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ROOM RESPONSE TO FREQUENCY CHANGE AND ITS RELATION TO THE PITCH CHANGES
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When a signal of constant {requency is sent into a room and its frequency changes to
a new value, then, beginning {rom this moment, in the room there will exist two signals with
changing amplitudes (i.e. decreasing one with the old frequency value and an increasing one
with a new frequency value). As result of these changes envelope and instantaneous
frequency changes appear. These changes have a transient character and exist in a time
interval that equals the room reverberation time. Instantaneous frequency and envelope
changes are similar to those observed for beating. To describe these changes the modified
IWAIF model [1, 2] is used that allows an attempt to evaluate the pitch change in time. It is
found that the calculated pitch changes, predicted as an effect of the frequency change in the
room, have a monothonical character and appear within the range from the initial frequency
to the final one. The rate and character of the calculated predicted pitch changes depends on
the amplitude ratio of the two signals, the value of the frequency difference and on the room
reverberation time.

1. Introduction

During the superposition of two tones with similar frequencies beating occurs.
This phenomenon, elementary from the point of view of physical description, is much
more complex from the perceptual point of view. The reason for it are instantaneous
frequency (IF) changes which occur simultaneously with the amplitude envelope
changes [1, 2, 3, 7]. Moreover, extremal instantaneous frequency changes appear
when an amplitude envelope reaches the minimal value [13]. Because of that the
perception of instantaneous frequency changes near the envelope minimum is
difficult. This problem has already been analysed by Helmholtz. Jerrress [7] isolated
fragments of beating near the envelope minimum and noticed a considerable
difference in pitch for those fragments in comparison with that near the envelope
maximum. Fetn [3] has studied the pitch for two complementary pair of tones of
different frequencies and intensities. The complementarity consisted the fact that the
intensity ratios were the same, but for one pair the sound of lower frequency has
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a higher amplitude than that of higher frequency while for the other one the amplitude
relation was reversed. Owing to this fact, the amplitude envelope for both sounds was
the same. Pitch differences for both pairs of signals were perceived by subjects. Feth
explains the possibility of pitch discrimination for such complementary pairs of
signals by the differences in the calculated envelope weighted averaged of instantane-
ous frequency (EWAIF). Dai [2], basing on the EWAIF model, defined a new pitch
measure that is the squared envelope weighted average of instantaneous frequency
(SEWAIF), and pointed out its advantage in comparison with the EWAIF model. On
the base of his own and other known results of perceptual studies, he showed this
measure to correlate better with the SEWAIF model than with the EWAIF one.

ANANTHARAMAN et al. [1] applied the IWAIF (intensity weighted average of
instantaneous frequency) method for frequency discrimination. The only difference
between the SEWAIF and IWAIF models are their names.

The reported studies are closely connected with phenomena observed in rooms for
signals of varying frequency. Ozimexk and Rutkowski [10] found some differences
between instantaneous frequency changes of a signal received from a room and the
original frequency changes of the transmitted signal. According to numerical
calculations and experimental investigations in rooms, they proved [14] that for linear
and jump frequency changes some additional instantaneous frequency changes
appear. The extreme values of instantaneous frequency changes correspond to the
minimum values of the amplitude envelope.

The analysis of the instantaneous frequency and envelope changes caused by
room transmission properties showed that those changes result from the super-
position of waves reaching a selected point with different amplitudes and time delay
values. The time delays between particular waves for a sound with varying frequency
generate some instantaneous frequency differences. The instantaneous frequency and
amplitude differences are the reason of phenomena similar to beating. Now, the main
question from the view-point of the sound transmission quality evaluation is whether
instantaneous frequency changes in rooms are important for the perception.

In this paper the case of simultaneous instantaneous frequency and envelope
changes, appearing due to a sudden step frequency change of a sound in the room are
discussed. Those changes are interesting because in a finite time interval after
a frequency change in the room there appear two signals of constant frequencies and
varying amplitudes. Therefore one should expect results similar to those of beating with
effects concerning the perception. The purpose of this work is to predict the possibility of
the pitch change resulting a step frequency change of the sound in a room on the basis of
the IWAIF [1, 2] model. Frequency changes of this kind appear in real sounds, but they
concern rather spectral changes than those of the frequency changes of individual tones.

2. The room response to a frequency change

When a sinusoidal signal of constant amplitude 4 and frequency w, is sent to
a room, the steady state room response is
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x(t)= A|H(jw,)| exp [jo(w,)] sin(w2). (2.1
Similarly for a signal of frequency w,
0= AlH(w,)| exp [jo(@,)] sin(o,). 22

where |H(jw)| is the magnitude of a room transmittance of frequency w and ¢(w)
is the phase shift for this frequency. Let us assume that at a moment /=0 the
frequency value will change from , to w,. The amplitude of signal transmitted
from the source remains constant. Beginning from the moment of the frequency
change the amplitude of the signal of frequency w, will decrease according to the
function

x(t)=A|H(jw,)| exp [jp(w,)] exp(— k2) sin(w,?). (2.3)

At the moment of the frequency change a signal of frequency w, with rising amplitude
will appear:

()= A|H(jw,)| exp [jo(w,)] [1 —exp(—kn)]sin(w,?). (2.4)

where k=13.8/T,, Ty is the room reverberation time for a 60 dB decay. We assume
that reverberation time changes slowly with the frequency.

From equations (2.3) and (2.4) it follows that in a practically finite time interval
there will be two signals in a room: one decreasing with the frequency @, and another
one increasing with the frequency w? In a selected point a resultant signal being the
sum of signals (2.3) and (2.4) appear:

()= X, exp(— ki) sin(w, 1)+ Y, [1 —exp(—k?)] sin(w,), (2.5

where X, =A|H(jw )|, Y,=AlH(jw)|.

To find the resultant signal, the analytic signal corresponding to the sum of signals
(2.3) and (2.4) must be created see Appendix. The envelope of the calculated analytic
signal (A4 — Appendix) equals that of a real signal.

e(t) = X,/ DX(t)+ 5*GX(1) + 26 D(1)G(t)cos(dwr) . (2.6)

The following notations were assumed for simplicity

Y
D(f)=exp(—kt), G(t)=1—exp(—kt), Ao=w,—w, and 5=1,-'?.

0

The knowledge of the resultant signal envelope and of the complex insta-
ntaneous phase of the signal CI®(f) (A9 — Appendix) allows to calculate the
complex instantaneous frequency (A10 — Appendix) after the frequency change in
the room
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1 dCI®
=0 "":f?@=
1 —D(:){—52k+5c;(:)(kcos_(4wz)+Awsin(dw:))+ku(¢)(1+52—5cos(4mz))} N
T 2n D¥(t)+82GX(1)+ 28 D(t)G(#)cos(dwt)

g M 32 4wG*(f)+ 6D(1) [ksin(dwi) + 4 wG(t)cos(dwt)]
ST D2(1) + 6?G*(1) + 26 D(£)G(t) cos(dwt) :

Q2.7

The first component of the complex instantaneous frequency (the real part) results
from a relative amplitude envelope change. The second component (the imaginary
part) equals the sum of the constant value corresponding to the initial frequency and
the varying value of the instantaneous frequency IF(f). Using the formula (All
— Appendix), changes of the complex instantaneous frequency magnitude described
by the formula (2.7) as well as the envelope of the resultant signal (2.6) were
calculated. The calculations were carried out for an ideal room with an exponential
sound decay. Exemplary results of the calculations are shown in the Fig. 1.
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Fig. 1. Exemplary results of the calculated complex instantaneous frequency magnitude and envelope
changes after a frequency jump (4f=50 Hz, §=0.5, T,,=0.5 s).

Figure 1 shows variations in the complex instantaneous frequency magnitude (the
top panel) and the relative changes in resultant signal amplitude envelope correspon-
ding to them (bottom panel). The moment of the frequency change corresponds to the
zero value on the time axis. At the following moments, specific fluctuations of the
complex instantaneous frequency magnitude appear and its steady value corresponds
to the frequency w,.
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For simplicity it was assumed that the initial value of frequency equal zero (which
in reality corresponds to the initial frequency w,).

An analysis of numerical calculations indicates the following important facts:

The transition from the initial to the final frequency have an oscillating character.
These oscillations disappear after the room reverberation time. The frequency of the
complex instantaneous frequency magnitude oscillations and of the envelope changes
equals (similarly in the case of beating) the value of the frequency difference
Aw=w,—o,. The change in the direction of the instantaneous frequency oscillation
occurs the moment ¢, that is the moment of equilisation of both the signal amplitudes,
i.e. it is increasing with the final frequency and decaying with the initial one:

Tis 1
18_13.8 ln(l-i-b).
Around the moment ¢, a largest depth of the changes of the amplitude envelope is
observed. The value of the instantaneous frequency at ¢, equals f,+ Af]2.

It is an interesting feature of the complex instantaneous frequency magnitude
changes that their extreme values appear at the moments at those the amplitude
envelope reaches its minimal values. The observed correlation between instantaneous
frequency and envelope changes is similar to that for beating.

Instantaneous frequency changes, very similar to those presented in Fig. 1, can be
measured in real rooms. The results of such measurements are presented in [14]. The
measured instantaneous frequency changes are more complex because of the
approximately exponential sound decay in a real room.

3. Evaluation of the pitch changes as an effect of the frequency change in a room

3.1. The IWAIF model

The expression for the intensity-Weighted Average of Instantaneous Frequency
(IWAIF) was defined as a physical measure of the average pitch of complex signals[1, 2]

T

| e f(Ddt
IWAIF=2 3.1)
| e()dt

where e(?) is the amplitude envelope, f(f) is the complex instantaneous frequency
magnitude and T is the time interval. When the analytic form of the envelope and
instantaneous frequency changes is known from algebraic and trigonometric trans-
formations, the IWAIF calculation is simply. To obtain the envelope and instan-
taneous frequency changes in the experiments, an appropriate hardware or software,
which allows to demodulate the amplitude and frequency is required. The amplitude
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envelope demodulation is relatively easy to perform, whereas the frequency demodu-
lation of an acoustic signal produces many problems. One of the possible solutions of
frequency demodulation was mentioned in an earlier paper [9]. Avoiding technical
details, the method of demodulation presented there consists in the instantaneous
frequency evaluation by measuring time intervals corresponding to the following zero
crossings of a signal in the same direction. The varying in time zero-crossing
frequency ZCF is defined

1

(3.2)
where 47 is a time interval between the following zero-crossings of a tested signal. The
measurements of the instantaneous frequency defined in this way can be performed
with high precision.

For a signal having a finite number of spectral components the equation (3.1)

takes the form
N

Y aif;
IWAIF==1 (3.3)

where a3 is the amplitude of the i-th intensity spectrum component, f; is the frequency,
and N is the number of components. The value of IWAIF means the frequency
ordinate for the center of gravity of a figure created by the signal intensity spectrum.
It is very easy to calculate the value of IWAIF for beating because it concerns only
two spectral components.

As reported in papers [2, 4, 7] IWAIF for beating has values lying within the
frequency range between the spectral components of the beating tones. If the
intensities of both components are the same, IWAIF equals the arithmetic average of
their frequencies. When the intensities of both components are different, the value of
IWAIF shifts in the direction of the component with higher intensity. FETn ef al. [4]
proved that IWAIF well corresponds to the perceived average pitch if the frequency
distance between the spectral components does not exceed a critical band. When the
difference in the frequencies of these tones is larger than the critical band [12], we
perceive not the average pitch but two separate tones of constant intensities and
different pitches characteristic of them. However, when both beating tones have
similar frequencies, only one tone of intermediate pitch and varying intensity is
perceived. Such a perception of the pitch is determined by resonance properties of
a basiliar membrane. When the stimulation of a basiliar membrane is performed by
two tones lying relatively far from each other on the frequency scale, the separate
(non interlaced) areas on the basiliar membrane corresponding to them are stimula-
ted. For a small frequency difference the stimulated resonance areas on the basiliar
membrane overlap each other, so that an intermediate pitch is perceived without the
possibility to discriminate the pitches of the particular tones.
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3.2. Intensity weighted instantaneous frequency magnitude after a frequency change

In the case of the frequency change in a room, starting from the moment of its
appearance there will be two spectral components of constant frequency values f; and f,
but with changing in time amplitudes a(f,,f) and a(f,,t). The amplitude variability of
both the signals differentiate the considered case from beating. As a result of an
amplitude variability the evaluated IWAIF value depends on time and can be described
by

a0, +ax0 S,

IWIEO=""a0)+a)

(3.4)
Replacing IWAIF by the IWIF results from the signals parameter variability. Now
we are not interested in the averaged but in the momentary changes of the amplitude
weighted magnitude of the complex instantaneous frequency. After transformation
formula (3.4) can be rewritten in the form

BRI

1+6%H) "
where 3(f) is the ratio of the varying in time amplitudes, a,(t)/a,(f), and Af is the
frequency difference f,—f, (the value of a frequency change). Taking into account the

real form of the signal amplitude changes for the frequencies f, and f, after
a frequency change in the room ((2.3),(2.4)) we get finally

IWIF(1)=f,+ (3.5)

(1 —exp(— kt))2
o\ exp(=k) J
IWIF()=f,+ L (1—exp( k) _4f. (3.6)
exp(— ki)
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Fig. 2. Comparison of the complex instantaneous frequency magnitude (solid line) and pitch changes

IW | CIF(r) | (dashed line) after the frequency change in a room 4f=50 Hz, §=0.5, T,,=0.5 ). Vertical

dashed line corresponds to the moment ¢, of the equalisation of the amplitude of the decaying and
increasing signals.
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In Fig. 2 the changes in the complex instantaneous frequency magnitude | CIF | —f. .
(solid line) are compared with changes in the function IW | CIF(¢) | — f, (dashed
line). The moment of the amplitude equalisation of both signals is marked by
a vertical dotted line.

The function IW | CIF(f) | —f, changes monothonically from the initial value to
the final frequency. Similarly as for beating (cf. (3.1)), at the initial moment at that the
signal amplitude of the frequency f, is maximal, the value IW | CIF(f) | — 1
corresponds to the frequency f, (0 in the Fig. 2). At the moment of the amplitudes
equalisation t. the value IW | CIF(¢) | —f, equals the average of the frequency
change. After the time Ty, measured from the moment of the frequency change, the
value of the signal amplitude of frequency f, is considerably greater than that of
frequency f,. Then the value IW | CIF(¢) | —f,, similarly as for beating, equals the
final frequency f,.

The changes in the normalized IW | CIF(f) | function, obtained as a result of
dividing the second component of the formula (3.6) by the value of the frequency
change Af, are shown in Fig. 3.
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Fig. 3. Changes in the normalised IW | CIF(f) | function for selected values of the amplitude ratio
4 (T ,=055s).

The value of the amplitude ratio § is a parameter of particular curves. For =10
(the amplitude of the signal of final frequency is 10 times greater than of the initial
frequency), changes in the function IW | CIF(f) | have a course similar to the
frequency change for the signal sent into the room. For §=0.01, the time interval of
changes in the function IW | CIF(¢) | will be much longer. From 0 to about 100 ms
these changes are small.

In Fig. 4 and 5 changes in the normalised curves IW | CIF(¢) | for selected values
of the room reverberation time are shown however Fig. 4 referes to the constant value
6=0.1 whilst Fig. 5 refers to 6=1.

For small values of the reverberation time T, =0.1 s, the IW | CIF(f) | changes
occur almost immediately. The time interval of the transition from the initial to the
final frequency is very short and almost independent from the value of the amplitude
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" Fig. 4. Changes in the normalised IW | CIF(t) | function for selected reverberatin time values (8§ =0.1).
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Fig. 5. Changes in the normalised IW | CIF(t) | function for selected reverberation time values (§=1).

ratio. An increase of the reverberation time causes an increase in that interval. The
rate of the IW | CIF(t) | changes is greater for large amplitude ratios J, but it
decreases with the increase in the reverberation time.

As was mentioned earlier, in the initial phase of the magnitude of the instan-
taneous frequency changes, i.e. up the moment ¢, these changes appear in the
proximity of the initial frequency f;. At moments later than ¢,, oscillations appear
close to the final frequency f,. The final frequency is reached after a time equal to the
room reverberation time. In Fig. 6 the relation of ¢, versus the amplitude ratio 4 is
shown. A similar relation for the time T4,— 7, is shown in the Fig. 7. These relations
were calculated from Eq. (2.8). The value of the reverberation time T, is a parameter
of the particular curves.

The increase of the amplitude ratio causes a considerable decrease of the time
interval of oscillations around the initial frequency Fig. 6. The value of that interval
increases proportionally to the room reverberation time. The time interval correspon-
ding to the oscillations around the final frequency almost does not depend on the
amplitude ratio & (Fig. 7) and is much larger than similar values for oscillations
around the initial frequency, especially for large values of 4. However, attention
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Fig. 6. The relation of the time interval of oscillations around the initial frequency versus amplitude ratio
d for selected value of the reverberation time.
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Fig. 7. The relation of the time interval of oscillations around the final frequency versus amplitude ratio for
selected value of the reverberation time.

should be paid to the fact that the changes of IW | CIF(#) | in the final phase, i.e. for
moments close to the value of the reverberation time, are small (cf. Fig. 3—5).

4. Discussion

The subject of the previous analysis was the physical aspects of the complex
instantaneous frequency magnitude and envelope changes accompanying them as
a result of the frequency change in a room. Basing on the modified IWAIF model,
a measure (function) was found that allows to predict the possibility of pitch changes
resulting from frequency change in a room. As opposed to elementary beating of
nonsteady envelope and instantaneous frequency changes and settled average pitch
(under assumptions described in Sec. 3.1) the calculated changes of pitch after
a frequency change in a room have a nonsteady (transient) character. The continuous
change of an amplitude ratio of spectral components with different but constant
frequencies is the cause of nonsteady pitch changes predicted on the base of IWAIF
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model. The calculated predicted continuous pitch change exists in a room in
a practically finite time interval. This interval can be very short but, especially in
rooms with a large reverberation time, it can reach considerable values (cf. Fig. 6— 7).
The value of the steady state amplitude ratio of both considered signals also
determines the duration of the calculated pitch change. The IWAIF model shows
that, as a result of instantaneous frequency envelope weighting the oscillating
instantaneous frequency changes are smoothed. Thus, the perceived pitch can be
characterised by a number (beating) or by a function describing continuous pitch
changes (frequency change in a room). From the point of view of room acoustics it is
important to prove that the instantaneous frequency changes, registered in a room,
are perceived by a listener. Predicted by the analogy to beating, the pitch changes in
a room for the considered nonsteady signal allows to determines a possible sound
features change in the room. This is important and useful because changes in the
instantaneous frequency and amplitude envelope, similar to those discussed, also exist
for a sound with periodic frequency changes.

The predicted possibility of transient pitch changes depends on a few factors such
as the duration and course of instantaneous frequency changes. It is also related to the
frequency difference of signals sent to the room determining the instantaneous
frequency and envelope oscillation frequency. This problem requires separate
experiments concerning the perception of predicted pitch changes. Especially the
problem of averaging and the possibility to follow pitch changes must be examined in
details. It is also important whether and to what extent the model used for beating
sinusoids can be useful for the instantaneous pitch analysis. These investigations,
exceeding the subject of this paper, have not been done so far.

But it is encouraging that a sudden sound frequency change causes effects
perceived in a room, especially in a range of low acoustic frequencies. A frequency
change in the range of several Hz gives a sensation similar to vibrato while playing
music instruments. For higher acoustic frequencies and large values of the frequency
change perceived sensation is similar to a metallic click. Such different sound effects
are probably related to the frequency of envelope and instantaneous frequency
changes depending on the frequency difference value. For small values of the
frequency difference envelope changes are more clearly perceived than instantaneous
frequency changes. It is difficult to relate the pitch perception as an envelo-
pe-weighted instantaneous frequency for the mentioned assumption. For larger
values of the frequency change, the amplitude envelope as well as the instantaneous
frequency change at a larger rate. This corresponds to the perception of an averaged
or continuously changed pitch.

5. Conclusions

The analysis of instantaneous frequency and envelope changes (2.6), (2.7)
occuring in a room as a result of the frequency change shows that those changes have
a character of synchronously appearing envelope and instantaneous frequency
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changes. Therefore the result of these changes can be treated as a simultaneous
amplitude and frequency modulation of finite duration. The synchronous appearing
of both kinds of the modulation causes that the possibility of an instantaneous
frequency change perception is strongly dependent on the amplitude envelope
changes [5, 6]. The IWAIF model described in [1, 2] was used as an attempt to
interpret the changes observed in a room from the perceptual point of view. These
papers concerned mainly beating and their basic aim was rather the estimation of
average pitch changes in time. The use of the IWAIF model for the amplitude ratio of
two tones varying in time allowed to calculate “pitch values” in the following time
intervals after the frequency change in a room. These calculated values of pitch are
changing continuously in a time interval that equals the room reverberation time. One
should be aware that proper mathematical calculations of pitch changes do not
strictly correspond to the perceived pitch. It results not only from envelope and
instantaneous frequency changes more complex than those for beating. Among
others it seems to be important that these changes take a finite time interval and their
rate depends on the value of the frequency change in the room. The other reason for
some ambiguity in the interpretation of the changes perceived in a room is that it has
not been clearly known so far what is the mechanism of pitch sensation. But generally
it is known that a frequency change influences not only the signal pitch change but
also it loudness [11] and an amplitude envelope change influences the change in the
loudness and pitch [15].

Independently of the model we use to estimate frequency changes in a room, it can
be generally said that simultaneous envelope and instantaneous frequency changes
can be perceived as a transient (i.e. of finished duration) change of pitch.

Appendix
Complex instantaneous frequency

Let us consider a real signal resulting from the superposition of two tones with
slow envelope changes (narrow band signal)

r(f)=x () cosw, 1+ x,(f) cosw,t, (A1)

where x,(#), x,(¢) are functions describing the amplitude envelope change. To create
an analytic signal let us calculate the Hilbert transform of the real signal (A1)

Hi{r(f)} =x (1) sinw, 1+ x,(1) sinw ¢ . (A2)

Making use of (A1) and (A2), an analytic signal corresponding the real signal r(¢) will
be equal to

r() =) +jHi{r(1)}. (A3)
The envelope of the analytic signal is:
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| r (0 =J[r()]*+ [Hi{r()}]?. (A4)

The analytic signal envelope is a real function that equals the envelope of the resultant
real signal (A1). The phase of the analytic signal is:

gl arctg[ l;{(:()t)}], (AS)

The instantaneous frequency (IF) is calculated as a time derivative of the analytic
signal phase (A5)

o ()

IF()=—"

(A6)
In practice phase changes are referred to a constant frequency value f;, for which the
phase is a linear function of time ¢(f)=2nf¢. Thus, the instantaneous frequency
changes will be described as follows

dig,(1)

IF()="""

+2nf,; (A7)

(1) .
dt
The resultant signal corresponding to the real signal (A1) is given by

where —:—— is a time varying component of the instantaneous frequency.

r(f)=|r ()| cos I:I IF (I)dt:| =Re {cxp [111 (O] +jf IF(t)dt]} ; (A8B)

The expression
Clé(t)=Inlr ()| +/[IF(ddt, (A9)
is a complex phase of the resultant signal. The complex instantaneous frequency is

dcre(n _ 1 dlr,(0)

CIFO=~"% (0l at

+jIK(1). (A10)

The magnitude of the complex instantaneous frequency (the real function describing
the frequency change) can be calculated from

! “\/[l 0| dlrd(:)l } +UFOF (1D

Let us notice that only for signals with a constant envelope the magnitude of the
complex instantaneous frequency equals the instantaneous frequency IF(¢).

For signals with simultaneous envelope and instantaneous frequency changes, the
value of the complex instantaneous frequency magnitude depends on both the
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instantaneous frequency IF(f) and the real part of the complex instantaneous
frequency changes.
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