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This paper reviews the physical principles relating to the transmission of sound from
air to water. The major emphasis is on the effect of the air-water interface on the
transmission of sound to an underwater receiver. A limited consideration only is given to
non-flat surfaces and the transmission at grazing angles of incidence.

Artykul przedstawia fizyczne podstawy transmisji dzwigku z powietrza do wody.
Gléwny nacisk polozony na efekty graniczne i ich wplyw na rejestracje przechodzacej fali
dzwigkowej pod woda. Pewne problemy zwiazane z pofalowana powierzchnia wody sg tez
dyskutowane.

1. Introduction

The transmission of sound from air to water has been the subject of many
publications as is shown by references [1-5]. The physical problem relates to two
situations; that in which the interface is supposed to be flat i.e. by comparison to the
wave length of sound and that in which the surface is supposed to be disturbed by
waves. The emphasis in this paper is on the consideration of the first case. There has
been much discussion in the literature of the general problem of a situation which
relates to a curved wavefront incident on a boundary. This problem has been
considered in various circumstances for electromagnetic waves [6, 7] as well as
acoustic waves [13]. The topic of interfacial effects has been fashionable in recent
years as it has a connection with transmission of noise over the ground. In this
regard there is a substantial literature, of which, ATTENBOROUGH’s work [8] might be
representative and also convenient for its listing of the major references.
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2. The transmission of sound into water from a point source

If we follow URICK’s approach [2] then we see (Fig. 1) that sound can arrive at
the receiver by several paths. First, there is the direct, refracted, path which is shown
as OAR in Fig. 1. Second, there is the indirect path from bottom reflection, i.e.
OBCR. Finally, there is a path which may be associated with surface, layer or
inhomogeneous waves following paths such as ODR. This surface wave might be
important at depths small compared with the wavelength of the sound.
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FiG. 1. The contribution to the sound field at a point in the Sea made by a source O in air

If we concern ourselves first with the direct path then we note that there has
been considerable discussion of this topic in the literature. HuDIMAC [9] proposed
a consideration based on the assumption that the sound reaching the particular
point underwater could be obtained from a ray treatment; see Fig. 2. Essentially it
was assumed that an element of the wavefront at some point on the surface can be
assumed to be plane and the transmission coefficient at some angle (0, in Fig. 2) can
then be used to obtain the contribution to the sound pressure at an element dR. It is
shown on these assumptions that:
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FiG. 2. The geometry of the ray paths. The source is at a height h above the water surface
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where
B = {1+[1—(c3/c])]ctn? 6,)} /2,
I, is the sound intensity at R, and E is the output power of the source. HUDIMAC

calculated the intensity for a particular case, see Fig. 3.
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F1G. 3. Plot of iso-intensity lines vs range and depth for a 1 watt simple source at 25 feet. Intensities are
given in dB re 1 watt/cm?. Curve O: 120 dB, 1: — 125 dB, 2: — 130 dB, 3: '— 135 dB, 4. — 140 dB, and
5: — 145 dB (After HUDIMAC)

WEINSTEIN and HENNEY [1], about eight years later attempted the problem using
wave theory to obtain sound pressure at a receiver in the cordinate system in Fig. 4.
Its is assumed that there is a point source in air with a velocity potential given by:

¢ = (1/R)exp(—iw R/c,), ' 2

and in the water the velocity potential is given by:

¢ = [* [2B,/(0B, +B)] {exp [ —i(B,z+ B )]} [Jo (kr) k/(iB,)] dk, )

source
h air

z water
VR By Y. e

Fic. 4. Coordinate system
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0= Qz/Ql!

where
B, = [(w/c,)* —k*]'?
= —i[k*—(wfc, "]
B, = [(@/c,)* —k*]'/?

= —i[k—(/c) "

forw/c, >k,
forw/c, <k,
for w/c, > k,

forw/c, < k.

These authors demonstrated that for @ —0 and g,/p, > 1, then:

p =2eyc,/m)'?/(h+2),

4

for the same condition HUDIMAC’s treatment gives:

P = (20, ¢,/m)"*/[h+z(c,/c,)].

©)

WEINSTEIN and HENNEY calculated the velocity potential as a function of water
depth and frequency — see Figures 5 and 6. These figures show a curve for the
results obtained from HUDIMAC’s treatment. HUDIMAC’s results are consistent with
the wave treatment for large values of w and large values of z.
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F1G. 5. Velocity potential as a function of water

depth for the indicated frequencies and a source

altitude of 25 ft. H refers to the Hudimac solution

and the remaining curves to the wave theoretical

solution for a point source in air with a velocity
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FiG. 6. Velocity potential as a function of water

depth for the indicated frequencies and a source

altitude of 100 ft. H refers to the Hudimact solution

and the remaining curves to the wave theoretical

solution for a point source in air with a velocity

potential of unity at 1 cm (After WEINSTEIN and
HENNEY)
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3. Discussion of ray and wave theory results

The findings of the authors of references [1 and 9] are to be expected in that the
problem which is being considered is essentially a diffraction problem — see Fig. 7.
The incident sound field consists of spherical (or near spherical in the presence of
wind) wave fronts impinging on an aperture shown somewhat diagrammatically at
the water-surface. This aperture is shaded by the transmission coefficient of the
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FiG. 7. The geometry of the aperture

sound at the interface; the transmission is a function of and is symmetrical about
a vertical axis. Seen in these terms we are left with the solution of the Fres-
nel-Kirchhoff integral as in optics. Taking the diffraction integral as given in BORN
and WoLF's book [10] :

U(P) = —iA/(2n) | | (1/rs) [expik (r +s)] [cos (n,r)—cos (n, s)] dS, (6)
then for this case, '
U(P) = —iA/(2x) [ [ T(1/rs) [expik (r +5)] [cos (n,r)—cos (n,s)] dS, (7
where T is the sound pressure transmission coefficient at the interface i.e.:
T=2¢,c,cos0/(g,c,cos0+¢, ¢, cos ),

¢ being the angle of refraction of the sound.

The solution of Eq. (7) is known to be difficult. It is a form of Fresnel diffraction
which does not lend itself easily to analytical solution. The situation is further
complicated by the variable transmission factor. It would seem to be convenient to
use a numerical solution. If we do so then the results must coincide with those of
WEINSTEIN and HENNEY unless an arithmetical error is made.

At this point it is to be observed that it must be expected that the HuDIMAC
solution converges to that of the WEINSTEIN and HENNEY solution because as the
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wavelength becomes short it is in the nature of the diffraction integral that its result
will be similar to ray theory. This point is well demonstrated in the general literature.
If further demonstration of the point is necessary, then to the extent that data are
available, reference [3] supports the conclusion that the wave or diffraction solution
is, in general, the required solution. It should be observed however, that the
diffraction solution is only valid for the circumstance that the coherence length of the
sound is sufficient for it to encompass all the phase changes required by the geometry
of the aperture. This assumption is often made in noise studies without the necessary
demonstration of its validity to the circumstances being studied.

Urick [2] elaborated the ray theory and gave detailed consideration of the
position of the virtual sound source as “seen” from the water, see Fig. 8. He notes

real
? source
h s 2
air virtual
source
water
l ®
d

R

Fic. 8. The receiver (a) beneath the source and (b) in the farfield at distances much greater than the height
of the source

that the apparent source height is the same as the apparent depth which is used in
elementary optical theory. As the treatment URICK uses is in principle that advanced
by HupIMAC it provides an approximation similar to his. As URICK points out this
approximation (accepting 0,,, is 13°) can be valuable in that it allows a simpler
calculation of thé sound pressure at a point in the water. His analysis arrives at the
equation

1, = 1,[4n*/(d+nh)*], (8)

where I is the intensity, d the depth in the water, h the height of the source and n = ¢,
cos 0/c, cos¢. URrICK shows that for far field, Eq. (8) becomes

I, = 4I,n?cos? ¢/12, )

after some approximation. This means the source can ce replaced by a dipole located
at the surface and radiating as cos?¢. The equivalent source has an intensity of 4 n*
times the real source. As URICK points out this is a valuable approximation in that it
allows rapid calculation of the sound intensity under the water.
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4. The transmission of sound through a rough interface

This is essentially a problem relating to effect of the change of the angle of
incidence associated with a non-flat surface. This is a problem possibly statistical in
which the shape of the water surfaces is required. This allows a suitable generaliza-
tion to be made [11, 12]. The rough surface effect is two-fold. First, the transmission
factor (T) is changed locally by the surface shape and the modified value is required
in the Fresnel-Kirchhoff integral equation. The effective radius of the aperture of the
surface (see Fig. 7) is increased beyond @ = 13° as given by the total external
reflection condition. Is is beyond the scope of this paper to deal with the details of
this situation.

5. Surface or lateral waves

An excellent description of the interaction of the sound wave at the surface when
total reflection occurs is given in reference [13]. It is shown in an argument which is
too detailed to be reproduced here that if grazing angle geometry (see Fig. 9) is
considered then the velocity potential for the lateral wave is given by

b1l = 2exp [—kd (sin® 0 —n*)""2]/[(e,/e,) (r* +h?)V/?], (10)
subject to:
sind = r/[(r* + h*)'/*] > n,ie.0 > 13°,

where n = ¢, /c,.
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FIG. 9. Paths of wave penetration into the lower medium for the case: n < 1

This shows that for a given 0 the surface wave decays as exp—(d/2) below the
surface. Similarly, the wave decays as 0 increases. Urick evaluated the sound pressure
at different depths and his data are reproduced below (see Fig. 10). It is to be noted
that roughness of the waves on the water surface will change the situation so that
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Fic. 10. Ratio of the intensity I, of the lateral wave to the intensity I, of the refracted wave, using
coordinates of d/i and R/d, where d = receiver depth, R — receiver horizontal range, and J — wavelength

sin 0 > n condition, will be satisfied in “unusual” regions on the surface. A satisfac-
tory theory for the maintenance, transmission and decay of surface waves in these
circumstances does not appear to exist.

6. Conclusion

The essential physical basis for the transmission of sound from air to water has
been reviewed. It is noted that primarily the problem is one of diffraction through an
aperture which is shaded by the effects of a transmission coefficient which is related
to the physical properties (¢c) of the water and the air, the angle of incidence and
surface perturbations. At large (grazing) angles a layered or surface wave exists and
this wave which decays exponentially with depth can provide significant sound levels
close to the surface. :
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For the last few years a new method of visualization and quantitative analysis of
physico-mechanical properties and microstructure of heterogenetic media — the acoustic
microscopy — has been intensively elaborated in the world, In this method waves of
ultrasound and hypersound range are used as an analysis factor. It allows to use this
method for investigating a wide variety of opaque materials and goods and obtaining
information about their inner structures as well as for optically transparent materials in
which the contrast between different structures is practically absent. In both cases an
investigator receives information that is quite different from that obtained with the help of
other methods, namely, the distribution of local physico-mechanical properties for example,
bulk compression, shift, etc in the material of the sample.

We give a review of the results of the work on methods and means of acoustic
microscopy, worked out in the Centre for Acoustic Microscopy of the USSR Academy of
Sciences for investigation of polymeric composites and biological objects as well as the
results of analogical investigations of the loading scientific centres in the world.

We set forth common physical basis and principles of getting acoustic images as well
as the methods of studying microstructures and mechanical properties of heterogenetic
objects with the help of acoustic microscope.

W ciagu ostatnich lat rozwijana jest na $wiecie akustyczna mikroskopia — nowa
metoda wizualizacji i analizy jakosciowej wlasnosci fizykomechanicznych i mikrostruktury
oérodkow niejednorodnych. W metodzie tej stosowane sa fale o czestotliwo§ciach ultra-
i hiperdzwigkowych. Pozwala to na badanie zaréwno réznych nieprzezroczystych materia-
1ow i przedmiotéw i uzyskanie informacji o ich wewngtrznych strukturach, jak rowniez
badanie materialéw optycznie przezroczystych, w ktérych nie ma praktycznie kontrastu
pomigdzy réznymi strukturami. W obu przypadkach badacz uzyskuje informacje calkowicie
rozne od otrzymanych za pomoca innych metod, a mianowicie rozklad lokalnych wlasnosci
fizykomechanicznych np. $ciliwosé objetosciowa, przesuniecie w materiale probki.

W artykule podajemy przeglad wynikéw prac wykonanych w Centrum Mikroskopii
Akustycznej Akademii Nauk ZSRR i obejmujacych akustyczng mikroskopi¢ kompozytéw
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polimerowych i obiektow biologicznych oraz wyniki analogicznych badan uzyskanych
przez przodujace oérodki naukowe na $wiecie.

Opracowali$my zaréwno podstawy fizyczne i zasady uzyskiwania obrazow akustycz-
nych, jak rowniez metody badania mikrostruktur i wiasnosci mechanicznych osrodkow
riejednorodnych za pomoca mikroskopii akustycznej.

1. Introduction

Today there are several sufficiently effective methods for investigating physi-
co-chemical morphology and the local distribution of microstructures in polymeric
mixtures and biological substances. The most important among them are optical and
electron microscopic methods.

The present work is an analysis of the possibilities of a fundamentally new
method, scanning acoustic microscopy SAM, for studying the physico-mechanical
microstructure and dynamic processes in materials of the most diverse nature.

2. Principles of Scanning Acoustic Microscopy (SAM)

Let us first recall the principles of acoustic microscopy (Fig. 1). A high radio
frequency pulse from a piezoelectric transducer is focused by an acoustic lens in
a liquid coupling medium. The lens is in the form of a spherical cavity at the end of
the soundguide. On interacting with the sample a focused beam is partially reflected
from the sample and partially passes through it. In the former case we have
a reflecting microscope; and in the latter case, after the beam passes through a second
lens, we have a transmission acoustic microscope. Subsequent operations include the
scanning of the sample relative to the focal region, recording the signal at every point
and storing the signal in memory unit, synchronizing the sweep with the scanning,
and using the signal to control the intensity of the electron beam. ‘These operations
result in the formation of an acoustic image on the display screen.

The interaction of sound wave and the sample yields information that is quite
different from that obtained with the help of optical and electron microscopy. This is
due to the fundamental difference in the physical nature of ultrasound which
manifests itself in the form of elastic deformation waves in a medium. The
mechanical nature of ultrasound makes it possible to obtain new information on the
mechanical properties of an object with the help of SAM, as distinct from other
methods.

The most important characteristics of the SAM method are its resolving power
and depth of penetration into the sample. They depend on the frequency of
ultrasound, the performance of the lens system, the nature of immersion medium and
the properties of the material under investigation etc. With an increase in resolution,
the depth of penetration of ultrasound into the sample decreases. Therefore, the
frequency of ultrasound should be selected according to the given type of sample and
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UHF-oscillator

scanning
system

UHF-amplifier

minicomputer |——  TV-display

FiG. 1. Principal scheme of transmission scanning acoustic microscope (SAM)

the purpose of the investigation, with a compromise being made between the
resolving power and the degree of penetration.

The method of scanning acoustic microscopy is highly sensitive to the presence
of various heterogeneities to the appearance of discontinuities, exfoliation and phase
boundaries. Owing to mismatch in acoustic impedance there appear strong
reflections from the interfaces.

3. SAM of Polymer Composite Materials

Acoustic microscopy has been used in studying the morphology of opaque
polymers and composites, in evaluating the elastic properties of deformed polymers,
as well as in the investigation of polymeric mixtures whose components have similar
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optical properties (for example, polyethylene-polystyrene mixtures). For polymeric
and composite materials we consider the following to be the most promising areas of
applying acoustic microscopy:

1. Morphological study of polymers and composites having optically similar or
opaque components.

2. Investigation of exfoliations and discontinuities in composites (for example,
exfoliation of filling agents from the matrix).

3. Adhesion study of laminated systems such as polymer-polymer, poly-
mer-metal, and polymer-oxide-metal.

4. Quality control of adhesive joints, especially of opaque composites.

5. Investigation of the structure of microcracks on and under the sample
surface.

6. Measurements of diffusion coefficients in optically similar polymers or in
composite materials containing opaque fillers.

7. Monitoring of changes in polymers due to physico-chemical effects.

8. Investigation of the redistribution of filling agents in composites resulting
from different physical effects, such as UV-radiation, current transmission and
exposure to microwave radiation, mechanical stresses, etc.

Owing to the fundamental properties of SAM all investigations can be carried
out directly and in real time. :

Our research in this field was started about four years ago by a group of
polymer specialists headed by Academician N. S. ENIKoLoPov; the group included
D. D. Novikov, E. Yu. MAYEVA, L. F. MATSIEV and few members of our Center of
Acoustic Microscopy of the Academy of Sciences of the USSR: V. M. LeEvIN
O. V. KoLosov, M. F. Pysunyi, T. A. SENYUSHKINA and me. The most important
results of this work are the subject of my report.

The experimental results have been obtained on a transmission raster scanning
microscope of our own design [1]. The microscope operated at 0.450 GHz, having
a resolution of 3um. An ultra-high-frequency generator was used fqr the excitation of
ultrasound with the aid of a film transducer.

After the ultrasound is focused on the sample it was received by a confocal lens
system. This system consisted of two soundguides made of monocrystalline sapphire
oriented along z-axis and acoustic lenses at both ends in the form of spherical
cavities with a 300 pm radius of the curvature and a 0.8° aperture. The signal from
the receiving transducer was fed, following its amplification, through a computer into
a memory unit. The sample was secured in the holder of the scanning system. During
a period of © = 8 s the scanning system made it possible to obtain an acoustic image
of the sample cross section with a scanning area of from 0.7 x 0.7 mm to 2 x 5 mm. In
order to get three-dimensional structure one could also change the position of
a selected cross section with respect to the sample thickness within the limits of
+0.5mm. Following preliminary numerical treatment of the results on a computer
the outgoing data was displayed on a TV-screen as a half-tone image and in the form
of profiles and histograms. To obtain the image we used only the differences in the
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amplitude of the transmitted signal. Thus, the image reflected the variations in the
weakening of the signal due both to the difference in absorption and to reflection or
scattering.

In our work we studied mixtures of polyethylene and polystyrene which differed
in their composition and were prepared by different methods. Figures 2 and 3 show
the optical and acoustic images of 80: 20 polystyrene-polyethylene mixtures. The first
set of mixtures was made by the extrusion method, and the second — by the method
of elasto-deformational milling. Both types of samples have low absorption of light,
and the difference in their refractive index is insignificant. Therefore, the optical
images reveal only the phase boundaries in incident light at large angles. On the
other hand, the acoustic properties of these polymeric systems differ considerably:
the absorption in polyethylene is by about one order of magnitude greater than the
absorption in polystyrene. There is also a noticeable difference in their acoustic
impedance: the v, for polystyrene is 2.28 and polyethylene — 191, respectively.
Therefore, the acoustic contrast, as determined by the difference in the absorption
and reflection at phase boundaries, should be significant. The position of phase
boundaries fully accords with that in the optical image: the darker areas correspond
to the zones of higher concentrations of polyethylene, which has greater absorption.
The acoustic image of the polymeric composite clearly shows the distribution of
phases.

For a quantitative evaluation of the sample structure and a description of the
inclusions, use is made of the profiles. These represent one-dimensional distribution
of the transmission coefficient of ultrasound along the scanning path. ;

Figures 4 and 5 show the profiles of polymeric composites which have been
shown in Figs. 2, 3. These profiles are clear evidence of a greater degree of
homogeneity of the samples prepared by elasto-deformational milling (Fig. 5), as
compared with the samples obtained by the extrusion method (Fig. 4). On such
a profile that is above the line corresponding to the polyethylene absorption, there
are peaks which correspond to polystyrene inclusions.

For two-component compositional materials one can by way of illustration
offer a simple morphologic description of one inclusion in another. When scanning
a sample which is the matrix of substance 4 with inclusion of substance B, the
amplitude of the transmitted ultrasonic wave reflects the variations of attenuation in
the focal region of SAM. These variations are determined by the dimensions and
physicomechnical properties of heterogeneity. Thus, for inclusion B located in the
focal region and having dimensions I, along the acoustic axis, the amplitude of the
signal from the receiving transducer can be described by the following equation:

. Ao( 0405C,Cy

2
exp (o, —ag)ly,
QACA+QBCB) ol g

where
a, absorption coefficient of ultrasound in 4 medium,

ap absorption coefficient of ultrasound in B medium,

2 — Arch. of Acoust. 1-2/88
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a)

b)

FiG. 2, 3. Acoustic and optical images of 50:50 polystyrene-polyethylene mixtures (a) — mixtures were
made by the extrusion method, (b) — by the method of elasto-deformational milling
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FiG. 4, 5. Profiles of polymeric composites (a) and (b)

@, density of A medium,

¢ density of B medium,

C, velocity of ultrasound in 4 medium,

Cy velocity of ultrasound in B medium,

A, amplitude of the signal from the receiving transducer in the absence of inclusion,
A amplitude of the signal when inclusion is present in the focal region.
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Thus, if the acoustic characteristics of the components mixture are known, one
can, by means of simple numerical treatment and on the basis of the configuration of
the peaks, determine the configuration and the cross sectional dimensions of each
inclusion along the scanning path. From the known configuration of the cross
section and the data from the scanning the sample along the second coordinate one
can calculate the volume of each inclusion [2].

To obtain an integral assessment of the distribution of phases in the samples
under investigation, use is made of a histogram. On the abscissa are plotted the
values for the transmission coefficient of ultrasound, and on the ordinate — a
fraction of the area of the sample with a given transmission coefficient.

Fig. 6 shows the histograms obtained on a computer of the two above-
mentioned samples of polymeric composite. Since the absorption of ultrasound in
polystyrene is smaller than in polyethylene, the properties of inclusions are
determined by the wing on the histograms to the right of the main peak. The wing on
the histograms (a) is much shorter, and the histogram itself is narrower than (b). This
indicates that the heterogeneity of the dimensions of the inclusions in the sample
obtained by the extrusion method (b) is greater than in the sample prepared by
elasto-deformational milling under cooling conditions (a).

We have established that with the use of the SAM method, the dimensions of
heterogeneities change, depending on the method used in preparing the samples and
on the conditions employed for making the film (for example, the temperatures used
during extrusion). The acoustic images, acoustic profiles and the histograms of
samples obtained at 130°C and 160°C are shown in Fig. 7 and Fig. 8, respectively. As
is evident the profiles and the histograms of these samples are quite different. Thus,
the histogram of the sample obtained at 160°C is wider than that obtained at 120°C.
The shift and the widening of histograms to the right indicate that the dimensions of
the polystyrene inclusions have increased [1].

The following characteristics are usually of interest in a morphological analysis
of similar structures:

— the number of grains in the field of view of the microscope and the
coordinates of their mass centers; the ratio of the sum of grain areas to the sample
area, ie. percent ratio of components within the field of view;

— the areas, perimeters and the dimensions of the grains (maximal distance
between points belonging to the grain), the criterion of the grain configuration;

— the homogeneity of the distribution of grain matter within the field of view of
the microscope; calculation of the degree of the homogeneity.

And if the grains form agglomerated structures, in relation to the agglomerates,
of interest are all the above-mentioned characteristics as well as data on the
composition of each agglomerate: which grains are part of each agglomerate, the
average number and dispersion of grains in the agglomerates.

We have worked out a series of software for calculating all these characteristics.
We formed the criterion of homogeneity as the relation: G = (5?/N)"/%; where, §?
— dispersion of the moving average (two-dimensional distribution of the average
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FiG. 6. Histograms of polymeric composites (a) and (b)
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Fic. 7. Acoustic images (a), profiles (b) and histograms of samples obtained at 130°C, respectively
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FiG. 8. Acoustic images (a), profiles (b) and histograms of samples obtained at 160°C, respectively
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local value), N — normalized function. The moving average was determined from the
equation S(x, y) = q(x, y)*p(x, y); where » — cyclic convolution, p(x, y) — binary
image, [p(x, y) = 1, if the point (x, y) belongs to one of the grains, in all other cases

p(x, y) =0 q(x, y) equal: g(x, y) = 1, if the point (x, y) belongs to the square of
the area S,, with the center at the zero of the coordinates system, in all other cases
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FIG. 9. Result of threshold processing of acoustic image of polymeric composites
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g(x, y) = 0. The average with respect to square, the area of which is determined in
the form: S, = Sgain/4; Where, Sgrin — average area of the grain, 4 — fraction of
grain matter within the field of view. The normalized function is equal to the
dispersion of the moving average only when the grains form a coherent agglomerate,
i, when they are distributed the least regularly:

N =[5, 52, 4(4—1)]*

where §, — area of the sample.

Thus, criterion of homogeneity is zero if identical grains are regularly distribut-
ed, and approaches zero if grains form one coherent agglomerate. :

For samples of mixed polymers polystyrene-polyethylene (mixture 50:50) the
results of threshold processing of acoustic image are shown in Fig. 9.

The agglomerates were singled out in the following way. We define the distance
L(a,, a)) between two grains, a; and a; as the minimal length of the boundary that
connects them. As neighboring a; and a; grains are considered those for which the
following condition holds true: L(a;,a;) < max[L(a;,a)), L(a;a,)], where, a, — any
other arbitrary grain within the field of view. From the simple reasoning it is evident
that for true neighboring grains there is none which would be closer to both grains
than the distance between them. For dilation, the number of grains was augmented
by the boundary of the whole image, and on such an image the maximal distance
between neighboring grains was approximately determined. The agglomerates were
formed from the conglomeration of groups of grains, the distance between which was
less than definite empirical value a L,,,; where, « on the basis of empirical selection
was found to be 0.3-0.5. Fig. 10 shows agglomerates that we have separated by
a program from the acoustic image. The results of the processing of the agglomerate
are summarized in the Table [3].

The acoustic microscope makes it possible to obtain not only two-dimensional
but also three-dimensional distribution of acoustic properties of the material under
investigation. All the above-proposed algorithms can naturally be generalized into
three-dimensional functions and can be used for describing three-dimensional
structures [4].

4. Principles of acoustic image formation and quantitative methods of SAM

So, we have seen a set of acoustic images and simple mathematical methods for
their analysis. This clearly shows what great possibilities acoustic microscopy opens
up for studying polymeric materials. The results we obtained also show that an
interpretation of the acoustic images is impossible without a clear understanding of
the physical mechanisms for the formation of such images and of the nature of
acoustic contrasts. A knowledge of such mechanisms makes it possible to carry out
quantitative measurements and arrive at a quantitative description of the materials
under investigation. A comparison of the output signal of an acoustic microscope, its
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amplitude and phase with the amplitude and the phase of the reference signal in
liquid yields information on the velocity of sound, acoustic impedance, extinction
and geometric characteristics of the sample, its thickness, curvature, and inclination
angle of the surface.

So, let us now return to the subject of acoustic microscopy and consider how the
acoustic image of a sample is formed.

We shall begin by considering how the outgoing signal of the receiving acoustic
lens is produced in general. A piezoelectric transducer is used as a receiver. It is
a linear receiver. For an electric signal to be generated in the transducer, the incident
wavefront must be parallel to its surface; in other words, the acoustic rays after
refraction on the lens surface must be normal with respect to the transducer’s surface.

v

a)

b)

c)

FiG. 11. Formation of output signal in a reflection
SAM. z- the focal length of a lens. In case: a) 4z =0
— output signal is formed by the integrity of all the
refracted rays, b) 4z >0 — only paraxial beams
contribute to output signal, ¢) 4z <0 — the output
signal emerges as the superposition of the signal
produced by a mirro-reflection of paraxial rays and
of the signal due to the leaky surface Rayleigh wave

AZ<(Q
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In addition, all incident rays reaching the transducer must be in the same phase.

Otherwise, there will be interference of signals due to different rays, and the resulting

signal will be weakened. First, we shall consider how a signal is formed in a reflecting
microscope (Fig. 11). If the boundary of the sample lies in the focus, then the
outgoing signal is determined by the integral refractive index for all incidence angles
0 from 0 = 0 to 0 = 0,; where, 0,, — one half of the divergence angle (Fig. 11 a). If
the lens is moved away from the sample (b), the cone of rays received by the
transducer rapidly narrows down. Simultaneously the intensity of the signal entering
the transducer decreases. Let us examine the curve describing the amplitude of the
outgoing signal V(z) as the function of the distance between the lens and the sample
(Fig. 12). With an increase of z in the region z > 0 the intensity of the outgoing signal
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FiG. 12. Typical V(z)-characteristic

2

rapidly decreases. This is accompanied by finely divided, shallow oscillations which
are formed as a result of the phase difference of rays following different paths. In the
case where the lens approaches the sample, a different dependence of the output
signal V(z) can arise in the region of negative values of z. If the sample is sufficiently
hard, the Rayleigh wave propagates on its surface. If the velocity of the Rayleigh
wave exceeds that of ultrasound in the immersion liquid, a surface wave is formed
which is reemitted into the liquid. This is the so-called leaky surface Rayleigh wave.
It arises at any position of the lens relative to the sample. However, it is taken into
account only when z < 0. How this is done is shown in Fig. 11c. The output signal
emerges as the superposition of the signal produced by a mirror reflection of paraxial
rays and of the signal due to the leaky surface wave. The phase difference of these
signals depends on the magnitude of the shift z2 owing to their interference the
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dependence 1'(z) has a correct system of maxima and minima. The distance between
the neighbouring maxima and minima is unambiguously related to the velocity of the
Rayleigh wave on the surface of the sample [5]. The formation of the leaky surface
Rayleigh wave is extremely important for the formation of acoustic images in the
reflection mode. The formation of the leaky surface Rayleigh wave leads to the
presence of interference bands in the vicinity of sharp heterogeneities and on
distorted surfaces and so on. It is the cause of the inversion effect of acoustic contrast
when there is a small shift of the lens. How interference bands are formed, for
instance, near the defect in the sample surface is shown in Fig. 11c. Owing to the
reflection from heterogeneities there arises not only a direct but also an inverse leaky
surface Rayleigh wave which can also be received by the transducer. Since the phase
of this wave depends on the position of the lens’ axis relative to the heterogeneity,
scanning of the lens leads to the appearance of interference bands duplicating the
contour of the heterogeneity. :

How is the image formed in the transmission acoustic microscope? Let us begin
with the refraction effect and consider the transmission of focused beam through
a thin plate (Fig. 13). The rays passing through the plate are twice refracted. As
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FiG. 13. Formation of output signal in transmission SAM. Method of A (z)-characteristics

a result, they leave the plate in the direction parallel to the original one, but are
shifted relative to it. The magnitude of the shift depends on the incidence angle with
the plate. After passing through the plate the rays form a diverged beam. The rays
passing close to the lens axis converge to form a paraxial focus; while rays forming
large incidence angles with the plate surface will converge at different points of the
acoustic axis. This causes the focus to shift and to become defocused. As a result, the
cone of rays received by the transducer after passing through the lens is narrowed,
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and the output signal becomes less intense. Changes in the intensity of the signal due
to the refraction effect will be determined by the ratio of the ultrasound velocity in
the sample to that in the liquid. In an analogous way the rays cone registered by the
receiving lens will become narrow owing to phase aberrations. These aberrations are
explained by the fact that incident rays at different angles to the sample travel along
different paths in the sample. Therefore, the rays have different phases and can
mutually weaken the signals generated by them in the output piezoelectric
transducer. The magnitude of phase aberrations is also determined by the difference
of sound velocity in the liquid and in the sample. Therefore, the phase aberrations
cause an additional contrast of acoustic images. There is yet another source of
acoustic contrast, namely the reflection at both ends of the sample. This reflection
depends on the magnitude of acoustic impedance at the observation point. For
samples whose acoustic impedance differs slightly from that of water, such
mechanism of acoustic contrast is of little significance. For such samples as polymers
and biological tissues the formation of acoustic images is mainly due to the difference
in local attenuation of sound.

In order to establish quantitatively the local mechanical properties of the
sample we have developed a new special method of A (z)-characteristics [4]. Plot
A(z) describes the dependence of the output signal A of the receiving lens as
a function of the distance z between lenses. A typical plot of A (z) is shown in Fig. 13.
It can be seen that it has the usual diffractional features. Now we place the sample
between the lenses. We have already seen that owing to the refraction in the plate the
focal point of the receiving acoustic beam undergoes a shift. Accordingly, the
maximum, of the A (z) plot shifts in the direction of lower values of z. The shift, 4z, of
the maximum on the A (z) plot is proportional to the product of the sample density
and the difference between the velocity of ultrasound in the sample C and in the

immersion liquid C,.
4z =d (E— 1). .
Co

Measurements of Az give us the local velocity of ultrasound in the region having
a dimension of 5-10 microns. The value of the transmission coefficient for the plata is
obtained from the ratio of the amplitudes of the maxima. From the known density of
the sample ¢ and by using the derived value for the velocity C, we can obtain on the
basis of the known values of impedance and the transmission coefficient — the local
coefficient of ultrasound attenuation. By using the method of A (z)-characteristics we
measured the velocity of ultrasound in thin polymer films. For this we used films
made of polyarylate and its block copolymer silar. The thickness of the films varied
in the range 9-17 pm. For the samples of polyarylate the velocity of ultrasound was
found to be 2,710 and for silar 1,020 km/s, respectively. A knowledge of these
parameters makes it possible, in principle, to investigate the distribution of the local
physico-mechanical properties of these materials within a wide range of concen-
trations.
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FiG. 14. Formation of two maxima of microscope output signal: for longitudinal waves (L) and shear
waves (T)

It should be noted that in solid samples shift waves are produced during
refraction. Owing to their refraction on the lower part of the plate surface an
additional divergent beam with a different position of the focus is produced in the
immersion liquid (Fig. 14). In this case the A (z)-dependence has two maxima. The
main maximum has a greater shift and corresponds to the passage of longitudinal
waves through the plate. The second maximum is due to transverse waves. It has
a lesser shift because this shift is determined by the velocity of the transverse waves in
the sample. By measuring the two shifts we can, with the aid of the method of
A (z)-characteristics, determine both the longitudinal and transverse velocity of
ultrasound.

5. SAM of Biological Tissues

The development of the quantitative methods of scanning acoustic microscopy
opens up great possibilities for research in one more area: the study of the
viscoelastic properties of biological materials on a histological and cytological level.
For already more than 10 years scanning acoustic microscopy has been used in
biological research.

The experience gained to date in interpretation acoustic images of collagen
tissues shows that the contrast provided by acoustic microscopy depends on the size
of the collagen fibers, their density and water-content, and the degree of order and
orientation of the fibers relative to the observation axis (Fig. 15). The fact that there
is such a large number of parameters affecting the contrast opens up wide diagnostic
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possibilities for a given method. However, at the present stage of development of
acoustic microscopy we cannot as yet interpret acoustic images with confidence.

There are two ways of solving this problem:

1. To acccumulate comparable data on certain known pathological structural
changes of tissues and comparing them with changes. observed with the aid of
acoustic microscopy;

2. To construct simplified models of biological tissues and investigate their
properties by the acoustic microscopic method.

1. Molecular collagen film 2.Collagen fiber

Materials

Molecular collagen films were formed by drying acetic
acid solution of molecular pig skin collagen at 4°C
during 48 hours. Collagen fibers from rat tail tendon
were under study. 10 u collagen fibers were prepared
using kryotome Leitz 1321.

FiG. 15. Structure of various collagen fibers

The first approach requires extensive acoustic microscopic studies of pa-
thological tissues.

In our work we devoted most of our attention to a study of the viscoelastic
properties of models of collagen-rich tissues. First we studied the acoustic images of
normal tissues. (Fig. 16). This figure shows the acoustic and optical images of
a lateral slice of human skin. The acoustic image was obtained in our laboratory
with the aid of transmission acoustic microscope [1] operating on a frequency of 450
HMz and having a resolution of 3um. The sample, 7um thick, was in a non-fixed
position and was not treated with a dye. The picture gives a good view of three
layers. The first is a dark band in the surface of skin is the corneous layer. It consists of
a densely packed keratin protein. Then follows an acoustically transparent layer of epi-
thelian cells. And finally there is a structurally heterogeneous derma, which is a dense
network of collageneous and elastinic fibers submerged into an intercellular liquid.

There is a general similarity of acoustic and optical picture. Outlines of the
objects and boundaries of shape inhomogeneities coincide on both images. One may
suppose that the contrast of acoustic images on this picture is determined by the
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F1G. 16. Acoustic (a) and optical (b) images of a slice of human skin

magnitude of the local coefficient of attenuation of ultrasound in soft tissues
correlates with the concentration of fibrilar protein in them. Therefore, a system of
dark and light regions in acoustic image should reflect the distribution of collagen (or
keratin) in the sample. For a quantitative evaluation we can use the acoustic profile
(Fig. 17). In this Figure we can see a liver slice image with bubble air and two vessels

3 — Arch. of Acoust. 1-2/88



34 R. G. MAYEV

FiG. 17. Acoustic image and profile of liver slice (with the air bubble and two vessels)

and profile, which can give us a precise information. Using this profile as in polymers
case we can determine the local concentration of collagen and arrive at a quan-
titative description of collagen inside the tissue. And herein lies our main difficulty:
we can provide a quantitative description of the distribution but we have yet to find
a biologist or medical specialist who would be interested in such a description.



SCANNING ACOUSTIC MICROSCOPY 35

Figure 18 shows acoustic and optical images of a longitudinal and a transverse
slice of a human sclera. The poor definition of the optical images is due to the fact
that the sample was in a non-fixed state and undyed. In both the acoustic and optical
images one can see packed bundles of collagen fibers. On the optical image one can
see only the outline of the boundaries of the fibers; while on the acoustic image one
can see different gradations of grey coloring, which makes it possible to decipher the
density of the fibers and the local concentration of collagen. Numerically the
concentration of collagen can be estimated by using acoustic profiles as was
mentioned above. :

Since the acoustic properties of tissues are determined by the properties of the
components of the tissues and their mutual orientation, we are interested first of all in
the mechanical properties of the components, collagen in particular. We investigated
mechanical properties of collagen-fibers with our acoustic microscope. Different
authors (Fig. 19) have measured velocity of ultrasound along the entire length of the
fiber (V, = 2.1 km/s) and across it (V, = 1.73 km/s) by means of a scanning laser
acoustic microscope operating at a frequency of 100 MHz (wavelength in water
~ 15um). These results indicate a strong anisotropy of the elastic modules of
collagen. The anisotropy of the viscoelastic properties of collagen was investigated
by the Mandelstamm-Brillouin method of scattering at a frequency of 10 GHz
(wavelength in water ~ 0.15um). Measurements of the longitudinal and transverse
waves yielded five values of elastic constants for partially dried collagen fiber, on the
assumption that collagen is a transversely masotrophic medium (Fig. 19).

By using the values of these constants we calculated the velocity of the
longitudinal and transverse waves propagating at different angles in collagen fiber.
Fig. 20 shows the slowness of surfaces of acoustic waves in collagen (reciprocal
velocities 1/V}, 1/V; where ¥, — phase velocity of the longitudinal wave, V. — phase
velocity of the shear wave. Here, the z axis corresponds to the axis of the fiber. The
results show a strong anisotropy in the velocity of the longitudinal wave (phase
velocity of the longitudinal wave along the fiber Vi = 3.64 km/s, phase velocity
across the fiber V; |, = 2.94 km/s) and a rather weak anisotropy in the velocity of the
shear wave (Ve = Vrp = 1.563 km/s, V; = 1.639 km/s at 49° angle). For natural
collagen fiber the transverse mode in the spectrum of Mandelstamm-Brillouin
scattering was absent; i.e., there was no propagation of the shear waves. This means
that there is a strong dependence of the viscoelastic properties of collagen on its
saturation with water. S

All the above-mentioned factors — the dependence of the elastic properties on
the direction and packing density of fibers and their size, and water concentration
— contribute to a certain extent to the contrast of the acoustic images of tissucs.

To elucidate the particular effect of each of these parameters we carried out our
studies on modeled systems. 3

The simplest model of a collagen tissue slice is a homogeneous layer. We
examined the gelatin-collagen layers in the dehydrated state. The layers were formed
from molecular solutions of collagen in which the molecules were positioned with
their long axis being in the plane of the layer.
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FIG. 18. Acoustic and optical images of a longitudinal (a) and a transverse (b) slice of a human sclera
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Cax s the sound velocity along the fiber axis.

C"‘ is the sound velocity in transverse direction.

FiG. 19

Next we examined separate collagen fibers and bundles of them. With the aid of
the A(z) plots which, as already mentioned, indicate the relationship between the
amplitude of the outgoing signal and the distance between the lenses, we can
simultaneously measure the transmission coefficient and velocity of sound within
a local zone having dimension of about 5 microns. For this purpose we plot the
A(z)-graph for the zone (that is of interest to us) on the sample and in the absence of
the sample. The shift in focus is proportional to the thickness of the sample:
Az = d(C/Cy—1). It can be measured with a high degree of precision, and, since we
know the thickness of the sample we can determine the velocity: C = C, (4z)d +1).

We have determined the velocity and ultrasound attenuation coefficient at
a frequency of 450 MHz in a 2-micron-thick layer of gelatin, a 10-micron-thick
collagen film and in 10-micron collagen fiber [4].

A gelatin film of uniform thickness can be separated from a photo film in water
at t =90°C.

Collagen films were prepared by evaporating at 4°C a molecular solution of
pig’s skin collagen for a period of two days. The molecular solution was obtained by
extracting collagen from pieces of pig’s skin with a 0.1 M solution of glacial acetic
acid followed by precipitation of protein with cooled ethanol.

Collagenous fibers were separated from the longitudinal slices of the tendon
from a rat’s tail. The slices were obtained on a refrigerated Leitz microtome, the
temperature of the table and the knife T= —20°C.



SCANNING ACOUSTIC MICROSCOPY 39

C" =364 km/sec - longitudinal wave velocity along fiber ;

Cf =294 km/sec - longitudinal wave velocity in radial direction ;
Cy =156 km/sec -transverse wave velocity along fiber ;
C‘,‘=156 km/sec - transverse wave velocity in radial direction :
Cr164 km/sec - max value

X (km/sec)”

slowness - surfaces for collagen of longitudinal cut

FiG. 20. Grafics of slowness-surfaces of acoustic waves in collagen

Table 1
: 3 Velocity of Attenuation
Sample “[‘;';“Jess l';/e::i% ultrasound | coef. (10~17)
[km/s] [s*/em]
Gelatin 2 12 29403 420440
Collagen 10 13 24103 445+ 45
film
Collagen 10 1.35 28+023 660+ 60
fiber

In Tab. 1 there are summarized the values for the ultrasound velocity and
attenuation coefficients for these samples measured at 450 MHz.

The proposed approach can be regarded only as an initial stage in obtaining the
quantitative characteristics of the local viscoelastic properties of tissues. However,
even now this method enables us to estimate the effect of a number of parameters,
such as the pH, temperature, etc, on the biochemical properties of tissues.

In this report I have described the results of first steps of acoustic microscopic
research performed in our Center in only two fields: the physics of polymeric
mixtures and biophysics. The various experimental results obtained with the aid of
the transmission microscope, and the wide possibility of obtaining quantitative data
with this microscope, in our opinion, convincingly demonstrate the rich scientific
potentialities inherent in the principle of raster acoustic microscopy.



FiG. 21. Acoustic images of different materials. a) laminated structure (SiO,—Si—SiO,-substrate-Si)
= 0.4 GHz. Degree of penetration 4z = —10 pm. The microscope is focused on the boundary between
the substrate and the layer to a depth of 10 pm from the sample surface reflecting optical rays. The
acoustic image shows a defect at the interface. The same is confirmed by the one-dimensional profile of the
refracted signal amplitude along the scanning line, marked on the photo; b) a photo film, representing the
celluloid base, coated by gelatin matrix with silver crystals of 2+ 3 pm. Frequency f = 1.3 GHz. The image
was obtained in the layer close to the surface 4z = —0.5 pm. One of the parameters determining the
quality of photomaterials is the homogeneity degree of silver grains distribution in the matrix, their
relative orientation, the absence of agglomerates etc. Optical methods do not allow to carry out such an
analysis due to the specific nature of the object. Such a control can be timely realized by SAM methods.
Since the acoustic properties of silver crystals differ greatly from those of the matrix and the immersion



media, the image obtained is highly contrasting and its information content is very high. The profile of
the refracted signat amplitude along the scanning line, marked on the photo, was applied to the image;
c) high-temperature superconducting ceramics. f= 1.3 GHz, focal length 4z = —2um. At the depth of
2 pm of optically non-transparent material one can clearly see the structure of ceramics with sharp
boundaries of pores between crystals and the inner structure of pores. The profile of the refracted signal
amplitude along the scanning line, marked on the photo, was applied to the image; d) polymer composite
(polyacrylate-silar-rubber). f=13 GHz. Focal length Az =5 pm. The photo clearly displays the
distribution of the two types of fillers (large-sized and finely divided) in the polymer matrix at the depth of
5 pm (Acoustic images were obtained by the specialists from the Center of Acoustic Microscopy, the
USSR Academy of Sciences, O. V. KoLosov, L. F. MATsiEv and T. A. SENYUSHKINA)
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6. Practical Applications of Acoustic Microscopy

The method of acoustic microscopy turns out to be very sensitive to the presence
in the object of any kind of inhomogeneities as well as to the disturbance of
uniformity, since due to acoustic impendances mismatch there appear strong
reflections on boundaries. At the present time the acoustic microscopy allows to
reveal the following defects: adhesion disturbance, exfoliations microcracks pores,
foreign inclusions, deviations from the given thickness of the layer in multilayered
system and coatings, technological deviations of sizes, orientation and grain
distribution.

So, the following trends in the development of the methods of refraction and
transmission acoustic microscopy for the investigation of surface and subsurface
structures, different materials seem to us very perspective:

— surface topography (determination of steps height, the width of cracks and
the character of stress fields around them, curvature radius, wedge angles etc.);

— morphology of smooth surfaces with nonuniform distribution of acoustic
properties (characterization of separate components of granular and multilayered
structures, acoustic images of internal planes, structures, grains, the analysis of
thin-filmed heterogeneous objects);

— measurements of local values of the velocity of propagation and attenuation
of Rayleigh waves in materials by acoustic microscopy using cylindrical and spherical
lenses; study of distribution of local anisotropic elastic properties of crystals and
other materials;

— quantitative measurements of nonmechanical properties by the methods of
acoustic microscopy, among them local measurements of piezoelectric, photoelectric,
high-temperature superconducting properties of films;

— study of dynamic phenomena connected with the change in materials
properties due to physical factors (temperature, UV-, IR-, SHF-radiation) as well as
mechanical, chemical and pharmacological factors.

The results, which have been recently obtained in this field, allow to state that
the acoustic microscopy methods become the working instrument of scientist and
engineer. Today we can speak about the first concrete practical applications of the
method: quality control of semiconductor engineering and microelectronics in-
struments (see, for example, Fig. 21a), magnetic tapes and photoregistrating materials
(Fig. 21b), technological and physicomechanical control of alloys, ceramics (Fig. 21c),
polymeric composite materials with optically close or nontransparent components
(Fig. 21d), poly- or monocrystalline films, adhesive joints, seams, reinforcing and
protective coatings, antireflecting and paint and varnish layers, biomedical objects
and some others.
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AN ACOUSTIC MICROPROBE

JERZY LITNIEWSKI

Department of Ultrasonics, IFTR, Polish Academy of Sciences
(00-049 Warszawa, ul. Swigtokrzyska 21)

In the paper the structure of an acoustic microprobe has been presented of which the
resolution does not depend on the receiving transducer dimensions. With this microprobe
the acoustic pressure amplitude can be measured with the resolution below the wave length
in liquid media and at the surface of solids, in the frequency range from 30 to 40 MHz. The
method of finding the resolving power of the microprobe by measuring the response
function for a point source has been described.

Resolution of the microprobe has been estimated as better than 25 pm what is about
1/2 of the wave length in water and 1/7 of the longitudinal wave length in such materials as
aluminium or glass.

The directional response pattern which is necessary for taking measurements at the
non-planar surfaces of solids, has been found.

The possibility of applying the microprobe to measuring the pressure amplitude
distribution at the surface of lenses used in acoustic microscopy has been demonstrated.

W pracy przedstawiona zostala budowa sondy akustycznej, ktorej rozdzielczo$é nie
zalezy od rozmiaréw przetwornika odbiorczego, umozliwiajacej wykonywanie pomiarow
amplitudy ci$nienia akustycznego z rozdzelczoscia ponizej dlugosci fali w osrodkach
cieklych i na powierzchni cial statlych w granicach czgstotliwosci 30 do 40 MHz. Opisana
zostala metoda znajdowania rozdzielczosci mikrosondy poprzez znalezienie funkcji od-
powiedzi sondy na zrodlo punktowe.

Rozdzielczos¢ mikrosondy oszacowana zostala na lepsza od 25 pm co stanowi ok. 1/2
dlugosci fali w wodzie i ok. 1/7 dlugosci fali podiuznej w takich materiatach jak aluminium,
szklo.

Znaleziona zostala charakterystyka kierunkowa sondy niezbgdna do uwzgledniania
przy prowadzeniu pomiaréw na nieplaskich powierzchniach cial stalych.

Pokazana zostala mozliwo$¢ zastosowania mikrosondy do okre§lania rozkladu
amplitudy ci$nienia na powierzchniach soczewek uzywanych w mikroskopii akustycznej.

1. Introduction

Measurements of pressure distribution of the ultrasound field, for the field shape
to be exactly reconstructed, should be carried out with the resolution of at least 1/2.
In the case of the measurements in liquids, when conventional methods are applied
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(e.g. hydrophones), this becomes practically impossible for the frequencies over
10 MHz. For the measurements of pressure distribution (vibration amplitudes) at the
surfaces of solids the holographic method [1] seems ideal. It needs, however, a large
power ultrasound field.

There exists a possibility of constructing a very sensitive acoustic probe of which
the resolving power would not be determined by the dimensions of the piezoelectric
receiving transducer.

In 1980 W. DURR, D. A. SINCLAIR and E. A. AsH proposed a method for
measuring the acoustic pressure in a liquid and obtained the resolution of A/4 for the
frequency 4.5 MHz. The similar concept of measurement has been applied in the
spike-type acoustic microprobe constructed by me (Fig. 1). Such microprobe would
make it possible to measure the acoustic pressure distribution with the resolution of
4/2 in fluid media and at the surface of solids in the frequency range from 30 to 40
MHz (This corresponds to the wave lengths of 40-50 pm in water and to the
longitudinal wave length equal to about 170 pm in such materials as glass and
aluminium).

2. Structure of the spike-type acoustic probe

The scheme of the probe is shown in the Fig. 1. It consists of an aluminium
cone-shaped spike, with the lithium iodate transducer, operating at resonance
frequency of 36 MHz, glued to its base. The spike end is spherically shaped, with
radius estimated at 40 pm (measured with the microscopy, by comparison).

The vertical angle of the cone equals @ = 40°. The ultrasound wave falling on
the spike parallelly to its symmetry axis is totally reflected from the side (the angle of
total internal reflection of the longitudinal wave on the boundary H,0-Al is 13.5°).
Only the spike end transmits the acoustic signal to the susface of the transducer.

From geometrical estimations it follows that only the region with perimeter of
about 18 pm is active. As it will occur further this magnitude is close to the
microprobe resolution.

= output

|— transducer

/o ———aluminium spike

I/ 2 e

S~ Q
\\\ wave incident angle

FiG. 1. A schematic diagram of the acoustic microprobe
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The spherical shape of the spike end limits its active region on one hand, and
allows for better measurement accuracy for non-axially falling waves on the other.
These features are indispensable for the measurements of pressure distribution at
non-planar surfaces of solids.

3. Measurements of the resolving power of the microprobe

To determine the resolving power of the microprobe the following method has
been applied. As it is most generally known the image of an object (u) can be
expressed as a convolution of an object function (u,) and a response function for
a point source (image of a point) (h)

u(x. y)=u,(x, ) @h(x,y). ()

If the function h(x, y) could be found then it would be possible to calculate the
resolving power of the system from this function.

As the imaged object the pressure distribution in the focal plane of a lens used in
acoustic microscopy has been used. This kind of distribution is described by the
function type J, (x)/x [3].

In the calculations I have assumed that the object function is equal to the
function describing the theoretical distribution. Actually, this function differs from
its theoretical description what implies that the value of resolution, found in this
way, can only be smaller than the real resolution.

The theoretical pressure distribution in the focal plane has been approximated
with the Gauss function

T et (2)

This results in considerable simplifications in calculations and have negligible
influence on the obtained resolving power of the probe.

The value of b in (2) has been chosen so that the Gauss function would assume
the value 1/e ~ 0.368 for the same value of the coordinate (x? + y?)!/? for which the
function which describes the theoretical pressure distribution in the focal plane is
also equal to 1/e. The b value found in this way is

A
b =082 7
where f — focal length, d — lens diameter and 4 — wave length in water, equal to
38 um for the frequency 40 MHz.

Analogically, the measured pressure distribution is approximated with the
Gauss function

U= =y, 3)

where the value of a shoud be found from measurements.
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To find the function h(x, y), the functions (2) and (3) were substituted to (1) and
then both sides of (1) were subjected to Fourier transform. Taking advantage of the
fact that the Fourier transform of the convolution of two functions is equal to the
product of the Fourier transforms of these functions and of the fact that the Fourier
transform of the Gauss function is also the Gauss function (3), the Fourier transform
of the function h(x, y) can be found in a simple way and the function itself can be
calculated with the inverse transform

2
hix, ) = 73

= (xl +y2)(a2 —b2)
pe g 1 i )

With the use of the Rayleigh criterion of resolution, from the impulse response
function h(x, y) the resolving power of the probe  can be found. This resolving
power should be equal to the diameter of a circle on which the function h assumes
the value equal to 0.81 of the value of this function in the point (x =0, y=0). The
resolution found in this way equals the resolution denoted as the value of coordinate
(x2 + y?)¥'2 for which the function h would assume the value zero for the first time, if
the calculations for the distribution of type J, (x)/x were used instead of the Gauss
function.

5 = 0.92(a>—b?)'2. (5)

To find the numerical values of the resolving power, the pressure distribution in
the lens focus has been found with the use of the microprobe. In the measurement the
system of an acoustic microscope working at the frequency of 40 MHz and at the
impulse length 0.5 ps [4] was used. The investigated object (lens) has been connected
to the emitting system. The signals received by the microprobe were transmitted to
the receiving system of the microscope. Between the lens and the probe there was
water. After finding the lens focus the microprobe has been shifted in the focal plane
with the mechanical shifting system of the microscope, and the received signal has
been recorded with the XY plotter.

_:g 101_
g |
|

] |
g 16um
c J6pm
25 |
S noar sy |
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2 1 | |
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E a 0 a (P + yz)r/z

FiG. 2. Distribution of the pressure amplitude in the focal plane of an acoustic microscope lens, measured
with the microprobe. Lens dimensions: radius of curvature 3.1 mm, half-angle «/2 = 50°. The lens radiates
into water with the frequency 40 MHz
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The value of a found from Fig. 2 has been substituted to Eq. (5), what resulted in
finding the resolving power of the microprobe to be equal about 25 pum.

In the measurements at the surfaces of solids the liquid is applied to wet the
surface (e.g. oil). The measurements are carried out at the moment when the probe
touches the surface or when it is just above the surface (about 5 pm). In both cases
due to the application of a liquid coupling medium, the resolution of the microprobe
should be comparable with the one found for the measurements in liquid.

4. The directional response pattern of the microprobe

The measurements of the relation of the signal received from the microprobe to
the angle of incidence of the wave on the spike have been carried out. Measurements
were always made in the same point of the surface relatively to the transducer which
emitted the wave. The results are shown in Fig. 3, together with the theoretically

3
&
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x
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e 30° 5° 0

FiG. 3. Directional response pattern of the microprobe: measured points (o) and calculated from Eq. (6)

(x)

calculated directional response pattern of the microprobe. Dimensions of the active
surface of the probe are about 0.12 4 (A — wave length in the material of the probe).
Therefore, in the investigations of the relation of the signal from the probe to the
incidence angle of the measured wave, the results obtained in the paper [5] can be
applied. These results concerned the directionality of the longitudinal wave source,
with dimensions not greater than the wave length radiating into an elastic semispace.
They enable to describe the directional response pattern of the microprobe by the
following formula

v? cosf (1 —2v*sin? 0)
1 —2v?sin? )+ 4v*sin?Ocos 0 (1 — vZsin? 6)'/%’

where v? = (cp/c;)?, and ¢, ¢, are the velocities of the transverse and longitudinal
waves, respectively.

b(0) = ( (6)

4 — Arch. of Acoust. 1-2/88
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The calculated directional characteristic is presented in Fig. 3. The similar,
cosinusoidal relation of both curves to the angle supports the statement that the
active spike of the probe can be considered as a nearly point-type source which
radiates into an elastic semispace.

For growing angles 0 the experimental curve departs more and more from the
directional response pattern of a source. It seems that this is caused by the fact that
the values resulting from the directional characteristic for the given angle 0 are
greater than the pressure in the transducer plane, averaged by the transducer. The
spike end radiates into the cone-shaped region rather than into a semispace, what
also influences the above mentioned discrepancies.

5. Measuring capability of the microprobe

When defining the resolving power of the probe its measuring performance in
fluids was also presented. The below described examples prove the possibility of
pressure amplitude measurements at flat and spherical surfaces of solids.

The measurements at the surface of a glass cylinder with an ultrasound
transducer glued on have been carried out. ‘

In the Fig. 4 the influence of the connection of an electrode on the operation of
the transducer is clearly seen.

With the use of the experimental results (Fig. 3) the correction factor which
compensates for the influence of the directionality of the probe (Fig. 5) has been

3Imm

microprobe output signal amplitude
wn

transducer
electrode connection

FiG. 4. Pressure amplitude distribution measured with the microprobe at a flat surface of a glass plate of

thickness 20 mm. On the other side of the plate a piezoelectric transducer have been glued on. In the figure

the position of the transducer and the point of connection of the cable to the transducer is marked. In the

amplitude distribution the influence of the connection can be seen. The measurement was carried out at
frequency 36 MHz
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found. In the correction factor the influence of transverse waves emerging in the
spike has not been taken into account because generation of such waves hadn’t been
noticed in the measurements. The surface waves arising at the spike surface have
been damped by applying a wax layer on the spike. The measurement of pressure
amplitude distribution at the surface of spherical acoustic lenses used in acoustic
microscopy have also been carried out. It has been found that optimal signals were
obtained when the lens cap was filled with machine oil. Two lenses with different cap
position in the transducer field have been tested. The first, with diameter of 4.5 mm,
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FiG. 5. Plot of the correction coefficient of the microprobe found on the basis of the experimental curve
from Fig. 3, used to correct the results of measurements at non-planar surfaces
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Fi1G. 6. Distributions of pressure amplitudes at the surface of an acoustic microscope lens of curvature

radius 3.1 mm, measured for diverse lens positions in the transducer field: a) z — distance lens—transducer

= 042 d*/A, where d — transducer radius, 1 — wave length in the medium between the transducer and

the lens; b) z = 1.21 d%/4; c) z = 0.47 d*/4; d) z = 1.38 d*/4. Correction according to the plot from Fig.
5 has been applied
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was placed in the region between the near and far field (z ~ d?/2); the second with
diameter of 6 mm was in the middle of the near field (z = 1/2d%/4). By using the
capabilities of the electronical system of the microscope to change the operating
frequency within the range of 30-40 MHz it was possible to change the pressure
distribution at the lens surface [4]. The results obtained with the correction factor
taken into account are shown in Fig. 6.

6. Conclusions

The spike-type microprobe is capable of measuring pressure distributions in
liquids and at flat surfaces. In the case of experiments with non-flat surfaces the
necessity emerges of correcting the results according to the previously found
directional characteristic of the probe. The obtained resolving power of the probe
which is better than about 25 um provides for exact reproduction of wave pressure
distribution up to 40 MHz. There exists a possibility of applying the microprobe in
place of the receiving lens in the transmission acoustic microscope in forming the
microscopic images of surfaces or planar specimens irradiated by a plane wave
(analogically to the one-dimensional case, Fig. 4). In this second case it is necessary
first to obtain the image of the surface without the specimen to eliminate the
influence of the structure of the wave falling on the specimen.

Measuring distributions of pressure at the surface of lenses (Fig. 6) is a very
important application. With the use of the results of such measurements it is possible
to eliminate the defects of the focusing systems. In acoustic microscopy the
knowledge of pressure distribution at the lens surface enables to find the reflection
coefficient exactly (with the method ¥(z)) [6] and to investigate the oscillation of the
V(z) curve [4] as a function of amplitudes of component waves. ;

The microprobe gives also rise to the possibility of testing the quality of
transducers applied in acoustic microscopy (Fig. 5). Analogically, using a phase
detection system the phase distribution measurements as well as specimen visualiza-
tion can be carried out to obtain the fields of velocity or thickness distributions.
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TIMBRE DIFFERENCES OF AN INDIVIDUAL VOICE IN SOLO AND IN CHORAL SINGING

TOMASZ LETOWSKI, LIDIA ZIMAK, HALINA CIOLKOSZ-LUPINOWA

Sound Recording Department Chopin Academy of Music (00-368 Warszawa, Okolnik 2)

The object of the study was to analyze differences between solo and choral production
of the same singer. Six female and six male chorus singers sang the same musical material
solo, in vocal groups, and as a choir. Choral productions of the individual singers were
obtained by recording their solo productions made under playback of the choir sound.
Spectral analysis and listening tests were used to analyze differences between recorded
samples. The results showed highly significant differences between both types of vocal
production. The difference increased with the increasing degree of vocal training of the
performer.

Celem niniejszej pracy bylo poréwnanie widma glosu $piewaka solisty z widmem
glosu tego samego $piewaka Spiewajacego w chorze. W ramach pracy dokonano szeregu
nagran produkcji solowej grupy Spiewakow, nagrani tej samej grupy osob wystepujacych
jako chor oraz nagran wyizolowanych gloséw pojedynczych chérzystow. Wyizolowania
gloséw pojedynczych chorzystow dokonano metoda oparta o technike playbacku. W rezul-
tacie przeprowadzonych poréwnan stuchowych oraz analiz widmowych prébek glosow
stwierdzono istnienie znaczacych roznic pomigdzy barwa glosu tego samego wykonawcy
podczas Spiewu solowego i $piewu w chorze. Wielko$é tych roznic uzalezniona jest od
stopnia wyszkolenia wokalnego $piewaka.

1. Introduction

A choir is a group of people simultaneously singing the same musical piece.
Choral singing involves blending the voices of several singers together and, therefore,
presents different requirements for performers than solo singing. The timbral quality
of a choral production depends on the spectral characteristcs of the individual voices
and their mutual compatibility. The extremely rich timbre of choral singing is the
result of a phenomenon known as the chorus effect. This effect consists of the
constant differences in spectral timbre, loudness, and pitch of the same note as
performed at the same time by a number of performers. The rich, full timbre of large
choirs is quite unique and is not matched by any other type of music ensembles. The
chorus effect is not merely a mixture of various voices. Choral singing needs to be
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a smooth, well-blended production of a group of co-performing singers rather than
a cluster of individual artistic performances. Therefore, it is important to know the
type of spectral characteristics of solo voices which contribute most to high quality
choir production. The present study approaches this question by investigating the
timbre and spectral characteristics of both the choir as a whole and individual
performers singing solo and in the choir (choral voice).

Although the term “sound quality” with respect to choral production is widely
used, there has almost been no attempt to study this phenomenon from the acoustic
point of view or to determine the influence of an elementary choir unit — a single
voice — on the timbre of the whole ensemble. Previous studies of the human voice
were concerned primarily with various aspects of speech production and perception
and with the quality of a solo performance by highly trained professional singers.
There have been only a few studies addressing the problem of choral singing and no
attempt at all to relate the quality of an individual voice to the quality of the choir
performance as a whole.

There is a general agreement among voice teachers that the quality of voice
production depends on a large number of acoustical and artistic factors, e.g., the
character of the produced vibrato, the relation between loudness and pitch over the
entire voice scale, and the spectral character of the vocal sounds. In the case of
vocally trained singers the formant regions of sung vowels are distinctly different
from those of the spoken vowels [5]. Moreover, the spectra of sung vowels indicate
the existence of a substantial concentration of energy in the region 2500-3000 Hz.
This concentration is especially strong in the case of male operatic voices.

In 1934 BARTHOLOMEW [1] was the first to show the dependence of high-quality
vocal production on the presence of additional acoustic energy in the region of
2800 Hz in the spectrum of sung vowels. This concentration of energy is commonly
called the “singer’s formant™ [4] and is relatively independent of a sung vowel and its
pitch. As a rule, it falls between the third and the fourth formant of a spoken vowel,
making the singer’s voice full and glamorous. SUNDBERG [7, 8] related the existence
of the singer’s formant to a lower position of the larynx in singing which, together
with the widened pharynx, creates an additional resonating space with a resonant
frequency of 25003000 Hz. The lowered larynx position also favors a darker voice
timbre appreciated by most singers. In the case of untrained voices the singer’s
formant does not normally occur. On the contrary, there appears a tendency to
elevate the larynx position in direct proportion to the pitch of the sound being sung
[5] which makes higher notes sounding tinnier.

Although the presence of a strong singer’s formant is not a necessary condition
for good voice quality, e.g., in the case of soprano voice [1, 2, 3], it enables a voice to
stand out from the background of the orchestra or that of the accompanying choir
[8]. The prominence of one voice against the sound of the whole choir is not,
however, a desirable feature in choral singing. On the contrary, in choral singing it is
necessary to blend a single voice with the sound of the wholé choir.

It has been observed that the same people sing differently while performing solo
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or in choir. So far, however, only two studies have addressed this issue. GoopWIN [4]
studied soprano singers performing in various ensembles and found that soprano
voices are notably weaker when performing in choir than solo. Notably, the energies
of the second and the third formant were reduced while no substantial shifts in
formant frequencies were observed. ROSSING et al. [6] studied bass\baritone voices
and reported that solo and choir singing showed differences in both articulation and
phonation. In particular, they found that solo in comparison with choir singing
yielded a more prominent “singer’s formant” and substantially reduced energy of the
fundamental.

The purpose of the present study was to compare spectral and timbral
differences between solo and choral production of the same person and to relate the
overall timbre of the whole choir to that of an individual performer. The suctess in
carrying out this task depends primarily oni the method which is applied to isolate
a single choral voice from the group production. It should be kept in mind that
a necessary condition of a good choral production is that all voices fuse with one
another. To satisfy this requirement each of the performers must hear, in natural
proportions, the production of the other members of the choir. Therefore, in order to
record only a single choral voice the studied voice must be isolated in such a way
that the singer can still hear the sound of the choir just as he would normally hear it
in the course of collective music making. To satisfy these conditions a method of
recording a single, isolated choral voice has been developed by recording the voice of
a single chorus singer singing under the playback of the choir performance.

2. Verification of the method used for recording of the isolated choral voices

To verify the desired character of the isolated choral voices a pilot study was
performed which involved comparison of a natural choir sound with that made by
the mixing of two separate recordings. A group of five sopranos from the chamber
vocal ensemble “Warsaw Madrigal Singers” took part in the experiment. The music
material was the first eight bars from the soprano part of Jan Maklakiewicz’s song
“A Lullaby”. Instead of the lyrics, the singers sang the vowel (a). The voices of
individual singers and various group of singers were recorded by the single-
microphone technique using an AKG C-12 microphone set on the axis of the sound
source at the height of the performers’ heads. The block diagram of the recording
equipment is shown in Fig. 1. Rather than placing microphone among the choir
ensemble the above recording technique was applied to assure a good blend of all
chorus voices in the recordings. The recording session included five steps:

(a) recording of the whole soprano group (recording I),

(b) recordings of the solo productions,

(c) recordings of the whole soprano group minus one person,

(d) recording of the whole soprano group (recording II),
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(e) recordings of the single performer singing under the respective recording
made in step (c).

Recordings made in steps (b), (c), and (e) were repeated for each of the five
sopranos as an isolated voice. The sound intensity level of the original production
was kept approximately constant at 75-80 dB. The recordings were made in Studio
S-1 of the Chopin Academy of Music in Warsaw. To warm-up singers and to assure
reliable singing each musical example was sung with repetition with only the
repetition being used for the purpose of this study. The playback was provided with
Beyer DT-48 earphones.
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FiG. 1. Block diagram of the recording equipment

In the course of making recordings in steps (b), (c), and (e) one could easily
notice the difference between solo and choral singing of the same singer and the
difference between the sound produced by the various four-voice groups recorded in
step (c). After all the recordings had been made, the respective recordings (c) and (e)
were mixed to simulate the sound of the whole soprano group as recorded in steps (a)
and (d). The new, mixed recordings were presented to the performers who found
them indistinguishable from the original recordings of the whole soprano group.
That meant that persons singing under the playback condition always managed to
sing as if in the choir. This was confirmed by statements made by all of the
performers that sound of playback heard through the earphones gave them the
awareness of a “close” contact with the rest of the group. This made it possible to
match individual voice production td that of the other part of the ensemble.

The formal listening test employed three alternative forced choice (3-AFC)
procedure. Each test trial included recordings I and II of the whole ensemble, and
one of the recordings made during the mixing session. The test consisted of 15 triads
incorporating all permutations of the tested stimuli. The order of trials in the test
were randomized. The listening group consisted of ten experienced listeners and
included five sound engineers and five conductor-choirmasters. Each listener was



TIMBRE DIFFERENCES OF AN INDIVIDUAL VOICE 59

asked to indicate in each of the triads the stimulus which sounded most different
from two others. The sounds were reproduced by Tannoy-Lockwood loudspeakers
with sound intensity level equal to that of the original sound. The listeners listened
individually to a single presentation of the test during which each listener’s responses
were collected.

The individual listener’s responses appeared to be randomly distributed with the
number of responses indicating a mixed recording not exceeding 40%. This result
indicates that the recordings achieved by the mixing technique were not different to
the listeners from those of the whole ensemble. Therefore, it may be concluded that
for the individual choral voice the recordings made with the described method were
perceptually equivalent to those of the same person singing directly in the ensemble.

3. Procedure and results

The whole, 17-person choir (ten women and seven men) “Warsaw Madrigal
Singers” participated in the main experiment. The choir consisted of five soprano,
four alto, five tenor, and three basso voices. The recordings were made with singers
positioned in two rows (with men standing in the second row on the platform). The
recording technique was the same as described in Section 2. The music material was
an excerpt from the first movement of Johann Sebastian Bach’s chorale “St. Matthew
Passion” — “Befiehl du deine Wege”. This four-bar fragment was sung with
repetition. Similarly, as in the pilot experiment, the first four bars ensured that the
singers had warmed-up properly while the recording consisted only of the repetition
itself. The recording session included the following steps:

(a) recording of the whole choir,

(b) recordings of the individual voice groups (sopranos, altos, tenors, and

bassos),

(c) recordings of the solo productions (for technical reasons they were made

only for 12 performers: three of each voice group),

(d) as (c) but under the playback of the recording made by the whole ensemble,

(¢) as (c) but under the playback of the recording made by the respective voice

group.

For each of the twelve selected performers three sample recordings were
obtained: solo production, voice isolated from the whole choir, and voice isolated
from the voice group. Those recordings provided material for later comparative
study in which comparisons between the voice of the same person singing solo and
under various forms of playback were carried out. The respective recordings have
been labeled from 1 to 12 according to the following scheme:

sopranos — from 1 to 3,

altos — from 4 to 6,
tenors — from 7 to 9,
bassos — from 10 to 12.

Each recording has also been labeled by the letter “a”, “b”, or “c” indicating solo
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singing, singing under the playback of the whole choir, and singing under the
playback of the given voice group, respectively. The recording of the whole choir was
denoted by the symbol “ch” while the recordings of the main vocal groups were
denoted as indexed “g”.

To make comparisons between the physical properties of the voice sample ,,a”,
“p”. and “c”, the average spectrum for each of the samples was calculated. Each of
the recorded samples was analyzed with a set of one-third octave filters (B-K 1612).
The analysis was limited for practical reasons to 1006300 Hz. For each filter the
time-amplitude envelope was recorded on the B-K 2305 graphic level recorder.
Subsequently, the plots of spectrum levels for all the center frequencies were calculated
at five arbitrarily chosen time prints ¢; approximately equally distributed along the
time axis. The points t; were chosen in terms of the particular sound produced at
these points. The spectra for all five time points were subsequently averaged with
a Wang 600-12 computer. As a result 41 different voice spectra were obtained (36
spectra for single voices and 5 spectra for group performances). Examples of some
characteristic spectra are shown in Fig. 2.

The sound spectra such as those presented in Fig. 2 were used later to calculate

whole choir
sopranons 10a
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FiG. 2. One-third octave average spectra of vocal recordings made for the choir and four separate voice

groups (sopranos, altos, tenors, and bassos). On the left side of the diagram there are four examples of the

individual spectra obtained for two bass singers (voices 10 and 11) performing (a) solo and (b) under the
playback of choir sound
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differential spectra (a-b), (b-ch), and (b-g). The differential spectra for all twelve
individual voices and all the voice groups are shown in Figs. 3-5.

In the second part of the experiment listening tests were performed to compare
the sound quality of different voices recorded under (@) or (b) condition. The
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FiG. 5. Differential spectra “c—g”

comparisons were limited to the same voice group which yielded a triadic
comparison technique. The experimental conditions and the listeners were identical
with those described in Section 2. Each of the ten listeners was asked to order each
three voice samples in a triad along a quality (pleasantness) scale from the most to
the least pleasant. The most pleasant, the middle, and the least pleasant voice
samples were given 2, 1, and 0 points, respectively. The numerical data were
subsequently summed across all the listeners. The final scores are presented in Table
1. All the differences (with the exception of pair 4b-6b) were statistically significant at
the level 0.05.
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Table 1. The results of the listening quality assessment of the
recordings of solo voices (a) and choral voices (b). The
number preceding the symbol of the sample denotes the
: number of performers

Recording:  7a 8a 9a
Trial 1

Score: 20 s 10 : 0

Recording:  1a 2a 3a
Trial 2

Score: 15 : 15 : 0

Recording:  10b 11b 12b
Trial 3

Score: 10 7 0 > 20

Recording:  7b 8b 9%b
Trial 4 :

Score: 20 : 0 : 10

Recording:  4a 5a 6a
Trial 5

Score: 0 . 10 : 20

Recording: 1b 2b 3b
Trial 6

Score: 0 . 20 : 10

Recording: 4b 5b 6b
Trial 7 -

Score: 13 i 0 2 17

Recording:  10a 11a 12a
Trial 8

Score: 20 * 0 : 10

4. Discussion and conclusions

The results obtained from spectral analysis and listening tests indicated essential
differences both among singers within the voice groups and among types of singing.
The data presented in Table 1 show the following voices have the best quality while
performing solo or in an ensemble:

solo singing  choral voice

sopranos 1 and 2 2
altos 6 4 and 6
tenors 7 7
bassos 10 12

The data presented in Figs. 3-5 show that all choral voices judged the most pleasant
(voices 2, 4, 6, 7, and 12) exhibited large spectral differences between solo and choral
modes of singing.
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The fact that all the female singers participating in the experiment had no
previous vocal training whereas four male singers (voices 7, 8, 10 and 11) had been
vocally trained affected to a large extent the specific spectra of individual voices and
the voice groups (Fig. 2.) Within the 50 dB dynamic range, the spectra of the female
voices seldom extended beyond 1600 Hz, whereas the male voices showed com-
ponents up to 4000 Hz.

The differential spectra show that among soprano voices the voice 2 was the
most elastic, i.e., the most different in recordings “a”, “b”, and “c”. For this voice the
most favorable situation was singing along with the whole ensemble. This was
expressed by considerable enrichment of the respective spectrum “b” in comparison
to the other spectra of the same voice. In the case of two other soprano voices, voices
1 and 3, no such tendency was observed.

In the alto group, the most pleasant voice was voice 4. This was the only female
voice to show the existence of the singer’s formant in solo singing mode.
A characteristic nasal timbre was observed in that voice during solo production.
Such timbre is observed in cases when a spectrum which is basically limited to low
frequencies includes one or two components at much higher frequencies. In turn, the
lack of hoarseness and nasality in choral performance reflected the great flexibility of
the voice and good matching to singing in the mixed ensemble. It may be
hypothesized that it was the presence of low male voices in the ensemble which
induced this voice to make the timbre darker (softer, more mellow).

Among the tenor group, voices 7 and 9 did not show any large differences
between the spectra of samples “a”, “b”, and “c”. Vocally trained voice 8 exhibited
a rich spectrum in solo singing but it appeared to be much thinner as a choral voice.
Probably, the singer tried to adapt as much as he could to the sound of the choir,
causing a weakening of the higher components of the sound.

In the basso group voice 11 appeared to be the most different ambng all
analyzed voices. Perhaps of importance was the fact that this person had been
vocally trained and also had been with the choir for a relatively short time.
Therefore, the singer could not blend the timbre of his voice to that of the choir and
tried to dominate his vocal group. Voices 10 and 12 sounded especially thin in the
case of the recording made under the playback of the voice group. Most probably,
this resulted from their attempt to produce a uniform sound with voice 11 which was
unflexible and not susceptible to changes in the conditions of singing.

The results of this study confirm the differences in the behavior of singers with
trained and untrained voices. While singing in the ensemble, untrained voices were
characterized by strengthening the extreme components of the voice spectrum
compared with the spectrum of solo singing samples. In choral production these
voices sounded brighter, more stable, and more colorful. On the other hand, the
vocally trained singers sounded usually darker and poorer while performing in choir
than in solo singing. It may be hypothesized that choral performance is a mobilizing
factor for untrained voices. The trained singers, however, are forced to adapt their
natural, rich sound to the timbre of the ensemble. This unfavorably affects the timbre
and quality of their voices.
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In the case of solo singing, persons with vocally untrained voices usually sang
faster and more nervously than those with trained voices. These singers were unable
to remember the tempo of the previously recorded sample of the whole choir, or to
sustain longer notes to their end. Persons with trained voices had no trouble in
maintaining the same tempo in solo production as it had been in the recording of the
whole ensemble. '

In summary, (a) the possibility exists for recording isolated choral voice by
a method of singing under playback of the other part of the ensemble; (b) solo
(group) singing made under playback of other voices is quite natural for choir singers
which makes possible the application of such a method for recording choir
performances by multitrack techniques; (c) vocally untrained singers tend to operate
with a richer (brighter) voice while singing in the ensemble than in solo mode: (d)
sharp (bright) voices, not able to maintain the timbre uniform with the rest of the
ensemble, exert a considerable effect on the behaviour of the other voices making
them sound much thinner than they might; and (e) the voices of vocally trained
persons sound richer (more powerful) in solo singing than in choral performances,
where the singer’s formant is frequently totally missing, but nevertheless the presence
of such voices on the ensemble is often an essential factor mobilizing the other
performers.
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Advances in VLSI technology including A/D converters, large high speed memories
and digital signal processing devices, combined with a dramatic improvement in high
performance single board computer SBCs, have radically altered design possibilities for sonar
systems [1, 2]. It is now possible to centralize the system functions in one controller and
transfer much of the signal processing from hardware to software. Furthermore, digital
signal processing techniques may be employed to improve the system’s performance and
reliability. In this paper, we describe a new stock assessment dual beam sonar designed to
take advantage of modern computer architectures and digital signal processing techniques.
We also discuss some original processing enhancements to the basic dual beam concept
both in hardware and software which have been built into the sonar system. The system is
flexible so that the same hardware is employed for various modes. The transfer of functions

_from hardware to software combined with a hihgly efficient transmitter has yielded a low
cost compact system. &

Rozwéj technologii VLSI bardzo duzej skali integracji, a w szczegélnosci przetwor-
nikow A/D, bardzo duzych i szybkich pamigci oraz ukladéw do przetwarzania sygnatow
w polaczeniu z dramatycznym rozwojem mikrokomputeréw, w radykalny sposéb zmienil
mozliwosci projektowania systeméw sonaréw [1, 2]. Obecnie stato si¢ mozliwym zgrupo-
wanie wigkszosci funkcji w systemie jednego kontrolera oraz szerszego programowego
przetwarzania sygnalow w miejsce przetwarzania sprzetowego. Nalezy dodaé, ze za-
stosowanie cyfrowego przetwarzania sygnaléw poprawia jako$é i niezawodnoéé systemu.
W artykule podana zostala ocena dwuwigzkowego sonaru zaprojektowanego pod katem
korzysci jakie oferuje nowoczesna architektura komputerowa i technika cyfrowego prze-
twarzania sygnalow. Przedyskutowane zostana pewne nowe oryginalne modyfikacje, tak
programowe jak i sprzgtowe, przetwarzania sygnaldw w poréwnaniu z klasycznym
podejéciem do dwuwigzkowego systemu sonaru. Opracowany system jest elastyczny tak, ze
opracowany hardware moze mie¢ wiele zastosowan. Przeniesienie funkcji operacyjnych
z rozwigzan sprzgtowych do programowych (software) w polaczeniu z bardzo skutecznym
nadajnikiem pozwolito opracowac system tani i zwarty (compact).



68 R. S. MITCHELL and al.

1. Introduction

The utilization of dual beam configuration in hydroacoustic systems has proven
to be an accurate and reliable means for target strength estimation from received
echos. Conventional sonar systems for quantitative fish stock assessment either have
limited real time capabilities or require dedicated extensive separate hardware to
perform echo counting, target strength estimation and/or echo integration [3, 4].

Over the last few years, there have been major improvements in VLSI
technology resulting in the availability of low cost digital signal processing devices
and high performance microcomputers. The benefits to the system design engineer
have been profound. Large reductions in hardware real estate and enhancements in
system performance and flexibility have resulted. The availability of high perform-
ance 16 bit microprocessors has changed the design philosophy of microprocessor
systems from that of a few dedicated task oriented machines arranged in a sequential
or pipeline fashion to that of a high speed parallel bus with one or more high
performance machines. Complementing the improvements in machine architecture
have been advances in software, namely real time executives enabling a single
processor to perform many different tasks simultaneously. Furthermore, inter-
national standards for the multiprocessor bus systems have resulted in the
availability of numerous inexpensive single board computers.

This paper describes the application of these advances in hardware and software
to the design of dual-beam sonar system for fish stock assessment. A high speed A/D
converter in conjunction with digital signal processing devices results in relaxes the
specifications of the analog hardware, allows the use of a digital Finite Impulse
Response (FIR) filter, and transfers the Time Variable Gain (TVG) function
provision requirements to a digital processor which results in improvement of the
receiver performance and in the overall system flexibility. Emphasis on software
design has yielded a flexible system that is compact, low cost and user-friendly, and
which combines all basic functions required for acoustic surveying of fish popula-
tions, namely: echo-sounding (fish-echo detection), echo-integration, echo-counting
and target strength estimation.

2. System architecture

A photograph and block diagram of the dual beam sonar system is shown in
Figure 1 and 2 respectively. The central single board computer (SBC), based on the
68010 microprocessor is the heart of the system. Its responsibilities include
transmitter and receiver control as well as data collection and real time analysis.
A host personal computer, IBM PC/XT or compatible is also connected to the 16 bit
Versatile Modular European (VME) based system. The PC provides a user-friendly,
menu driven interface between the operator and the central computer. The PC may
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FiG. 2. Dual beam sonar system block diagram

take control of the system for testing and diagnostics. Various peripherals may be
connected to the PC for storage of raw or processed data, graphics presentation, user
interface and navigation equipment interfacing. A typical configuration consists of
a 20 Mbyte hard disk, a high resolution colour monitor, a colour chart recorder and
a Loran C serial interface.
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The trasmitter designed for this system utilizes modern HEXFET technology to
significantly increase the efficiency and reduce the physical size. It consists of three
sub-modules: AC/DC Converter, Energy Storage Device and DC/AC Converter
(switching power amplifier). The output switching amplifier is implemented in a full
wave bridge configuration, and is controlled by the synchronizer module. When
commanded by the central computer, the synchronizer will generate necessary
control (appropriate transmit gates) to the output bridge network, so the high power
burst will be routed to the transducer load. The output power level is regulated by
the AC/DC converter the output of which is controlled by the central computer
using an eight bit digital to analog converter (DAC). The central computer also loads
the desired carrier frequency and ping rate. Consequently all transmitter parameters
are computer programable. The ranges of these computer controlled parameters are
as follows:

ping rate f, =0.1-10 Hz,

pulse length 7 = 0.1-10 ms,

carrier frequency f= 30-450 kHz,

output power P =0.075-2.4 kW, selectable in 3 dB steps.

The transducer, which is physically mounted inside the towed body, consists of
two sections arranged in concentric configuration, to form the narrow and wide
coaxial beams. Acoustic energy is transmitted vertically in the narrow beam and
echoes are received on both beams by low noise preamplifiers through trans-
mit/receive (T/R) switches.

The remainder of the system includes the dual channel receiver, the digital signal
processor, the central computer for real time processing, and the link module
interfacing the host computer to the rest of the system. It is the processing done by
these modules which will be discussed in detail in this paper.

3. Signal processing

Processing done on the received echo signals can be divided into two categories.
The first category is referred to as signal processing where the same algorithm is
performed independent of the signal characteristics. The second class is referred to as
data processing in which processing is done conditionally on the value of the digital
samples. In general, signal processing is done by dedicated hardware and data
processing is done in software by either the central computer or the host computer.

The echoes received by the sonar transducer are subjected to two stages of
signal processing. The first stage is the dual-channel receiver analog preprocessing
(signal conditioning) which performs equalization of sensitivities in both channels,
transducer aperture weighting, course TVG, filtering, demodulation, sampling and
analog to digital conversion (ADC). In the second stage, the multiplexed digital
receiver outputs are applied to a hardware digital signal processor (DSP) whicl
performs the digital TVG correction, digital filtering in FIR filter, sampling rate
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decimation, amplitude thresholding and preliminary bottom, detection. The output
of the digital signal processor is buffered in a first-in first-out (FIFO) queue, which in
turn is served by the central computer where real time data processing of the echoes
is performed.

The central computer can operate in a number of modes to implement echo
counting and integration algorithms with or without target strength estimation. The
computer also has direct control of the receiver and signal processor to set up the
required configuration for the each mode of operation. The output of the central
computer is sent to the host PC through a common large memory also on the system
bus.

3.1. Analog signal processing

All of the analog signal processing is done on the dual channel receiver, the
block diagram of which is shown in Figure 3.
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FiG. 3. Receiver block diagram

3.1.1. Transducer Weighting. The first stage of the dual channel receiver buffers
the preamplifiers outputs for the inner and outer transducer sections. After channel
sensitivity equalization is done, transducer aperture shading is performed by
summing the weighted combination of the individual channels. For the low
frequency (e.g. 50 kHz) system version, both sections are formed by an array of
individual pre-stressed sandwich resonators, arranged in five concentric rings. For
the high frequency (e.g. 120 kHz) version, a single inner disc and outer ring elements
constitute the transducer’s aperture. In the present system design only two-step
shading was applied, to reduce the side lobe level in receive narrow beam, by
appropriate sensitivity weighting in the variable gain buffer amplifiers of the receiver.
However, optional weighting capabilities are provided for transmit beam pattern and”
also multi-step weightings may be applied for both transmit and receive beams

The measured narrow beam and wide beam patterns for 50 kHz transducer are’
shown in Figure 4 and figure 5, respectively. The unweighted beam patterns have
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A SLL=-17d8,

Fic. 4. Sample of the measured transducer beam pattern. Narrow beam

20° Y/

FiG. 5. Sample of the measured transducer beam pattern. Wide beam

side-lobes at approximately 17 dB. The beamwidth of the wide beam is ap-
proximately 15 degrees, while of the narrow beam is about 6 degrees both in transmit
and receive modes. The simple binomial weighting applied for the receive narrow
beam reduces the side-lobe level to about 20 dB.

3.1.2. Time variable gain. The received echoes must be progressively amplified to
compensate for the geometric spreading and attenuation of the acoustic wave as it
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travels to the target and back. For single fish targets, when TS estimation or fish
counting is applied, the targets are considered as isotropic scatterers, and the range
(R) dependent gain required to correct for the two way transmission loss is [5]:

G(R) = 40log RR

ref

+2a(R—R,,) [dB], (1)

where R, reference range equals TVG start range, « attenuation coefficient.

For dense concentrations of fish (schools and scattering layers) when
echo-integration is applied, the scattering from the plane is considered, which implies
the one way compensation of spreading loss with range (ie. 1/R?> low) and
consequently the required time varied gain function has the form:

R
G(R) = 20log

ref

+2x(R—R,,) [dB]. (2)

A great deal of attention was given in the design of an accurate, and reliable time
varying gain (TVG) amplifier with dynamic range of 100 dB. Conventional TVG
amplifiers use a PROM lookup table which is converted to a control voltage applied
to a variable gain amplifier. The desired accuracy is not usually achieved and
temperature drift problems may occur. Another solution considered was to digitize
the signal directly, but A/D technology has not progressed far enough to provide the
necessary dynamic range at a reasonable cost.

The time varying gain method in this system is a hybrid solution which
combines the course TVG implemented using step gain amplifiers, and the digital
TVG correction realized by high speed digital multipliers in DSP. The analog step
amplifiers provide fixed gain steps of 10 dB, from 0 to 100 dB. The computer loads in
a RAM a function which changes the analog gain in steps of 10 dB as a function of
range. The coarseness is therefore at most 5 dB at a given range. The gain is
increased by changing the resistance in the feedback network of an inverting
amplifier. Two amplifier stages with dynamic range of 50 dB each are cascaded. The
result is a precise, stable TVG amplifier with dynamic range of 100 dB.

3.1.3. Filtering and demodulation. The output of the TVG amplifiers is filtered
using conventional multiple feedback bandpass filters and applied to a wide dynamic
range envelope detector. The bandwidth of the filters is fixed at the bandwidth suited
to the minimum pulse length of the transmitted signal (0.1 ms for 120 kHz, 0.3 ms for
50 kHz).

3.14. Digitization. The echoes from each beam are simultaneously sampled and
multiplexed through a common A/D converter. The sampling rate was fixed at 80
kHz (40 kHz for each channel). The maximum bandwidth of the receiver is 10 kHz.
The 12 bit converter is applied with least significant bit of 2.5 m¥.
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3.2 Digital signal processing

After the signals have been digitized, they are multiplexed through a common
digital signal processor. The 12 bits of data for each channel corresponds to
a maximum dynamic range of 74 dB. A block diagram of the digital signal processor
is shown in Fig. 6. The first two sections of the processor are essentially part of the
receiver. The filtered data is thresholded to remove noise and the bottom echo is
detected. The data is buffered and stored in a FIFO buffer.

32 tap shift register
T

input el
data R
1]
VME.
load RAM)|
I ; false
VME 3 ! bottom
loaa
‘ bottom
> range gate Vp = logic
R =P
o
>|—=false bottom 7
Ry, =H )
FIFO |__range
g FIFO controller gate
L status buffer o5 10
timing & |—wwrite g VME load
control
r VME
ran; interface
cloci
bus , 16 BIT VME BUS
clock & Z 77770

FiG. 6. Digital signal processor block diagram

3.2.1. Precision TVG multiplier. As mentioned in Section 3.1.2. the precision
requirements of the TVG amplifier are transferred from the analog to the digital
processing. A 12 bit correction value is used to adjust the signal level —5 to +5 dB
to remove the coarseness of the analog TVG. Naturally, like the gain in the analog
amplifiers, the correction value is time dependent and is also loaded in a RAM from
the central computer.

The above scheme for TVG is very flexible: the same analog and digital
hardware can be used for any spreading model, attenuation coefficient and reference
range and consequently, arbitrary TVG functions which cover two decades of range
are possible. The central computer simply loads the desired gain function and
correction in the receiver and digital signal processor during system initialization.
The attenuation constant a, and the TVG start and stop range are also programm-
able by the user.
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3.2.2. Digital FIR filter. To optimize the echo detection (maximize S/N ratio)
and simultaneously provide the best available resolution, the sonar system should
adjust the receiver bandwidth to the different sounding pulse lengths in use.
Typically, the pulse length ranges from a hundred microseconds to a tens of
milliseconds, and consequently the receiver bandwidth, which should be ap-
proximately the inverse of pulse length, must vary also in the range of 1.5 to
2 decades. Conventional systems fix the number of pulse lengths and select either
different filters or change the passive components of the filters. In either case, the
variable pulse lengths result in redundant hardware.

Variable bandwidth is easily accomplished by a digital type filter. In the system,
the bandwidth of the analog portion of the receiver is fixed at 10 kHz, which matches
the minimum pulse length of 100 ps. The signals are digitized at a rate of 40 kHz so
that a digital finite impulse response (FIR) filter can be used to decrease the
bandwidth for longer pulse lengths. After TVG correction, the samples for each
channel are stored in shift registers which are multiplexed through a common digital
FIR filter. The order of the digital filter is 32 taps. For shorter pulse lengths, less than
32 samples are available, but the filter requirements are not as stringent.

The central computer sets the pulse length of the transmitted signal and loads
the filter coefficients that match the pulse length into a RAM during system
initialization. The FIR architecture was chosen for two reasons. Firstly, the number
of samples in the received envelope is fixed and secondly the same digital multiplier
used for TVG correction is used for the convolution of the filter impulse response
and the delayed data.

The filter output is applied to time dec1mat10n logic which will select 1 of
N samples, effectively reducing the sampling rate. The value of N is set by the central
computer and can range from 1 to 16. The sampling rate can range from 2.5 to 40
kHz. Depending on the system mode of operation, the sampling rate is changed.

3.2.3. Hardware threshold detection. The filtered output for each channel is
buffered and applied to a digital comparator which rejects all samples below the
signal to noise (S/N) threshold, V. The S/N threshold is 12 bits wide and set by the
central computer. The level of the threshold used for signal detection is different for
each mode of operation. The central computer loads V, in the digital signal processor
and all samples for each channel are compared with this threshold. The comparator
is disabled after transmission until a desired blanking range has been reached. The
minimum range value is set by the central computer.

3.2.4. Bottom processing. Parallel to the S/N threshold hardware is preliminary
bottom processing. The samples from the wide beam channel are thresholded with
another threshold Vj to detect the echo from the bottom. The bottom threshold is
loaded by the central computer. The computer can disable the bottom processor
until a certain range, referred to as start of the bottom window, has been reached.
This is necessary so that a large target at close range is not erroneously classified as
the bottom return. If a bottom echo has not been detected within the bottom
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window, the digital signal processor will generate an artificial false bottom echo
which is written into the FIFO buffer. Once a bottom has been detected, the digital
signal processor is disabled until the next transmission.

The hardware bottom processing serves only as preliminary bottom detection.
One echo is tagged as the bottom and is used by the central computer for further
bottom processing as well as optional bottom lock processing for echo integration.

3.2.5. FIFO data buffering. All samples exceeding the S/N threshold which are
received after the blanking period and before the bottom echo are stored as an alarm
block in a FIFO RAM buffer. The voltage amplitudes for each channel as well as the
range are written in memory. An additional status byte is written for each alarm.

Buffer status indicators such as empty, half full and full are accessible by the
central computer so data collection routines may be implemented. The buffer can
contain 256 echo samples greater than the S/N threshold.

If the data rate begins to increase beyond an acceptable rate, the central
computer can invoke a number of safeguards so that the buffer does not fill and data
is lost. These safeguards include: time decimation, increasing the threshold, filling
a temporary buffer and decreasing the ping rate.

4. Real time data processing

The central computer initiates the transmission and the first processing interval
after transmission is reserved for direct memory access (DMA) data transfer of the
central computer data to the host computer. The software range window from the
minimum range to the bottom echo is used for data collection and real time
processing. After the bottom echo has been detected, the real time processing is
completed for the current ping and the output data is formatted and stored in the
common memory for subsequent processing by the host computer.

The system has the following modes of operation:
i) Target strength estimation with optional fish sizing/echo counting.

ii) Echo integration.

iii) Echo integration with TS estimation.

Eéch of the two computer’s share a 512k x 8 common memory which is mapped on
the system bus. .
All of the programs are written using the C programming Language [6].

4.1 Data collection and common memory

After transmission of the sounding pulse, the central computer polls the buffer
status on the digital signal processor for non-empty condition. If there is data
available, the FIFO is emptied into a large data buffer in the common memory. It is
this larger buffer, called the raw data queue, that is used by the central computer for
real time processing.
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The common memory is used for storing data structures and variables, system
parameters and lookup tables, and mailbox communication between two computers.

4.2. Target strength estimation

. Routines are executed in real time by the central computer, (68010), which
calculates the target strength (TS) and back scattering cross section (,,) statistics
from the individual fish echo narrow and wide beam amplitudes contained in the raw
data queue. The theoretical derivation of target strength and back scattering cross
section algorithms from the dual beam system are included in Appendix I. The TS
and g, data are calculated for each accepted single fish echo using formulae (1.9) and
(L.11) and various data outputs are generated and displayed.

4.2.1. Echo detection and classification. The hardware amplitude S/N threshold
(sec 3.2.3.) and software time windowing are used as a decision criteria for detection
and parameter estimation of the echo pulses. Discrimination of the echoes as those
from single or multiple fish targets is done. For each detected echo, an output echo
data block is generated and stored in common memory and is available for further
processing and/or transfer to the host computer.

A. Extraction of echo pulses — peak amplitude determination. The raw data
queue is comprised of alarm blocks which are linked together. Sequential alarm
blocks are searched for either a gap in range or a hardware tagged bottom alarm
block. A gap is detected when successive alarms have ranges that differ by more
than 1 sampling interval. As the raw data queue is being searched for end of the
current echo pulse, the peak amplitudes and the pulse length for each beam is
determined. Simultaneously, the pulse lengths are compared with a maximum pulse
length (determined from the sounding pulse) for multiple fish target detection. If the
pulse length is less than the maximum length, the amplitudes are stored in the echo
pulse record and the echo pulse is initially classified as a single fish target. Once
a gap is detected, the echo pulse record is complete and contains:

1) array of narrow-beam amplitudes (limited to maximum length),

2) array of wide-beam amplitudes (limited to maximum length),

3) narrow-beam peak amplitude,

- 4) wide-beam peak amplitude,

5) pulse length for each beam,

6) range for maximum peak,

7) single/multiple flag.

The echo pulse record is ready for further analysis for valid single fish detection. The
above algorithm is illustrated by the flowchart in Figure 7.

B. Time windowing — pulse width determination. Once the echo pulse has been
extracted and formatted in an echo pulse record with single target status, it is
subjected to final pulse width check for classification as single, multiple or noise. The
half-peak amplitude (—6 dB) pulse width criterion is illustrated by the flowchart in
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Fig. 8. The peak amplitudes in the echo pulse record are halved and the amplitude
arrays are searched to determine the number of contiguous samples for which the
half-peak amplitude levels are exceeded. The resultant pulse lengths are then
compared to a preset time window, adjustable automatically for varying pulse
lengths. The time window resolution is the period of the carrier frequency, (i.e. 20 ps
for 50 kHz, 8 ps for 120 kHz) and there is no ambiguity due to the synchronism of
the transmit gate with the carrier frequency. The adjustable number of periods and
sampling rate results in increased system flexibility and reliability of the pulse width
classification criterion as the time window adapts optimally to the different operating
conditions (e.g. S/N ratio).
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FiG. 7. Process alarm block in Raw Data Queue

Finally, if the half-peak amplitude pulse lengths are within the allowed time
window, the echo pulse record is classified as a single fish target. If either the pulse
length is greater than the maximum pulse length or less than the minimum pulse
length, the echo is rejected as multiple or noise respectively.
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C. Amplitude rato determination — beam pattern threshold. Those echo pulse
records which are classified as single fish targets are subjected to beam pattern
threshold criteria. The ratio of the squared peak-amplitude voltages (I.3) is compared
with a computer-set beam pattern threshold T, (I.4). Those echoes for which the
squared voltage ratio does not exceed -3 dB are rejected. In addition, any
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FiG. 8. Time windowing flowchart

“suspicious” echoes (V, > V,) are also rejected. As a result, the sampled volume
becomes better defined and confined to the central portion of the beams. This assures
the validity of the dual beam theory and permits the removal of the bias in final
target strength estimates [7].

Those echo pulse records which pass the beam pattern threshold are finally
considered as single fish targets, and due to their redundancy are reduced to an echo
data block which contains:

1) ping number,

2) range,

3) narrow beam peak amplitude,

4) wide beam peak amplitude.
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The output echo data blocks are linked together for each ping to form the processed
data queue which is analysed after the detection of the bottom echo.

4.2.2 TS and o,, calculation. For each current ping after the bottom echo is processed
the central computer modifies field 3 and 4 in each output echo data block from peak
amplitudes to g,, and TS respectively using formulae (1.9) and (1.10). The logarithm is
derived using a memory lookup table to minimize processing time. The list of output
echo data block forming the processed data queue are available in common memory
for transfer to the host computer.

4.2.3. Data transfer and TS/a,, statistics. At the beginning of each ping, the processed
data queue is transferred from the VME common memory to the host computer
memory using DMA transfer. The host computer sorts the data according to the
data value and depth. The depth strata resolution is set by operator. The average
value and standard deviation of TS and a,, for a specified fish population are
calculated.

Histograms of TS data versus depth layers are also generated and may be
presented in various formats including tabular, 2-dimensional graphics and 3-dimen-
sional graphics for an arbitrary transects. The average bs value is used to calculate
the integrator scaling factor for converting the relative “echo integrator output” into
the absolute estimates of fish densities.

424. TS data conversion — fish sizing. Post processing routines convert the
estimated target strength distributions to the equivalent fish length distributions so
that both acoustic fish sizing and comparisons with simultaneous trawl-caught fish
length data may be done. There are two options for fish length distribution
estimation. The first procedure uses known empirical relationship between average
target strength and average fish length determined from a least-mean-square
analysis. Some relationships, as for instance the general Love equation [7]:

TS = 19.1log L—0.91log f— 62 3)

are stored in memory lookup tables. The second method utilizes the TS — L relation
in general form [5]:

TS = mlog L+ b. (4)

This allows the operator to specify and enter arbitrary values of the regression
coefficients. This method also allows for some post processing corrections of TS/L
distributions.

4.2.5. Echo tracking — grouping of correlated peak amplitudes A post processing
tracking routine is performed on successive transmissions to increase the reliability
of the average target strength estimate by minimizing the effect of fish orientation
(aspect). The output echo data blocks in the processed data queue from successive
transmissions are sorted to form groups of echo data blocks defined as fish data
blocks presumably corresponding to the same fish as seen in successive pings (the fish
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data block can be thought of as fish echo traces as seen on the echogram records).
The grouping of the data into the ordered sequence of peaks is based on the
temporal/spatial correlation of the peaks. Peaks are said to correlate if they are seen
in successive pings and have range tolerance within predefined limits [8].

For each echo data block in the current processed data queue, the list of fish
data block is searched for a correlated block. If a correlated fish block is found, it is
appended and the next echo data block is used. If no correlated fish data block is
found, a new fish data block is added to the end of the list.

The fish data block contains:

1. Range of target. ;

2. Array of TS from each ping.

The number of peaks in a given fish data block or group (equivalent to the
number of pings from which echoes from the same fish are detected) is a function of
a several system parameters, viz: range of target, ship speed, ping repetition
frequency and transducer beamwidth. To prevent tracking of false echoes and
merging of groups, minimum and maximum number of peaks in a group are used to
window the width of the fish data blocks. Both the minimum and maximum number
of peaks in the group are depth related and are stored in arrays. The average value of
number of peaks in a group are obtained by dividing the cross-sectional diameter of
the beam at the angle determined by the beam pattern threshold and by the distance
the ship moves between successive pings for each depth strata. Similarly the range
tolerance used for correlating peaks is calculated for the same depth strata and
stored in an array.

4.3. Echo counting

Echo counting estimates the number density of surveyed fish populations from
the single fish echo counts. Basically, the echo counting mode utilized the same .
hardware configuration as dual beam TS estimation with some software options.
Conventional echo counter systems using only a single beam are biased with some
uncertainties in the sampled volume determination. There is an advantage in
determining the sampled volume with a dual beam system, especially when the beam
pattern threshold T, is introduced to control the beam angle. Furthermore, the
grouping of peaks in successive transmissions into the “fish” data blocks in the
tracking routines supplies ready data on number of single fish.

The sampled volume in a single trAnsmission for each specified depth strata is
calculated and extended to the volume sampled during the processing interval
corresponding to one fish trace in the echo tracking routine. Fish number data from
the echo tracker program are sorted in depth and stored in two-dimensional array
indexed by range and TS/length classes.

The counting number density is formed by dividing the fish number array
elements by the sampled volume and normalizing to the standard volume. The
output data constitutes the fish number density averaged over the given transects as
well as fish number density by depth.

6 — Arch. of Acoust, 1-2/88
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4.4. Echo integration

Echo integration is the second fundamental mode of the system operation,
allowing estimation of the average density, d, of the total surveyed fish population
over specified transects. This in turn, allows the estimation of the total fish quantity
or biomass by multiplying the density estimate by the volume of water occupied by
the surveyed population.

The same system hardware is used for echo integration and TS estimation. Due
to the very high sampling rate required for the digital filter, the signal is oversampled
for echo integration. The filter output rate is reduced by digital decimation. The
amount of reduction corresponds to the sampling period equal to half of the pulse
length in use. The system’s echo-integration software performs the integration and
averaging functions in a digital manner on the sampled narrow beam channel output
signals. The echo integration theory is presented in Appendix IL

Before the echo-integration survey is started, the programmable parameters
must be entered in the host computer by the operator. Some of the more important
parameters include:

1) number of pings in sequence or sequence length in time or distance intervals,

2) S/N threshold,

3) bottom window,

4) surface blank range,

5) surface or bottom locked mode,

6) range dependent layering,

7) overall range gate,

8) scaling constants.

After the system parameters have been setup, the system will integrate all
returns for each range layer for all pings in the sequence. Also, bottom tracking is
automatically done. Once the specified number of pings has elapsed, the blocks of
relative or absolute densities are computed using predetermined scaling factors and
formulae IL.5 and IL.6. The sequence index is incremented, the ping counter is reset
and the processing begins for the next sequence.

In echo integration surveys, bottom detection and tracking are especially
important for distinguishing between fish and bottom echoes to prevent the
integration of large bottom returns. For bottom tracking, the system combines the
elements of hardware (section 3.2.2) and software bottom processing. Once a bottom
has been initially detected in hardware (signal exceeds the bottom threshold V}) the
programmable bottom window is centred automatically or manually around this
range for the next ping. The amplitude of the hardware-detected bottom is used to
determine the software bottom value, which may be set at —1 to —3 dB level of the
hardware bottom. The software bottom provides a more reliable estimate of the
actual bottom. All samples which form the leading edge of the bottom echo pulse are
deleted and not integrated. The automatic bottom tracking is normally selected as
soon as a bottom echo is within the bottom window. A computer set “false bottom”
is injected if a bottom echo has not been detected. In bottom locked mode system
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operation, the bottom layer may optionally be extended upward to some desired
distance from the bottom.

The echo integration processing cycle is finished at the end of each sequence of
pings. The data is sent to the host computer as a block of relative (M) or absolute
(d;) acoustic estimates of fish density in predefined depth layers. The host computer
averages the estimates of fish density over all layers to give an overall fish density
estimate.

Echo-integration may be performed in two different manners, ping (surface)
locked or bottom locked.

4.5 Simultaneous echo integration and TS estimation

The third optional mode of system operation involves combining the two
fundamental modes, which is desirable in some applications. In this case, the data are
collected and TS estimation processing done to obtain an average value of ,, from
those returns classified as single targets. Echo integration processing is performed on
all echoes and fish densities are computed using o, estimated from the same fish
population. There are some hardware constraints that must be overcome to obtain
reliable estimates. The first concern is the TVG function; TS estimation on single
targets requires a 40 log R+ 2aR while echo integration requires 20log R + 2aR. As
mentioned earlier, the computer can generate arbitrary coarse gain function in the
receiver. For this mode of operation the hardware TVG function of 30 log R + 2«R is
used and subsequent adjustment for each process is done by the central computer.
The second concern is the S/N threshold set in the digital signal processor. The
hardware threshold is set on relatively low level (appropriate for echo integration)
and the data is thresholded again in the TS estimation routine with a higher
threshold.

5. Conclusions

The application of digital signal processing techniques and the utilization of
a high performance central microcomputer has resulted in a dual beam sonar system
that is compact, versatile and low cost. The system hardware is used for echo
sounding, echo counting, echo integration and TS estimation. Furthermore, the
hardware can be configured so that simultaneous echo integration and TS estimation
can be performed. The user interface to the system is through a user friendly, menu
driven personal computer making the system both easy to use and learn.

This system represents the latest generation of equipment for fish stock survery
and assessment. In addition to colour echograms, it provides virtually real time
estimation of fish stocks, including 3-D plots of fish abundance versus position,
histograms of fish size distributions and printed reports of size and quantity of fish
by time or position interval. Full control of data presentation is available so that
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data can be manipulated and presented as desired. Both raw and processed data can
be stored on the PC’s mass storage device. Data can be reprocessed onshore to
provide comprehensive cruise reports without any additional hardware.

6. Appendix I — target strength estimation in a dual beam somar

The target strength, TS, estimation method utilized in the dual-beam system can
be categorized as ‘direct in situ technique’. In this meaning, target strength data is
extracted from free swimming fish of surveyed population by removing the beam
pattern factor from the each individual fish echo. The applied dual beam target
strength measurement technique, which we refer to as dual beam signal processing,
uses the known dual beam concept [9], however its implementation is partly original
both in hardware and software.

Acoustic energy is transmitted on a narrow beam b, (0, ¢), and received on both
narrow” by (0, ¢) and wide beams by, (0, ). The voltage waveforms of a received
echo at the output of each receiver channel, assuming a time varying gain of
40log R +2aR, are given by:

V() = ky''? a4 (0, d’)bruz (0, ¢)bry'’*(0, ¢)cos(wyt+ N,), (I.1a)
Vig (1) = kp'/? 0, (0, @) b2 (0, @) bry'’? (0, ¢)cos(w, t+ W), (I.1b)

Parameters ky and ky, are sonar system constants for the narrow and wide beam
channels respectively, which include the linear form of the source level SL of the
sonar transmitter and overall voltage response VR of the receiver. The target
back-scattering cross section at position (6, ¢) is represented by ,,(0, ¢). Neglecting
the time dependence of the received waveforms and assuming the circular symmetry
of the transducer and thus its associated beam patterns b (6, ¢) b (), the respective
voltage squared amplitude ratio becomes:

Kzg & & bry (0)
Vie  ky bew(0)

If we further assume equal system constants k, = ky, equation (1.2) simplifies to the
form:

(1.2)

Vi _ ban(0)
Vi~ baw (@)

(L3)

Equation (I.3) reveals the principal advantage of the dual beam configuration. The
ratio of the squared narrow and wide beam amplitudes is equivalent to the ratio of
the respective beam patterns for each received echo. Thus an unambiguous measure
of the target position in the beam, referred to the acoustical axis of the dual beam
transducer is obtained due to the unique relationship of the beam patterns ratio
values and their associated variable angle. This is true under the assumption that the
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target observed in successive transmissions has the same reflective beam pattern (e.g.
isotropic scatterers) which not necessarily must be valid for fish targets wich possess
directional back-scattering beam patterns o,,(6, ¢) of variable value for different
dish aspect [10]. The ratio for specified angle 6 = 0., has the sense of beam pattern
threshold:
_ bax(®)

by (0)0 = GTH,

which bounds the sampling volume to the cone with angle, #,, as those echoes
which have the ratio of squared voltages greater than the threshold will be detected.
The cone with angle 0, is such that the wide beam pattern value is close to its
maximum value by, =~ 1, which in turn gives the approximate ralation:

Vi
bgn(0) = V—Ev (I.5)

/8 (L4)

Once the beam pattern factor is known, the back scattering cross section of the
target can be found. Solving equation (I.1a) for g,, we obtain:

.
kybr(0)bey(0)
If we assume that the transmit beam pattern and narrow receive beam patterns are

approximately equal, especially when confined to small angles (in mainlobe — see
Fig. 3) formula (1.6) simplifies to:

Ops (L6)

0y, = dois ¥ (L7)
" ky by (0) :
Comparing equation (1.7) with equation (I.2) we see:
4 2
Ops = K.’!k_""__l_, (1.8)

Recalling that system constant is equal and the wide beam pattern is unity in the
angles of interest, we obtain the simple expression for back scattering cross section:

1V
ke VR

Thus, by simultaneously measuring the narrow and wide beam voltages, the
unknown beam pattern factor can be removed and as a result the back scattering
cross-section of observed targets can be obtained. Consequently, the target strength
TS, which is related to the back scattering cross section by the simple logarithmic
relation:

(L9

o-b.l

TS = 10log a,,, (1.10)

can be extracted from the received echoes using the following equation:
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TS = 2W-N-K, (L11)

where W= 20 log Vy [dB], N =20 log V; [dB], K = 10 log ky [dB].

Both the back scattering cross section and target strength primary data
measured for individual fish are averaged over any specified population. Depending
on the system’s mode of operation each of these values estimated from the
corresponding distributions (histograms) is used. The average target strength data
are mostly used for comparison with and/or fish length statistics for fish sizing
purposes. On the other hand, the average back scattering cross section is used to
convert the relative echo-integration data into the absolute estimate of fish density,
i.e. to scale the integrator output (see section 4.4).

7. Appendix II — echo integration theory

Under the assumption of non-coherent first-order scattering model for the
collective echo from fish concentration, and with the TVG set at 20 log R +2«R, the
running time average of the squared echo envelope over the range layer 4R
insonified in a given ping is proportional to the volume density of the scatterers (fish)
in this layer [11]:

t+ 4t

| v2(t)dt = constd g (IL.1)
t

If, after this first integration, the averaging over the specified surveyed transect is
done, the average fish density in layer 4R is estimated by:

d,z = (const)™ ' M, (11.2)

where M is the mean integrator output over the transect and the proportionality
constant is the product of the sonar system constant C, and the average g, of fish
surveyed in layer AR. Thus, if the constant C; has been measured and the o, is
known, or can be estimated (sec. 4.2), the average integrator output yields the
absolute estimate of fish density or biomass depending on the form of o, i.e., related
to the ‘pure’ TS, or to the TS, [12, 5].

For each ping, the consecutive samples within each range layer must be squared
and summed. For the jth layer on the kth ping, the partial sum of N squared samples
with sampling interval i is given by:

M=

(k- (IL3)

Sy =
i

1

In successive pings, the partial sums are added and after acquiring the data for all
pings in a specified sequence of p pings, the transect sums are calculated for each
layer: i
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After averaging these values by division by the total number of pings in the
transect and by the number of samples in the layer, the “integrator output” for the jth
layer is obtained, representing the relative estimate of fish density in the layer:

M, = Z Z )3/, (IL5)

k=1i=1

P

where n; = 3’ ny, is the total number of samples in layer j for p pings. These relative
k=1

estimates are finally converted to the absolute fish density when scaled by

appropriate overall system constant:

d;=C'M, (IL6)

where d; — is the acoustic fish density estimate for the jth layer, C — C 0y, is the
overall scale constant comprising the sonar system parameters and the average back
scattering cross section of surveyed fish.
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ULTRASONIC SYSTEM FOR NONINVASIVE MEASUREMENT OF HEMODYNAMIC
PARAMETERS OF HUMAN ARTERIAL-VASCULAR SYSTEM

TADEUSZ POWALOWSKI

Ultrasonics Department Institute of Fundamental Technological Research, Polish Academy of Sciences
(00-049 Warszawa, Swigtokrzyska 21)

This paper presents the working principle of an ultrasonic system constructed for the P
simultaneous noninvasive measurement of the blood flow velocity and, the diameter of the
blood vessel. A bi-directional c.w. Doppler flowmeter was used to measure the blood flow
velocity. The echo method was used to measure the blood vessel diameter and its changes.
The values of the parameters measured were transfered to the computer connected on line
with the ultrasonic measuring system. A programme was elaborated for computer analysis
of a number of hemodynamic parameters determined from the measured blood flow velocity
and the instantaneous diameter of a blood vessel. They are the blood flow rate, the blood
pressure, the vascular input impedance and the elasticity of arterial vessel walls. Connected
to a computer, the ultrasonic measuring system was used in examinations of the carotid
arteries.

W pracy przedstawiono zasadg dziatania opracowanej aparatury ultradzwigkowej do
réwnoczesnego, nieinwazyjnego pomiaru predkosci przeptywu krwi i $rednicy naczynia
krwiono$nego. Do pomiaru predkosci przepltywu krwi uzyto dwukierunkowego dopplerow-
skiego przeplywomierza fali ciaglej. W pomiarze $rednicy naczynia krwionoénego i jej zmian
zastosowano metodg echa. Wartosci mierzonych parametréw przesytane byly do kom-
putera, ktory polaczony byt ,on line” z ultradiwickowym aparatem pomiarowym.
Opracowano program analizy komputerowej szeregu parametréw hemodynamicznych
wyznaczanych na podstawie mierzonej predkosci krwi i chwilowej $rednicy naczynia
krwiono$nego. Sa to predkosé objetosciowa krwi, cinienie krwi, wejsciowa impedancja
naczyniowa, elastyczno$¢ Scianek naczyni tetniczych. Polaczony z komputerem ultra-
dzwickowym system pomiarowy zostal zastosowany do badan tetnic szyjnych.

1. Introduction

The recent years saw a serious increase in the number of diseases of the vascular
system. According to 1983 data, about 40% of all deaths is caused by diseases of the
circulatory system. Of these, 40% are caused by atherosclerosis [15]. As a result of
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atherosclerotic vessel diseases, the lumen of the blood vessel narrows or closes. Most
often, this occurs in large or medium arteries most significant for the human
organism, namely the coronary, cranial and renal arteries, the aorta, the arteries of
the lower limbs and mesenteric arteries. Atherosclerosis can develop for a long time,
originating in the early years of life. Often clinical symptoms appear very late when
the disease is much advanced and it is too late to treat its results. Therefore, there is
the constant need for doing research on the methods and diagnostic equipment
permitting the early identification of pathological changes in man’s arterial vessels.
In this direction, much progress was due to the introduction in medical diagnosis of
the noninvasive ultrasonic technique, in particular ultrasonic Doppler flowmeters
permitting the estimation of blood flow rate in blood vessels. They were widely
applied, e.g., in examinations of patency of extracranial carotid arteries [22] and the
arteries of the lower limbs [11].

The ultrasonic Doppler method does not ensure full diagnosis of man’s vascular
system. This results mainly from the fact that blood flow rate is just one of the many
hemodynamic parameters describing the state of the circulatory system. The equally
important parameters include the blood pressure, the complex vascular input
impedance and the elasticity of arterial vessel walls.

An example of the new approach to diagnosis of the vascular system is the
noninvasive ultrasonic method and system constructed at the Department of
Ultrasonics, Institute of Fundamental Technological Research, Polish Academy of
Sciences, for the noninvasive examination of the blood flow rate the vascular input
impedance and elasticity of the carotid arteries [18, 19].

The vascular input impedance is defined by the ratio between the blood pressure
and the blood flow rate for successive harmonic frequencies of the work of the heart
[1, 4, 5]. In the method in question, the blood pressure is determined from
displacements of the arterial blood vessel [18, 19]. These displacements are measured
with accuracy up to 0.03 mm over the same time and vessel cross-section as the
blood velocity. The impedance is calculated by the discrete Fourier transform of the
time courses of the blood pressure and flow rate. It is implemented on a MERA-60
computer connected on line to the ultrasonic measuring system.

Measurements of displacements of the arterial vessel walls can also serve for
evaluation of the elasticity of arteries. It is very significant from the point of view of
the diagnosis of the complex of diseases of blood vessels, called arteriosclerosis. This
group includes all changes in arteries which lead to fibrosis of part or whole of the
arterial wall, and, as a result, to a change in its elasticity.

The purpose of this study is to present the principal part of the system
constructed for the examination of the blood flow rate, vascular input impedance
and elasticity of arterial walls. It is an ultrasonic meter of blood velocity, wall
displacements and blood vessel diameter. This paper also discusses the basic
assumptions and dependencies adopted in computer analysis in the determination of
the vascular input impedance and elasticity of the carotid arteries from blood flow
velocity and the instantaneous diameter of a blood vessel
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2. Method and system for digital measurements of displacements of blood vessel walls

The noninvasive ultrasonic echo method was used to measure displacements of
blood vessel walls. Information on the displacement amplitude of a vessel wall is
obtained by measuring the distance between the ultrasonic probe and the examined
wall of a blood vessel. Changes in the diameters of peripheral arterial vessels under
increased blood pressure are of the order of 0.1 mm. The investigation of so small
displacements require high accuracy in tracing and measuring the position of the
echo detected from the vessel wall.

In 1972 HokANseEN [10] proposed an idea of tracing and measuring dis-
placements of a blood vessel wall by means of the ultrasonic echo method. Applying
an analog system of his own construction, he measured movements of walls of the
femoral artery. In 1985, Hoeks [9] proposed a different conception of the
measurement. For this purpose he used a multi-gate pulsed Doppler flowmeter.
Using it, he measured the relative changes in the diameter of the common carotid
artery. Moreover, this method raises large objections about the accuracy of
representing vessel wall displacements.

This study presents a method for digital measurements of displacements of walls
of a blood vessel and its diameter. It is an extension of the measurement conception
proposed in 1982 by Groves, PowarLowski and WHITE [7]. The general idea of this
method is shown in Fig. 1.

An ultrasonic probe set perpendicularly to the blood vessel (see Fig. 4) emits
towards it at intervals T, impulses of the ultrasonic wave. The measurement of the
position of the vessel wall with respect to the ultrasonic probe consists in counting
clock impulses over the time between the trigger impulse initiating the transmitted
impulse and the rising slope of the echo detected from the vessel wall. The time
measured by the digital method is the basis for calculating the instantaneous distance
d between the ultrasonic probe and the surface of the blood vessel wall. For
a successive nth measurement cycle, this distance is

cN,
dn - 9 fz ’ (1)
where N, is the number of clock impulses counted in the nth measurement cycle, f, is
the frequency of the clock impulses and c is the ultrasonic wave velocity in the
medium investigated.

A level comparator was used to determine unambigously the time when the
echo slope occurs. In the comparator, the echoes detected from biological structures
are transformed into a series of rectangular signals. The measurement of the position
of a chosen echo slope is repeated for every cycle of work of the impulse transmitter.
It is assumed in the further description of the measurement that the traced slope of
the echo E2 overlaps the end of the preceding echo E1. These two echoes displace in
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FiG. 1. The principle of the digital measurement of the time variable position of the blood vessel wall:
a) trigger impulses, b) echos detected from the external and internal blood vessel walls, c) echos at the
output of the level comparator, d) tracing gate, ¢) clock impulses

the same direction at the same velocity. A situation resembling the above one can
occur for echos detected from the external and internal surfaces of 4 blood vessel
wall.

To identify the chosen echo slope, a tracing gate is generated before it. The
logical unit of the system stops the time measurement with the clock impulse which
occurs after the appearance of the first rising echo slope after the tracing gate. In
a current measurement cycle, the position of the tracing gate depends on the position
of the echo slope traced in a preceding cycle, and is

Tgn=']:l-l—t09 (2)

where T, _, is the time measured digitally between the trigger impulse and the traced
echo slope in the (n— 1)th measurement cycle, T, is the time delay of the tracing gate
with respect to the trigger impulse in the nth measurement cycle and t, is a constant
time shift. The time shift t,, is implemented digitally in the form of N, clock impulses.

Fig. 2 shows two conceptions of the detection of the traced echo slope after the
appearance of the tracing gate. If the tracing system responds to the positive level of
the echo at the comparator output (Fig. 2a), the time shift ¢, of the tracing gate can



ULTRASONIC SYSTEM FOR NONINVASIVE MEASUREMENT 93

a) b)

G
G cLRI -n- [ CLR

1_ x| °
x| ° \J-

s i i

o

I
o
by

Fic. 2. Two ways. of the identification of the positive echo slope by the tracing system: a) the unit
responding to a positive echo level, b) the unit responding to changes in the echo level from low to high.
B — AND gate, P — D Flip Flop, E — echo of the comparator output, G — tracking gate, Z — clock

be contained within the following limits:

L.t <

z

, (3)

N[N

where T; is the ultrasonic wave period and T, is the clock signal period.
The version of the tracing unit of this type was proposed by Groves et al. [7].
- There is, however, another solution in which the time shift t, can be twice as much.
This applies to the tracing system which responds to a change in the level from a low
to a high one of the echo signal at the comparator output (Fig. 2 b). Then, the time
shift of the tracing gate can be
T5 % boske, s ()
The difference between these two solutions can readily be explained by assuming that
the tracing gate is shifter with respect to the traced echo slope by the time
T,/2 < t < T, It often occurs in the course of the positive phase of the echo preceding
the traced slope. At the comparator output, when the tracing gate appears, there is
a high level. For the first system (Fig. 2 a), it is false information about the occurrence
of the traced echo slope, and the tracing unit generates the impulse,JK which ends
the time measurement. In the second solution (Fig. 2 b), the tracing unit does not
respond to the high level of the comparator. It gives a signal for ending the
measurement only when at the comparator output there is a change in the signal
level from a low to a high one, corresponding to the appearance of the traced echo

slope.
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The time shift ¢, of the tracing gate should be so chosen that there may be the
possibility of tracing in two directions the same amplitude of displacements of the
blood vessel wall. It is possible only if the frequency of clock impulses is 4n times
larger than the frequency of the transmitted ultrasonic wave. Then the optimum
value of the time shift is

T
ty = j’ (5a)

=% (5b)

for the tracing unit responding to a change in the signal level.

From dependencies (5a) and (5b), these follow conditions for the greatest
possible displacements of the traced vessel wall over the time between two successive
impulses from the transmitter of the measuring system. They are equal respectively
to 1/8 and 1/4 of the wavelength of the transmitted ultrasonic wave in the medium
under study. For the frequency of the transmitted wave of the order of MHz, these
are very small displacements of the order of hundredths or tenths of a millimetre.
Hence, there follows a general condition which should be satisfied by the measuring
system in tracing the displacements Au occurring over the time At

cf. Au
TTAg ('Ai')m,’ )

where f, is the frequency of the transmitted wave, f, is the repetition frequency of the
transmitted impulses and m is a factor whose value depends on the time delay ¢, and
is 4 for t, = T/4, or 2 for t, = T/2. The satisfaction of the above condition is
restricted in the range of selecting the frequency ratio f,/f,. For, on the other hand,
the values of the two frequencies are conditioned by the necessity of obtaining the
needed resolution and range of measurement.

In the measuring system described here, meant mainly for the examination of
the carotid arteries, the frequency of the transmitted ultrasonic wave is 6.75 MHz,
whereas the repetition frequency of the transmitted impulses is 18 KHz. The
maximum velocity of wall displacements caused by the blood pressure in these
arteries does not exceed a dozen or so mm/s. From condition (6), the measuring
system makes it possible to map fully the movements of vessel walls if the two above
ways of detecting the traced echo slope are applied. On the other hand it should be
noted that the tracing unit responding to a change in the signal level permits the
tracing of displacements which are twice as fast compared with the unit responding
to the signal level. Due to this, it ensures more stable measurement, in particular if
there are additional displacements of the blood vessel with respect to the ultrasonic
probe. One of the factors which cause the changes is the respiratory motion. The
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effect of inspiration and expiration on the position of the vessel can be observed
distinctly in examining the carotid arteries. The displacements perturb observations
of the movement of the vessel wall caused only by a change in the blood pressure. To
eliminate the components coming from respiratory movements from the measured
displacements, at the same time, the position of both vessel walls with respect to the
ultrasonic probe is measured. The difference between their mutual positions is
a quantity which does not depend on respiratory displacement, for it corresponds to
the instaneous vessel diameter. The changes in the vessel diameter, recorded in the
course of the measurement, are the measure of the displacements of its walls caused
by changes in the blood pressure.

The system constructed for this purpose contains two identical channels meant
for simultaneous tracing and measuring of the positions of echos detected from the
two vessel walls. Fig. 3 shows a schematic diagram of the measuring system. To
explain the working principle, one measurement channel is presented. It contains two
counters DCA and DCB. The counter DCA counts clock impulses over the time
interval between the trigger impulse releasing the transmitter of the impulse wave
and the echo front detected from the blood vessel wall. At the same time, in the
counter DCB, clock impulses are subtracted from the content of the counter DCB
recorded in a preceding cycle. The difference value at the output of the counter DCB
is compared with the programmed quantity N, in the digital comparator Ct The
comparator C, generates the tracing gate G as soon as a numerical value equal to N,

v sep we [ »
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FiG. 3. A schematic diagram of the digital system for tracing and measuring the position of the blood
vessel wall: WE — choice of the echo slope, SE — tracing the chosen echo slope, TR — trigger, Z — clock
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appears at the output of the counter DCB. At the moment that the rising slope of the
gate G appears, the sum of the clock impulses counted by the counter DCA is smaller
by N, than the number of clock impulses counted by this counter in a preceding
cycle. This means that, in accordance with the measurement method adopted
(formula 2), the tracing gate G is displaced with respect to the position which the
traced echo slope took in a preceding cycle.

The gate G is supplied at the input of the echo identification unit EI, to which
echos detected from the blood vessel walls are supplied through the level comparator
C. The unit EI generates the impulse IP (see Fig. 2), when the first echo slope after
the gate G occurs. This impulse eliminates by the logical keys K1 and K2 the clock
impulse from the inputs of the counters DCA and DCB. After rewriting the contents
of the counter DCA into the computer K and the counter DCB, the counter DCA is
reseated. A new measurement cycle begins with another trigger impulse IZ. The
digital data obtained at the output of the counter DCA are transformed in the
computer into information about the instantaneous position of the surface of the
blood vessel wall with respect to the ultrasonic probe.

The tracing of the position of the chosen echo slope requires that the tracing
gate G should be set up before it. It is only then that the above-described process of
automatic tracing of the chosen echo slope can take place.

The initial position of the tracing gate G with respect to the echo slope is set
digitally by introducing into the counter DCA of such. a number of impulses which
corresponds to the position of the chosen echo slope with respect to the trigger
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FiG. 4. A schematic diagram of the system for simultancous measurement of blood velocity, vessel
diameter and displacement of blood vessel walls
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impulse. The current position of the gate is controlled by its presentation along with
echos on the measuring system’s screen. To set precisely the position of the tracing
gate G, into the counter DCA, through the key K3, clock impulses are replaced by
slowly variable ones. The time their introduction is manually controlled, with the
echo identification unit EU switched off. The rewriting of the current numerical
value from the counter DCA to the counter DCB and the generation of the tracing
gate G by the comparator C, take place in the same way as in the course of the
automatic tracing of the echo, ie., synchronically to the trigger impulses.

To measure simultaneously the displacements of the two walls of the blood
vessel and the vessel diameter, two symmetrical channels for tracing and measuring
the positions of the echo, called later USP, were applied. Each of them contains two
12-bit counters DCA and DCB, the digital comparator C, and the echo identification
unit EI. The inputs of these two channels are connected in parallel with the level
comparator C. The measured data from the outputs of the two channels are assigned
- to the buffers from which they are then entered into computer for further processing
and computations (see Fig. 4).

In the system in question, the delay time between the trigger impulse and the
echo detected from the vessel wall is measured by counting clock impulses of 27
MHez. In effect, this permits the representation of the amplitude of displacements of
the blood vessel walls an accuracy up to 0.03 mm.

3. Meter of blood velocity wall displacements and blood vessel diameter

The previously described system for the measurement of displacement of blood
vessel walls was connected with an ultrasonic c.w. Doppler flowmeter into one joint
set-up for simultaneous measurement of the blood velocity, the diameter of the blood
vessel and its changes over the work cycle the heart. The device was designed to be
applied in examinations of the human peripheral arteries, in particular the carotid
arteries.

Figure 4 shows a schemati¢ diagram of the measuring device. It contains two
ultrasonic probes P1 and P2 set at 30° to each other. Thr probe P2 is connected with
a bi-directional c.w. Doppler flowmeter cwDF. The probe P1, set perpendicularly to
the blood vessel, is linked with the impulse transmitter Tand a broad-band receiver
R. To obtain good measurement resolution across the ultrasonic beam, the probe P1
is focused. In the focus — 20 dB beam width is 1 mm. In tissue the focusing zone of
the ultrasonic wave varies between 1 and 3 cm. To avoid mutual interference
between two transmit-receive systems working together the probes P1 and P2
transmit ultrasonic waves with two different frequencies. The frequency of the wave
transmitted by the probe P1 is 6.75. MHz, and the frequency of the continuous wave
transmitted by the probe P2 is 4.5 MHz The two frequencies were obtained by
dividing the clock frequency of 27 MHz, respectively, by 4 and 6.

The repetition frequency of the transmitted ultrasonic wave impulses is 18 kHz.

7 — Arch. of Acoust. 1-2/88
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This provides the measurement range of 4.2 cm into the patient’s body. The echos
obtained in the course of the measurement at the output of the receiver R are
transformed into rectangular signals by the level comparator C. The echos formed in
this way are fed to two digital units for tracing and measuring the position of the
echo from the front wall (the channel USP 1) and from the back wall (the channel
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FIG. 5. Timc_courscs of the blood velocity (a) and displacements of the back (b) and front (c) vessel walls
recorded in the course of measurement in the common carotid artery in a 40-year-old man

USP 2) of the blood vessel. The 11-bit data obtained at the outputs of the two
systems are fed to the output buffers B of the unit, along with the two 8-bit pieces of
information about the blood velocity measured simultaneously in two directions.
These data are then fed into the computer K, with the sampling frequency FP
imposed by the generator GP. This frequency is adjusted depending on the working
frequencies of the examined patient’s heart. It is so chosen that there are 64 data of
each of the measured quantities for the mean period of the work period of the heart.
This condition results from the 2" — point fast Fourier transform applied in the
further computer data analysis.

Data on the blood velocity are obtained from the measured difference (Doppler)
frequency between the frequency of the transmitted wave and that detected from the
flowing blood by the probe P2 of the flowmeter cwDF. The mean Doppler frequency
f.. measured by the zero-crossings method is proportional to the mean velocity v, of
the blood flow through the cross-section of the blood vessel, according to the
dependence

cfzc

2f,cos0’

where ¢ is the ultrasonic wave velocity in the medium under study, f, is the frequency
of the transmitted ultrasonic wave, 0 is the angle between the direction of the
transmitted and detected ultrasonic wave and the axis of the blood vessel, and a is
the proportionality coefficient.

™

s=a
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The proportionality coefficient in formula (7) depends on the velocity profile of
the blood flow studied and on the ratio between the ultrasonic beam width and the
blood vessel diameter [6, 17]. Assuming that the mean profile of the blood flow rate
in the cross-section of the blood vessel is contained between a parabole and a flat
profile, and that the ultrasonic beam is wider than half the vessel diameter, in the first
approximation the coefficient a would be 0.85 [6, 17].

In determining the blood velocity from the Doppler frequency f,. measured by
the flowmeter, it was assumed that the angle 0 in dependence (7) is 60°. This follows
from the constant angle 30° between the probes P1 and P2, and from the assumption
that the probe P1 is set perpendicularly to the axis of the vessel. It was assumed that
the perpendicular setting of the probe P1 with respect to the blood vessel would be
indicated by obtaining the maximum amplitude of the echoes from the two walls of
the vessel. In the course of the measurement these echoes are obtained on the
oscilloscope screen OSC of the device. At the same time, the screen shows the
measured diameter of the vessel under study in the form of a gate.

The data obtained in the measurement of the blood velocity, the diameter of
the blood vessel and displacements of its two walls are presented in the form of
analog courses on the recorder P or the memory monitor M. The analog recording
serves for controlling the measurement data obtained before they are fed into
a computer for further analysis. The analog-to-digital (4/D) and digital-to-analog
(D/A) converters were applied to transform the measured quantities into digital and
analog values (Fig. 4). Figure 5 shows, as an example, the blood flow rate and
displacements of the front and back walls of the artery recorded in the course of
measurement in the common carotid artery.

The measurement of the internal diameter of the blood vessel requires good
resolution of the transmit-receive impulse system. For this purpose, apart from the
previously mentioned focusing of the probe P1, in the measurements, a narrow
transmitted impulse was used with a duration of 0.3 ps (2 high-frequency cycles of the
transmitter), corresponding to its length of 0.45 mm in tissue. As a result it made it
possible, in the case of the common carotid arteries, to obtain single echoes from the
external and internal surfaces of the blood vessel walls. Fig. 6 shows the measured
displacements of the internal and external displacements of the surface of the back
wall of the common carotid artery with its thickness. In the case studied it was 1 mm.

The single echos obtained from the two surfaces of the vessel walls made it
possible to measure its internal diameter. Having at the same time, information on
the blood velocity across the measured internal cross-section of the vessel, it is
possible to determine on this basis the blood flow rate. The ultrasonic impulse
Doppler method applied so far for this purpose does not permit the so precise
measurement of the internal diameter of the blood vessel. This mainly results from
the fact that the information on the vessel diameter is taken from the measured
spatial distribution of the velocity profile of blood flow [2, 6] which for low velocities
close to the vessel wall is falsified as a result of the filtration of the Doppler signal
coming from the displacing blood vessel walls. A general view of the measuring
system in question is shown in Fig. 7.
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FiG. 6. The thickness of the carotid artery wall (a) and displacements of the external (b) and internal (c)
surfaces of the wall studied, recorded in the course of the measurement. The mean internal diameter of the
vessel examined was about 8 mm

FiG. 7. A general view of the ultrasonic system
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4. Computer analysis of hemodynamic parameters

The ultrasonic measuring system described above was used in examination of
the carotid arteries. The data obtained at the output of the ultrasonic device are fed
into a MERA-60 computer (corresponding to PDP-11) and written on a floppy disk.
The number of data recorded each time in the course of the measurement contain
information on 640 successive values of each of the four parameters measured
simultaneously. They are: the digitally measured times t,, and t,, between the
transmitted impulses and the echoes from the front and back walls of the blood vessel
and the Doppler frequencies f,., and f,., measured for blood flow away from and
towards the ultrasonic probe.

According to earlier determinations, the sampling frequency with which data are
fed into a computer is so set that 64 data on each of the measured quantities
correspond to one mean work cycle of the heart. This means that the number of
recorded data comes from about 10 work cycles of the heart.

Along with the above-mentioned data, the value of the sampling frequency
F and those of the systole pressure P, and the diastole pressure P, measured with
a cuff in the brachial artery, with the patient in supine position, are recorded on
a computer disk. The data set formed in this way is the basis for further computer
analysis of the following hemodynamic parameters:

a) the blood flow rate Q,

b) the blood pressure P,

c) the input vessel impedance Z,

d) the relative change in the blood vessel diameter over the work cycle of the
heart AD/D,

e) the pulse wave velocity c,,

f) the coefficient of rigidity of the blood vessel wall a.

The flow diagram of the computer analysis is shown in Fig. 8. From n successive
measured data, respectively from dependencies (1) and (7) the instantaneous
numerical values of the blood flow velocity v, (k) and v, (k) away from and towards
the ultrasonic probe, and the distances d, (k) and d, (k) between the ultrasonic probe
and the internal surfaces of the front and back walls of the blood vessel are
determined. In turn, these data serve to determine k successive values of the internal
vessel diameter D (k) and the blood flow rate Q (k).

Further computer analysis is performed separately for particular work cycles of
the heart. The indicator which identifies a successive cycle is the maximum value of
the rate Q occurring in the systole phase. The beginning of the studied cycle K, is
established at the beginning of the systole phase. For each cycle, the beginning of the
analysis is equally shifted with respect to the maximum value of the blood flow
rate Q.

The programme of computer analysis assumed the possibility of determine the
blood flow rate Q (kAt) and the blood vessel diameter D (kAt) on the basis of a chosen
number IL of successive work cycles of the heart. Programmatically, this is
implemented according to the following algorithms:
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Q(kdt)m L iL num(kAtlD,%,(kAt),
m=1

(8)

1 IL .
D(kdt) = — Y. D,,(k4?), 9)
ILM =1
where k = 1,2, ..., 64 is the number of a successive datum in the work cycle of the

heart, m is the number of a successive cycle, At = 1/FP and v,,(k4¢t) is the studied
linear blood velocity in the mth cycle of the heart.
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F1G. 8 The network of operations of computer analysis, PWD — programme for data recording on a disk,
PRD — programme for reading data from the disk
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According to the adopted network of operations the quantities Q (k4t) and
D (kAt), described by formulae (8) and (9) form the basis for determining the mean
values of the other hemodynamic parameters.

The blood pressure is another parameter determined from measurement data. It
is calculated from instantaneous changes in the blood vessel diameter over a work
cycle of the heart. The calculations assumed an exponential dependence between the
blood pressure P and the blood vessel cross-section area S, given by the following

function:
P = P,exp(yS), (10)

where P, and y are constant coefficients.
After transformation, this function becomes
D*-D} P
P(D)=Pdexp[mlnﬁj n (11)

where D, and D, are the vessel diameters for the systole pressure P, and the diastole
pressure P, The pressure determined in this way is calibrated in absolute units by
the systole pressure P, and the diastole pressure P, measured in the brachial artery.
The values of the two pressures are respectively subordinated to the maximum DLy
and minimum D,,;, diameters of the blood vessel. The blood pressure over the work
cycle of the heart, calculated on this basis, is expressed by the following dependence
‘Dz (ndt)_Dglin In&

Dg:ax_Drznin ' f d '
The instantaneous blood pressure P(kAt) and the blood flow rate Q (kAr) are the
basis for determining the impit vessel impedance Z. Assuming linearity of the
vascular system studied, the impedance Z is calculated as the ratio between the
Fourier transforms of the above-mentioned discrete time courses over the work cycle
of the heart:

P(ndt) = P,exp ’: (12)

PQnfn)
Q(2nfn)

where n = 0,1,2, ..., k, fis the frequency of the heart rate, g, is the phase and Zon
is the modulus. In the calculating, the algorithm of the fast Fourier transform FFT
[3] was used. In its final form, the input vessel impedance is represented by the
modulus Z,,,; and the phase ¢, for successive harmonic n frequencies of the heart
rate. For n = 0, the impedance represents the mean resistance of the vascular system
in question. 3

Another group of the investigated parameters are related to the elasticity of the
walls of arterial blood vessels. One of them is the relative change in the vessel
diameter 4D/D over in the work cycle of the heart. It is defined in the following way:

4D D .. —D_.
o e max mm_l o/ 14
D= p - 100%, (14)

Z (2nfn) = YA (13)
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where D, and D, are the maximum and minimum blood vessel diameters over
the vessel cycle of the heart.

The parameter described by formula (14) depends on the elasticity of the vessel
wall, but it cannot be its measure, since it does not into account the increase in the
blood pressure causing changes in the vessel diameter. In the analysis, it was
introduced solely for cognitive purposes.

A more objective index of the elasticity of arterial vessel walls is the pulse wave
velocity ¢, determined from the volume elastic modulus K [1]

K [1(P,—P)
- R Foto % el 15
& \/; e Ss Sd Sd’ ( )

where g is the blood density, S, and S, are the cross-section areas of the blood vessel
for the systole pressure P, and the diastole pressure P,

The pulse wave velocity c, is an index very generally used in the literature for
evaluation of the elasticity of the human arterial-vascular system [8, 12]. This
velocity depends on the rigidity of blood vessel walls and increases with a person’s
age. ¢, is measured by the method of two sensors set usually at two mutually distant
points of the vascular system. This permits only an overall evaluation of the elasticity
of the vascular system.

According to some authors [12, 16], the rigidity of the walls of the vascular
system, and, thus, the pulse wave velocity, too, are affected by the blood pressure in
the vascular system. This fact can be explained by the existence of a nonlinear
function between the vessel wall displacements and the blood pressure which causes
them. So far in the literature, there has been no agreement about the degree and
character of this nonlinearity [13, 14]. In this situation in the evaluation of the vessel
wall elasticity an additional index a was introduced. It results from the previously
adopted exponential dependence between the blood pressure and the transverse
dimensions of the blood vessel (formula (10)). The coefficient o determined from
dependence (10) has the following form:

Si_in(p,/P), (16)
Sd

o=
where S, and S, are the vessel cross-section areas: for systolic P, and diastolic P,
pressures. _

The hemodynamic parameters mentioned so far were preliminarly investigated
in the common carotid arteries for a group of 43 healthy persons aged between 9 and
64 years. The age of the persons examined was divided into five groups. The results
of the measurements are given in Table 1. In addition, a statistical analysis of the
parameters studied, performed without a division into age groups, permits the
following conclusion to be drawn:

1) The mean blood flow rate Q..s over the cardiac cycle in the common
carotid artery in adults aged between 19 and 64 varied between 400 and 620 ml/min.
Its mean value was 499+75 ml/min.
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2) The relative change in the diameter of the common carotid artery AD/D over
the cardiac cycle was greatest in children and decreased with the age of the patients.
Investigation of the change 4D/D as a function of age by means of linear regression
gave the following dependence:

AD/D = 15507—0.189x  [%], (17)

Table 1. The hemodynamic parameters determined noninvasively in the

common carotid arteries of healthy persons in five age groups the mean

blood flow rate Q,,,, the mean blood pressure P,,, from formula (12), the

relative change in the artery diameter AD/D, the pulse wave velocity ¢,

formula (15) and the coefficient of rigidity « formula (16). The systole

pressure P, and the diastole pressure P, were determined with a manome-
ter in the brachial artery

Age group
9-16 19-30 | 32-40 | 41-50 | 52-64
(years) _

Number of persons 7 9 8 8 11
Mean age 123 244 36.8 449 56.2
S.D. 23 46 32 29 39
(years)
P, 104.3 117.8 116.9 110.0 122.7
S.D. 10.6 79 7.0 10.0 13.8
(mmHg)
j 60.7 772 80.0 70.6 80.0
S.D. 6.1 71 5.9 8.6 8.7
(mmHg)
j 82.2 97.3 97.2 90.5 101.5
sD. - 6.4 6.1 58 9.2 105
(mmHg)
Daii 364.3 4978 5113 5400 | 459.0
S.D. 532 879 74.9 59.8 61.9
(ml/min)
AD)D 13.89 11.0 7.54 6.85 5.24
S.D. 1.83 2,02 1.79 1.05 1.14
%
L 452 497 5.84 6.26 7.44
S.D. 0.61 0.38 0.71 0.49 0.74
(m/s)
@ 1.84 1.87 2.55 3.18 3.98
S.D. 043 0.37 0.68 0.51 0.62

S.D. — Standard deviation
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where x is the age of the persons examined in years. The coefficient of correlation for
this linear dependence was 0.877.

3) The pulse wave velocity ¢, determined from formula (15) increased linearly
with the age of the patients according to the regression line:

¢, = 3.457+0.0677 x. (18)

The coefficient of correlation for this dependence was 0.877
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FiG. 9. The modulus (Zm) and the phase (p,) of the input vascular impedance determined noninvasively
in the common carotid artery (a), in the internal carotid artery (b) and the external carotid artery (c) in
a 40-year-old man
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4) The coefficient of rigidity o increased linearly as a function of the age of the
persons examined. It is described by the regression line:

o = 0.8581+0.0523 x. : (19)

The coefficient of correlation for this function was 0.832.

Using the measuring system described here, preliminary investigations of the
input vessel impedance were also performed in the extracranial carotid arteries
(Fig. 9). They indicate that for the first few harmonics the modulus and phase of the
impedance strongly depend on the inertia, compliance and resistance of the vascular
system studied. The first step towards the determination of these values was
a computer simulation of the input vessel impedance in the common carotid artery
by means of the impedance of a substitute circuit containing elements representing
inertia compliance, vascular resistance and peripheral resistance [19]. Further
research is under way on the interpretation of the vascular impedance [21].

The preliminary research results presented above indicate the large usefulness of
the measuring system for noninvasive evaluation of the human arterial-vascular
system, in particular for diagnosis of the carotid arteries.
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A NONINVASIVE ULTRASONIC METHOD FOR THE ELASTICITY EVALUATION OF THE
CAROTID ARTERIES AND ITS APPLICATION IN THE DIAGNOSIS OF
THE CEREBRO-VASCULAR SYSTEM
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This study presents a comparative evaluation of the methods applied so far to
describe the elasticity of the blood vessel walls. It was shown that one of the possible
solutions in the description of the dependence between the vessel cross-section and the
blood pressure is a logarithmic function. The authors assumed the logarithmic wall rigidity
coefficient o resulting from this function as the index of the mechanical properties of the
walls of the carotid arteries examined. The value of this coefficient was determined
noninvasively from the ultrasonic measurement of the instantaneous diameter of the
common carotid artery and the systolic and diastolic pressures measured with a manometer
in the brachial artery. The studies were carried out for a group of 43 healthy persons aged
between 9 and 64, and for a group of 9 persons aged between 53 and 62 in whom
arteriosclerotic changes were found by the X-ray arteriography in the extracranial carotid
arteries. The results obtained indicate a linear increase in the coefficient a with age of
healthy persons. For the ill group the mean value of the coefficient « was about 50% higher
than that for the healthy in the same age group.

W pracy przeprowadzona zostala ocena poréwnawcza stosowanych dotychczas
metod opisu elastycznoéci scianek naczyn krwionoénych. Wykazano, ze jednym z moz-
liwych rozwiazan w opisie zaleznoéci migdzy przekrojem naczynia i ciSnieniem krwi jest
funkcja logarytmiczna. Wynikajacy z niej logarytmiczny wspolczynnik sztywnosci scianki
@ przyjety zostal przez autoréw jako wskaznik wiasnosci mechanicznych icianek badanych
tetnic szyjnych. Warto$¢ tego wspélczynnika wyznaczano nieinwazyjnie na podstawie
ultradZzwigkowego pomiaru chwilowej srednicy tetnicy szyjnej wspolnej oraz cisnien:
skurczowego i rozkurczowego mierzonych manometrem w tetnicy ramiennej. Badania
przeprowadzono dla grupy 43 os6b zdrowych w wieku od 9 do 64 lat oraz dla grupy 9 oséb
w wieku od 53 do 62 lat, u ktorych stwierdzono metoda arteriografii rentgenowskiej zmiany
miazdZzycowe w tetnicach szyjnych pozaczaszkowych. Uzyskane wyniki wskazujg na
liniowy wzrost wspélczynnika o z wiekiem badanych oséb zdrowych. Dla grupy osob
chorych érednia wartos¢ wspolczynnika a byla o okolo 50% wieksza niz u oséb zdrowych
w tej samej grupie wickowej.
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1. Introduction

Studies on the blood vessel elasticity are very significant in the diagnosis of
human vascular systems. Changes which occur in the vessel walls as a result of the
organism’s aging or diseases of the vessel walls (arteriosclerosis) cause an increase in
their rigidity. This has a negative effect on the blood circulation mechanism in which
the vessel elasticity plays a very important role. An increase in the rigidity of the
arterial vessel walls is also a factor which contributes to the development of
arteriosclerosis, the most serious disease of human vascular system.

Depending on the measurement methods applied, various indices are used to
evaluate the vessel wall elasticity. Commonly they are: the pulse wave velocity [1, 5,
13, 28], the relative vessel diameter change [25], the elastic (pressure-strain) modulus
E,[1,8,19,20,21, 26] BERGEL’s incremental modulus E,, . [2, 3, 4, 12, 18, 32]. All the
above mentioned indices are functions of blood pressure [2, 5, 13, 16, 32]. The effect
of blood pressure on the vessel wall rigidity makes difficult the comparative
evaluation of the mechanical properties of the walls in persons with different blood
pressure.

To take into account the effect of the blood pressure on the vessel wall rigidity,
it is necessary to know the functional dependence between the cross-section of the
vessel and the blood pressure inside it. This dependence was studied by many
authors [12, 14, 15, 17, 30], however, the functions proposed by them cannot be used
in noninvasive vessel elasticity measurements. This is due to the fact that their
description requires coefficients whose values can be determined only by invasive
methods.

This study carried out a comparative evaluation of the methods applied so far
to describe the blood vessel wall elasticity. By analysing the dependence between the
vessel cross-section area and the blood pressure, it was shown that one of the
possible solutions is a logarithmic function. Its determination requires two reference
points which can be found by the noninvasive method. This function was applied by
the authors in the noninvasive measurement of the input vessel impedance [23, 24],
to determine the blood pressure from the instantaneous values of the diameter of the
common carotid artery.

Taking the logarithmic dependence between the artery cross-section and the
blood pressure as the basis of analysis of the wall elasticity in the common carotid
arteries, a new elasticity index was defined. It is a logarithmic wall rigidity coefficient
a. This coefficient was applied by the authors in the comparative evaluation of the
elastic properties of the walls of the common carotid arteries examined. Its
determination requires knowledge of the artery diameter and the blood pressure in
systole and diastole. These quantities were measured noninvasively. The instan-
taneous diameter of the common carotid artery was measured with a pulsed
ultrasonic tracing system, constructed by the authors, which was connected “on line”
with a computer. The systolic and diastolic blood pressures were measured with
a manometer in the brachial artery. The examinations were performed on healthy
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persons of different age and on persons with pathological changes in the extracranial
carotid arteries.

Apart from the coefficient a, for comparison, the relative diameter change Ad/d
and the elastic modulus E, were determined.

2. Elasticity of the blood vessel

It is generally assumed that human blood vessels are elastic. This means that
each change in the blood pressure inside the vessel is accompanied by a change in its
dimensions, depending on the mechanical properties of the blood vessel walls. In
a living organism blood vessels are strongly longitudinally extended (about 1.5 times
with respect to their length outside the organism) and fixed to the surrounding tissue.
This excludes almost completely the possibility of wall motion along the vessel axis
(longitudinal motion). Therefore, it is generally assumed [5, 32, 1], that the only
mechanical reaction of the vessel to a change in the blood pressure is a change in its
transverse dimensions. Hence, there result, variously defined, elasticity coefficients
often applied in the literature to characterise the properties of the blood vessel walls.

In 1960 PeTERsoN [21] introduced the elastic modulus E p» defined as:

E,(acc. to Peterson) = Ap/(Ad/d), (1)

where Ap is a pressure change causing a change in the external diameter d of the
vessel by Ad.
Analogously to formula (1), the coefficient E, is also used for the internal
diameter of the vessel, according to the dependence [26]:
(ps—pJ)d,
E ==t 70 ¢ 2
T @
where d, and d, denote the internal vessel diameters for the systolic p, and diastolic p,
pressures, respectively.
In the 1961 BerGEL introduced [2] an incremental elastic modulus in the form

R? R, Ap

— (12 i
Fne =20 RE_RA IR,

)

where R; and R, are the internal and external radii of the blood vessel, respectively.

Table 1 lists the values of the moduli E, and E,  published by different authors.
The quite large discrepancy of the results presented in the table results mainly from
the different conditions of the experiments, (in vitro, in vivo — with exposed artery,
in vivo — studied from the surface of the body) and very different techniques of the
measurements of the blood pressure. The results cited were obtained for pressure
close to 100 mmHg. In two cases they apply to a wider pressure range.

Most of experimental studies carried out for years in the world indicate that the
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Table 1. Elasticity moduli E, an

d E,_ determined in common carotid artery by different

authors
Conditions Blood E Eppe
3 Age P
Author of Subject | pressure
experiment [mmHg]| ™ 105 dyn/em?
PETERSON 7
1960 [21] in vivo dog _ —_ 2.3-4.2¢ —
BERGEL
1961 [2] in vitro dog 40-220 —— —— 1-12.2
100 —— —_— 6.4
PATEL
1963 [19] in vivo dog < 120 —_— 2.88* —_
PATEL
1964 [20] in vivo man : 28-69
mean value
100 45 6.0* B
Gow
1968 [8] in vivo dog ~ 100 —_— 1% o
ARNDT
1968 [1] in vivo* man 24-34 0.32-0.58* —
mean value
~ 100 28 0.46** o
HAYASHI
1980 [12] in vitro man 100 < 40 —_— 45
100 40-50 e 3.0
NEWMAN
1982 [18] in vitro rabbit | 100 o — 70
WEIZSACKER
1982 [32] “in vitro rat 45-112 —_ e 2.5-25
100 — — 15
RILEY
1984 [26] in .vivo™ man . 125 032-1.61** | —
. mean value
~ 80 16 0.64** e
BOROVETZ
1986 [4] in vitro dog ~ 100 —_— —_— 5.0

* acc. to formula (1), ** acc. to formula (2)
) yltrasonic measurements from the body surface
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reaction of the walls to a change in the blood pressure is nonlinear, or even strongly
nonlinear. This means that the elastic indices given by formulae (1), (2), (3) are
function of pressure — this greatly reduces their usefulness in evaluating the state of
blood vessels.

So far there is no unambiguous agreement as to the analytical form of the
nonlinear function connecting the blood pressure with a change in the transverse
dimensions of the blood vessel. Most functions proposed in the literature are purely
empirical, as they are based on the authors’ own experimental data. These functions
are greatly different from one another and often have a very complex mathematical
form. Table 2 lists formulae describing recent attempts to represent analytically the
relations between the dimensions of the blood vessel and the blood pressure. The
table also includes the exponential relation, proposed in 1985 by the present authors
[23, 24] between the blood pressure and the squared vessel radius, and the
equivalent logarithmic function between the vessel cross-section area and the blood
pressure. The exponential form was applied for noninvasive determination of the
course of the blood pressure in the carotid arteries from ultrasonic measurements of
the instantaneous diameters of these arteries. With reference to cross-section area
S of a cylindrical vessel in which the blood pressure p is greater than zero, this
function can be represented in the following form

P = poexp(yS), 4

where p, and y are constant coefficients.

Earlier suggestions regarding the exponential character of the stress — strain
dependeces in blood vessel can be found e.g. in studies by FuncG [6], SiMoN [29],
TANAKA [31] or GHisTA [7].

Formula (4) can be justified by using GREEN’s theory [9, 10] which describes the
behaviour of bodies under elastic strains with large amplitudes. The mathematical
model of the blood vessel assumed an axially symmetric cylinder in the state of plain
strain with large (finite) amplitudes. The cylinder is built of homogenous, elastic and
incompressible material. Assuming moreover that the deformation of such a cylinder
can be treated as constant axial elongation and homogenous transverse inflation
causing a change in the internal and external vessel radii from their initial values a,
and a, to the current values r, and r,, it can be shown [29] that the pressure p inside
the vessel is given by the formula

p=24 f e [Q%/4*—1/Q) dr/r, )

1

where I is the first invariant of the strain tensor given by the expression
I=224Q%A2+1/02.

A is the ratio between the deformed and undeformed axial coordinates of the cylinder
and Q is the ratio between the undeformed and deformed radial éoordinates of the
cylinder.

8 — Arch. of Acoust. 1-2/88
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Table 2. Nonlinear functions between vessel dimensions and blood pressure, proposed in the recent
literature

Loon et al. [15]): V — volume, p — pressure
V="Vo+ (Vy—V)(1—e™*)
Vo by p=0 mmHg, ¥, — max. valve

HavasHi et al. [12]: R — radius, p — pressure
1
R/Ry—1= ﬁln (p/po)

R, for p, = 100 mmHg

STETTLER et al. [30]: S — cross-section, p — pressure, z — distance from the heart
P—Po
S(p, 2) =8 (z)cxp[—-]
4 c(po. e(p, e

c(p, z) = (co+Bplg(2)
Po = 100 mmHg

MEisTer [17]: S — cross-section, p — pressure, z — distance from the heart

1 [2a;p+a, 4a 2a,p+a
S(p,z}=S(p0,z)expE|: S __3.!’_3]

dcp) 4 g
c(p) = a, +a,p+a,p®
g(z2) =c +cz, A=4aa;—al, po=100 mmHg

LANGEWOUTERS et al. [14]: § — cross-section, p — pressure

J: o il =P
S(p)zs,,(—+—arc tgp 0)
2 n P

po determined from the half-width value of §,,
p, determined from the half-width value of vessel compliance

PowALOWSKI et al. [24]: p — pressure, R — radius
2

g
p(R) = p,exp { In —'}
Rf —Rj Pa

§ — cross-section, p — pressure

o) 2]

S,;, R; — for diastolic pressure p; S,, R, — for systolic pressure p,
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In the formula (5) use was made of the exponential form of the constitutive
equation, which, according to SIMON [29], can be written in the form

WAl = A, 6)

where 4 and k are parameters to be determined from the boundary conditions and
W is the density function of the strain energy introduced by GREEN [10].

Expression (5) can be reduced to a form more convenient for numerical
calculations:

p=—C [ =M1 1 1/x]dx, (7)
where
x = Q%A = 1 +const/r?, (7a)
B=k/A, (7b)
C=(4)i)e, (7c)

The incompressibility of the material of the blood vessel walls can be expressed by
the equation

ai—aj = A(r{-rj), ®)

where a, and a, are the external and internal radii of the vessel for p=0,r,and r,
are its external and internal radii for the pressure p, and 4 is the relative elongation
which is constant as a function of pressure (according to SiMON [29] 4 = 1.532).

The dependence of the variable x in formula (7) on the squared radius only
(formula (7a)) suggests that blood pressure is a function of the cross-section area of
the blood vessel. It follows from the incompressibility condition (8) that the function
p = f(8) has the same form for the external and internal cross-section of the vessel.

The course of the function p (S) calculated numerically from formula (7) is
shown in Fig. 1. The marked experimental points come from a study by SiMoON et al.
[29], who measured the external radius of the vessel r, as a function of pressure for
a canine abdominal aorta in vitro. The reference points for the calculations were
§; = 60.9 mm? p, = 46.2 mm Hg, S, = 84,9 mm?, p, = 199 mm Hg. The exponen-
tial function described by formula (4) was plotted through the same two points. The
course of the exponential function distinctly agreed with numerical calculations, and
the maximum difference between the values of p calculated from formulae (4) and (7)
did not exceed 0.7%.

To show if the exponential function (4) approximates the real experimental data
well, the coefficient of determination of the curve R? was calculated for data in Fig. 1,
using the definition [27]

ZGi~y)?

Sria et mrs oo
¢ Zy-y)*’ o
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where y, is the value of y measured experimentally for the independent variable
x equal to x;, j is the mean of N measurements, and y; = f(x;) if f(x) denotes the
approximating function applied. The coefficient R? for the exponential curve in Fig.

1 was 0.9868.
P

[mmHgl|
&0 o TRECI T L (S N R L e e, I

150

50

%

FiG. 1. The dependence between the blood pressure p and the vessel cross-section 5: (o) — experimental
points according to SiMON et al. [29] for a canine abdominal aorta, (x) — the results of numerical
calculations (formula (7)), (solid line) — the exponential dependence from formula (4)

The exponential dependence (formula (4)) studied so far here means that there is
a logarithmic function between the vessel cross-section S and the blood pressure p, in
the form ' :

S = (1/7)In(p/po)- (10)

On the basis of the results of experimental studies presented by LooN et al [15]
for human common carotid artery and by SiMON et al [29] for a canine abdominal
aorta, comparative analysis was carried out of the nonlinear functions § = flp)
described in the literature, including the logarithmic function proposed here. For
comparison, a linear dependence between the vessel cross-section and pressure was
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also assumed. The results of the comparative analysis are shown in Fig. 2 and 3 and
in Table 3. Using the least squares method it was shown that, apart from the linear
one, all the functions studied describe very well the results of experimental studies in
physiological pressure range from 25 mmHg to 200 mmHg.

There are only slight differences between the courses of particular nonlinear
functions. Accordingly, it seems fully justified to assume the function S = f(p) in the
logarithmic form proposed here.

L .
[mm?] | Pl

Langewouters (1984 )

ot 1 I 1

0 25 50 100 pLmmHgl 200

FIG. 2. A description of the results of experimental studies (o) on the dependence between the blood
- pressure p and the cross-section S in human common carotid artery [15] by means of the functions
proposed in the literature (Table 2)

As only one of studied nonlinear functions S = f(p), the logarithime function can
be determined on the basis of any two measurement points. The same applied to the
equivalent exponential dependence between the blood pressure and the blood vessel
cross-section. Substitution in formulae (4) and (10) the two pairs of values: p,, S, and
Py S, corresponding successively to these points, gives the following expressions

P = paexp [a(S/S,—1)], (11)
and : ;

§=S,[1+(1/0)In(p/p,)]. (12)
The coefficient @ which occurs in formulae (11) and (12) is defined in the following
way

S,In(p/p)  S,In(1+4p/p,) (13)
o= = "
S,—8, S,—S,

where Ap = p,—p,.
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80 +

0

Meister (1983)

60 r
Hayashi (1980)

L i L i 1 1

AN ] 50 100 plmmHgl 200

FiG. 3. A description of the results of experimental studies (o) on the dependence between the blood
pressure p and the cross-section S of a canine abdominal aorta [29] by means of the same functions as in
Fig. 2

Table 3. The coefficient of determination R? calculated
for experimental data approximated by different non-
linear functions

Common carotid |Abdominal aorta

Functions acc. to: | man (LooN, dog (SIMON,

1977) - 1971)
Loon* [15] 0.9974 0.9950
HavasHr* [12] 0.9722 0.9873
SteTTLER [30] 0.9613 0.9917
MESTER [17] 0.9635 0.9894
LANGEWOUTERS [14]| 0.9862 0.9945
Authors [23] 0.9868 0.9942
Linear 0.8653 09185

- .alteT transformation to the form S = f(p)

In noninvasive studies, the values p, and S, represent the pressure and the vessel
diameter in the diastole, and p, and S, are the corresponding quantities in the systole
(Table 2) [24].

The coefficient « can be called a logarithmic rigidity coefficient of the blood
vessel wall. It follows from the formulae (10) and (13) that the value of the coefficient
« depends on the choice of the reference point (p,, S,). This means that it is a function
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of the diastolic pressure p,. The effect of the pressure p, on the value of the coefficient
o can be described in the following way:

forp, = p,
o= oy, (14)
for p, < p,
= o, —1n(p,/p,), (14a)
forp, > p, ; :
a = a+In(p,/p,), (14b)

where p, is the diastolic pressure at the constant reference point.
Substitution of dependence (12) into the formula (2) gives the relation between
E, and o:

E,= #p
P [14+(1/e)In(1 +4p/p )1 =1

It follows from formulae (14-14b) and (15) that the blood pressure exerts
a greater effect on the value of the coefficient E, than on that of the coefficient a.
Therefore, the coefficient a is a more ob]ectlve measure of the mechanical properties
of the vessel wall than coefficient E, is.

(15)

3. Results and discussion

The elasticity measurements were carried out in human common carotid artery
using ultrasonic equipment constructed by the authors [22]. It permits the
simultaneous transcutaneous measurement of the instantaneous blood velocity and
the instantaneous internal diameter in the blood vessel examined. The vessel
diameter was determined by the echo method. Its instantaneous value was measured
using a digital system tracking echos from both walls of the blood vessel [11, 22].

The accuracy of the measurements of the vessel wall displacement was 0.03 mm.
The data were registered and analysed on a PDP-11 computer connected “on line”
with the ultrasonic device.

The studies were carried out on two groups of persons. The first group (43
persons) did not show any pathological changes in the region of the arteries
examined. The second group (9 persons — 12 arteries) included patients with
arteriosclerosis changes identified by X-ray angiography in the region of the carotid
arteries. In all the persons examined, the maximum and minimum values of the vessel
diameters d, and d, were measured, and then subordinated respective to the values of
blood pressure is systole and diastole. The values of systolic and diastolic pressure p,
and p, were measured with a manometer in the brachial artery, at the height of the
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neck, with the patient in supine position. The diameter of the common carotid artery
was measured transcutaneously from a point located about 2-3 cm away from
bifurcation into the internal and external carotid arteries.

The measurements results were grouped depending on the age of the persons
examined (Tables 4 and 5). This age varied in the healthy group from 9 to 64 years,
and in the pathological group, from 53 to 62 years. For each patient, from
measurements of the diameter and pressure, the following quantities were deter-
mined: the relative diameter change Ad/d = (d,—d,)/d; the elasticity coefficient E,
(formula (2)); and the logarithmic rigidity coefficient a (formula (13)).

Fig. 4 shows the values of the coefficient a obtained as a function of the age of
the persons examined. Circles represent healthy arteries, and crosses mark those with

Table 4. The logarithmic function parameters p,, 7,

o (formulae (16) and (18)) determined on the basis of two

measured points (for diastolic p, and systolic p, pres-
sures) for healthy and ill persons

Age Healthy persons 1
group persons
(years) 9-16 | 19-30 | 3240 | 41-50 | 5264 | 5362
Meam y
Age 12.3 244 36.8 449 56.2 57.2
S.D. 23 4.6 32 29 39 30
(years)
Number of
persons 7 9 8 8 11 9
Pa 60.7 712 80.0 70.6 80.0 83.1
S.D. 6.1 7.1 59 8.6 8.7 4.6
(mmHg) p
P, 104.3 117.8 1169 1100 122.7 150.0
S.D. 10.6 79 70 100 13.8 154
(mmHg)
Po 10.53 12.87 7.64 3.30 1.72 0.87
S.D. 432 5.49 4.79 1.63 0.90 0.86
(mmHg)
VA 7.65 5.09 6.28 8.22 10.10 12.15
S.D. 2.10 1.12 228 2.57 2.55 440
(em~?)
o 1.84 1.87 2.55 3.18 398 6.16
S.D. 043 0.37 0.68 0.51 0.62 2.29

§. D. — standard deviation
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pathological changes. The rigidity coefficient increased lineary with the patient’s age
in the healthy group, according to the simple regression formula:

a = 0.858 +0.0523 x, (16)

where x is the age in years.

Table. 5. Elasticity modulus E » (formula 2) for common carotid arteries for
healthy persons in different age groups

Age group 9-16 | 19-30 | 3240 | 41-50 | 52-64
(years)
Modulus E, 0423 | 0499 | 0681 | 0776 | 1.091
4 i 0118 | 0075 | 0158 | 0118 | 0207
(10° dyn/cm?)

S.D. — standard deviation

The coefficient of the linear correlation was 0.832. The values of the coefficient
a varied from (1.84 +0.43) on average in the age group 9-16 years to (3.88 +0.62) on
average in the group 52-64 years. The values of the rigidity coefficient a in the
pathological group were significantly different (p < 0.01) from those in the healthy
group (older than 50), namely 6.16+2.29 on average.

The mean values of diastolic pressures in particular age group of adults were
similar. The same applied to the healthy and ill person in the same age group
(Table 4).

It follows from the formulae (14)-(14b) and the values of p,s in Table 4 that the
differences in the diastolic pressure for particular age groups influence only slightly the
value of the coefficient a (not more than 15%). This effect was practically negligible
(< 1%) for the compared groups of healthy and ill persons. The large difference in
the coefficient « between these groups can result only from structural changes in the
walls of the arteries examined.

~ Fig. 5 shows the results of measurements of the relative diameter change in the
common carotid artery as a function of the patient’s age. The ratio Ad/d decreases
with increasing age of the persons examinated, from the mean value 13.9% for the
are group 9-16 years to the mean value of 5.32% for the group 52-64 years. The
functional dependence of ratio 4d/d on the age can be determined from the'
previously discussed logarithmic rigidity coefficient o. By assuming the linear
dependence of the coefficient a on age: ax + b (see formula (16)) and substituting it in
formula (13), the following expression is obtained:

4d _In(p/p) _ In(p/p.) (17)
d  2a  2(ax+b)

where x is age in years.
Evaluation of the pressure ratio ps/p4 and coefficient « as a function of age for
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the healthy persons (formula (16) and Table 4) indicates that the relative diameter
change in the carotid artery is mainly affected by age. Therefore in the first
approximation, the following regression function can be assumed for this group of
persons:

Ad/d = 1/(3.8885+0.2370 x), (18)

where x is age in years.

.,
2 ol
ﬁqln

L 1 1 L L n 1

30 50 {years] 0 10 30 50 [years]

10
FIG. 4. The logarithmic rigidity coefficient @ for-  Fic. 5. The relative change Ad/d in the diameter of
mula (13) determined for the common carotid the common carotid artery as function of the age of
arteries of healthy (o) and ill (x) persons of different  healthy (o) and ill (x) persons examined. The solid
age. The solid line represents the regression func-  line represents the regression function describing

tion describing the course of the values of the the distribution of experimental points for healthy
coefficient « for healthy persons, formula (16) persons, formula (18)

The determination coefficient R? found for this function was 0.7713.

The values of the ratio Ad/d obtained from the present measurements are very
close to those published by RENEMAN et al. [25]. However, the value of Ad/d cannot
be recognized as the index of changes occurring in the vessel wall, in view of the
dependence between the relative change in the blood vessel diameter and the blood
pressure in the systolic and diastolic phases. An example is the lack of significant
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difference between the relative in the diameter change of the common carotid artery
between the ill and the healthy in the same age group from 52 to 64 years (see Fig. 5).
The mean value of the ratio Ad/d was respectively 5.48% for ill persons and 5.32%
for healthy persons. The values of the pressure difference between the systolic and
diastolic phases were different between the two groups. For the healthy group the
mean systolic pressure p, was (122.7+ 13.8) mmHg and the mean diastolic pressure p,
was (80.0+8.7) mmHg. For ill persons these pressures were respectively
P, = (1501 15.4) mmHg and p, = (83.1+4.6) mmHg (Table 4).

In the available literature, the blood vessel elasticity is most often characterized
by the elasticity coefficient E, (formula (1) or (2)) or by E, . (formula(3)).

The values of the coefficient E » (formula (2)) calculated from the present authors’
measurements for 5 age groups are shown in Table 5. Comparison of them with
Table 1 shows that the present results are close to those obtained by ARNDT et al. [1]
and RILEY et al. [26], who applied a measurement method resembling the one used
here.

It follows from Table 5 that E, increases as a function of the patient’s age, just as
the coefficient « does (Fig. 4, Table 4). The mutual relation between the values of
these two coefficients depends on the diastolic pressure (formula (15)).

For the group of healthy persons with different diastolic pressure, the coefficient
a correlated better with age than the coefficient E » did. The correlation coefficient
R determined for the linear dependence of E, and « on age was for the examined
group 0.809 for E, and 0.8193 for a.

4. Conclusions

1. The evaluation of the elasticity of blood vessel walls requires the description
of the functional dependence between the vessel cross-section S and the blood
pressure p. On the basis of the results of experimental research presented by Loon et
al. [15] for human common carotid artery and by SiMON et al. [29] for canine
abdominal aorta, comparative analysis was carried out of the function § = f(p)
described in the literature, including a logarithmic function proposed by the present
authors. Using the least squares method, it was shown that, apart from the linear
one, all the functions examined describe very well (R?>0.96) the results of
experimental research, over the pressure range from 25 mmHg to 200 mmHg.

2. As the only one of the nonlinear functions studied, the logarithmic function
between the vessel cross-section and the blood pressure, proposed by the present
authors can be determined by the noninvasive method. Its determination requires
two pairs of values: pressure — cross-section, which can be found from ultrasonic
measurements of the vessel diameter for the systolic and diastolic pressures, which
pressures are determined noninvasively with a cuff.

3. The evaluation of the elasticity of blood vessel walls involved the application
of the logarithmic rigidity coefficient a (formula (13)) proposed by the present
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authors. For the logarithmic function between the vessel cross-section and the blood
pressure, it is a more objective index of the mechanical properties of the vessel wall
than the previously used coefficient E, (formula (2)).

4. The noninvasive studies carried out in the common carotid artery in healthy
persons aged between 9 and 64 years, indicate an increase in the rigidity of the artery
wall as a function of age. The value of the coefficient o increased linearly with age
(formula (22)). The coefficient of linear correlation was equal to 0.832.

5. For ill persons with arteriosclerotic changes in the extracranial carotid arteries,
the value of the coefficient a was significantly different (p < 0.01) than that for
healthy persons in the same age group (from 52 to 64 years). The results obtained for
healthy and ill persons confirm the view that a factor which favours the development
of sclerosis is an increase in the vessel wall rigidity. The mean value of the coefficient
a for ill persons was 6.16-+2.29, whereas for healthy persons it was 3.98 +0.62.

6. The measurements of the relative diameter change Ad/d carried out for
healthy persons also indicate the dependence of this quantity on age (Fig. 5, formula
(24)).

7. Between healthy and ill persons in the same age group there was no
significant difference in the relative diameter change of common carotid artery. The
mean value of the systolic pressure in ill persons was greater by about 27 mmHg
than that for healthy persons. In both groups the diastolic pressures had similar
values.

8. The preliminary results of clinical studies indicate that the method used for
evaluating the elasticity of blood vessel walls can be highly significant in the
diagnosis of extracranial carotid arteries, in particular in examinations of arterio-
sclerosis.
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EVALUATION OF A COMPUTER-MODEL FOR PVDF-TRANSDUCERS OF ARBITRARY
CONFIGURATION
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Biophysics Dept., University of Limburg, Maastricht, The Netherlands

The electro-mechanical behaviour of PVDF can be described by the modified Mason
equivalent circuit. It is possible to extract all necessary parameters and their frequency
dependence from electrical input-impedance measurements and subsequent fitting-procedu-
re with the computer-model. A chain-parameter matrix can readily be obtained for the
equivalent circuit and matrix-multiplication enables the computation of any transfer
function.

Elektromechaniczne zjawiska zachodzace w folii PVDF moga by¢ opisane przez zmodyfi-
kowany uktad zastgpczy Masona. Pomiar elektrycznej impedancii wejéciowej, a nastepnie
dopasowanie wynikoéw pomiaréw do modelu komputerowego umozliwia wyznaczenie
wszystkich zadanych parametrow i ich zaleznosci od czgstotliwosci. Macierz parametrow
moze by¢ z latwoscia wyznaczona z otrzymanego uktadu zastgpczego, a metoda macierzo-
wa pozwala na obliczenie dowolnej funkcji przenoszenia.

1. Introduction

For many years transducers for medical ultrasound and other purposes were
based on the application of piezoelectric ceramics. Particularly in using these
ceramics for medical diagnostic purposes, where very short pulses are required, the
high acoustic impedance has always caused problems.

Moreover, especially in more sophisticated constructions such as phased and
linear arrays, suppressing the effects of vibrational modes and coupling coefficients
other than just wanted has always been difficult.

Probably due to these shortcomings of piezoelectric ceramics the welcoming of
the new piezoelectric plastic PVDF (polyvinylidenefluoride) has been accompanied
with a lot of optimism. The much lower acoustic impedance of this plastic would
naturally match much better to that of water and biological tissues, resulting in more
efficient transmission of acoustic energy into the body, automatically yielding an
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effective damping which is desired for wide-band behaviour. It was obviously
expected that the better matching would sufficiently compensate for the unfor-
tunately much lower coupling factor of PVDF as compared with e.g. PZT-5A. Even
if this were true, still the relatively low dielectric constant is responsible for a high
electrical input impedance of PVDF-transducers, which may amount 100 to 200
times as much 4s for comparable PZT-transducers. This results in very high voltages
required for generating a practically useful acoustic output power. In other words,
the transmission sensitivity in terms of the ratio of acoustic output power to squared
input voltage is considerably lower than for comparable PZT-transducers.

Of course, in the light of the semi-conductor technology high driving voltages
are most inconvenient. As a remedy against this trouble it was suggested to construct
transducers by stacking several PVDF-layers with alternating poling directions [1,
2] as shown in Fig. 1. Then, when connected as shown, these layers are acoustically

(MEEEENEK]

I

FiG. 1. Stacked transducer configuration with alternating poling directions. Electroded in such a way that
the piezoelectric layers are electrically in series and acoustically in parallel

in series and electrically in parallel. In this way we can lower the electrical input
impedance with a factor n?, where n is the number of active layers, as compared with
a one-layer PVDF-transducer of similar overall thickness. In this way, more
electrical input power is achieved at a lower voltage and, consequently, a correspon-
ding acoustical output power, depending on the coupling factor and the matching to
the medium. This idea is by no means new, since already in 1926 it was LANGEVIN
who patented such a system using quarts layers [3, 4].

Unfortunately, such a technique to improve the transmision sensitivity will
lower the reception sensitivity by a factor n. Complicated electrode-switching may
perhaps lead to a compromise yielding a practical transmission sensitivity combined
with a best possible reception sensitivity [2].

It will be appreciated that finding the best configuration for a particular purpose
would be an almost impossible task since the number of possible combinations is
very high, especially when also matching layers and backing are involved. When
realizing that bonding several thin metallized PVDF films together, with ponding
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layers of let us say 1 um and of perfect quality, which can hardly be tested, the above
conclusion seems more than justified.

The purpose of this study is to evaluate a reliable computer model describing
the electro-acoustic behaviour of piezo-electric PVDF-film. Then, using the method
of chain-parameter matrix multiplication the performance of any desired transdu-
cer-configuration can be computed as a function of e.g. frequency. In this way we
might be able to find the theoretical optimum for any transducer-system before
trying to realize it in practice.

2. Equivalent circuit for a single layer

It would be most attractive if the values of all parameters, necessary to fully
describe the transducer’s behaviour, could be extracted from simple measurements of
the electrical impedance as a function of frequency.

For this purpose test objects were used consisting of nominally 25 pum thick
PVDF-film electroded in such a way that an accurately defined citgﬁular area of 6 mm
diameter was poled. The measured electrical input impedance as a function of
frequency showed remarkable features. Fig. 2 shows the frequency dependence of
such a test object where the impedance is assumed to consist of a parallel circuit of
a capacitance and a resistance as given in Fig. 3.
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FIG. 2. The behaviour of 20 log Ry and 20 log Z.; as a function of frequency at logarithmic frequency

scale (Bode-plots). Ry (asterisks) and Z; (circles) represent the measured elecrical input-impedance Z of

a single-layer PVDF-transducer in air, with Z.; = 1/(wC;), according to Fig. 3. The parameters yz,, yz2.

Yei and yg, are the coordinates at x, and x, respectively, of the straight lines through the impedance

curves, The constants A and B can be obtained from the data in Fig. 5 and are chosen such that
Alog(Bf) = 400 corresponds to f= 40 MHz .
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O—_
_Er_.' RT g= = C;r
O_
FiG. 3. The electrical impedance circuit representation used for both the measurements and the computer

model

When both R, and Z. = 1/(@C;) are displayed in dB on a logarithmic
frequency scale, so-called Bode-plots, the overall behaviour is as a straight line.
Frequency-independent resistance and capacitance would show a horizontal and
a 6 dB/octave line respectively. Since this is not true we can conclude that both the
dielectric losses and the dielectric constant are frequency dependent. Fortunately
enough this straight line behaviour in Bode-plot representation enables us to readily
describe these parameters mathematically as a function of frequency.

Around the mechanical resonance frequency, here about 40 MHz, the piezoelec-
tric activity manifests itself as a deviation from the straight lines of both C; and R;.
This invites us to adopt the well known Mason equivalent circuit, however modified,
to represent this behaviour [5, 6]. By modification we mean that the clamped
capacitance C, should be considered complex in order to account for the dielectric
losses through its real part. Both real and imaginary part of C, are then frequency
dependent as pointed out before.

Further modification also includes that the propagation constant y is assumed

Ztanhyd/2 Z,tanhyd/2
£ J/sinhyd 3
2
~Ca/N
o S e
L.QQ_QJ.Z.
2} FrA .oy
L Co -

i -0 +

V %
-0 O-

Fic. 4. Four-port equivalent circuit for a single-layer transducer, based on the Mason-model and adapted
for application of chain-parameter matrices. Since the real part o of the propagation coefficient y can not
be neglected, the hyperbolic functions will not reduce to trigonometric functions
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complex, y = a+j(w/v), since mechanical losses, accounted for through a, should
also be taken into account. Since C, is complex, also N = hC, is complex. For the
time being h, the piezoelectric constant is assumed real. Later on it will be shown
that both h and the mechanical loss coefficient a are also frequency dependent,
although again obeying simple mathematical expressions.

Fig. 4. represents this equivalent circuit, drawn as a four-port rather than the
usual three-port configuration [7].

3. Transfer functions of multi-layer transducers

In classical network theory the use of the chain-parameter metrix for calculating
transfer functions of cascaded two-port networks is very common. The extension to
four-port networks can be done straightforwardly, employing the basic equations
from which the equivalent circuit was derived [7]. Then, transfer functions of
multilayered transducers as in Fig. 1, can be computed by multiplication of the 4 x 4
chain-parameter matrices of all individual layers, including possible matching
(passive) layers. '

*  The chain-parameter matrix [A] for the circuit of Fig. 4 takes the form

yze+1. z3(yz,+2) ~—yzN 0
y yz,+1 —yN 0
[A] T D
0 0 1 0
—yN -yz,N  joCeyz, 1
with
z, = Z,tanhyd/2, z, =Z,/sinhyd,
¥ T I/EZP—NZ/U(DCO)], N = hCD’
Zy= A, jooly, A,. = effective piezoelectric area,
d = transducer thickness, ¢ = density of transducer material.

It can be observed that the matrix coefficients are made to fulfil the electrical input
requirements as dictated by the equivalent circuit of Fig. 4. Firstly the input voltage
of the transducer is equal to both ¥, and V,, secondly its input current I equals the
sum of I, and I,.
; In the case of a passive layer we simply have to put both N and C, equal to zero
to find the proper matrix.
Now, any overall transfer function can be obtained from the expression

F, F,
U -U
Vl =T4] .

A v,
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with F = force, U = particle velocity, V = electrical voltage, I = electrical current,
where

(4] =[4:]-[4,]-...-[4]...-[4,]-[4,],
with |
[A,] = chain-parameter matrix of back matching layer,

[A,] = chain-parameter matrix of i"* active layer,
[A4,] = chain-parameter matrix of front matching layer.

4. Estimation of transducer parameters

The crucial step in the whole process is the estimation of the parameters h, a, v,
(sound velocity in transducer material), and the co-ordinates determining the straight
lines through R,, and Z,, (the computed impedance curves for the model), similar to
the measured values Ry and Z;, as in Fig. 2.

A computer programme has been created which enables us to display both the
model-impedance curves and the measured ones simultaneously. Then each of the
above mentioned parameters can be altered as desired and again all curves are
displayed. After some trials a set of values for h, a, v, and the co-ordinates y.,, yc,,
Yr1s Vra2» X; and x, (see Fig. 2) will be obtained, which produce model-curves for R,
and Z.,, coinciding with the measured R, and Z., as well as possible. We learn
from Fig. 5 that such a procedure can lead to a remarkably close fit between
measured and model impedance curves. Fig. 5a shows in detail the fit-accuracy
around the resonance region whereas Fig. 5b gives the overall view showing a fit
within some tenths of a decibel.

It should be realized that no information whatsoever can be extracted from this
procedure about the values of h and « outside the resonance region. In order to
estimate any frequency dependence a further investigation is necessary. In order to
avoid uncertainties, already measured and fitted samples had to be used for this
purpose. Several two- and four-layer transducers were realized by bonding with
epoxy-resin whereby bonding thicknesses of ca. 1pm were obtained. As expected the
new resonance frequencies were one half and one quarter of the original respectively.
Again the actual impedance curves were measured and through the mat-
rix-multiplication method corresponding models were computed. Then, by the
fitting-method the new h and a values were determined for these composite samples
at the pertinent resonance frequencies.

In Fig. 6 the right side scale shows A, rather than a. However, since 4, = ad/2,
where d is the single layer thickness, there is only a constant factor involved, which
does not influence the frequency dependence.

Through each (averaged) single layer value of both A4, and h, and the
corresponding values for the composite transducers, straight lines have been drawn
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FiG. 5. Final fit-result of experimental and model impedance functions of a 25 pm thick PYDF-transducer
of 6 mm diameter in air. Left: In the resonance frequency region (about 40 MHz) right: Frequency range
from 10 to 80 MHz. The parameters at the right side are varied until the best fit has been obtained. These
are: the sound propagation velocity v, in m/sec, the piezoelectric constant h (= h;3) in ¥/m, the mechanical
loss coefficient o in Neper/m multiplied by half the thickness and y-coordinates (see text and Fig. 2). The
other parameters are all determined or chosen in advance like the constants A and B, used for the
logarithmic frequency scale, the thickness d and the diameter D, both in m, the density ¢ in kg/m? and the
x—coordinates (see text and Fig. 2)
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FiG. 6. Values for 4, = ad/2 (dots, left side scale) and h (circles, right side scale), all normalized to single
layer conditions 1) around 10 MHz: values found for 4-layer transducers; 2) around 20 MHz: values found
for 2-layer transducers; 3) around 40 Mz: averaged values of the single layers constituting the
corresponding composite ones
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on a double logarithmic scale. The parallelism between these lines indicates that
h and o can readily be described as follows -

a(f) = (i) and  h(f) = ho(fo),

where the subscript “0” refers to single layer values. Averaging the exponents a and
b over the sets of lines for « and h yields the exponent values

a=091 and b=023.

So far, it seems to be possible indeed to extract all necessary parameters and their
frequency dependence from simple impedance measurements and subsequent mo-
del-fitting of both single and composite transducers.

5. Verification of the model

In order to avoid sources of error like radiation patterns and their artefacts,
acoustic output power measurement with a radiation force balance seems to be the
most appropriate method for verification of the developed computer-model.

One of the analyzed four-layer test objects was mounted in a holder to form an
air-backed transducer radiating in water with the “perfect” absorber of the balance
(in the form of a cone reflecting totally under a 90 degrees angle) in front of it.
Comparison between several power measurements as a function of frequency and the
calculated power-to-frequency characteristic according to the model as evaluated for
this particular test device, is shown in Fig. 7.

2 3
B /UL x10°
[W/v2) Zsp 1=1.500E+ 06 1% 24,28 xFISNGL . EX2
Zsp 2 =0.000E + 00 1 % 24,33 % F2SNGL EX2
L S e 1% 23.95 % F205NGL. EX2
1% 24.18 x F255NGL.EX2
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02 |
o1t
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04 08 2 . 16 FI0'[Hz]

FiG. 7. Comparison of acoustic output power in water as measured by a radiation force balance circles

and the values computed for the corresponding model (solid line) in watts per effective voltage squared.

The transducer consists of 4 layers of 6 mm diameter and is air-backed. The data at the right side show the

order in which the four layers are stacked, the thickness in pm of each layer and the pertinent data-files.

For instance FANGL.EX2 is the data-file obtained by means of the fitting-process for sample 3 according
to Fig. 5, etc.
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The agreement between measured and calculated results is most satisfactory. Of
course, power measurement of only one test object cannot be considered a sufficient-
ly reliable verification. Nevertheless, our approach to model-evaluation seems very
promising.

6. Conclusion

PVDF differs from piezoelectric ceramics in several ways. Dielectric and
mechanical losses cannot be neglected and are frequency dependent. Also the
dielectric and piezoelectric constants are frequency dependent. It has been shown
that all these parameters appear as straight lines in Bode-plot representation, which
highly facilitates their mathematical description. The modified Mason equivalent
circuit turned out to be fully adequate to represent PVDF single layer transducers.

The required parameters and their frequency dependence are obtained by
finding the best possible fit between the input-impedance-to-frequency characteristics
of the device and the computer model.

A four-port network approach leads to a 4 x4 chain-parameter metrix fully
representing this equivalent circuit mathematically. It is particularly suited for
calculating any transfer function of stacked transducers as described, with or without
matching layers, on the basis of matrix multiplication.

Radiation balance measurement of the acoustic output power of a four-layer
transducer shows remarkable agreement between experimental and computer model
results.
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IMPEDANCE OF THE SEMI-INFINITE UNBAFFLED CYLINDRICAL
WAVE-GUIDE OUTLET

A. SNAKOWSKA, R. WYRZYKOWSKI

Institute of Physics, Pedagogical University Rzeszéw, ul. Rejtana 16

The paper presents the exact formula for the impedance of the outlet of a semi-infinite
cylindrical wave-guide derived by considering the propagation of an arbitrary Bessel mode
towards the outlet and accounting for the generation of all permissible mode due to the
diffraction at the open end. For this purpose, the formula of acoustic potential as well as the
expressions for the reflection and transformation coefficient were used.

The results of numerical calculations of the real and imaginary part and the moduli of
impedance for the diffraction parameter ka in the range 0-20 were presented on graphs.

Wprowadzono $cislg relacj¢ dla impedancji pénieskoniczonego falowodu cylindrycz-
nego na podstawie teorii uwzgledniajacej dowolny mod propagacyjny w kierunku otwar-
tego korica falowodu i wszystkich mozliwych modéw generowanych na tej nieciaglosci
falowodu. Wyniki zilustrowano w funkcji parametru ka w zakresie 0-20.

IntMmﬁm

In the practical applications of acoustics, the phenomena occurring at the open
ends of wave-guides seem to be important because we come across such elements in
different acoustical equipment, e.g. measuring pipes, acoustic horns, tubes. The
investigations of the problem were introduced by Lord Rayleigh [1] who calculated
the impedance of the outlet provided additionally with an infinitely rigid acoustic
baffle and assuming that only the plane wave propagates towards the end. As
a result, Rayleigh obtained the well known “correction for the dpen end”. The
further step in solving the problem was made when H. LEVINE and J. SCHWINGER [2]
derived the acoustical potenual of incident plane wave inside the unbaffled
semi-infinite cylindrical pipe. However, they neglected the “higher modes effect”, i.e.
they assumed that only the plane wave is reflected. It is obvious that such
assumption is valid only when the wave length is not smaller than the diameter of the
pipe, what strongly restricts the applications of the results. In 1948 [3] WAINSHTEIN
developed an analytical theory of the acoustic field of semi-infinite cylindrical
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wave-guide applying the factorization method of solving the Wiener-Hopf integral
equation. In his paper he worked out the exact formula for the acoustical potential
inside the wave-guide making use of some analogies between acoustical and
electromagnetic waves. The same results were obtained later by Snakowska and
Wyrzykowski [4] who consequently applied to the problem the theory of acoustical
field.

‘In this paper we calculate the impedance of the outlet of the semi-infinite
cylindrical wave-guide for any z-axis symmetric Bessel mode propagating towards
the end. For this purpose the exact formula for the acoustic field potential [3], [4]
has been used.

The obtained numerical rgsults are presented on graphs.

Index of symbols

a radius of wave-guide,

A,, B, amplitudes of Bessel modes,

D outlet area,

HW () n-th order Hankel’s function of first kind,

J,() n-th order Bessel's function,

I,n indices of Bessel modes,

L,(),L_() factors of L analytic in upper and lower complex half plane,
N index of the highest Bessel mode allowed in the considered wave-guide,
N,() n-th order Neuman’s function,

p acoustical pressure,

P apparent power,

R,,R, reflection and transformation coefficients,

§() function describing transformation coefficient R,

v radial wave number v = sz—wz,

w partial wave number,

y, partial wave number of n-th Bessel’s wave mode,
{, impedance of the outlet for the /-th mode incident,
v; normal velocity of vibration,

0,, phase of the transformation coefficient R,

» diffraction parameter,

u, n-th zero of Bessel's function J; (),

@o medium density,

X wave-guide surface,

@( ) acoustic potential,

¥ () acoustical potential discontinuity on Z,

Q outlet surface.

Other symbols used in the text are typical and are not listed here.

2. Basic formulae

We will consider the cylindrical wave-guide with an infinitely thin and rigid wall
Y which, in suitable coordinates, can be described as follows:

X ={(,200=a,z=0}
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To simplify the problem, we assume the z-axis symmetry (which means that the
acoustic potential @ (7, t) does not depend on the angle variable ¢ in cylindrical
coordinates) and the dependence on time in the form exp(—iwt).

The time dependent wave equation

(A —c—lza,,) O(F, 1) =0, (1)

takes thus the following form:

G d,(ed,)+0,.+ kz) (e, z)=0. )

The assumption that the wall Z is perfectly rigid leads to the following boundary
condition:

a;¢|2 = ap ¢|E e 0! (3)

which means that the normal component of vibration velocity vanishes at the
wave-guide wall.

The solution of the problem consists in finding the function @(g,z) which
satisfies Eq. (2) for the boundary condition (3) and, moreover, the Sommerfeld’s
conditions of radiation [6]. The detailed investigations leading to the solution are
enclosed in [3, 5].

The application of the three-dimensional Green free space function and
factorization method to the equation of acoustic potential leads to the expression

[3, 5]

= ai T y: A T HBI)(UQ)JI (va) iw(z -z’ -y
cD(g,z)—Z(J;'l’(Z)dz I D{H(l”(va)lo(vg)}e i, e<a, 4

~ oo +in
with the boundary condition taking form of the integral equation [3, 5]:

@ w +in
[Y()dz | v*HP(va)J,(va)e™* ") dw =0, (5)
0

= +in

where y(z) defines the potential discontinuity on the X surface
V() =P, Dlra, —P(@,2)l~a_> (6)

v being the radial wave number v = ,/k*—w?2. The potential discontinuity can be
interpreted as the density of the surface sources on Z.

Further development of the factorization method leads to the following
expression for the acoustic potential ®,(¢,z) [3, 4]:

Jo (ﬂr ) Jo (#ng)
%0 = Argpse B Bl e,

B i A T 0
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The index [ points at the fact that we consider the case of one simple Bessel mode
incident. It is well known from the theory of infinite cylindrical wave-guide that the

radial wave number of such a mode must be equal to y, = [k*— (‘l;") where p, is

the n-th zero of the Bessel function J,( ) and, moreover, to have y, real, the
diffraction parameter x = ka must be not smaller than g, This leads to the
conclusion that the mdcx N of the highest mode which can propagate w1thout
scattering must fulfill the following condition uy < ka < iy, ;.

The first component in Eq. (7) represents the /-th Bessel mode which, according
to the assumption, propagates towards the wave-guide outlet, where it is partly
reflected (a component with n = I index under the sum sign) and, due to diffraction, is
transformed into an infinite number of Bessel modes (other components under the
sum sign). Analyzing carefully the exponential expression under the sum sign, we can
see that for a fixed diffraction parameter ka only a certain number of components
will represent the modes which can propagate along the wave-guide because starting
from N+1, the exponents will became negative real numbers and thus the
corresponding components of the sum will represent a disturbance attenuated
exponentially with increasing z. Since these disturbances are not the energy carrying
waves, they will be neglected in further considerations of impedance.

Reflection and transformation coefﬁcient;

According to previous assumptions in further developments, we will take into
account the following expression for the acoustic potential inside the wave-guide

[3, 4]
Jo (#r %) ® Jo (#n%)
—e g T Z R,,,—T]— eime | | (8)

Jo () n=0 o (1)

because we usually describe the diffraction phenomena on the outlet introducing the
so-called reflection (R, = B,/A,) and transformation (R, = B,/A;, n # 1) coefficients.
Detailed calculations [4], [5] lead to the following expression:

e N N 1/2
2?! ( ?l % }'! ?i + }’u) ei'[s(?ll"’s(?nil’ (9)
Y+ VYa\i=o Vi~ Yii=0¥i™Vn

i#l i#n

? (0, 7) = A,

S(w) being equal

(10)

w1 N, (a /= w?
S(W)—-_ﬁj (t "Jl((: ,__kz_;z))—nn)dw

Effective calculation of the values of R,, coefficients as functions of the diffraction
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parameter ka are only possible by numerical methods because the S(w) function
cannot be expressed analytically. In the calculations the generally accepted definition
of modules and phase of the wave reflection and transformation coefficient is used
[3) _

Ry, = —|R,| " (11)

Knowing the explicit expressions for those coefficients, we finally obtained the
explicit form of acoustic potential inside the wave-guide, which is necessary to
calculate the acoustic impedance of the outlet.

4. Outlet impedance

To calculate the outlet impedance of the wave-guide, we shall use the formula of
apparent acoustical power [7]

P = [ %(e, 0)p(e, 0)do, (12)

which is the surface integral over the outlet from the normal component of the
velocity of vibration 9; and acoustic pressure p.
The required impedance is related to the apparent power P by the formula [7]:
P
-l 1

AT A
where (97) is the quadratic mean of the velocity at the outlet. The two quantities
under the integral (12) are connected with the acoustic potential as follows:

= —iwg,?, (14)
From simple calculation we get
N JO (nu'n g)
P@:0) = —iwgo ¥ (Bu+Ri)—505 (16)

e
N JO(lqu)
95(9! 0) 553 iAI Z (_6ln+R!n)‘Yj| J (ﬂ")  J
n=0 0

which leads to the following form of the impedance:

(17)

N
Z !R,,,lzy,,-—(1+2iImR,,)'y,

(= —0gy— , (18)
Y IR,y +(1—2ReR,)y?

n=0
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The above result was obtained on the basis of the orthogonality property of the
weighted Bessel functions [8]:

a Q 1
I%(m;)%(#;%)ede =§5,,.a2J%(u1)- (19)
0

The real and imaginary part of the impedance are referred to the specific impedance
of environment g, ¢:

N
yl_ Z |R.[n|2 ‘}'.n
Rell = k— 222 } (20)
Y IR, *v2+(1—2ReRIDy?
n=0
2y,ImR
Im{ = k— L . @1)
Z IR,I*y2+(1—2ReRy) ¥
n=0

For N = 0 we get the case considered by Levine and Schwinger [2]. Expression (18)
takes then the well-known form

1+ Ry,

s @)

R,, being the reflection coefficient of the plane wave.

5. Conclusions

The computer calculations of the real and imaginary part as well as moduli of
the outlet impedance have been performed for the diffraction parameter ka varying
within the range [0,20]. In Figs. 1 and 2 we compare the values of the acoustic
impedance (real and imaginary part) of the unbaffled wave-guide for the plane wave
outlet incident, respectively, with the results obtained by Rayleigh (Fig. 1) and by
LeviNE and SCHWINGER [2].

As it can be seen from Fig. 1, the values of acoustic resistance computed by
using the exact formulae are 1.5-2.0 times smaller than those obtained by Lord
Rayleigh, although that difference decreases for the value of the diffraction parameter
ka ~ 3.0. From the physical point of view it is obvious, because the baffle provides
better radiation conditions. It is interesting to note that the acoustic reactance
proceeds similarly only for ka < 1.3, for which value the two curves intersect and
afterwards the values computed along the exact formula are about twice as large as
Rayleigh’s ones.

In Fig. 3 presenting the acoustic reactance for the plane wave and succeeding
five Bessel modes incident, the following regularities can be seen:



IMPEDANCE OF THE SEMI-INFINITE UNBAFFLED 143

B i 10
l,I
Z N
-1 Z 05
1 2 \
£ 58 TS g5
3 L 7l 4 )
25 7 \ \ N 02
- /| N,
= Reznt /4 X Imyah\_J \\\ T
i . — ~ o -.: ’:'n .
e Pt yd HIaY
7 7 Y005
ol i
o 3
s 002
A
001
o1 02 05 1 2 5 0 ka 20

F1G. 1. Acoustic resistance and reactance of the unbaffled wave—guide outlet for the plane wave incident
calculated after taking into account the higher Bessel modes which appear, due to diffraction phenomena
(continuous line), compared with Rayleigh’s resistance (dashed line)
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FIG. 2. Acoustic resistance of the unbaffled wave-guide outlet for the plane wave incident calculated after
taking into account (dashed line) and neglecting (continuous line) the higher Bessel modes which
appear on the open end, due to diffraction phenomena

— the acoustic reactance of the succeeding Bessel modes increases and the
maxima appears for such values of diffraction parameter ka for which the adequate
mode appears;

= analysing the diagram of the acoustic reactance of a single Bessel mode, it
can be seen that the following maxima occur when the diffraction parameter ka
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FiG. 3. Acoustic resistance of the unbaffled wave-guide outlet for the plane wave and five succeeding Bessel
modes incidents

exceeds the succeeding zero of the Bessel function J, (z), i.e. when the number of
allowed Bessel modes in the reflected wave increases. That leads us to the conclusion
that taking into account the higher modes can strongly influence the quantities
connected with the energy phenomena transport like, for example, the acoustic

impedance.
Analysing analogical graphs (Fig. 4), for the acoustic resistance we notice that
_ — the height of the first maximum increases with the order of the considered
Bessel mode propagating towards the open end and it appears for the value of the
diffraction parameter equal to the half distance between the points on which the
following Bessel modes occur;

— analysing the graph of the acoustic resistance of a single Bessel mode, it car
be seen that the following minima occur when the diffraction parameter ka exceeds
the value for which the next Bessel mode appears.

The obtained diagrams show that for wave-length shorter than the diameter of
the wave-guide, in the presence of higher order Bessel modes the values of impedance
differ considerably from those obtained for a plane wave by Rayleigh. It is obvious
that for such a case the plane wave approximation can lead to important errors. It is
well known that practically the generation of an ideal plane wave is very difficult,
especially for the wave-guide with a large diameter in comparison with the wave
length. In such a case we must consider the incident wave as a superposition of all
allowed Bessel modes and it is possible that their contribution would lead to a value
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FIG. 4. Acoustic reactance of the unbaffled wave-guide outlet fot the plane wave and five succeeding Bessel
modes incidents

of impedance quite different from those obtained by Rayleigh. The results of that
paper, i.e. the calculation of the impedance made on the basis of accurate knowledge
of acoustic field, can be applied in many problems of great practical importance,
especially when we consider the properties of pipes outlets or cylinder-like
wave-guides [9], [10] or the radiation of transducers located at the bottom of
a relatively long cylinder [11], when we suspect the presence of higher-order Bessel
modes in the incident wave and when there is no need to use finitelength cylinder
formulae, which are still more complicated [12, 14].
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INTONATION OF TONE SCALES: PSYCHOACOUSTIC CONSIDERATIONS

ERNST TERHARDT

Institute for Electroacoustics, Technical University, Munich (FRG)

Conventional music theory ordinarily is based more or less explicitly on the concept
that intonation of musical tones can with sufficient precision be described by one physical
parameter, ie. “tone frequency”. Ratios of “tone frequencies” play a predominant role in
theories of consonance and tone scales. Closer inspection of the physical nature of musical
tones, and particularly of pitch-dependent auditory effects, reveals, however, that the
aforementioned classical concept is insufficient. A psychoacoustically-oriented dualistic
approach to intonation is suggested maintaining that “correct” intonation of a musical tone
interval basically depends on (1) harmonic purity, and (2) sensory purity. Harmonic purity
depends on memorized pitch-interval templates which in turn are partly of natural, partly of
cultural origin. Sensory purity largely depends on perception of fluctuations, and its basic
aspects are independent of cultural effects. It is concluded that optimal intonation is
a compromise which at every moment of a musical performance must be achieved by active
evaluation of the two aforementioned criteria. Theories of perception of pitch and
fluctuations readily explain why this is so, and provide promising tools for achieving that
compromise.

1. Introduction

The problem of tone scale intonation has been discussed and attacked for some
thousand years with remarkably little success. This paper attempts to provide that
problem with some new conceptual aspects which may be helpful when modern
psychoacoustic methods are considered along the way to a final solution. Actually,
scale intonation can hardly be properly discussed without taking into consideration
how tone scales as such may have been developed. Fortunately, it is not essential to
know every detail of that development; rather it is regarded sufficient to have
a concept about what the route of development could have been, on the basis of
a number of universal and consistent auditory criteria. In that sense, the introduction
to the intonation problem following in the next paragraph itself is part of a proposed
concept.

The pitch dimension, which basically is continuous, was dissected into discrete
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pitch categories quite early in history. As is well known, musical tones bear certain
relationships to each other not only in terms of their pitch differences but also in
terms of certain additional qualities. Those qualities appear to have provided the
criteria for tone categorization from the very beginning of music. As was made quite
obvious by Pythagoras’ principle of tone scale generation, i.e. concatenation of fifths
and octaves, the most pronounced tonal affinities, i.e. octave- and fifth-affinity,
provide the criteria necessary and sufficient to explain why tone scales could hardly
have developed in a different manner than they actually did. In this view, the
development from the pentatonic through the diatonic to today’s chromatic scales
appears straightforward and cogent. This is so, at least, if one for a moment ignores
the intricacies of intonation and just considers tone categories. Probably, the main
mistake inherent in most of the classical tone scale theories is an intermingling of the
aspects of tone category and tone intonation. As will be further pointed out below,
tone intonation is much more complex than ordinarily has been assumed; in
particular, it is not just a matter of small-integer “tone-frequency” ratios.

Thus when we first ignore intonation problems, the development and typical
features of tone scales may be seen as follows. Each of the three scales shown in
Fig. 1 are an ordered collection of tone categories, i.e. notes, arranged according to
their height; and the notes of each scale have been chosen according to the criteria of
octave- and fifth-affinity, respectively. However, neither the pentatonic nor the
diatonic scales are conclusive in a sense. While in these scales for any arbitrarily
chosen tone another can be found which is in an octave relationship, this is not true
in each case for fifth-third-, etc. relationships. This can generally be expressed by
saying that in these two scales interval width (i.e. the number of steps encompassed by
two tones) is not an unequivocal indicator of interval quality (Where quality means
the type of tone affinity pertinent to a particular interval category; e.g. the qualities of
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FiG. 1. Schematic representation of the pentatonic, diatonic, and chromatic tone scales. They can be
regarded as representing different states of one and the same line of development, i.c. selection of notes in
terms of octave- and fifth-affinity. While octave periodicity is implemented in all of them, the first two
scales are not conclusive with respect to providing fifths and other intervals. The chromatic scale
represents the final state of development, as interval width i.e. number of steps between two tones is an

unequivocal indicator of interval quality (i.e. “octaveness”, “fifthness”, etc.), no matter which note is chosen
as an interval's basis
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“octaveness”, “fifthness”, etc). In this sense it can be said that today’s 12-note
chromatic scale in fact is conclusive, as interval width unequivocally indicates
interval quality, no matter which tone is chosen as an interval’s basis.

Actually it is that characteristic of the chromatic scale that determines its
advantage of being “well-tempered”. The aforementioned way of expressing the
chromatic scale’s unique features is different from, yet musically more relevant than
saying that the chromatic scale is obtained by subdividing the octave into twelve
“equal steps”. The insufficiency of the latter statement is that it does not say in what
respect the steps are equal.

Conceptually, a musically relevant theory of tone scales and intonation can
hardly be achieved unless the basic difference between “scale” and “intonation” is
understood and strictly observed. Here the “Three Worlds Concept” put forward by
Popper [6] and Eccres [3] is extremely helpful, as it provides to the problem
a perfectly fitting frame. That concept maintains that there are three basically
different areas (“worlds”), into which all human experiences can be assigned. These
are: 1) the world of physical/chemical processes and states, i.e. the “real world”, it is
called “World 17; 2) the world of sensory experiences in the widest sense (“World 27),
and 3) the world of information, in particular of symbolically represented products of
the human brain (“World 37).

In fact, music exists in three fundamentally different representations, each of
which pertains to one of the three worlds (Fig. 2). In World 1, music exists as sound;
in World 2, as auditory sensation, in World 3, as a score. In that conceptual frame,
a musical tone scale as such is a symbolic representation of tone categories, i.e. notes:

SYMBOLIC
REPRESENTATION

("World 3")
notes, scales, and
any type of
score

' Realisation Abstraction -

PHYSICAL
REPRESENTATION

("World 1°)

SENSORY
REPRESENTATION
("World 2°)
pitch, loudness,
timbre, rough-
ness, etc.

Perception

FiG. 2. The three “worlds™ of musical reality. In this concept, a musical tone scale is a collection of notes,

ie. symbolic representation of tones; it is pertinent to “World 3”. Intonation of a scale is a collection of

corresponding physical parameters such as part-tone frequencies and amplitudes (“World 1”). Auditory
sensation such as pitch, and roughness provide the decisive criteria of intonation (“World 27)
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it is pertinent to World 3. The scale’s intonation implies all the physical parameters
(mainly, but not only, frequencies) which are correlated with the auditory sensations
produced by the sound these are mainly the pitch and beat sensations, as will be
pointed out below; those physical parameters are obviously pertinent to World 1.
Finally, the auditory sensations mentioned are pertinent to World 2. The theory of
-tone scales must be concerned with the relationships and interactions between those
three manifestations of musical tones. Those relationships can generally be termed
realisation, perception, and abstraction (Fig. 2).

In the frame of that concept we can now start the discussion of tone scale
intonation with the help of the following two statements:

a) Intonation is dependent on auditory perception and abstraction. It is neither
purely by mathematical (numerical) nor purely by phisical arguments that one can
decide about intonation. Intonation of a tone scale is optimal if it satisfies the
complex mechanisms of auditory perception and abstraction at any instant of
a musical performance.

b) Intonation as such means specification of those physical sound parameters
which affect the perceptual and abstract criteria mentioned. Besides the “fundamen-
tal frequency” of tones, virtually every other parameter such as spectral envelope and
sound pressure level must be taken into consideration.

2. Criteria of intonation

The most promising, yet little recognized, concept of intonation appears to be
the dualistic concept that maintains that intonation is dependent on:

1) the extent to which the (perceived) pitch intervals of either successive or
simultaneous tones are in agreement with mental expectation; that criterion will be
called “harmonic purity”;

2) the extent to which the sounds produced by the tones of a scale are free from
disturbances, in particular beats and roughness; that criterion will be called “sensory
purity”. ‘

These two criteria have been described earlier as establishing a useful concept of
musical consonance (TERHARDT [10], [11]. In particular, the term “harmony” was
given a special meaning, implying the most basic musical phenomena: tonal affinity,
compatibility, and fundamental-note-relationship. Of these phenomena it is in par-
ticular tonal affinity (i.e. octave-, fifth-, and fourth-affinity) that is important for scale
intonation. i

The basis of harmonic purity is provided by pitch. Each musical interval is
represented by a certain distance on the pitch continuum. There is no justification for
presuming that a particular interval quality corresponds to one and the same
distance on every level of the pitch continuum. Rather, the pitch distance corres-
ponding to a particular music interval in general will be dependent on absolute pitch
height. The actual pitch distance by which a particular musical interval is
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represented on the continuum depends on the metrics by which pitch height is
measured. Fortunately, for the theory of musical intervals and intonation it is not
necessary to make a decision on the metrics. It is sufficient to be aware that to each
musical interval quality corresponds a certain pitch distance that even may be
a function of pitch height, and that can be compared with corresponding memorized
distances.

The decision of whether or not a given tone interval is “harmonically pure” will
depend, among other effects, on the precision by which the corresponding pitch
distances are represented in memory. What can be said about the origin and the
precision of that representation?

On the basis of psychoacoustic evidence, there is no indication that every
interval of today’s chromatic scale is of natural origin, i.. either acquired in basic
perceptual processes or “hard-wired” in the auditory nervous system. Research on
children’s intonation in singing appears to indicate a considerable amount of
learning in early life. While young children may show a good sense of melodic
contour, they usually care little about tone- and interval-categories, let alone precise
intonation (DOWLING [2]). Appreciation of harmony appears to develop relatively
late (SHUTER-DYsON [8]). It will thus appear reasonable to assume that for instance
second- and perhaps even third-intervals, and in particular their intonation, are to
a considerable extent culturally acquired.

On the other hand, there are a number of solid arguments in favour of the
presumption that the most basic intervals, i.e. octave, fifth, and fourth, are acquired,
or predominantly determined, by auditory spectrum analysis in the perception of
natural speech (cf. TERHARDT [11]). Additional support to the basic and natural
character of the octave, fifth, and fourth comes from pitch ambiguity of harmonic
complex tones. The pitch of an individual harmonic complex tone does not
unequivocally correspond to its fundamental frequency. Rather, there exists an
ambiguity with respect to octave position, and even with respect to fifth- and
fourth-confusions. That ambiguity in turn readily explains a certain similarity of
musical tones whose fundamental frequencies are in a ratio of either 2:1, 1:2, 32, 2:3,
4:3, or 34. That is, that type of pitch ambiguity explains one of the crucial
phenomena involved in tonal music: tonal affinity of octaves, fifths, and fourths.
Pitch confusions in terms of third- and other intervals have practically never been
observed. It is in this sense that octaves, fifths and fourths can be regarded as more
“patural” than the rest of intervals.

If anything can be concluded from experimental data and observations, it
appears reasonable to assume that the pitch distances stored in memory as
representations of the harmonic aspects of musical intervals are of natural origin in
the cases of the octave, fifth, and fourth; and for the rest of intervals are culturally
dependent. If this is so, then it obviously does not make sense to raise the question of
what the “natural” intonation is of thirds, seconds, etc. Experiments designed to
determine the optimal intonation of those culturally dependent intervals will
necessarily reflect only the listeners’ mean previous intonation experiences. Results of
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that type of experiment in fact confirm that view (for an extensive review see BURNS
and WARD [1]).

With respect to the octave, fifth and fourth, the memorized pitch distances
corresponding to them may be affected by actual intonation of real musical
instruments as well. Therefore, the harmonic purity of those intervals should be
regarded as possibly dependent on both a natural and a cultural component. A sort
of competition between these two components may be observed in auditory tuning of
octaves of successive tones by a trained musician: while his/her “natural” (and thus
“naive”) evaluation will ordinarily produce a considerable stretch (i.e. a fundamen-
tal-frequency ratio larger than 2:1; cf. WARD [14], WALLISER [13], TERHARDT [117),
cultural experience in ensemble playing may prevent him from stretching the octave
by too great an amount. Evidence for that conclusion may be seen for example in
recent results by MAKEIG [5].

Of the two intonation criteria, i.e. harmonic purity and sensory purity, the first
can be regarded as functionally most relevant; in particular, it applies to both
successive and simultaneous tones. Sensory purity, which virtually is dependent on
fluctuation effects, i.e. beats, will in many cases provide another strong criterion of
intonation which is significant only with simultaneous tones. As was extensively
pointed out by HELMHOLTZ [4], musical chords composed of harmonic complex tones
attain the highest sensory purity if the fundamental frequencies of the complex tones
are in ratios of small integer numbers, e.g. 4:5:6 for the major triad. If the
fundamental frequencies depart just a little therefrom, beats can be heard which
ordinarily are disliked as being indicative of “mistuning”. Harmonic purity is
hardly affected by such a small amount of mistuning. As is common experience,
slight mistuning does not disturb or even destroy the essential “musical message™ but
can considerably reduce the sensory pleasantness of a sound. In that sense harmonic
purity may be regarded as “functional”, while sensory purity is “cosmetical”.

In general, the intonation which provides maximal harmonic purity is not
necessarily identical with the intonation producing maximal sensory purity. For
example, when two successive tones are tuned to give an optimal octave, their
" fundamental frequencies will turn out to be in a ratio slightly greater than 2:1. As
a consequence, the same tones, when sounding simultaneously, may produce audible
beats, i.e. less than optimal sensory purity. The latter would be achieved by tuning
the tones exactly in the ratio 2:1, which however would render harmonic purity less
than optimal. Obviously, intonation in general is a compromise.

So far we have been concerned only with the intonation criteria which depend
on tone intervals, as opposed to individual tones. Naturally, intonation of individual,
isolated tones depends on absolute-pitch recognition and thus is confined to listeners
having absolute pitch. Since only a small percentage of musical listeners possess that
ability, and since the development of musical scales is essentially dependent on tone
intervals rather than on recognition of individual tones, the latter case is disregarded
in the present study.
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The criteria of intonation and their role in musical scales can thus be
summarized as follows:

Intonation of successive tone intervals is exclusively governed by harmonic
purity, i.e. matching of pitch distances to corresponding “templates” stored in
memory.

The “templates” which correspond to octaves, fifths, and fourths, probably are
of natural origin, i.e. independent of previous musical experiences. The “templates”
corresponding to the rest of intervals probably are essentially dependent on previous
experience and learning; i.e. they can be developed only if musical scales already
exist.

Intonation of simultaneous tone intervals is dependent both on harmonic and
sensory purity. In many cases, the latter will provide the most sensitive criterion, and
in principle it will apply to all intervals, be they of natural or cultural origin.

Since, with a given musical sound and intonation, it is not always possible to
fully satisfy both the criteria of harmonic and sensory purity, intonation generally is
a compromise. This implies that there does not exist such a thing as a fixed ideal
intonation.

To further understand the advantage provided by the present approach it will
be helpful to critically discuss the classical concept of describing intonation merely in
terms of “tone frequency” alone.

3. Criticism of the “tone-frequency concept of intonation™

In musical acoustics and music theory, the intonation of tones is ordinarily
described by “the” frequency, in the sense of “oscillations per second”. However, to
make that concept fully valid and significant, two preconditions must be fulfilled.
The first is a physical one: the oscillation frequency as such must be defined with
sufficient precision; i.e. the tone’s oscillations must be strictly periodic. The second
condition is a psychoacoustical one: the pitch sensation must be solely dependent on
the oscillation frequency, i.e. pitch must not depend, for instance, on the tone’s
spectral composition and sound pressure level. If either one or both of these
conditions are violated, any discussion of intonation based on “tone frequency”
becomes more or less inadequate. In fact it turns out that for certain types of tones
(in particular, percussive tones such as of the piano) the first condition is violated;
and the second condition is violated for practically every type of tone.

Concerning piano tones, it is well known that their spectra are slightly
inharmonic (ScHUCK and YOUNG [7]). This means that the period of the tone’s entire
oscillation is not identical with that of the first partial alone: rather, the former is
much longer. As a piano tone’s pitch corresponds approximately to the period of its
first partial, one can also say that its entire physical period is by far longer than that
corresponding to its pitch. In other words, in this case the concept of associating the
tone’s pitch with its physical period fails profoundly. It is thus apparent that neither
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harmonic nor sensory purity can be properly accounted for by the concept of “tone
frequency”. In particular, sensory purity of the piano tone scale cannot consistently
be evaluated by the lowest partial frequencies alone, since it depends on beats
between higher partials as well; therefore also precise specification of the frequencies
of higher partials is required.

Musical tones which are with sufficient precision periodic are produced by
instruments with a steady energy supplement, i.e. strings, horns, woodwinds, and
organ pipes. The higher partials of those tones are harmonics, i.e. their frequencies
are with sufficient precision determined by that of the fundamental, i.e. they are just
integer multiples of the latter. Therefore assessment of sensory purity (beats of
simultaneous part tones) can be accomplished largely by knowledge of the
fundamental frequencies alone (that in turn are identical with oscillation frequencies
in that case). However, beats are further dependent on the amplitudes of partials and,

Table 1. Typical magnitudes of effects relevant to intonation. Upper part: “numerical effects”, i.e.

phenomena which have been considered in terms of the “tone frequency approach”. Middle part: piano

string inharmonicity as an example of a physical effect. Lower part: aural effects which are pitch

dependent and thus relevant to “harmonic purity” of intonation. Further descriptions and explanations of
the latter effects can be found, e.g. in TERHARDT et al. [12].

equivalent difference
frequency cents percent
Numerical effects
Pythagorean comma, (3/2)'%:2’ 234 1.36
synthonic comma (departure of II-VI
from pure fifth in just intonation), 81/80 215 1.25
difference between Pythagorean and natural
major third, (3/2)*:5 21.5 1.25
difference between natural and tempered
fifth (3/2):27/12 20 0.11
difference between natural and tempered
major third —13.7 -0.79
Physical effect
inharmonicity of aurally relevant partials
of piano-bass-strings (typical example) 30 18
Pitch-dependent, ie. aural effects
just noticeable pitch difference of
musical tones (typical example) 5 0.3
aural pitch shifts of true harmonics
of complex tones: 1st harmonic -20...0 -1...0
higher harmonics 0...160 0...10
difference between true and nominal
pitch of musical tones: low tones -50...0 -3...0
high tones 0...50 Ll
octave enlargement (octave matching
of successive tones) 9...5% 05...3
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moreover, the perceived pitch of any complex tone depends in a complex way on the
entire part-tone spectrum. In general, the pitch of a musical tone cannot be precisely
determined by the fundamental frequency (or oscillation frequency) alone; rather, the
frequencies and amplitudes of many partials play a significant role as well (cf.
TERHARDT [12]. Therefore the second of the two aforementioned preconditions is
not fulfilled with either type of musical tone.

Naturally the relevance and consequences of these arguments depend on the
magnitude of the respective effects. Table 1 presents typical magnitudes of some
numerical, physical, and auditory effects pertinent to intonation. The figures indicate
that in fact the “mistuning” introduced by inharmonicity of piano strings (i.e.
a physical effect) and by pitch shifts (i.e. departures of pitch from supposed nominal
values) are at least of the same order of magnitude as classical numerical intonation
effects such as for instance the pythagorean comma. It is thus apparent that the
classical method of describing intonation just by “tone frequency” can only roughly
account for perceptually relevant intonation criteria.

4. Conclusions

Whatever objections may seem justified against the details of the present
approach to tone scale development and intonation, one conclusion appears to be
quite safe: There is not even theoretically such a thing as an ideal fixed intonation
which can be described by “tone frequencies” without making further specifications.
Optimal intonation in every case and instant is a compromise dependent on partly
contradictory criteria. Optimal intonation can neither be regarded as fixed nor can it
be sufficiently specified by just one frequency per tone. Optimal intonation of tonal
music must be flexible, ie. adapting to momentary requirements. Any rigid
assignment of frequencies to tones can thus serve only as an abstract reference
pattern from which the optimal intonation in every instant will depart more or less
distinctly. What type of intonation (i.e. just, pythagorean, or equally tempered) is
used as a reference pattern, is of secondary importance, though equally tempered
intonation appears to be most convenient for that purpose.

The dualistic concept of harmonic and sensory purity sketched in the present
study may provide a systematic solution to the intonation problem. To take full
advantage of that approach a theory of pitch perception to evaluate harmonic purity,
and of beat- and roughness-perception to evaluate sensory purity are required. The
pitch theory must in particular account for pitch shift effects such as those mentioned
in Table 1. The virtual-pitch theory (TERHARDT [9], TERHARDT [12]) meets these
criteria to a considerable extent. Since perception of beats and roughness is also well
understood, it will appear that, in spite of the complexity of effects involved, we are
beginning to understand musical tone scale intonation and likewise we are beginning
to be able to predict quantitatively the physical sound parameters yielding optimal
intonation.
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HALF-PLANE EDGE AND RIGHT ANGLE WEDGE AS ELEMENTS CAUSING DIFFRACTION
IN URBAN AREA

ELZBIETA WALERIAN

Institute of Fundamental Technological Research, Polish Academy of Sciences
(00-049 Warszawa, ul. Swigtokrzyska 21)

This study analyzed the acoustic fields generated by interactions between acoustic
waves and the edge of a half plane and a right angle wedge. Using known solutions of the
diffraction of a monochromatic wave on a half-plane and a right angle wedge, they were
written in a form permitting simultaneous analysis of three wave types: plane, cylindrical
and spherical. Approximate forms of solutions were adopted and the ranges of théir
applicability analyzed. In the space around the chosen obstacle, its efficiency was calculated
with respect to a free field, for wavelengths and distances of interest in urban acoustics.

W artykule poddano analizie pola akustyczne jakie powstaja na skutek oddzialywania
fal akustycznych z krawedzig polplaszczyzny i ostrzem klina o kacie rozwarcia rownym
katowi prostemu. Wykorzystujac znane rozwiazania dyfrakcji fali monochromatycznej na
polplaszczyznie i ostrzu klina zapisano je w postaci pozwalajacej na jednoczesna analize
trzech typow fal: fali plaskiej, cylindrycznej i kulistej. Przyjeto przyblizone postacie
rozwiazan, dokonujac analizy zakresu ich stosowalnosci. W przestrzeni woko6t wybranych
przeszkod obliczono ich efektywno$é w stosunku do pola swobodnego, dla dhugoéci fal
i odleglosci stanowiacych przedmiot zainteresowania akustyki urbanistycznej.

Basic notation

V  part of the acoustic potential ¥ of the monochromatic wave dependent on the spatial coordinates:
¥ = Vexp(—imn),

k wave number. k =2nr/i=2nflc =w/c, i — wavelength, [ — frequency, ¢ — wave velocity,
@ — angular frequency,

n normal to the barrier surface,

0o radial coordinate of the source position,

¢ radial coordinate of the position of the observation point,

¢o angular coordinate of the source position,

¢ angular coordinate of the position of the observation point,

zo z-th coordinate of the source position,

z z-th coordinate of the position of the observation point.
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Introduction

The notion of diffraction may be understood to mean all deviations from the
laws of geometrical acoustics in the process of interactions between acoustic waves
with obstacles whose acoustic properties are different from those of the ambient
medium. In the simplest case, this is a step-like change in acoustic properties which
occurs on the edge of a half-plane.

In practice diffraction is, e.g., a phenomenon which determines the efficiency of
flat acoustic screens in the shadow area. However, the use of such screens as
a measure against the noise propagation from highway requires considering changes
in the acoustic field not only in the shadow area, but also throughout the space of the
screen.

In general, wishing to describe the acoustic field in complex urban systems, it is
first necessary to gain knowledge of the elementary processes forming the acoustic
fields, including wave reflection and diffraction.

For urban systems it is acceptable to describe the acoustic field basing on the
laws of geometrical acoustic, with a correction for the diffraction occurring on edges
of the types of half-plane and wedge, e.g. diffraction on the half-plane type edge
occurs for the flat acoustic screens mentioned above. Diffraction at the right angle
wedge occurs at house corners, balconies etc. In the case of a depressed highway
diffraction occurs at the wedge of the slope, this time at the wedge whose opening
angle depends on the inclination angle of the slope, and which may be different from
a right one.

Generally, highways can be recognized as the main noise source urban area. In
the first approximation, for large distances, the highway can be considered as
a source of plane waves. At shorter distances, the model of a linear source is assumed
for it. Very close to the highway distinguishing individual vehicles, the waves from
them are considered spherical waves. Using more complex models of highway, the
acoustic field can be treated as one composed of elementary waves, e.g. plane,
cylindrical and spherical.

Considering the two basic elements at which diffraction occurs (the half-plane
and wedge) and three elementary wave types (plane, cylindrical and spherical), this
study analyzes the acoustic fields for these cases.

Section 1 of the study presents a general description of the strugture of the
acoustic field for chosen cases. The starting point were the known solutions of the
diffraction problem [1, 2] in which it is possible to extract the geometrical and
diffraction parts. The study shows that the asymptotic forms of these solutions for
the cases in question can be written in the form of the sum of waves forming
independent pairs related to the real source and the image sources representing the
waves reflected from the obstacle. The pair of waves related to one source consists of
the geometrical wave occurring only in limited space around the barrier, and the
diffraction wave present throughout the space.

The above description differs from the geometrical diffraction theory proposed
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by KELLER [3, 4] in that, instead of diffraction rays describing the total effect of
interaction with the obstacle, it introduces diffraction waves related to particular
sources of geometrical waves. This makes it possible to explain the nature of the field
at the geometrical boundaries and close to them, which cannot be done on the
grounds of the geometrical diffraction theory.

Section 2 gives explicit forms of the component geometrical and diffraction
waves distinguished in the description. It discusses in detail the applicability ranges
of the asymptotic forms of solutions which provided the basis for the description
introduced and which are different for particular cases. The regions where the
conditions of asymptotic approximation are satisfied at the same time for all the
cases presented coincide with the applicability range of the geometrical diffraction
theory.

Taking into account the conditions met in urban area, section 3 compares the
efficiency of two kinds of obstacle (half-plane and wedge) for three types of wave
(plane, cylindrical and spherical) in the area of the geometrical shadow. Also, it
distinguishes area where the presence of obstacle does not cause any significant
disturbance and those where, as a result of interference between the waves in them,
alternating increases and decreases in the total field amplitude occur.

The fields were analyzed for monochromatic waves from which complex
acoustic signals are made. The description of the field used the acoustic potential
which is linearly related to the acoustic pressure of the monochromatic wave.

1. Structure of the acoustic field around the half-plane and wedge

By using the appropriate approximations of the exact solutions of the problems
of the wave-obstacle interactions, the acoustic potential expressions describing the
total field around the obstacle can be written in the form of the sum of the
geometrical and diffraction parts of the potential [1, 2].

The geometrical part of the acoustic potential can be obtained on the basis of
the laws of geometrical acoustics in the form of the sum of geometrical waves coming
from the real source and those from the image sources represented by the waves
reflected from the obstacle surfaces.

The areas where geometrical waves are present are determined by the obstacle
size. In view of this, the total geometrical field, which is the sum of geometrical
waves, is discontinous. This discontinuity is compensated by the diffraction part of
the acoustic potential.

After the appropriate rearrangement it was possible to represent the diffraction
part of the potential in the form of the sum of diffraction waves, each related to the
source of a geometrical wave. Around the geometrical boundary, where the
geometrical wave from one of the sources vanishes, the related diffraction wave takes
maximum values compensating the jump of the geometrical wave, providing at the
same time, the continuity of the field.
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On the ground of a description of the field containing the related pairs of
geometrical and diffraction waves coming from the same source, one obtains
a uniform description of the structure of the acoustic field around the obstacle
independent of the type of wave and the kind of obstacle.

1.1. Structure of the acoustic field around the obstacle

The acoustic field of a monochromatic wave with the frequency f, around the

ideal hard half-plane, can be determined by the solution of the Helmholtz equation
for the acoustic potential

(42 +k*) V=0, (1)
with the boundary condition
v
— =0. 2
n _ @
This equation can be written in the following form: 1
V=V'+V (3)

where V? is the geometrical part of the acoustic potential and V* is the diffraction
part of the acoustic potential.

In a cylindrical coordinate system (Fig. 1) the equation of the half-plane

Plg,¢) ___._i_ ________

b)

P(g.9.2) I
z{

FIG. 1. The coordinate system applied: the screen is a half-plane with the equation y =0, 0 < x < o0, or
¢ =0, P — observation point, § — source
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disturbing the acoustic field, has the form-

¢=0, (4)
the geometrical part of the potential can be written in the form
Ve =n(n—p)V'(R)+n(x—B) V(R), (5)
where
B=¢—o,, (6)
B = ¢+, (7
R=R(p), R =R(p), )

R is the distance between the observation position and the source S and R’ is the
distance between the observation point and the image source §'.
The function 5(x) is the step function

rr(x)={1’x>0’ o)

0,x<0.

The potential V*(R) represents a wave incident from the source S (Fig. 2), whereas the

potential V' (R’) represents that from the source §’, namely a wave reflected from the
half-plane ¢ = 0.

FiG. 2. The position of the shadow boundary ¢ = ¢gc = n+ ¢, and that of the boundary of the reflected
wave ¢ = dgp = n—,

The diffraction part of the potential can be written in the form of the sum of two
diffraction waves

Vi=VI[R(BI+V[R(B)]. (10)

The potential V*[R (B)] represents the wave generated as a result of the interaction
of a wave from the source S with the edge of the half-plane, and the potential
V4(R(p')] — the wave generated by the interaction between a reflected wave and the
edge, i.e. the interaction between the wave from the image source S’ and the edge.

It follows from above that each of the sources, both S and §', are sources of
geometrical and diffraction waves. Geometrical waves occur only in certain areas
around the half-plane, diffraction waves are present throughout the space. The direct

11 — Arch. of Acoust. 1-2/88
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wave V'(R) from the source § exists in the area

0<¢<m+do,, (11)
where '
n+¢o = Pac ; (12)
is the shadow boundary (Fig. 2). The region
bc <P <2m (13)

is the area of the geometrical shadow where there are no geometrical waves.
The reflected wave V*(R’) coming from the source S’ exists in the region

0<¢<n—oy,, (14)
where

n—@o = Pp (15)

is the boundary of the reflected waves (Fig. 2).

In relation to the geometry of the system, the solutions obtained are symmetrlzed
with respect to the half-plane ¢ = =, hence, it is possible to limit the analyms of the
field, assuming the source position to be within the interval

0<¢y<m. (16)

1.2. Structure of the acoustic field around the wedge

For a wedge with the opening angle of 2Q (Fig. 3) the area of the acoustic field
description is the region

2n—2Q = vn, (17
where

v>1, (18)

5(Q0, %)

Plg.d) A

FiG. 3. The position of the right angle wedge in the coordinate system applied
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ie. the region outside the wedge. For wedges for which the parameter v satisfies
condition (18), the formulae given below are valid if the appropriate value of v is put
in plane of v = 3/2 represented a right angle wedge.

The acoustic field which would emerge as a result of the interaction between the
acoustic wave and the ideal rigid right angle wedge, is described by the acoustic
potential satisfying the Helmholtz equation (1), with the boundary conditions (2),
which in this case must be satisfied on two half-planes forming the wedge (Fig. 3).

Just as for a single half-plance, this potential can be written in the form of sum
(3) of the geometrical part V¥ and the diffraction part V¢ of the potential. The
geometrical part V¢ (Fig. 4) consists of three waves: the wave (V' (R)) coming from the
real source S, the wave (V(R')) reflected from the half-plane ¢ = 0, coming from the
source §', and the wave (V*(R")) reflected from the half-plane ¢ = 37/2 coming from

a)

b)

c)

¢=3n/2

FiG. 4. The sources of the waves making up the acoustic field around the right angle wedge: a) the

half-planes ¢ = 0 and ¢ = 3n/2 making up the wedge; b) the position of the source S’ representing the

wave V!(R') reflected from the half-plane ¢ = 0; c) the position of the source §” representing the wave
V(R") reflected from the half-plane ¢ = 3n/2



164 E. WALERIAN

the source S”
Ve =n(n—pB)n(n/2—¢) V'(R)+n(n—p)n(3n/2—$) V'(R)
+n(n—p")n(3n/2—¢) V(R"), (19)

B=¢—do, @)
B = ¢+, (21)
B’ = (3n/2—$)+(n/2— do) = 3n—(d + o), (22)
R=R(f), R =R(p), R"=R(p). (23)
The diffraction part of the potential is the sum of the four waves
V= VI[R(Bo)+ V' [R(B0)]+ VO [R (B3n2)]+ V' [R (B 341215 (24)
ﬂo =¢—o = B, (25)
Bo=¢+¢o=F, (26)
Baxz = (31/2—§)—(3n/2— o) = —(p— o) = — 5, (27
Banz = (37/2— ) +(31/2— o) = 3n—(p+ do) = 3n—f' = f". (28)

The existence of four diffraction waves results from the fact that the wedge is made of
two half-planes. A right angle wedge is made of two half-planes. A right angle can be
recognized as one formed by the junction of two half-planes (Fig. 4):

¢=0,¢=vn=73n/2. (29)

The source S is accompanied by the source §', which is a specular reflection of the
source § in the half-plane ¢ = 0 or in its extension (Fig. 4 b). The waves from these
two sources S, §' interact with the edge of the half-plane ¢ = 0. This interaction
occurs in presence of the half-plane ¢ = 3n/2 forming the wedge therefore the waves
V4[R(B,)] and V?[R(B;)] are different from the diffraction waves V*[R(f)] and
V4[R(B)] occurring for a single half-plane in expression (10).

The interaction between the wave from the source S and the half-plane ¢ = 3n/2
is similar to that of the half-plane ¢ = 0. This can be found from expressions (27) and
(28), where:

3n/2 = ¢, (30)
is the angular distance of the source S from the half-plane ¢ = 3n/2 (Fig. 4c), and
In/2—¢, (31)

is the angular distance of the observation point from this plane.

Thus, in analogy to (25) and (26) for the half-plane ¢ = 0, expressions (27) and
(28) are the difference and the sum of the angular distances of the source and
observation point from the half-plane ¢ = 3n/2.

As a result of a specular reflection of the real source S in the half-plane ¢ = 3n/2
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there occurs the source S” (this reflection may occur in the half-plane ¢ = 3n/2 or its
extension). The result of the interaction between the wave from the source S and the
half-plane edge ‘¢ = 37/2 in the presence of the half plane ¢ = 0 is the diffraction
wave V! [R(B3y2)]. All the four diffraction waves (24) occur throughout the space
around the wedge, on the other hand, geometrical waves only do so in certain areas
determined by the source position ¢,. For this reason, it is convenient to distinguish
four regions of the source position (Fig. 5).

If the source is in region I (Fig. 5 (I))

0 < g < 2/2, (32)
the direct wave V*(R) occurs in the region
0.<. Er+ o (33)

I: a)¢=n/2

II: a))

VI=VIR)+VIRY

FiG. 5. The four regions of the source position distinguished here: I — (0 < ¢y < 7/2), Il ~ (0 < ¢ < 1),

I — (7/2 = ¢ < 3m/2), IV — (n/2 < ¢ < 7). a) the region of the real source position, b) region of an

image sources position corresponding to the position of a given real source and areas where particular
geometrical waves occur
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where, just as for a single half-plane (12)

n+@o = dsc, (34)
is the shadow boundary. In the space
boc < ¢ < 3m/2 (35)

the geometrical shadow occurs, where there are no geometrical waves. For the right
angle wedge, this area is smaller than that for a single half-plane, since the part of the
space :

Inf2< ¢ <2n (36)

is occupied by the wedge itself.

If the source is situated in region I (32), the wave V' (R”) geometrically reflected
from the half-plane ¢ = 37/2 cannot occur, since the half-plane ¢ = 3n/2 is within
the geometrical shadow.

If the source is situated in region II (Fig. 5 (IT))

0<do<m, 37

then occurs the wave V*(R') reflected from the half-plane ¢ = 0. It appears in the
interval

0< ¢ <m—dy, (38)
where, just as for a single half-plane (15):
n—¢o = b6p (39)

is the boundary of the wave reflected from the half-plane ¢7= 0.
For the source position in region III (Fig. 5 (III)):

/2 < ¢y < 3m/2, (40)

there is the wave V'(R") geometrically reflected from the half-plane ¢ = 3x/2, and its
occurrence area is the interval

2n—¢y < ¢ < 3m/2, (41)
where |
2n—¢o = dgp'» ‘ (42)
is the boundary of the wave V*(R") reflected from the half-plane ¢ = 3m/2.
It follows therefore (Fig. 5 (IV)) that for the source position in region IV:
2 < ¢o<m, _ (43)

in the space around the wedge there is no shadow area, but there are two reflected
waves: the wave V'(R') reflected from the half-plane ¢ = 0 (in region (38)) and the
wave V'(R”) reflected from the half-plane ¢ = 3n/2 (in region (41)).
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In view of the geometry of the system, the descriptions of the acoustic field are
symmetrical with respect to the half-plane ¢ = 5n/4 (Fig. 4a). Therefore, the
complete analysis of the field requires to consider the source position only in the
interval

0< ¢, < 51/4. (45)

1.3. Acoustic field on geometrical boundaries

In the assumed coordinate system, the geometrical boundaries are half-planes
with equations ¢ = const. They are the boundary ¢gc of the shadow (12), (34) the
boundary ¢, of the wave reflected from the half-plane ¢ = 0 (15), (39), and, in
addition, for the wedge, the boundary ¢, of the wave reflected from the half-plane
¢ = 3n/2 (42).

On the geometrical boundaries ¢ = ¢ge, Pgp Pgp One of the geometrical
waves V'(R), V!(R’) and V*(R") coming from the sources S, §' and §” making up the
geometrical part of potential (5) or (19) always vanishes.

The diffraction wave, which forms a pair with the vanishing geometrical wave,
on the geometrical boundary, takes a value equal to half the value of the acoustic
potential of the related geometrical wave,

VI[R(¢ = ¢¢)] =0, (46)
VI[R($ = ¢e)] = 1/2V'[R( = ¢g)]. 47)

For the half-plane, on the shadow boundary (12), there vanishes the wave V'(R)
coming from the source S, then the geometrical part of potential (5) becomes

V¥ (¢gc) = 0. (48)
At the same time, the diffraction wave related to the source S, takes the form
VIR (¢6c)] = 1/2 V' [R(dgo)]- (49)

The diffraction part of potential (10) is the sum
Vi(dac) = 1/2V [R($)]+ V[R(B = n+2¢,)]. (50)

The total acoustic potential (3) on the shadow boundary is the sum of the
geometrical (48) and diffraction (50) parts.

For a wedge, on the shadow boundary, the geometrical part of the acoustic
potential (19) contains only the wave coming from the source S, which vanishes, i.e.

Ve(dgc) = 0. (51)

The diffraction part of the acoustic potential (24) on the shadow boundary takes the
form

V4(@6p) = 1/2V'[R($6)]+ VR (Bo = n+2¢,)]
+ V! [R(Bswz = —m)]+ V! [R(B3r2 = 2n—2¢¢)]  (52)
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Just as for a single half-plane, the total acoustic potential on the shadow boundary
consists only of the diffraction part (52).

For the case of a single half-plane on the boundary of the wave V*(R’) reflected
from the half-plane ¢ = 0, the geometrical part of potential (5) takes the form:

W(¢Gn) e Vi(R (¢Gn)]- (53)
In turn, the diffraction part of potential (10) takes the form
V4 (¢ep) = V'[R(B = n—2¢¢)1+1/2 V' [R' (¢gp)]- (54)

The total acoustic potential on the boundary of the reflected wave is the sum of
potentials (53) and (54).

For the case of a wedge on the boundary of the wave V*(R') reflected from the
half-plane ¢ = 0, the geometrical part of potential (19) takes the form of (53). In turn
the expression of the diffraction part (24) is as follows:

Vi ($ap) = V/[R(Bo = m—26)1+1/2V'[R'($6p)]
+ VA [R(Bsx2 = 2¢0—m]+ V! [R(B3x2 = 2m)].  (55)

The total potential is the sum of potentials (53) and (55).

In addition, in the case of a wedge, there can occur the boundary (42) of the
wave V'(R") reflected from the half-plane ¢ = 3n/2. The geometrical potential (19)
takes the form

Ve(dep) = V' (R(¢p)], (56)
and the diffraction part (24) of the potential becomes

Vi(dop) = V! [R(By = 2n—2¢)]1+ V! [R(Bo = 2m)]
+ VAR (B3ny2 = 200—m]+ 12V [R"($6p)]. (57)
The total field is the sum of potentials (56) and (57).

2. Explicit forms of acoustic potentials describing the acoustic field around the half-plane and right angle
wedge for plane, cylindrical and spherical waves

The first step towards the description of the acoustic field shown in Sect. 1 is the
division of the expression describing the potential into the geometrical and
diffraction parts (3).

The division of an exact solution describing the acoustic potential around the
half-plane into the geometrical (5) and diffraction (10) parts is only possible for the
incident plane wave. In the case of cylindrical and spherical waves, this division can
be peformed only for the approximate form of solution which is obtained as the
condition is satisfied [2]

kR, > 1, (58)
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where R, is the shortest distance between the source and the observation point
calculated through the edge.

R, can be treated as the parameter which takes a form which depends on the
wave type. Considering the fact that the plane wave is the limiting case of a wave
radiated by the source which is in infinity, in the assumed coordinate system the
distance R, is

— for the plane wave

R, =e, (59)

— for the cylindrical wave
R, =¢,+te0,; (60)
— for the spherical wave :

R, = [(eo+0)* +(z—2,)*1"">. (61)

According to expressions (58) and (60), for the cylindrical wave, the division of
the potential into the geometrical and diffraction parts is possible. in the case of
system in which the source or the observation point are far from the diffraction edge
(with respect to the wavelength). For the spherical wave, according to expressions
(58) and (61), it is possible, just as for the cylindrical wave, when the source or the
observation point are far from the edge and also when the source and the
observation point are distant enough along the z-axis (k|z—zo| > 1).

In the case of interaction between the waves and the wedge the division of the
acoustic potential into the geometrical (19) and diffraction (24) parts can be only
made when the approximate form of an exact solution is used. The approximation
conditions are following:

— for the plane wave

ko > 1, (62)
— for cylindrical and spherical waves
keo @
—> 1. 63
N (63)

Since the source of the plane wave is in infinity, it can be said, in general, that if
there is the interaction between three types of wave plane, cylindrical and spherical,
and the wedge, the potential can be divided into the geometrical and diffraction parts
only if the source and the observation point are at the same time far from the wedge.

It follows from the above that for all the six cases considered (two kinds of
obstacle half-plane and wedge, for which each time there is the diffraction of three
wave types plane, cylindrical and spherical) the common area where solutions can be
divided into the geometrical and diffraction parts is the area which lies far from the
diffraction edge. It would be applied only to systems in which the source is also far
enough from the edge.

To move over from the symbolic-qualitative description of the acoustic field to
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a quantitative one, we need to know explicit forms of functions describing the
components of the geometrical parts of the potential (5), (19) and the diffraction parts
(10), (24).

The geometrical parts of potentials are made up of waves radiated by sources
whose positions are only different in the angular coordinate. Thus the distance R (x)
between observation point and the particular source differs only in an angle o
Therefore, for every type of wave: plane, cylindrical, spherical propagation from these
sources can be described by the same expression where the right quantity R (x) must
be put. This will be presented in Sect. 2.1.

Then step leading to the description given in Sect. 1 is the analysis of simplified
expressions describing the components of the diffraction part of the potentials. These
simplified expressions are valid in areas appropriately distant from the geometrical
boundaries tied up to successive sources. Moreover, it is possible to describe the
diffraction, waves on the geometrical boundaries by means of simple expressions.

In the case of not too large area in which simplified expressions for diffraction
waves are not valid on the basis of the field continuity, principle the field in this area
can be determined by extrapolation from the value taken in the area where
approximation is valid up to the value taken on the boundary itself. In this way, one
obtains a description of the field throughout the space around the barrier.

The appropriate explicit forms of functions describing the diffraction waves in
areas far from the geometrical boundaries and on the various boundaries are shown
in points 2.2 and 2.3.

The applicability range of the description presented and its accuracy are
discussed in subsection 2.4.

2.1. Explicit forms of the geometrical part of the acoustic potential

In the expression for the geometrical part of the potential for the half-plane (5) it
is necessary to substitute the explicit forms of functions describing the waves

ViR (@)], (64)
where

a=pp. (65)

R () is successively the distance of the observation point from the sources S and S'.
In the expression for the geometrical part of the potential for the wedge (19) it is
necessary to substitute the explicity forms of function (64) for

a=p,p,p" (66)
where R (o) is, successively, the distance of the observation point from the sources S,
S and §".
The explicit forms of function (64) for chosen types of wave, in the assumed
coordinate system, are as follows
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— for a plane wave:
V'[R (@] = exp [ikR (2], (67)
R(x) = —gcosa, (68)

— for a cylindrical wave:

VI[R(x)] = kR2( exp{i[kR («)—mn/4}, (69)
R(2) = [o§ +0>—2go 0cosa]"?, (70)
— for a spherical wave:
p _exp[ikR ()]
VI[R(®)] = T kR@ (71)
R(a) = [0%+0?—200 @cosa+(z—zy)*]"/2. (72)

2.2 Explicit forms of the diffraction part of the acoustic potential

From well-known expressions [1, 2] for the diffraction part of the acoustic
potential for chosen kinds of obstacles (a half-plane and right-angle wedge) and three
types of waves plane, cylindrical and spherical, the diffraction waves related to
sources distant by R (x) from the observation point can be represented in the form

expli {k[R, — R (®)] +7/4}]
V2nke
1

sl S'“("/ ") o5 (@0 —cos (&) v

xd[R@IV'[R@], (73)

VI[R(@)] = P(a,v)

where d [R («)] is a coefficient depending on the type of the wave. Formulae (73) and
(74) are valid if conditions (58), (62) and (63), and the inequality

k[R,—R(®)] > 1. (75)

are satisfied. Condition (75) means that the observation point must be far from the
geometrical boundaries: the shadow boundary ¢ (12), (34), the boundary ¢dgp of
the wave reflected from the half-plane ¢ = 0(15), (39), and the boundary ¢y, of the
wave reflected from the half-plane ¢ = 37/2 (42).

Expressions (73) and (74) are valid for wedges with an opening angle satisfying
condition (18). A single half-plane is a special case of a wedge with the opening angle

2Q =0. (76)
Hence, from expressions (17), for the half-plane
y=2. (77)

In the case of the half-plane, expression (73) must be applied to determine the two
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diffraction waves V¢ [R (2)] which are part of the diffraction part of potential (10) for
a=p,p. (78)

Then the diffraction part of the acoustic potential can be rewritten in relation to the
incident wave V'(R) coming from the real source S:

exp {i [k(R, — R) + n/4]}

=P(¢,¢,,v=2) m d(R)V'(R), (79
1 Lin: 1
P(¢, ¢g,v=2)= —3 + v (80)
: . cos ¢ _;bo cos . 2% :

Depending on the incident wave type, the coefficient d(R) takes the forms:

— for a plane wave

d(R) =1, (81)
— for a cylindrical wave
d(R) = \/E, (82
Qo
— for a spherical wave:
IR =— )

oV RIQOI

From formulae (59), (67), (68) and (81) the explicit form of the diffraction part of the
acoustic potential for a plane wave is as follows:

exp [i(ke+ 1:/4)]

/2nke

Hence, it follows that the diffraction part of the acoustic potential for a plane wave
interacting with half-plane can be regarded as a wave of a cylindrical type generated
by the edge. The amplitude of this wave decreases as a root of the distance from the
edge g. It differs from the cylindrical wave only by the directional coefficient
P(¢,do,v = 2). In a superposition with the geometrical part of the acoustic potential
(5), this wave gives the total acoustic field which appears as a result of the interaction
between the plane wave and the half-plane.

On the ground of the reciprocity theorem it is possible to mterchange the source
and the observation point positions. Thus, for cylindrical and spherical waves,
according to (58) it can be set that it is the source which is far from the edge. Then
the coefficients d(R), (82) and (83), can be interpreted as measures of the relative
curvature of the wave fronts interacting with the edge. The emerging diffraction

(84)

P(d, ¢,V =
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waves are cylindrical-type waves deformed by the coefficient d(R), with the
directional coefficients P(¢.,.v = 2) (80), generated by the diffraction edge.

For the wedge, the diffraction part of the acoustic potential (24) contains four
diffraction waves V“[R(«)]. To calculate them, it is necessary to use expression (73)
for

g ﬁo'ﬁ:}aﬁSMZsﬁ‘.’!n!Z' (85)

Moreover, inequality (75) must be satisfied for all R ().

Using the relations between the angle a occurring for the wedge, (25)28), the
diffraction part of the acoustic potential (24) can be rewritten in relation to the wave
V'(R) coming from the real source S:

exp {i[k(R, —R)+n/4]}
N/ 2mko

1

B ol

Vi=P($, 0,7 = 32)

d(R)V'(R), (86)

P(o,¢py,v=13/2)= %sin(2n:/3)
cos

1
i . (87
e SR &4,

3 3

It follows hence that if the waves of the three chosen types interact with the wedge,
the diffraction part of the acoustic potential (86) differs from the diffraction part for
half-plane (79) just in the directional coefficient P (¢, $o,v). For the half-plane it has
the form of (80), for the wedge that of (87). The other conclusions concerned with the
interpretation of the diffraction part of the acoustic potential remain valid. For the
six analyzed cases of wave interaction with obstacles the fulfilling of conditions (58),
(62), (63) and (75) gives the diffraction part of acoustical potential the same as that
derived on the ground of geometrical diffraction theory.

2.3. Explicit forms of the acoustic potential on geometric boundaries

The geometrical parts of the acoustic potential V?(¢;) on the geometrical
boundaries for the three chosen types of waves and two kinds of obstacles can be
obtained by substituting the appropriate forms of geometrical waves (64) in
expressions (48), (51), (53) and (56).

In the expressions describing the diffraction parts of the acoustic potential
V(¢g) on the geometrical boundaries, one of the components of the diffraction
waves is always determined by the explicit form of the potential of the geometrical
wave which vanishes on a given boundary (46), (47). If condition (75) is satisfied, the
other diffraction waves occurring in expressions (50) and (54) can be determined from
formula (73).
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E.g. on the shadow-boundary, for the half-plane the total acoustic potential is
equal to the diffraction part V?(¢gp) (50). In expression (50), the first term is
obtained, depending on the wave type, from one of expressions (67)-(72). In turn, the
other term can be determined from (73) only if inequality (75) is satisfied for it.

In the case of the wedge, in expressions (52), (55) and (57) describing the
diffraction parts of the potential on the geometrical boundaries, there are com-
ponents related to the vanishing geometrical wave (40), (47) and those which, after
satisfying condition (75), can be determined by expression (73). Moreover, there are
also terms of the form

V4[R (x = n=m,v)], (88)

=0, 400825, (89)

which cannot be described by means of expressions (73) and (74) because the
singularity occurs in expression (74) for o =nn. In this case, the directional
coefficients in the form

P(x = nm,v), (90)

should be replaced by their boundary values which can be obtained from the exact
solution of the Helmholtz equation for required boundary conditions [1]

P(ax = nm,v) = —(1/2v)ctg(n/v). 91)
For the half-plane:
Plea=nm,v=2)=0 (92)

i.e., according to expression (50), this problem does not exist. In turn for the right
angle wedge,

P(o = nm,v = 3/2) = —(1/3)ctg(2n/3). (93)

This makes possible to use formula (52), (55) and (57) for determining the diffraction
parts of the potential V?(¢) on the geometrical boundaries wherever condition (75)
is satisfied for components of diﬁ'ragtion waves without singularities.

2.4. Accuracy of the approximate formulae applied — ranges of applicability

The division of an exact solution describing the acoustic potential around the half-
plane into the geometrical and diffraction part is only possible for the incident plane
wave [2]. The geometrical part of the potential is described by expansion (5). In turn,
the diffraction part in the exact solution consists of two diffraction waves, which, in
keeping with the notation adapted here, have the form

V![R()] = —sgn(r—a)f(w)a[R,, R()] V' [R()], (94)
where for the plane wave interacting with the half-plane
a=f,p, (95)

a[R,,R(@)] = 1/2. (96)
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The function

F(w)
fw) = m, 97
represents the reduced Fresnel integral
F(w) = [ exp(ip*)du, (98)

where

w=/k[R,—R ()], (99)

is the square root, calculated in wavelengths, of the difference in the paths passed by
the waves to the observation point directly from the source (R (x)) and through the
edge (R,).

For the cylindrical and spherical waves interacting with the half-plane, the
solution in the form of the sum of the geometrical part of the acoustic potential (5)
and the diffraction part (10) whose component diffraction waves are given by
expression (94) is the approximate form of the solution which is valid if condition (58)
is satisfied.

— for cylindrical wave:

[ R@
a[R,R(a)] = IR, +R@] (100)

— for spherical wave

[ R®
i \/ 2R, [R, + R@)]

On the geometrical boundaries (12) and (15) ¢g = ¢gc, Pgp for diffraction waves
related to the vanishing geometrical waves for all the three types of waves, one
obtains the equalities:

R(¢ = ¢¢) =R, w[R,,R(¢ = ¢¢)] = 0. (102)

Hence, after substituting expressions (102) successively in formulae (100), (97) and
(94) it can be seen that equality (47) is valid on the geometrical boundaries.
If condition (75) is satisfied,

wlR,,R(@] = /k[R,—R@)] > 1, (103)

the reduced Fresnel integral (97) can be replaced by the first term of a series
expansion:

(101)

. m @j-1)
_explitw+ma[, @ 0,
fw) = T[I + ngl WJ (104)
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Then, the expression for the diffraction part of the acoustic potential is obtained in
the form of (79). This can be done for

w| >3 (105)

when the error is of the order of the absolute value of the first omitted term, i.e.
@2 /aw*)~! ~001.

For a plane wave interacting with a half-plane, the angular width A can be
determined for the regions around the geometrical boundaries ¢ for |w| = 3 inside
which expression (79) is not valid

Ppg—A< P <¢gt4, (106)

oo Zarcsin( \/5‘3) (107)
ke

koinhS (108)

For cylindrical and spherical waves, if condition (58) is initially satisfied, the
angular width 4 of the regions around the geometrical boundaries (for |w| = 3) where
formula (79) is not valid, is

4 4.5(kR, —4.5)
A =2arcsin| |————— ), 109
(\/ koo ke (9

kR, > 4.5. (110)

For plane and cylindrical waves, and also a spherical one (for z = z,), Table
1 shows the angular widths 4 of the regions, around the geometrical boundaries,
inside which expression (79) cannot be applied for preset parameters kg and kg,.
Also, Table 1 shows the approximate values of the absolute distances of the
observation point and the source from the edge for two chosen frequencies /= 500
and 1000 Hz as typical of noise in urban area.

It can be said in general (Table 1) that for decreasing values of the parameters
ko and kg,, the region in which the approximate expression (79) is valid becomes
narrower. Thus for small parameters k¢ and kg, effective use of the approxirhate
expressions is impossible.

In the case of the wedge, for the exact solution to be divided into the geometrical
and diffraction parts, assumptions (62) and (63) must be satisfied. At the same time if
condition (75) is fulfilled the diffraction waves can be described by formula (73). It is
more difficult to determine the angular width of the regions where these conditions
are not met as in the case of a single half-plane. On the other hand, it is possible to
estimate them as being of the same order as those in the case of interaction between
the chosen wave types and the half-plane.
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Table 1. The angular width of regions 4 (107), (109), around the
geometrical boundaries, inside which for given parameters kg and kg,
expression (79) is invalid, and the distances g, g,, for two frequencies f

ke keo AL °1 | e[m] | @o[m] | e[m] | go[m]
S=500 | f=500 |f= 1000 | f= 1000

[Hz] [Hz] [Hz] [Hz]
1000 co* 8 100 o0 50 o0
1000 1000 3 100 100 50 50

500 0 P 50 [o's) 25

500 1000 14 50 100 25 50
500 500 15 50 50 25 25
250 o 15 25 © 12.5 o
250 1000 17 25 100 12.5 50
250 500 19 25 50 12.5 25

250 250 22 25 25 125 12,5
125 Ivo) 22 12.5 00 6.3 v’}
50 o 34 5 o) 2.5 o0
25 o) 50 2.5 a0 1.3 Ive)
10 ve) 84 1 le'e} 0.5 0

* denotes a plane wave

3. Efficiency of the half-plane and wedge as obstacles disturbing the acoustic field

Comparative analysis of the interaction between the three chosen wave types
and a half-plane and a wedge can be carried on only for the systems in which the
source and the observation point are far from the diffraction edges. Exactly, such
situations are met in urban systems. In these systems, if the observation point is far
enough (75) from the geometrical boundaries, the diffraction part of the acoustic
potential can be determined for a half-plane from expression (79), for a wedge from
expression (86). .

Knowing the geometrical parts of potentials (5), (19) and the diffraction parts
(10), (24), it is possible to determine the acoustic field on the geometrical
boundaries. The diffraction wave related to the vanishing geometrical wave takes the
value according to (47). For the wedge, the diffraction wave having directional
coefficient with a singularity takes the value according to (93). The other diffraction
waves, which are not related to the disappearing geometrical wave, can be
determined according to (79) if condition (75) is satisfied.

If the widths 4 of the regions around the geometrical boundaries (Table 1) are
not too large, in keeping with the principle of continuity of the acoustic field,
extrapolation can be carried out between the value of the acoustic potential on the
geometrical boundary and the last of the values calculated according to the

12 — Arch. of Acoust. 1-2/88
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approximation conditions. In this way, a description of the field throughout the
region around the obstacle is obtained. To determine quantitatively the disturbance
caused in the free field by the presence of a half-plane or a wedge, the obstacle
efficiency is introduced:
14
IL ZOIOEI-V*I’ (111)
where Vis the total acoustic potential of the field disturbed by the obstacle and V* is
the acoustic potential of the free field (of the incident wave). With such a definition of
the efficiency of an obstacle, the fact that it takes positive values at the observation
point means a decrease in the sound pressure level caused by the presence of the
obstacle; the fact that it takes negative values represents an increase in the sound
pressure level caused by the presence of the obstacle.
The obstacle efficiency in the case of a half-plane (v = 2) and a wedge (v = 3/2),
regarded as ideally rigid, is a function of the position of the observation point
(¢,kq,2) and that of the source (¢, ko, z,) With respect to the diffraction edge,

IL= IL(¢, ¢y, ke, keo.2,2q,V)- (112)

It follows from the considerations in subsection 1.2 that the dependence of the
obstacle efficiency on particular parameters can be determined analytically only in
the shadow area: :

boc < ¢ <vm. (113)

In this area, the acoustic potential contains only the diffraction part which can be
represented in the form of one diffraction wave (79) for the half-plane, (86) for the
wedge, related to the phase and amplitude of the incident wave (V¥(R)).

In the regions where there is interference between geometrical and diffraction
waves only numerical analyse is possible. The efficiency is calculated as a function of
one parameter with the other fixed.

3.1. Efficiency of the half-plane and wedge in the shadow area

The shadow area occurs at the same time in the case of both obstacles
a half-plane (v = 2) and a wedge (v = 3/2) if the source is situated in the angular
interval (0, n/2) (Fig. 5 (IT)). Then, the obstacle efficiency according to (79) and (86)
has the form

- ~/ 2nkg
IL = ZOiogm—mlog [d(R)]. (114)

Taking into acount expressions (81)83), the obstacle efficiency for the three chosen
wave types can be given by:
— for a plane wave

IL, = 10log (2mkg)—2010g|P (¢, ¢4, V), (115)
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— for a cylindrical wave
IL, = IL,—10log(R/g,), (116)

— for a spherical wave
IL, = IL,—10log(R*/R, g,). (117)

It follows from formula (115) that the obstacle efficiency for a plane wave in the
shadow area is the greater the farther from the diffraction edge the observation
points and the farther it is from the shadow boundary. In the first case the value of
the parameter kg defining the relative position of the observation point (calculated in
wave lenghts) is large. In the second case the absolute value of the directional
coefficient P (¢, ¢,, v) [5] is small. The fact that the obstacle efficiency in the shadow
area for cylindrical and spherical waves is greater or smaller than the efficiency for
a plane wave depends on whether the quotients in the second terms of formulae (116)
and (117) are greater or smaller than unity. Moreover, for each of the three wave
types the inequality occurs:

IL;(¢, do, ko, koo, klz—2o|,v = 2)—IL;(¢, Po, k@, k@o, klz—2zo|,v = 3/2) > 0,
Jj=p.c,s, (118)

meaning that for the same positions of the source and the observation point the
efficiency of a half-plane in the shadow area is always greater than that of a right
angle wedge. At the same time, the shadow area for the half-plane is always greater
than that for the wedge, since part of the shadow area which occurs in the case of the
half-plane is occupied by the wedge itself.

3.2. Numerical examples

The calculations were made for two types of obstacle, a half-plane (v = 2) and
a right angle wedge (v = 3/2). Three types of incident waves were assumed: plane,
cylindrical and spherical (for z = z,). For cylindrical and spherical waves, a symme-
trical system (kg, ke, = 250, 500, 1000) and nonsymmetrical one (kg # ko,) were
taken, with kg and kg, occurring in three combinations of values used in the
symmetrical system. Four positions of the source were chosen, belonging to
successive regions distinguished in Fig. 5:
¢o = 10° with the source in region I (32),
¢, = 55° with the source in region I (32),
¢o =90° with the source on the boundary between region I (32) and region
I (37),
¢o = 135°  with the source in region III (40) and, at the same time, in region
IV (43). :
Table 2 lists the parameters for which the calculations were made.
The positions of the source in region I:

¢, = 10°,55°
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Table 2. The values of parameters and wave types for which the obstacle
efficiences were calculated

angular

obstacle wave
source : kgo | ke |kelkeo=m

position kind e

¢ =10°,755°, Vi=i211372 plane o0 250 0

- 90°, 135° 0 500 0

' oo | 1000 0

cylindrical | 250 | 250 1

500 | 500 1

1000 | 1000 1

1000 | 250 1/4
1000 | 500 12
500 | 250 12

spherical 250 | 250 1
500 | 500 1
1000 | 1000 1

1000 | 250 1/4
1000 | 500 12
500 | 250 1/2

are related to the presence of the shadow area for both of the obstacle. With the
position of the source:

¢O 5% 900)

the shadow area occurs only for the half-plane and it disappears for the wedge. The
position of the source:

b = 135°

causes the appearance of the shadow for the half-plane. In the case of the wedge,
there is no shadow, on the other hand, there is a wave reflected from the half-plane
¢ = 3m/2 = 270°. Table 3 shows the appropriate geometrical boundaries ¢sc, Pgp
¢ep» and in view of this, it is possible to distinguish four areas (Fig. 6):

— area A:
0< ¢ <dgp (119)
(which always occurs for the numerical examples)
— area B:
¢gc (for all the positions of the source in the case
of the half-plane and for the wedge for the source
pep<¢ <

position ¢, = 10°, 55°, 90°),
dgp (for the wedge, for ¢, = 135°), (120)



HALF-PLANE EDGE AND RIGHT ANGLE WEDGE 181

Table 3. The positions of the geometrical boundaries for the
numerical examples for the given angular position of the source

b
bound f
lwa:: reaﬂr:ctgd boundary, of
shadow R wave reflected
" boundary from half-plane
BT loc=nrdo| "B | g 302 = 2700
© - = 2 -
[ ] ¢GD - ¢0 ¢Gb [u]”r ¢0
L]
10 2 190 170 -
32 190 170 -
55 2 235 125 -
3/2 235 125 -
90 2 270 90 -
32 — 90 270
135 2 315 45 —
32 - 45 225
.a)

FiG. 6. Areas A, B, C, and D around the half-plane (a) and around the wedge (b), (c) distinguished in terms
of the character of the function IL (¢) describing the efficiency of the obstacle
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— area C:

360° (for the half-plane),
270° (for the wedge),

— area D (which occurs only for the wedge for ¢, = 135°)
Pip < O <20, (122)

In the numerical examples large values of the parameters k¢ and kg, describing
the relative positions of the observation point and the source we assumed, therefore
outside of the direct vicinity of the geometrical boundaries the amplitudes of the
diffraction waves are small [5]. This explains the structure of the acoustic fields in
the distinguished areas A, B, C and D and the resultant shape of the function IL (¢)
describing the obstacle efficiency in these areas.

Area C — the shadow area — is one where only diffraction waves occur. In this
area the obstacle efficiency is positive and increases while deepening into it.

In areas A and D the acoustic field has the same structure since in the areas the
direct wave (V'(R)) and one of the reflected waves (V*(R) or V*(R")) occur as the
dominating component waves.

The total field forms as a result of interference between geometrical and
diffraction waves. The effect of diffraction waves is visible only close to the
geometrical boundaries. Where the dominating component waves (the direct and
reflected ones) interfere in antiphases the amplitude of the total field is close to zero,
therefore the obstacle efficiency containing the logarithm of the field amplitude (111)
can take the large positive values. In turn, where the phases of the dominating
component waves coincide approximately, the field amplitude doubles and the
obstacle efficiency takes negative values close to — 6 dB. The latter fact confirms the
dominance of the direct and reflected waves in areas A and D, and simultaneously
the small influence of diffraction waves outside of the direct vicinity of - the
geometrical boundaries.

Area B is the one contained between two geometrical boundaries: the boundary
¢p of the wave reflected from the half-plane ¢ = 0 and the shadow boundary ¢g.
For the wedge, area B can be contained between the boundary ¢, of the wave
reflected from the half-plane ¢ = 0 and the boundary ¢, of the wave reflected from
the half-plane ¢ = 270°. In this area, except the direct vicinity of the geometrical
boundaries, the direct wave dominates. This means that, except the direct vicinity of
the geometrical boundaries, in area B there is an almost undisturbed field of the
incident wave. Therefore, in this area, the obstacle efficiency is equal to zero.

Passing to a more detailed discussion of the obstacle efficiency in the areas
distinguished, in the shadow area from formula (116), the difference between the
obstacle efficiencies for plane and cylindrical waves can be calculated:

AIL, = IL,—IL. = 10log(R/g,). (123)

For a given angular position of the source (¢,) the difference between the obstacle

Poc <P < { - (121)
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efficiencies for plane and cylindrical waves, as a function of the angular position of
the observation point (¢), depends only on the parameter

m = ko/kgo, (124)
then
AIL,.(¢) = Slog[1 +m?—2mcos (¢ —,)]. (125)

As a function of the angle ¢, 4IL, (¢) is at first positive, then deeper into the
shadow area it takes negative values. This means that deeper into the shadow the
obstacle efficiency for cylindrical wave becomes greater than that for a plane wave:

AL, (§) >0 for e < ¢ < ¢, (m),
AIL,(¢) <0 for ¢ > ¢,(m).

Table 4 gives the approximate values of the angles ¢, (m) for which AIL,, changes its

(126)

Table 4. The values of the angles ¢, (m) for which in the shadow

area the difference between the obstacle efficiency for plane and

cylindrical waves (4IL, and that for plane and spherical waves
AIL,, changes its sign)

Examples from Table 2 | ¢, (m)[ °1 | ¢ (m) [ °]

" corresponding to m values| for AIL, for AIL,

1 | ko = koo = 250, 500, 1000 300+¢, | 270+,

1/2 | kg =250, koo = 500 285+¢, | 254+,
ko = 500, kg, = 1000

1/4 | kg = 250, kgo = 1000 263+¢, | 248+¢,

sign, for three values of the parameter m used in the numerical examples (Table 2).
The plots of the function AIL, (¢) for ¢, = 55° for three values of m:

m=1, @/2 and 1/4,

are shown in Fig. 7. Since AIL, does not depend on v for the two obstacles
considered (v = 2, v = 3/2), the plots are the same, except that for the wedge they end
for ¢ = 270°. :

From formula (117), the difference in obstacle efficiency between the plane and
spherical waves in the shadow area can be calculated from the formula

AIL,, = IL,—IL, = 10log(R*/R, g,). (127)

As a function of the angular position of the observation point ¢, for z = 20, with
given values of ¢,, AIL,(¢) depends only on the parameter m:

va B am [(d—¢, 2
AIL,,,(¢)_101og[m+1 m+1..aos( : )] (128)
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AL, lo=270°

2]

5

FiG. 7. The difference AIL, (¢) 125 between the obstacle efficiencies for plane and cylindrical waves for
different values of the parameter m =1, 1/2 and 1/4

Bl 4, = 55°) = 235°

The difference in the obstacle efficiency between the plane and spherical waves in the
shadow area changes its sign for the angles ¢,(m) (Table 4):

AIL,,($) >0 for ¢gc < ¢ < P, (m),

AIL, () <0 for ¢ > ¢, (m). (12

The plots of AIL, (¢) for ¢, =55 are shown in Fig. 8.

AIL
[dBiy

FiG. 8. The difference AIL,,(¢) (128) between the obstacle efficiencies for plane and spherical waves for
different values of the parameter m =1, 1/2 and 1/4
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From formula (118) the efficiency of the half-plane in the shadow area is always
greater than that of the right angle wedge:

= - P g [P (¢, o, v = 3/2)|
AIL, = IL(v = 2)—IL(v = 3/2) ZOlog[iP(¢,¢o,v=2)l:|>0. (130)

The plot of difference (130) as a function of the angular position of the observation
point ¢ for ¢, = 10°, 55° is shown in Fig. 9.

AIL,(¢)=IL(v=2)-IL(v =3/2)
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FiG. 9. The difference AIL () (130) between the efficiencies of the half-plane and the right angle wedge in
the shadow area for two source positions ¢, = 10°, 55°

Analyzing the obstacle efficiencies in areas A and D for the chosen range of
parameters (Table 2), it can be said that for a given wave type, the same position of
the source (¢,, ko,) and the observation point (¢, kg) the efficiency of the half-plane
and the right angle wedge does not show differences with an accuracy up to
hundreths of a decibel:

IL(v=2=IL,(v=3/2), j=p.c,s. (131)

It follows from comparison of the efficiency for the cylindrical wave IL, and that of
the spherical wave I, in areas 4 and D, that for the same positions of the source and
the observation point the positions of the maxima and minima of the efficiency are
the same. On the other hand the absolute values of the efficiency |IL,| for the
cylindrical wave are almost always greater than those of the efficiency |IL| for the
spherical wave:

AL, = |IL|—|IL) > 0. (132)
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F1G. 10. The difference A|IL), (¢) between the absolute values of the obstacle efficiency for cylindrical and-
spherical waves for the source position ¢ = 55°, in a symmetrical system kg = kg,
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FiG. 11. The difference A|IL|, (¢) between the absolute values of the obstacle efficiency for cylindrical and
spherical waves for the source position ¢, = 55°, in a nonsymmetrical system kg # kg,

This is shown in Figs. 10 and 11 for symmetrical and nonsymmetrical positions of
the source and the observation point with respect to the diffraction edge, for
¢, = 55°. The fact that for the cylindrical wave in areas 4 and D the absolute values
of the efficiency |IL | are greater than those of |IL,| for the spherical wave, can be
explained by the existence of a greater degree of spatial correlation between the
dominating component waves which form the field in the case of a cylindrical wave.
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For the numerical examples, area D, where the dominating components are the
direct wave (V*(R)) and the geometrical wave reflected from the half-plane ¢ = 270°
(V(R")) occurs for ¢, = 135°, ie., for the position of the source on the axis of
symmetry of the wedge. Hence, the acoustic fields, and, thus, the efficiencies, in areas
D and A are the same (see Fig. 12). For comparison, Fig. 13 shows the efficiency of
the half-plane for ¢, = 135°. It can be seen from these figures that the efficiencies of
the half-plane and the wedge in area A are the same. Moreover, it can be seen that in
the case of the half-plane, area D does not occur, and is replaced by the shadow

area C.

14

=12

) 1L ($,0=3/2) [dB]

L 9ol =135°) = 45°

i 9, =135°
{ —— kg, =1000, kg =1000 I A
:'\ | === kg=500, kg=500 | [l
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% :
LA : A
iy \ | 0oy
| 4 .In' :"‘m : li "A\
I |
| |
| |
| |
I

Pl b0 = 135°)=225°

FiG. 12. The efficiency of the right angle wedge for spherical waves for ¢, = 135°
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ool #, =135°) =45°

#c( 8, =135°) = 3159
FiG. 13. The efficiency of the hali-plane for spherical waves for ¢ = 135°
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4. Conclusion

For the presented six cases of interaction between successively plane, cylindrical
and spherical waves, and the edges of an ideal rigid half-plane and an ideal rigid
wedge a uniform description of the acoustic field structure is achieved. It consists of
the geometrical part (5), (19) and the diffraction part (10), (24) of the acoustic
potential. It applies to systems in which, from conditions (58), (62) and (63), both the
source and the observation point are far from the diffraction edge.

In the diffraction part of the potential, diffraction waves defined by formulae (73)
and (74) and tied up to the appropriate geometrical waves were found. This made it
possible to determine the values taken by the diffraction waves on the geometrical
boundaries (47), (91). Far from the boundaries, where inequality (75) is met for all the
diffraction waves, the total effect of the interaction with the edge can be determined
from formulae (79) and (86).

If the areas A around the geometrical boundaries (Table 1) where expressions
(79) and (86) are not valid, are not too large, it is possible to obtain a continuous
description of the acoustic field throughout the region around the obstacle by
extrapolation from the value of the potential in the area where the approximation is
valid to the value on the geometrical boundary.

Describing the disturbance of the acoustic field caused by the presence of an
obstacle by introducing the obstacle efficiency (111) in the shadow area it is possible
to determine the analytical relations between the efficiencies of the half-plane and the
right angle wedge for the chosen types of waves.

Independently of the kind of the obstacle and the type of the wave, the obstacle
efficiency IL in the shadow area (114) is the greater the farther from the diffraction
edge the observation point and the source are, and the deeper into the shadow area
the farther from the .shadow boundary the observation point lies.

For the same positions of the observation point and the source, the efficiency of
the half-plane IL (v = 2) in the shadow area is always greater (118), (130) than that of
the right angle wedge IL(v = 3/2). At the same time, the shadow area for the wedge is
smaller, since the wedge occupies a part of the shadow area occurring for the
half-plane.

As a function of the angular distance from the shadow boundary, the efficiency
of a given obstacle is initially greater for the plane wave than for the cylindrical and
spherical ones (126), (129). Then, beginning with some values of the angles ¢, (m)
(Table 4), the efficiency for cylindrical and spherical waves is greater than that for
a plane wave.

On the basis of data resulting from calculations carried out for range of the
parameters ko and kg, (Table 2) typical of urban systems, around obstacle in
addition to the shadow area (C(121)) it is possible to find two other characteristic
regions: the area where reflected waves are present (4 (119), D(122)), and the area
where an almost undisturbed free field occurs (B(120)) and the obstacle efficiency is
zZero.
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In areas where reflected waves occur (4, D) the obstacle efficiency can take large
values at points where the dominating component waves (direct and reflected)
interfere in antiphases. At points where they interfere in the same phases, the barrier
efficiency takes negative values of about —6 dB.

The comparative analysis performed makes it possible to draw conclusions
about the structure of the acoustic fields around the obstacle in question. In real
urban system where the dominating phenomenon forming the acoustic field, is the-
diffraction at an edge, or a right angle wedge, from the formulae here it is possible to
determine the obstacle efficiency in regions where the approximation conditions are
satisfied. In areas for which it is necessary to consider interaction with additional
planes present, the given way of describing diffraction is a starting point for
calculations of the distributions of the acoustic fields.
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DETERMINATION OF CIRCULAR MEMBRANE PARAMETERS FROM ITS RESONANCE
FREQUENCIES

MARIUSZ ZIOLKO

Institute of Automatic Control, AGH (30-059 Krakow, al. Mickiewicza 30)

Circumferential forces, speed of elastic wave and dissipation of energy factor are
calculated from resonance frequencies of circular membranes made of tantalum and
nickel-chromium steel. The results obtained for a mathematical model without dissipation
are compared with the results obtained for a model with dissipation of energy. The
assignment of the coeflicient of partial differential equation is presented for this second case,
An algorithm applied to computer simulation of membrane vibrations is based on the “leap
frog” difference method.

Znajac czgstotliwosci rezonansowe membran kolowych mozna obliczy¢ ich ob-
wodowe sily napigcia, predkosci propagacji fal sprezystych i wspélczynnik dyssypacji
energii. Obliczenia przeprowadzono poslugujac si¢ danymi uzyskanymi dla membrany
tantalowej i membran ze stali niklowo-chromowej. Poréwnane sa wyniki obliczen dla
modelu matematycznego bez dyssypacji z rezultatami dla modelu uwzgledniajacego
rozpraszanie energii. Dla tego drugiego przypadku przedstawiony jest rowniez sposob
identyfikacji wspotczynnikéw réwnania rézniczkowego czastkowego na podstawie danych
eksperymentalnych. Algorytm zastosowany do komputerowego modelowania drgan mem-
bran opiera sig na metodzie réznicowej leap frog”.

1. Introduction

Euler gave a mathematical model of circular membrane vibrations [1, 4]. This is
the differential equation of the hyperbolic type for axial strain as a function of three
variables: time ¢ and polar co-ordinates, that is the distance from the centre of
membrane and angle ¢

l@_zz' %z lé‘z_lﬁzz_o )
ot a* ror rrog:

where the constant coefficient ¢ is the speed of elastic wave.
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It is most frequently assumed that the membrane is fixed stiff on the
circumference. This means that the boundary conditions for equation (1) are equal to
zero. Thus the solution of the homogeneous differential equation (1) presents
nondamped vibrations as a result of nonzero initial conditions. If they are well
assumed it is possible to simulate steady and symmetrical axial strains. Using the
classical method of separation of variables [1] [2] we obtain the relation

;R

c=—— )
%Ki

1

which enables to calculate the speed of elastic wave c. R is the radius of membrane, x;
are roots of Bessel's function of first kind and zero order, w; are resonance
frequencies. Next, from the speed of elastic wave it is possible tocalculate the
circumferencial force. This well known formula enables to calculate the value of the
force which is difficult to measure. Usually we can measure a few resonance
frequencies. For each of them we obtain from (2) an estimator for the speed of an
elastic wave. Differences between these estimators usually differ at the second
decimal place. This justifies a verification of the usability of a more complex
mathematical model with dissipation of energy.

2. Mathematical model of membrane

Assuming the axial symmetry of forces which deform membrane and in-
troducing into equation (1) the term for dissipation of energy and term for forced
vibration, we obtain nonhomogeneous partial differential equation of hyperbolic

type

2 ¥ 4 a
1.0%z 0%z z_l@_z=u, 3)

2o o ‘o ror
where z — transverse strain of membrane [m], ¢ — speed of elastic wave travelling
along the radius of membrane [m/s], a — positive coefficient of dissipation of the
energy [s/m?], u — force vibration function of time ¢ and space variable r[m™'],
t — time [s].
To obtain a unique solution of the equation (3) we assume initial conditions

0z .
B i <Y, W
z(r,0) =0, 7l 0 4
and boundary conditions
)
% =0, z(R,H=0, 5)
ar r=0

where R[m] is the radius of membrane. The first boundary condition follows from
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the axial symmetry of strain and the second one means that the membrane is fixed
stiff on circumference.

Using the classical method we assume that the solution of initial boundary
value problem (3), (4), (5) can be described as an infinite series

M8

z(r,t) =

T.(t) Ry (6)

1

A function forcing the vibration of membrane with frequency w can also be written
as an infinite series with separable variables

u(r,t) = i p; R;(r)sinwt, 7

i=1

where p, are constant coefficients.
Computing the partial derivatives of function (6) and substituting them into (3)
we obtain conditions
LTV Ti p K 1K

+af—ismwt 2y ;ﬁ;’ (8)

where the upper indexes denote the differentiation with respect to time for the left
side of (8) and differentiation with respect to the space variable for the right side of
(8). Denoting the value of both sides by —k? we- obtain two sets of ordinary
differential equations

1
R;—’+;R§+k,- R; =0, 9

1
C—Z'I"’;’-i—a Ti+k? T, = p;sinowt. (10)

The boundary condition for equation (9) is obtained from (5)
Ri(0)=0, R,(R)=0. ' (11)

In this way we improve the constrains for basis functions R,. It follows that function
u must fulfil conditions

0z

o =V, R=;
o 0 2®=0

for convergence of series (7).
From (4) we obtain the initial conditions for equation (10)

T,(0=0, Ti(0)=0. (12)

The solution of differential equation (9) is Bessel’s function of first kind and zero

13 — Arch. of Acoust. 1 2/88
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order which can be defined either by

R,(r) = 2 (—1y 5(5) (13)

or‘ in an equivalent form
R,(r) = Z aj(ki")ﬁ,
(14)
a;
ap=1, a;,,= _zlj_Jz'
From (13) we find that the first condition of (11) is always satisfied. The second
condition requires

k, =

, (15)

~|x

where x; are roots of Bessel’s function.
The solution of equation (10) with the initial conditions (12) has the form

T, = A;e”“sin(w;t + ¢;)+ B;sin (ot + ). (16)

The frequency of damping vibrations is given by
;= k’——. (17)
Introducing auxiliary variable

X2
si=ﬂk2—%) +a?w? (18)

we obtain initial amplitude for damping vibrations

g Sl (19)

Lo

The phase displacement of these vibrations is obtained from formula

¢; = arcsin = (20)
and the damping coefficient from
ac?
=— 1
- (21)
The amplitude of steady vibration with forced frequency is given by
By 2t 22)

S;
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and its phase displacement

W, = —arcsin —, (23)
S

i

The greatest amplitudes of the steady vibrations occur for resonance frequencies

e a’c?
r=— (k- 24
P=i - 24
and are given by
B =L, (29)
aw

where w; is defined by (17). The coefficient of dissipation must be small enough for
the i-th resonance vibrations to occur, that is

a< @ (26)

3. Determination of membrane parameters

The formula which connects resonance frequencies with the parameters of
membrane is obtained from (15) and (24). Assuming that we have managed to
measure N first resonance frequencies, which we denote now by w,, we obtain the set

of equations
2 2 A2
o} = c? [(xi) e ; ] @7)

This means that the resonance frequencies are the functions of three parameters:
speed of elastic wave, coefficient of dissipation and radius of membrane. The
Jacobian determinant of function (27) has the form

2 202 x2
20(%) g - 1% e gl

= . (28)

......................
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Only two columns of determinant (28) are linearly independent, therefore only two
parameters can be calculated from resonance frequencies. As it is easy to measure the
radius of membrane, so we will calculate, from (27), the speed of elastic wave and
coefficient of dissipation. :

From two arbitrary equations (27) we obtain

1<i, j<N, i#], (29)

where ¢;; is one of the estimates of the speed of elastic wave. For N resonance
frequencies, the average value of estimates is equal to

S 2
c= (—‘—) b S ™ (30)
N! 5 =i
Next we can calculate the force stretching the membrane [N/m]
F = qdc?, (31)

where g — mass density of material of membrane [kg/m?], d — membrane thickness
[m].

From (27) we can calculate estimates for the coefficient of dissipation

ﬁ x5 o
=R @ G2
and obtain finally
N
a= %;Z a;.

1

il

If it is possible to measure the amplitudes B} of vibrations of the centre of membrane,
we can calculate additionally the amplitudes of forced vibrations [1/m]

xpilahe?

p,-=BEac Ez'- 4 ;

(33)

4. Measurement of resonance frequencies

The vibrations of circular membrane, stretched with the same force on the whole
circumference, can be stimulated by a sonic waves. In this way, the resonance
frequencies of membrane were assigned. A variable frequency generator supplied
a loudspeaker and was connected with frequency meter. The sonic waves from the
loudspeaker reached microphone through the membrane fixed between the stret-
ching rings. The signal from the microphone was amplified and next measured by the
digital voltage meter. Experiments were started from the possible lowest frequency
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and afterward it was increased gradually. The first resonance frequency was found
when the sound intensity indicated by the microphone had the well-marked greatest
value. Next, by increasing the frequency of generator once again, the other resonance
vibrations were found.

Measurements were carried out for membranes made of tantalum and ni-
ckel-chromium steel. The first five resonance frequencies were found for every
membrane. The results are presented in Table 1.

Table 1. Measurement results

Membrane No 1 2 3

Material tanta- | steel steel

‘ lum

Radius [mm] 278 | 278 40

Thickness [mm] |0.025 |0.127 0.127

Roots of Bessel’s Resonance Amplitude
function frequencies [Hz] [mm]
240483 434 | 1043 | 695 1.25
5.52008 1050 | 2594 | 1940 0.54
8.65373 1658 | 4115 | 3130 0.34
11.79153 2264 | 5630 | 4285 025
14.93092 2870 | 7141 | 5428 0.19

Sometimes the vibrations of the center of membrane have amplitude great
enough to be measured. For this purpose the measuring position was equipped
additionally with a micrometer screw. Its end was placed above the center of the
membrane. The junction of micrometer screw with the metal membrane was
signalled by an ohmmeter as an electric short circuit. After putting the membrane
into resonance vibrations, the micrometer screw was dropped until the junction of
the micrometer screw with the membrane during its greatest deflection. Next, the
generator was switched off and the micrometer screw was dropped once again until it
reached the membrane. The difference between the positions of micrometer screw in
both these cases was equal to the amplitude of membrane vibrations. These
measurements were made only for the third membrane which had the greatest
amplitudes of vibration.

Substituting the values of the resonance frequencies into (2) we obtain for Euler
equation (1) the estimates of coefficient ¢. The results of these calculations for data
from Table 1 are presented in Table 2. For every membrane there were measured five
resonance frequencies, therefore we obtained five estimates of parameter c. The last
line of Table 2 presents the mean values of wave speeds.

From formula (29) we obtain for each membrane ten estimates of the speed of
elastic wave. The results are presented in Table 3 and their mean values are written
in the last line. The circumferencial forces were calculated in accordance with (31).
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Table. 2. Speeds of elastic waves calculated from
Euler’s model [m/s]

No of resonance Membrane No

frequency 1 2 3
1 31.52 75.76 72.63
2 33.23 82.08 88.33
3 3347 83.06 90.90
4 33.54 83.40 91.33
5 33.58 83.54 91.37
average 33.07 81.57 86.91

Table 3. Speeds of elastic waves [m/s] and circumferencial forces [N/m] calculated
from the model with dissipation

. Membrane
Estimate No 1 2 3
speed force speed force speed force
1 33.61 469 83.49 7120 91.62 8580
2 33.62 469 83.64 7150 9227 8700
3 33.62 469 83.72 7160 92.06 8660
4 33.63 469 83.74 7160 91.81 8610
5 33.63 469 83.72 7160 92.63 8770
6 33.62 469 83.77 7170 92.16 8680
7 33.63 469 83.77 7170 91.84 8620
8 33.62 469 83.79 7170° | 9183 8620
9 33.63 469 83.78 7170 91.60 8570
10 33.64 470 83.77 7170 91.43 8540
average 33.63 469 83.72 7160 91.93 8640

Table 4. Values of dissipation coefficients [s/m*]

No of resonance Membrane No

frequency 1 2 3
1 1.27 0.622 0.567
2 1.29 0.660 0.588
3 1.27 0.659 0.495
4 1.29 0.626 0.514
5 1.24 0.594 0.631

average 1.27 0.632 0.559
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The mass density for tantalum was assumed q = 16.6 [g/cm®], while for nic-
kel-chromium steel g = 8.045 [g/cm?].

Table 4 presents the values of the dissipation coefficient calculated from (32) for
five resonance frequencies and their mean values. We obtain the damping coefficient
by putting mean values of ¢ and a into formula (21). For data presented in Tables
3 and 4 we obtain values

a, = TI8[1/s], @, =2215[1/s], a,=2362[1/s].

For the third membrane were measured the amplitudes of vibrations addition-
ally (Table 1), therefore it was possible to compute amplitudes of forced vibrations
according to (33). The results are presented in Table 5.

Table 5. Amplitudes of forced
vibrations

No of
resonance
frequency

Amplitudes
[1/m]

0.349
0.376
0.375
0.377
0.364

L S

5. Computer modelling of membrane vibrations

The “leap frog” difference method is frequently used to solve numerically the
partial differential equation of hyperbolic type. In the adequate distribution of knots
of the space-grid the “wave character” of the occurred phenomena is taken into
account. The second valuable advantage of this method is the simplicity of its
algorithm. For these reasons the leap frog method was used to solve numerically
equation (3) which is the mathematical model of vibrating membrane.

Dividing the membrane along its radius into N segments, we define the
arrangement of knots of discrete space

2R

h
4= {(r,,tk).r, =R—(=Dhty= k=2~ h=5r—i 1=1,2,... N+1;

h

where T denotes the final time. The knots are distributed in such a way that the
coefficient of derivative in equation (3).with respect to membrane radius is limited,

k=1,2,....E}, (34)
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FiG. 1. Distribution of knots in space grid

that is r, # 0. Thanks to that, the coefficients of difference equation are also limited.
The derivatives from equation (3) are approximated by difference quotients in the
following terms

0z c azz CZ

—~(zlk+l_zi—1)_s —"‘(Z;‘+1_22i—1+zi—1)—
ot 2h ar? hA
(35)

Kl 2
O MU SR T

For the interior knots defined by (34) the approximate solution of the differential
equation (3) is calculated from formula

W g 1+1 =1
Zhi1 = Zh-qWi+2Zk  WotZi W3t WaUR-a- bk (36)

where the coefficients have values
w—-E+-1-—1 w—ﬁ——i—w
+=\2n"w2) ° "' \2n m)"*
e yamistv T febom tetisfNEN S AR 1
2=\ mR=(-1m)"* 2 \W T 2h[R—(-DK]) "
For the boundary knots we obtain from (5)

=z, k=3,4,.. (37

The leap frog method is a three-step difference scheme. Therefore, at the
beginning we put values into the first two steps

2=e0, l=1,2....N+1. (38)

z2t=0, !

In this way we take into account the initial conditions (4).
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The mesh width results from definition (34)

2R 2R

b aiSinatlio: At sbicgdie o4y
Nt o elN—1)

(39)
The number of all knots is

1= (2N2+N—1);—;. (40)

It means that the time of computations increases considerably for large N. To obtain
correct results of computer modelling of membrane vibrations with the frequency
f [Hz] it is sufficient to take

N = 40R?f. ‘ (41)

Vibrations with the fifth resonance frequency for the membrane number 3 were-
simulated taking N = 100, in other words

Ar = 402,01 [um], A4t = 4.373[ps].

For this example the time-constant of unsteady state, equal to inverse of a, is equal to
0.42 [ms]. Therefore we can assume that unsteady state vanishes after time 1.7 [ms].

6. Conclusions

In Table 2 there are presented the results of calculations for the classical
mathematical model without dissipation. The estimates for the speed of propagation
. of elastic wave were obtained for each resonance vibration. Differences between them
and their mean values are considerable, especially for low frequencies. These
differences amount from a few percents for the first and second membrane until 16%
for the third membrane. On the other hand, the estimates of speed of elastic wave
calculated for the model with dissipation (Table 3) have small deviations (less than
1%). The mean values of speed of elastic waves for the model with dissipation are
greater than the mean values for the model without dissipation. The differences are
considerable, they are equal to a few percents.

The coefficient of dissipation introduced as a new parameter into the ma-
thematical model, enable to fit better the mathematical model to the experimental
data. This.possibility exists in general, even if there is no physical justification for
such a treatment. However, we must remember that the formula (32) can be used
only if k; > wjc.

For the first membrane there are small differences between the estimates of
coefficient of dissipation (Table 4). The greatest difference between the mean value



" M. ZIOLKO

and the estimate, occurs for the fifth resonance frequency of third membrane. Its
value is equal to 13%.

The generator of electric sinusoidal oscillations had constant amplitude for all
frequencies. Therefore the amplitudes of forced vibrations presented in Table 5 are
not far each from the other.

The additional advantage of taking into account the dissipation of energy
consists in obtaining formulae for numerical solution of the differential equation with
better property of numerical stability.
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