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ACOUSTICAL MODELLING OF THE SURFACE SOURCES — IV
INTERPOLATION MODEL, AXISYMMETRIC PROBLEM
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In the paper, the quadratic shape function were applied to construct an interpolation
model of a plane axisymmetric source. Optimizing the least squares distance between the
exact directivity function and directivity of the model, an optimal interpolation model was
found. The optimal model was considered as a function of the shape of the vibration velocity,
wave number and the place of the driving surface in the baffle. An optimal model was
compared to other interpolation models, namely regular and irregular ones.

1. Introduction

An exact solution of the radiation acoustic problem of a complicated shape source
and arbitrary vibration velocity can be obtained by numerical methods only. This
problem is solved applying the boundary element method (BEM). The first step of
BEM is discretization of the geometry of the source and the vibration velocity.

In the classical BEM the surface of the source is replaced by planar elements. In
addition, the vibration velocity is represented by piecewise constant values on these
elements. Then the elements vibrate as pistons. In this way a piston model of the
source (PM) is obtained [15]. This model well approximates the source if it contain
a lot of elements.

BEM was improved applying quadratic shape functions (interpolating functions)[1,
14]. Because the same shape functions are usually used to approximate both the
geometry of the source and the vibration velocity [9, 13, 15— 18, 21], then the source is
replaced by an array of isoparametric elements. This array is called interpolation model
(IM). The IM model yields more accurate result than PM model for the same number
of surface elements. If the IM model is solved numerically [7, 10, 12], the disadvantage
is arisen namely it is necessity to calculate double singular integrals. However, in the
case of PM, double integrals can be converted analytically to single integrals [9].

Recently, an excellent computer program called BEMAP [19] was worked out to
solve the acoustic field of the IM of an arbitrary source.
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In Refs. [2, 3, 11], a PM of rectangular membranes was taken into account where
the constant vibration velocity was assumed on each element. In paper [2], only the first
mode of the membrane was analyzed but in [11] higher modes were dealt with. General
rules of modelling plane rectangular sources with an infinite and rigid baffle were given
in [3]. Axisymmetric sources with an infinite and rigid baffle were considered in [8].

It has been shown in references that the primary discretization (gives primary
elements) is imposed by the singularities of geometry (edges and corners) and
singularities of vibration velocity (nodal lines and extremum). Such obtained model did
not give sufficient results. Then, in all the above mentioned works, more refined regular
discretization (secondary discretization giving secondary elements) of primary elements
was applied. But, as mentioned above, such a model (i.e. PM) consists of too many
element or, during numerical calculations for IM, singular double integrals appear.

As pointed out in [4, 5, 6], the number of surface elements in PM may be reduced
applying irregular secondary discretization. In particular an optimal piston model
(PM,) may be obtained. This model approximates most accurately the source for
a fixed number of elements and fixed method for calculation of the vibration
velocities on elements.

This paper discusses the application of irregular secondary discretization for
constructing an optimal interpolation model (IM,). As an example, an axisymmetric
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Fig. 1. (a) Picture of the driving surface, (b) Cross-section of the driving surface, (c) Places p, of the
maximum of vibration velocity and boundary G, of the optimal interpolation model.
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source with a plane infinite baffle was considered. Due to a symmetry with regard to
z-axis, only the cross-section line of vibration velocity needs to be discretized.
However, it is assumed that this line is asymmetrical with regard to its nodal points
(see Fig. 1). ;

The problem of optimal model was analyzed depend on asymmetry of the line of
vibration velocity, wave number (frequency of vibration) and the place of the driving
surface in the baffle. Searching of IM, quite similar as in Ref. [6], a least squares
distance between exact directivity function and of the model was optimalized. In the
paper, it will not put any emphasis on mathematical aspects of optimalization
problem. Rather, the numerical problems are presented with some details.

1. Directivity function of axisymmetric source

The acoustic field of a circular driving surface set in an infinite and rigid baffle is
considered. Assuming axisymmetric (AS) vibration velocity, an axially symmetric
field is obtained. The acoustic potential of this acoustic field is given by Helm-
holtz—Rayleigh integral [5]. The directivity function of such field normalized by the
field of point source placed in an origin of coordinates is given by [6]:

Qon(v) =[von(p) J, (kpsiny) pdp, (1.1)
P
where J,(x) — Bessel function of first kind and zero order, kK — wave number, p,
¢ — polar coordinates, y — azimuthal angle in spherical coordinates, von(p)
— vibration velocity function, given explicite by
; —a —a
UON(P) = C‘1 sin (’ﬂ: zTa) exp (— Czib)_—a) 5 (1 2)

The coefficients C,, C, have been chosen to attain the assumed asymmetry of von(p).
The Eq. (1.1) has been described extensively in Refs. [4, 5].

2. Directivity function of the model

After discretization of the driving surface, the vibration velocity of arbitrary
J-element can be expressed in terms of its nodal values which are chosen in i-points as
follow [1]:

0(p) = X Nip)v;(p), @.1)

where N;(p) — shape functions.
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Equation (2.1) presents interpolation of function v;(p). From the properties of this
interpolation it follows that the right hand side equals the left hand one only at i-points.
In general, except i-points, the sign of equality cannot be placed in Eq. (2.1). An
absolute error, as an effect of equality in Eq. (2.1) can be calculated analytically. But it
will be an error of vibration velocity which, in acoustic, has no useful physical meaning.

The error brought about by Eq. (2.1) was evaluated indirectly analysing the
convergence of both the exact directivity function and the model. The vibration
velocity of this model was expressed by the right hand side of Eq. (2.1). The least
squares distance was assumed as the measure of convergence of directivity functions
[5]. Its value may be interpreted as an interpolation model error (IME). Substituting
(2.1) into (1.1) we obtain

J I
Qon(¥)= ). Y. v;(p) | Ni(p) J,(kpsiny)pdp. (2.2)

j=1i=1

Using formula (2.2) in numerical calculation is somewhat difficult because of the
boundaries of each j-element change. To overcome this difficulty the shape function,
coordinate p and vibration velocity are expressed in nondimensional coordinates. In
literature e.g. [14, 20], quadratic shape functions are recommended to interpolate
a function of lower order

N(©)=E¢(E-1)2,
N()=1-£, (23)
N (D=8 +1)/2,

where £e{—1,1).
In nondimensional coordinates the coordinate p is given by

§O= 3 N©s, 4
Substituting (5) into (6) and assuming
p,=G,, p2=%(Gl+ G),. py=G,, 2.5)
leads to
O =366, G)+G,+ G, @9)

In Eq. (2.5) G, and G, are boundaries of j-element. These boundaries are consequence
of discretization.
Now the values of p; can be calculated from Eq. (2.6) for £{=¢; where £ = —1,

E=0, £,=1.
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In Eq. (2.2), it is advisable to express also v;(p;) as a function of £;. Using Eq. (2.4)
we obtain

0,(p) =0, [0(E)). @)

Because the integration is to do with respect £ instead of p than the Jacobian J; of the
transformation (2.4) is

6p1
s o 2

Making use of Egs. (2.3), (2.4), (2.7) and (2.8) in Eq. (2.2) gives

=G, =G). (2.8)

Qon(y)= Z Z v;[p(E)] I Ny(&)J,[kp(&) siny] p(£) Jp(E)dE . (2.9)

Jj=1i=1

Equation (2.9) presents the directivity function of the interpolation model and
together with (1.1) constitutes the basis of numerical calculations.

3. Numerical calculations

In the numerical calculations a vibration velocity function without internal
points is applied. Furthermore, its maximum is not half distance between nodal
points [5, 6], it reaches its maximum value at p, (p,e{a, b)). Outer and
inner radius of the driving surface are marked by a and b respectively, b=a+1
(Fig. 1).

The numerical calculations are performed for three two-element models, i.e. J=2,
obtained as a result of:

1 — regular discretization leading to the regular interpolation model (IM,),

2 — irregular discretization leading to the irregular interpolation model (IM,)
where the discretization passes on p,, i.e. the maximum of the vibration velocity,

3 — optimization of least squares distance between exact directivity function and
the directivity function of optimal interpolation model (IM ).

The boundary between the elements of the over determined models was denoted
as G,=G,s=0.5, G;=p, and G, respectively. The models were compared with one
another based on the analysis of the least squares distance among the exact directivity
functions exact and of the models.

This comparison is made in relation to:

A — shape of vibration velocity function given by p,

B — wave number £,

C — position of driving surface in the baffle given by a.

Here, least squares distance is a measure of the error of each of the interpolation
models (IME) [6]. This error depends on both the discretization (number of elements
and boundaries among them) and the number of i-points chosen on the element.
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L. In first part of the numerical calculations, the influence of the shape vibration
velocity on the construction of the model and on their directivity functions was
searched; it was assumed that k=2.5, a=0. Boundary G, if IM, (dashed line) and the
place p, of maximum vibration velocity (solid line) were shown in Fig. lc. An
examination of this figure indicates that boundary G, does not coincide with
maximum p,. Only for p,=.5 boundary G, is quite close to this value i.e. G,=.52.

The errors of the models as a function of shape vibration velocity are presented in
Fig. 2. It can be seen from this figure that IM, assures the least error IM E.
Furthermore, in the range p € {.2,.6) this error is almost constant. All models give
a good convergence only for p, = .5.
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Fig. 2. Interpolating model error in the shape of the vibration velocity; k=2.5, a=0.
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To check the convergence of exact directivity function and of the model, expressed
by IME, the directivities of each of the models, for p,= .2, were depicted in Fig. 3. Of
course, the best agreement of the directivities is for IM,. While examining Fig. 3 it is
interesting to note that, for p.=.2, IM E=.004439 and it is about 10 times less than
IME =.043190, but about 7 times less than IM, E=.031444.

II. In the second part of the numerical calculations the influence of the wave
number k on the models is investigated. The numerical calculations are run only for
one shape of the vibration velocity function i.e. p.=.2 and a=0 is assumed. Values of
G,, for separate k, are given in Table 1.

Table 1.
k 1 2 3 4 % | & 7 | 8 9 10 | 20
G, 37 36 35 34 34 34 34 34 33 33 32
As can be seen from Table 1, boundary G, does not significantly change for
ke {1,20), particularly for its higher values. Figure 4 presents the values of the model

errors as a function of k. This figure shows that the error IM E is the least and its
changeability is not large.
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Fig. 4. Interpolating model error in the wave number k; p,=.2, a=0.

The discrepancy between the exact directivity function and that of the model, for
k=10, i.e. such directivity functions which have sharp minimum, is given in Fig. 5.
Numerical calculations performed in detail pointed out that the sharp minimum of
exact directivity function and of the models IM,, IM,, IM, are in space described by
angle y equal 0.8, 0.8, 0.73 and 0.83 respectively. The discrepancy between directivity
functions presented above reflects the errors given in Fig. 4 for k=10; IM E =.005568
and it is about 5 times less than IM;E=0.0276395 and about 6 times less than
IM, E=0.3342.
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Fig. 5. Directivity functions of the models; k=10, p.=.2, 0=0.

III. In the last part of numerical calculations, the influence of the place of driving
surface described by value a on the models is considered: p.=02 and k=2.5 are
assumed. Values of G,, for separate a are given in Table 2.

Table 2.
a 0. :1 2 3 4 5 .6 =T 8 9
G, 35 37 .40 41 40 .38 .38 .37 37 37 37

The data show that in this case boundary G, considerably changes for little values
a only.
Figure 6 presents the errors of the models as a function of a.

Fig. 6. Inteprolating model error in the place of driving surface in the baffle; k=285, p=2
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4. Conclusions

The numerical analysis performed in this paper results in noticeable conclusions:

1 — directivity function of optimal interpolation model is more convergent to
exact directivity than the directivity of a regular model and irregular model if the
discretization passes on the maximum of vibration velocity,

2 — the best convergence directivity function of IM, and exact directivity is
noted for:

* vibration velocity symmetric to its nodal points,

¢ Jow values of wave number,

e the place of the vibrating surface near the axis of the source.
3 — the place of G, depends a low degree on the wave number %.
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