of Heap’s wave
equation and, as a consequence, his solution contained secular terms. Apart from this
shortcoming, the solution fails to satisfy the boundary condition at a pressure-release
surface.

The current investigation treats the reflection of finite amplitude waves at
a stationary surface. A regular perturbation expansion is employed to obtain the
velocity potential as a solution of the nonlinear wave equation that satisfies the
boundary conditions at rigid or pressure-release surface. Only the first two orders of
the velocity potential are derived. The first order terms correspond to the linearized
field. The terms that represent the cumulative distortional effects of nonlinearities and
represent the significant part of the potential are included in the second order terms.
The expression for the acoustic pressure that derived from the potential contains
secular terms. The method of renormalization is invoked to correct the nonuniform
validity by introducing two independent near identity coordinate straining transfor-
mations. Further, these transformations are eliminated with the aid of Fourier
analysis. Thus a simple expression for the acoustic pressure in terms of the original
coordinates is obtained.

2. Basic equations

Consider a monochromatic finite amplitude acoustic plane wave impinges on
a stationary surface with an impedance possibly depending on the angle of incidence
0 (0<0<m/2). The amplitude of the wave is characterized by a small parameter
¢ where | ¢| « I in most practical situations. The subsequent analysis is confined for
simplicity to two dimensional waves. The x-axis coincides with the surface that is
located a t y=0-plane. The unit normal n,, which is pointing outward the surface, is in
the direction e,. _

The nonlinear wave equation governing the velocity potential under isentropic
conditions in invicid and irrotational fluid motion is [12]
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where f is the coefficient of nonlinearity and c,, is the small signal speed of sound in
linear theory. The fluid velocity is defined such that v=V ¢. Whilst the acoustic
pressure is obtained from the Bernoulli equation using the binomial expansion and
the fact that ¢ is O(g). It can be written, valid to the second order, as
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The response must satisfy the appropriate boundary conditions, which depend on
the reflectivity of the surface. For a rigid surface, the magnitude of its specific acoustic
impedance |z| = oo which corresponds to the reflection coefficient R=1. This
requires that the component of the fluid velocity normal to the surface vanishes
(v-n,=0 at y=0). For the ideal pressure-release reflector |z| — 0, corresponding to
R=—1. This condition is satisfied when the amplitude of the acoustic pressure
vanishes at the surface regardless of the value of the fluid velocity [13].

The velocity potential is expanded in a perturbation series
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The equation governing ¢, and ¢, are obtained by collecting like powers of ¢ in
Eq. (2.1)
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The solution of the first order equation, Eq. (2.4), that satisfies the boundary
conditions on either solid or pressure-release surfaces can be written as

2
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where R is the pressure amplitude reflection coefficient in linear theory. It can depend
on the incident angle 0 as well as the angular frequency w. Without loss of generality,
R is considered to be real. Here c.c denotes the complex conjugate of all preceding
terms. The wavenumber components k, and k, are found from satisfying the linear
wave equation to be

k=cf, k,=(k*—k3)¥>=ksin0, k,=kcosd. 2.7

0
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3. Description of the second order potential

The substitution of the first order solution ¢, given by Eq. (2.6) into the right
hand side of Eq. (2.5) yields the inhomogeneous equation for ¢,
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The first two inhomogeneous terms on the right hand side of Eq. (3.1) are the
result of self-action of the incident and of the reflected waves respectively. They excite
the second harmonics of the corresponding waves. Such signals propagate parallel to
the corresponding waves forming ¢,. The third inhomogeneous term is due to the
nonlinear interaction of the incident and the reflected waves. It is independent of
y since Y, +y, =2k x. Therefore it excites a second harmonic wave whose propaga-
tion direction is parallel to the surface.

The solution of Eq. (3.1) consists of the complementary solution and the
particular solution. The form of the right hand side of Eq. (3.1) suggests that the later
solution is the superposition of the solutions associated with each of these in-
homogeneous terms. These solutions may be found by the aid of the variation of
parameters method. To this end one lets
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The result of requiring that Eq. (3.3) satisfies Eq. (3.1) is a set of uncoupled
differential equations for the unknown amplitude functions C;. Making use of Eq.
(3.2) these equations are found to be

C1+4ik, C)= —%wﬁo,
C;—4ik,C)= —%wﬁURZ , (3.4)
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The prime identifies differentiation with respect to the argument.
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Without much analysis, one may solve Egs. (3.4) and form the particular solution
according to Eq. (3.3). Then, of course, one adds the complementary solution and
requires that the total solution must satisfy the boundary conditions for a solid
surface as well as for a pressure-release surface, and thereby chooses the arbitrary
constants contained in the complementary solution. After performing these steps, one
thus combines the resulting expression for ¢, with the linearized solution given by Eq.
(2.6) to arrive at the following expression for the potential
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The potential functions given by Eq. (3.5) contain secular terms and, consequent-
ly, the resulting expressions for the acoustic pressure and the velocity components will
not be uniform. Nayren and Kruwick [14] and Ginseerg [15] have proved that the
secular terms should be removed from the physical response variables such as
acoustic pressure and velocity components, because the potential does indeed contain
growing terms and an analysis that removes such terms is therefore conceptually in
error. Accordingly, the method of renormalization will be applied to the acoustic
pressure.

4. Application of the renormalization method

The acoustic pressure is linked to the potential by Eq. (2.2). The quadratic
products in that relation will introduce non-secular terms. Thus differentiating Eq.
(3.5) yields
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Inspection of Eq. (4.1) shows that at O(e®) the first set of terms represents the
sound in the second harmonics of the incident and of the reflected signals, respectively.
The amplitude of each signal grows linearly with increasing y (secular behaviour). In
contrast, the amplitude of the last set of terms remains bounded at all locations and
these terms represent local effects. This means that the cumulative distortion only
originates from the self-action of the incident and of the reflected waves.

In order to eliminate the secular terms which produce the nonuniformity in the
expansion given by Eq. (4.1) the renormalization version of the method of strained
coordinates is employed [16]. Different transformation is introduced for each of the
wave variable y;, j=1, 2. Further examination of Eq. (4.1) suggests that the trial
transformations are

lllj — aj o E[Fjel'(m_,t—ﬁj) 4z C.C], J= 1 5 2, (42)

where the complex conjugate term is introduced to ensure that each transformation is
real.

The aforementioned transformations are substituted into Eq. (4.1) and the result
is expanded in a Taylor series in ascending powers of . Then the functions F; are
selected on the basis of removing the second order secular terms. This procedure
yields the following expression for the acoustic pressure in real functional forms after
accounting for the complex conjugate of each term
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The coordinate transformation are given by
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Equations (4.3) and (4.5) reveal that the response consists of two non-interactive
waves, each is reminiscent of that for a planar wave with an important exception. The
linear effect is measured by the difference between the nonlinear and linear spatial
phases a;—y . In an isolated planar wave, this difference is proportional to the
propagation distance which would be (k,x+k,y)/k for the oblique wave. Instead, the
distance parameter for each wave in Eq. (4.3) is ky/k,. Therefore, it is to be concluded
that although Eq. (4.3) specify a superposition of two waves, the response of one
affects the other by altering the spatial dependence for the difference o— ;.

To this end, calculating the acoustic pressure at set of values (x, y, f) requires
solution of each of the transcendental equations for the coordinate straining
transformations, given by Egs. (4.5). This can be accomplished by using a numerical
procedure such as the Newton-Raphson’s method. The frequency content of the
temporal pressure waveform may be evaluated from its spectral analysis. However,
with the aid of Fourier analysis, the acoustic pressure can be expressed in terms of the
physical coordinates to avoide the solution of the transcendental equations for the
coordinate transformations. The procedures are similar to that used in [17— 18] and
will not be repeated here. Specifically, the series representations for the acoustic
pressure is
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where J,, are the Bessel functions of first kind of order m.

The Fourier series solution given by Eq. (4.6) is analogous to the FusiNni-GHIRON
[19] representation of a planar wave. It is valid if no shock forms. This occurs at
distances less than the first location where multivaluedness of the waveform occurs.
From Eq. (4.6) it is seen that each of the individual Fourier harmonics will undergo
the same phase shift. This was noted experimentally by previous investigators
[4—6].

5. Conclusion

The reflection of finite amplitude planar waves at a rigid or a pressure-release
surface is investigated. The reflection takes place as though there were no coupling
among harmonics. The nonlinear interaction between the incident and the reflected
waves results in a wave with propagation direction that is parallel to the plane surface
no matter what the incident angle is. It represents a local effect. In other words, it has
no contribution to the distortion process. As a corollary, the cumulative distortion
originates only from the self-action of the incident and of the reflected waves.
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