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Experimental results for the absorption of ultrasonic waves in critical benzonit-
rile +isooctane mixtures in the frequency range 5—21 MHz and at temperatures
0.15<T—T.<20K are reported and confronted with the Shiwa-Kawasaki’s mode-coupling
theory. The theoretical scaling function was found to describe the experimental results
correctly throughout the reduced frequency range w’<50. The values of certain ther-
modynamic parameters necessary for the determination of the reduced amplitude A(e) were
calculated using the linear relation between o,/f> and f~ 1% predicted by the Bhattachar-
jee— Ferell dynamic scaling theory.

1. Introduction

Acoustic investigations of critical mixtures are a source of valuable information
concerning the dynamical properties of phase transitions [1 — 6]. In the first place, such
systems exhibit a strong increase in acoustic wave absorption as they approach the
critical point. This anomaly is attributed to the coupling between acoustic field and
fluctuations in concentration [9]. Three theoretical models have been proposed for the
description of the acoustic wave propagation in critical mixtures: the renormalization
group theory [7], the dynamic scaling theory [8], and the mode-coupling theory
[9—12]. The last one, in the three versions due respectively to Kawasaki [9], MisTura
[10] and Cuaran [11], after initial success, came up against serious difficulties, in
particular the expressions for the critical amplitude failed to describe the experimental
data correctly. A drawback of the mode-coupling theory resided in the fact that it led
to a scaling function that broke down at high reduced frequencies " = w/w,, (where w,,
is a characteristic frequency of fluctuations of the order parameter). Recently several
papers have been published aimed at the overcoming of these difficulties. A general
expression for the critical amplitude was proposed [13, 14] that comprises the formulae
of Kawasaki, Mistura and Chaban as special cases. Moreover, applying the four
heat-mode approximation, a new expression for the scaling function was derived [12].
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2. Theoretical background

Absorption of acoustic waves in critical mixtures is best represented in the form of
the absorption coefficient per wavelength versus the reduced frequency

o' =o/o,, (2.1)

where w,, denotes the characteristic frequency of fluctuations in concentration. Since
the characteristic frequency is a function of temperature, the description in terms of
' enables us to comprise in a single graph the results obtained under different
experimental conditions of temperature and frequency. For critical mixtures, wy
takes the form [3]
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where kjy is the Boltzmann constant and e=(T—T,)/T, the reduced temperature,
providing a measure of the distance of the system from the critical point on the
temperature scale. The correlation length ¢ and shear viscosity #, occurring in Eq.
(2.2) fulfil the following exponential relations near the critical point: {=¢ ¢7" and
,=1,€ *1. The quantities z=(3+x,)=3.06 and v=0.638 are the so-called critical
exponents.
The dynamic scaling hypothesis predicts the anomalous part of the acoustic wave

absorption to be a function of the reduced frequency given by the following general
expression:

o, =nA(e)l(w"), (2.3)

where A(c) is the critical amplitude and /(") the scaling function. Each version of the
mode-coupling theory has its own expression for A(e) [9— 11]. However, none of
them describes the experimental results satisfactorily. Lately, Tanaka et al. [13] as
well as the present authors [14] have re-analyzed this aspect of the theory and
obtained the following general formula for A(e):
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which for particular cases reduced to the expressions of the different versions of the
mode-coupling theory. In (2.4), p is the density of the mixture, u the velocity of the
ultrasonic wave, c, the specific heat at constant pressure, and @=0.11 the critical
exponent for the specific heat. The dimensionless constant g introduced by Bhat-
tacharjee and Ferrel in their dynamic scaling theory has been shown [2] to remain
unchanged as the system approaches the critical point. Once the values of all the
thermodynamic parameters of the mixture are available, the constant g can be
determined from the following formula derived by Tanaka:
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whre, o, the thermal expansion coefficient a, and the specific heat can be expressed by
the following exponential relations: ap=ap.e ¥+ ap,, cp=cp.c %+ cpy. The quan-
tities with the subscript b denote the regular part (showing no critical anomaly)
whereas those with subscript ¢ denote the amplitude of the critical part. The critical
amplitude A(e) given by Eq. (2.4) is a function only of the reduced temperature €.
However as shown by Tanaka et al. [13], it should depend also on the frequency w.
This circumstance, resulting from the frequency-dependence of the specific heat,
results in the breakdown of the dynamic scaling hypothesis for the acoustical
anomaly. Since this dependence is noticeable only at very high values of the reduced
frequency, it can be neglected in the usually accessible range of frequencies.

The expression (2.3) states that all the values of the absorption coefficients (all the
«’s measured for different temperatures and frequencies and divided by the critical
amplitude) scale along the single universal curve ("), referred to as the scaling
function. This function depends on but one variable — the reduced frequency. Earlier
versions of the mode-coupling theory applied a perturbation procedure taking into
account only two heat-mode intermediate states. According to these approximations,
the scaling function has the form [9]:

o' K(x)

K (x)+ w*?’ a5

190" = [ dx[xy(x)P?
0
where x is the product of the wave number k and the correlation length &. The
function y(x), defined as the derivative of the logarithm of the correlation function of
the order parameter X(x) takes the form:

d
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where #=0.041 is the critical exponent introduced by FisuEr [15)]. The function K(x) is
defined in terms of the decay rate of fluctuations of the wave number k. The explicit
form of K(x), as proposed by Kawasaki [8], is

K(x) =§ [1+4x24(x3—1/x) arctan(x)] . (2.8)

The scaling function in the two heat-mode approximation has been shown to be
inadequate for the description of the experimental results, particularly for high
reduced frequencies [16]. This led Sniwa and Kawasaki [17] to extend a perturbation
procedure to include the contributions of four heat-mode intermediate states to the
bulk viscosity. They obtained the scaling function in the form of the sum
19"+ 1%w"), with I¥(w") given by
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The explicit form of R(x,.x,.x,.0,.0,.¢) is to be found in ref. [17].

The key to the successful use of the mode-coupling theory resides in a proper
choice of the correlation function of the order parameter fluctuations occurring in the
formulae (2.8) and (2.9), since the expression for I(w") is highly sensitive to the form
of the correlation function X(x) for high values of x, i.e. when " is large. Earlier
versions of the mode-coupling theory applied the Ornstein — Zernike formula [17].
However, the latter is well known to fail to account correctly for the long-range
“tail”. Thus the X{(x) for x> 1 has to be replaced by the Fisher-Langer expression [18].
Recently, Bray [19] proposed an approximation of the correlation function ideally
reproducing the shape of the Ornstein-Zernike and Fisher-Langer functions for small
and large values of x, respectively.
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Fig. 1. I (»") (dashed) line and I(w") (solid line) calculated from the Bray’s function.

The numerically determined values of I'?(w") (dashed line) and ¥ (w") (solid line)
are plotted in Fig. 1. In both cases, Bray’s expression has been used for the correlation
function.

With regard to the nature of the initial kinetic equations involved, the mo-
de-coupling theory is unable to describe the absorption and dispersion of ultrasonic
waves versus frequency at the critical point as such (the “critical region’). Ferrell and
Bhattacharjee succeeded in deriving an expression of this kind that is owing to their
highly ingenious use of the dynamic scaling hypothesis. They postulate that at the
critical point the absorption coefficient a_/f? should depend linearly on f~%:
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with a®/f? — classical absorption. Eq. (2.10) has been confirmed repeatedly by
experiment [3—6]; it has proved to be a highly useful tool permitting the deter-
mination of the coupling constant g. Whereas the counterpart of Eq. (2.3) in the
dynamic scaling theory is given by the expression
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3. Experimental results

The measurements were carried out by the pulse-echo method using an ex-
perimental set-up developed by MATEC. The details of the measuring position as
well as the evaluation of the accuracy achieved are given elsewhere [20, 21]. The
critical mixture of benzonitrile+isooctane (2,2,4-trimethylpentane) exhibits an upper
critical point, and the critical parameters of the separation curve are [22]: T,=18.71°C
and x,=0.465 (molar fraction of benzonitrile). Our measurements of the ultrasound
velocity and absorption covered the temperature range AT=T-T7,=0.1 K to 20.2
K for five frequencies of the ultrasonic wave: 5, 7, 10, 15 and 21 MHz. .

The measurement started at 40°C and the temperature was then lowered gradually
down to the critical one. The velocity of the ultrasound as function of temperature
was found to be linear: u=1205—3.5 (T'—T,). To within the experimental error, no
dispersion of the velocity was found throughout the frequency limits ranging from
5 to 25 MHz. Figure 2 shows the velocity as a function of temperature.
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Fig. 2. Propagation velocity of ultrasonic waves versus AT in the critical benzonitrile +isooctane system.
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In Fig. 3, the absorption per wavelength is plotted as a function of temperature.
The graph is typical for critical mixtures: the absorption grows progressively as the
system approaches the critical temperature, the quicker the lower is the frequency of
the wave.
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Fig. 3. Absorption coefficient per wavelength versus temperature for different frequencies of the ultrasonic
wave.

4. Determination of the collateral thermodynamic parameters

The absorption coefficient measured in experiment is the sum of the critical
absorption and the background (Navier-Stokes) absorption, the latter being present
even if the critical fluctuations in concentration are absent. The background
absorption is described by the well known Stokes-Kirchhoff formula

b 2n? i
al_puz(w)[3n,+cn]f, @.1)

where { is the bulk viscosity at equilibrium. Regrettably, it was not possible to make
use of Eq. (4.1) for the determination of &} since the values of the #, and {, for the
benzonitrile 4 isooctane system were unavailable. However, a} could be determined
from Eq. (2.10) which predicts a linear relationship between («./f?) and f~ 1, as
shown in Fig. 4. Linear regression analysis applied to the point in Fig. 4 led to the
slope §=2.68 x 10™°m s~ >**and intercept b=164 x 10~ 15 s?’m ~ 1. Since b=a}/f,, we
have af=7.8 x 10711 f.

The adiabatic thermal expansion coefficient can be determined if the temperature
dependence of the density is given in the form p=C,+ C,e+ C,e' . Exact measure-
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Fig. 4. o/ f? as a function of f~ 19 for critical benzonitrile+ isooctane mixture.

ments of the density of benzonitrile+isooctane mixtures have been performed by
MILLER ef al. [22] leading to p (kg *m ™ 3)=807.086 — 294 €+ 13e'~%. Together with the
relations ap.=(@—1)C,/p.T, and ap,= —C,/pT,, this gives ap,=—049x 107+ K™!
and ap,=1248 x 107+ K ™1

The critical part of the specific heat at constant pressure can be determined from
the relation

ar. _Tap.

= : 4.2
P~ picr. &2

Using the values p,=807.086 kg -m ™! and dT,/dP=—11.8x 1078 K -Pa™![22], we
got ¢p,=0.15x103J - kg 'K~ L
The value of £ was calculated assuming the two-scale factor universality that leads to

i cPcPcffég

R, ky

(4.3)
where R; is a dimensionless constant equal to 1.95x 10~ 2 as determined from the
renormalization group theory [23]. Eq. (4.3) leads to £,=2.72x 10™ **m.

We still have to determined the coupling constant g and the regular part of the
specific heat at constant pressure cp,. Here we can make use of the fact that the
quotient g/cp, appears both in the expression for S [Eq. (2.10)] and in the formula
(2.5). On solving this set of equations we get g=—0.678 and cp,=3.29x 103
J-kg 'K~ L. The minus sign preceding the value of the adiabatic coupling constant
comes from the negative value of dT,/dP. Thus, in the benzonitrile + isooctane mixture
the changes in the critical temperature are in opposite phase to the changes in the
pressure.
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5. Theoretical analysis of the experimental data

In the previous section we determined the value of the background absorption.
Assuming it to be independent of the temperature, it can be subtraced from the
experimental data for all temperatures and frequencies. In this way we obtain
absorption coefficients that characterize exclusively the process of relaxation of the
concentration fluctuations and can confront them with the theoretical scaling
function. We start with the dynamic scaling theory. With regard to (2.10) and the
thermodynamic parameters calculated above, we obtain 4(€)=2.89 x 10~ 3. With this
value we plot the reduced absorption a,;/n 4(€) as a function of " (Fig. 5). Because the
data for the viscosity of the benzonitrile+isooctane system were unavailable, we
detemrined the amplitude of the characteristic frequency w, from the best fit between
reduced absorption coefficient values to the theoretical scaling function G(w") given
by Eq. (2.11). It should be stressed that variations in w, merely shift the data to the
right or left, whereas their displacement upwards or downwards is governed by the
value of the critical amplitude. The least-squares method in the form of the CURFIT
procedure [24] yielded a characteristic frequency of w;=3.89 x 101571,
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Fig. 5. o,/ nA(€) versus the reduced frequency " for the benzonitrile +isooctane mixture. The solid line
represents the scaling function G(w") given by Eq. (2.11).

Figure 5 shows good agreement between experimental results and the theoretical
scaling function of Bhattacharjee and Ferrell within the whole range of the reduced
frequencies.

Let us now pass on to the mode-coupling theory. We have got all the values of the
thermodynamic parameters required for the detailed analysis of the critical amplitude
A(c). Fig. 6 shows the values of 4(c) determined from Eq, (2.4) versus €; A(¢) is found
to diverge, but insiginificantly, from the exponential const ¢~ % (dashed line in Fig. 6).
This is due to the circumstances that the critical part of the specific heat at constant
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Fig. 6. o,/ mA(€) versus the reduced temperature € for the benzonitrile +isooctane mixture. The dashed line
shows the dependence on const € %.

pressure cp, of the benzonitrile+isooctane mixture is relatively small compared with
the regular part cp,. In mixtures where cp, and cp, are similar in magnitude (e.g.
aniline—cyclohexane [25]) the critical amplitude 4(¢) remains practically constant
because in Eq. (2.4) the quantities divergent to infinity — ¢, in the denominator, ¢
in the numerator — cancel out mutually. The temperature dependence of the acoustic
wave velocity affects the critical amplitude A4(¢) but slightly.

Figure 7 represents the dependence of the expression a,;/nA(c) on ’. The dashed
line gives the scaling function I ?(w") proposed by Kawasaki in the approximation of
two heat-mode contributions, whereas the solid line gives the sum I @(w")+I“(w") of
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Fig. 7. a,/ mA(€) versus the reduced frequency for the benzonitrile +isooctane mixture; dashed line — the
scaling function I'?(w"), solid line — the sum /(") + I“(w").




62 T. HORNOWSKI AND M. LABOWSKI

the Shiwa—Kawasaki theory. In both cases we used the Bray expression for the
correlation function X(x). Fig. 7 proves the Shiwa—Kawasaki curve to provide
a good description of the experimental results for »" <50 and to give a somewhat
better agreement than the two heat-mode approximation. However, for higher o’
there is still no consistence — the Shiwa—Kawasaki scaling function leads to
excessively high values compared with those from experiment. The discrepancy may
be due to the use of Bray’s correlation function in deriving the scaling function. The
Bray function has been found to provide high accuracy in experiments on light
scattering. The shape of the correlation function, however, affects the half-width of
the scattered light only slightly, whereas the expression for the scaling function is very
sensitive to the shape of the correlation function for k£>1 when is high.

Finally, it should be noted that most of the data needed for the determination of
the critical amplitude A(e) come from independent thermodynamic measurements,
whereas only cp, and g where determined by a least-squares fit of the absorption data
to the linear relation between «,/ /% and f*°¢ derived from the dynamic scaling theory.
The fact that the critical amplitude determined in this way leads to a correct scaling of
the absorption data for the low values of the w" points to the validity of new
generalized expression for A4(€) given by Eq. (2.4). The discrepancy between the
experimental results and the Shiwa —Kawasaki theory at high valeus of @', however,
points to the necessity of searching for further modifications of the scaling function.
Work in this direction is now under-way.
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