ARCHIVES OF ACOUSTICS
12, 1, 3-15 (1987)

THRESHOLDS OF PERCEPTION OF MIXED MODULATION*

EDWARD OZIMEK, ALEKSANDER SEK

Institute of Acoustics, A. Mickiewicz University in Poznan
(60-769 Poznan, ul. Matejki 48/49)

This paper is concerned with the determination of perception thresholds of mixed
modulation (MM) for chosen physical parameters of a signal. Besides a tonal modulating
signal, also an irregular modulating signal in the form of a very narrow noise band with
a definite mid-band frequency was applied in the course of research.

It was stated that the perception of modulated signals is governed by two
mechanisms: the time mechanism and the spectral mechanism, which do not depend on the
type of modulation. These mechanisms become evident at definite values of the modulation
frequency, which, as we know, conditions the rate of amplitude and frequency changes of
the modulated signal.

We have to do with the time mechanism at slow changes of physical parameters of
this signal (low modulating frequency). Whereas, when the changes of these parameters are
quick (high modulating frequency) the spectral mechanism takes place.

The hypothesis concerning the existance of such perception mechanisms was
confirmed by obtained experimental results.

1. Introduction

The problem of perception of sound amplitude and frequency changes has been
widely discussed in literature — from the point of view of psychoacoustic
investigations [1, 3, 5, 6, 10-12] and neurophysiologic studies [8, 9]. Two main
hypothesis’ concerning the perception of amplitude-frequency changes of a signal can
be distinguished. One of them was presented by ZWICKER [11] and MAIwALD [6, 7].
It assumes that amplitude and frequency changes are registered by one and the same
perception mechanism. Whereas, the second hypothesis presented by Coninx [1],
assumes that two independent perception mechanisms of these changes exist, i.e.
a separate perception mechanism of amplitude changes and separate perception
mechanism of frequency changes. :

* Research was performed within the framework of problem MR.1.24.1X.
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A solution to this problem was sought in various experiments, which concerned
thresholds of amplitude and frequency modulation perception [10, 12], difference
limens of loudness and pitch [3], monaural phase perception [4], etc. These
experiments have contributed significantly to a fuller description of the discussed
problem. However, they did not confirm the justness of one out of the two presented
hypothesis’.

An unconventional approach to the mentioned above problem was presented in
papers [1, 2, 5-7, 11], which concern the perception of simultaneous amplitude and
frequency changes with modulation (so-called mixed modulation, MM). The
perception of amplitude and frequency changes in the case of the first hypothesis,
which accepts the existance of a single, common mechanism, should proceed in a
similar manner.

This means that the perception of frequency changes at mixed modulation
should depend on coexisting amplitude changes. Whereas, in the case of the second
hypothesis, which accepts the existance of two independent mechanisms, the
perception of amplitude changes in the conditions of mixed modulation should be
independent from coexisting frequency changes.

ZWwICKER’S paper [11] is on of the first, which postulates the existance of one
perception mechanism of amplitude and frequency changes of a singal. It analyses
the sensation created by amplitude (4M), frequency (FM) and mixed (MM)
modulation of an octave noise band (1-2 kHz), partially masked by a noise
contained in band 2-10.5 kHz. It results from this paper that amplitude modulated
signals can be evaluated as equal to frequency modulated signals, if adequate
modulation indices (i.e. m and p) strictly satisfy definite relations. Investigations on
the possibility of equalizing senstations created by mixed modulation and frequency
modulation have proved that for a MM signal two effects, dependent on the phase
difference between signals which modulate amplitude and frequency, can occur.
Consistant phases of these signals cause a “deepening” (addition) of modulation
effects, expressed by an increased deviation of the FM signal. As for opposite phases
of these signals, the intensification of the modulation effect is observed only at lower
frequencies (f,, < 100 Hz) and for values of the amplitude modulation factor
exceeding 20-30%, while for the modulating frequency equal to f,, = 50 Hz and for
m < 20%, the modulation effect is attenuated.

MAIwALD’s paper [6] deals with a similar problem. Instead of a modulated
noise octave, as in paper [11], a simple tone with amplitude and frequency
modulated at the same time was applied. This research has led to results similar to
those obtained in paper [11]. It should be noticed that mentioned above papers
[6, 11] deal with relatively slow amplitude and frequency changes of the signal
(Zwicker — f, = 3 and 10 Hz, MatwaLD — f, =4 Hz), and high values of
deviation and amplitude modulation factor in comparison with threshold values.

Results of papers presented above have contributed to the formation of a
functional perception model of modulated signals. According to this model, one
mechanism governs the perception process of small amplitude and frequency
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changes. On the basis of this model, supplemented with MAIWALD’S more recent
studies [7], the perception threshold of amplitude modulation can be calculated, as
well as loudness difference limens, if the spectrum of the acoustic signal is known.

The problem of perception of MM signals and MM signals partially masked
with a noise band, for consistant and opposite phases of amplitude and frequency
modulating signals, has been analysed in CoNINX’s paper [1]. These studies have led
to the normalization of curves of just noticeable amplitude and frequency
modulation in relation to threshold values. The cooperation of both types of
modulation can be evaluated from these curves. Coninx gives the relationship
between the threshold of amplitude modulation and coexisting frequency modulation
at the absence of other signals for only one case. On the basis of this relationship it
can be stated that a case of consistant phases of modulating signals, at definite
experimental conditions (i.e. carrier frequency 8 kHz and modulating frequency 5
Hz), the coexistance of two types of modulation causes the “summation” (in the sense
of mutual aid) of sensations created by both types of modulation. In the case of
opposite phases between modulating signals, the cooperation of these types of
modulation do not influence the values of thresholds so significantly. Values of
thresholds are approximately independent from the coexisting modulation with
sub-threshold value. A final conclusion can be drawn from research performed by
CoNiNX — two independent perception mechanism of amplitude and frequency
changes exist. According to CoNINX, the cooperation between amplitude and
frequency changes, which was proved on the basis of asymmetric shapes of curves of
just noticeable modulations, can be explained not on the basis of one perception
mechanisiu of amplitude and frequency changes, but on the basis of a mutual
influence of amplitude on the pitch, and of frequency on the loudness of a signal. This
problem has been also considered in detail in paper [3]. In another paper [2]
Coninx tried to explain differences in the perception of MM signals with consistent
and opposite phases between modulating signals, by converting amplitude and
frequency changes into loudness and pitch changes, respectively.

Also the paper of HARTMANN and HNATH [5] is an important work in this
domain. It deals with the perception of modulated signals; AM, FM and MM , and
includes the masking effect. This paper was aimed at the determination of the
individual components of a signal spectrum on values of the threshold of modulation
perception. The dependence of the threshold of mixed modulation perception on the
quotient of frequency and amplitude modulation indices for a case of consistent and
opposite phases between signals modulating amplitude and frequency is especially
important in this work.

This paper has led to the extension of the perception model of modulated
signals, which was developed by GOLDSTEIN [4], and to the determination of its two
boundary cases. These are: non-summation model, according to which the
modulation is percepted on the basis of the dominating spectrum component; and
the envelope fluctuation model, according to which the modulation takes place due
to the perception of fluctuations of physical parameters of a modulated signal. On
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the basis of the discovered relationship between adequate modulation indices on the
threshold of mixed modulation perception, HARTMANN and HNATH could support
ZWICKER’S hypothesis [12], which assumes the existance of one mechanism
responsible for the perception of amplitude and frequency modulation.

2. Time and spectral structure of MM signals

Let us consider a tonal signal with angular frequency w, in the following form
a(t) = A(t)coswyt, (1)
with amplitude and frequency modulated by another tonal signal
b(t) = Bcosw,,t. (2)
The time structure of this signal can be written as
a(t) = Ay[1+mcos(w,,t + @) cos[w ot + Bsin(w,,t+ )] (3)

where m and f denote amplitude and frequency modulation indices, respectively, and
@ — is the phase shift between signals, which modulate amplitude and frequency.
Making use of a simple trigonometric transformation and assuming that m, f < 1 it
can be easily proved that

a(t) =~ Aycoswyt +(Ay/2)(mcosp — feosy)cos(wy, — w,,)t
+(Ay/2)(mcos ¢ + Pcosy)cos(wg + w,,)t
+(Ao/2)(msin @ — fsiny)sin(w, —w,,)t
—(Ay/2) (msin @ + fsin ) sin(wg +w,,) L. 4)

As it results from equation (4), the spectrum of an amplitude and frequency
modulated signal consists of three fundamental components — the central one
represents the carrier signal, while the sidebands are results of modulation. It should
be noticed that amplitude values of sidebands depend on the mutual phase shift of
signals, which modulate amplitude and frequency. When this shift equals ¢ = ¢ = 0,
then amplitude of the bands are proportional to m—§ for the lower and to m+ f§ for
the higher band (Fig. 1).

A,
A o
o2
A mB
)
CJ, =0 W, W, + W, w

Fig. 1. Spectrum of signal simultanously amplitude and frequency modulated by a sinusoidal signal (see
relationship (4)
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The determination of the spectrum of a tone with amplitude and frequency
modulated by a random signal is a more complicated problem than in the case of a
tone modulated by a sinusoidal signal. The random modulating signal was accepted
as the result of a stationary ergodic process with a normal distribution, in order to
determine the spectrum of such a tone. Then its autocorrelation function, rms value
and correlation function for the modulated signal could be derived. Additionally, the
power spectral density of the modulated signal could be determined on the basis of
the WIENER-CHINCZYN theorem.

This new method of determination of modulated signals is inconvenient in
practice, because (in a case of correlated signals which modulate amplitude and
frequency) the probability distribution of the product of the random signal and its
integral has to be found. Moreover, this method does not give a direct measure of
modulation, which has to be defined for measuring purposes.

Therefore, in this paper certain simplifying assumptions concerning the random
modulating signal were made in order to determine the spectrum of a tone
modulated by a random signal. Namely, the modulating signal (in this case a very
narrow noise band) can be approximated by a tone with its frequency equal to the
mid-band frequency and the amplitude equal to the rms of the noise band. And so,

n(t) = \/o*cosw,t,

where o is the variance of the noise band. When an assumption is made, that the
phase shift ¢ —y between the amplitude and frequency modulating signal is equal to
zero, then the time and spectral form of the modulated signal can be noted in an
analogic manner as in the case of a signal modulated by a tone, ie.

a(t) = Ay(1+mycosw,t)cos(wyt + P sinw,,t) (5)
and

a(t) & Agcos wyt +(Ag/2) (M — P.g) cOs (0o — @,,) t +(A/2) (Mg + Pog) cOS (0o + @,) 2.
(6)

My = (/P /ADk;  Bee = dogfo, = (/TP /AK (7)
denote the rms index of amplitude modulation factor and the rms index of frequency
modulation, respectively. They are the measures of modulation. It results from
equation (6) that the spectrum of a tone with the amplitude and frequency modulated
by a noise band is similar to the spectrum of a tone modulated by a sinusoidal
signal, however, sidebands appear instead of spectral components. An identical result
can be achieved under an assumption that the modulating noise band consists of a
finite amount of components with adequate amplitude and frequencies, which are
within this band. The obtained above form of a spectrum of a tone amplitude and
frequency modulated by a random signal has been confirmed by results of an
experimental analysis of modulated signals, which were audio monitored during the
course of investigations.

Quantities
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3. Aim of research

As it results from paragraph 1, the problem of mixed modulation has been
undertaken in many research contexts. First works on mixed modulation concerned
the evaluation of signals modulated with the application of such values of
modulation indices, which considerably exceeded thresholds of their perception.
Only ConiNx (carrier frequency 8 kHz, modulating frequency 5 Hz) [1] and
HARTMANN (carrier frequency 1 kHz and modulating frequency 25 Hz) have
determined thresholds of perception of mixed modulation with a varying percentage
share of amplitude and frequency modulation. Signals used in papers [1, 5] are
relatively simple, regular sinusoidal signals, which differ from occuring in practice
signals, which determine amplitude and frequency changes (e.g. in speech or music).

Research performed here was aimed at the determination of thresholds of
perception of changes occurring in an amplitude and frequency modulated (MM)
signal in two cases. In the first case a regular signal (sinusoidal) was the modulating
signal, while in the second case — an irregular signal (random), which was applied in
such investigations for the first time. The application of a random modulating signal
allowed a closer approximation of reality (i.e. sounds of speech and music, which are
characterized by irregular changes of amplitude and frequency) by experimental
conditions. Moreover, a comparison could be done between changes of thresholds of
perception in both cases, i.e. regular and irregular changes of physical parameters of
an MM signal.

4. Apparatus and research methods

A generator with the amplitude and frequency of the output signal controlled by
external voltage, was the main element of the apparatus applied in the determination
of thresholds of perception of simultaneous amplitude and frequency changes of
a modulated signal. In dependence on the type of experiment, either a tone generator
or a white noise generator with a filtering system were used as the source of voltage.

Simultaneous amplitude and frequency changes were archieved as a result of
mixed modulation (MM) of a tone by a sinusoidal or random signal. Regular or
irregular changes of physical parameters of the modulated signal were obtained.
Measurements of threshold values for a case of a tone-tone modulation were
performed for a signal with frequency equal to: 4, 64, 400 Hz. These values of
modulation frequency to a certain extent represent three characteristic regions of
perception of modulated signals. Namely: the “follow up” region, where the organ of
hearing keeps up with the observation of loudness maxima and minima, and the
pitch of a signal; the roughness region, where changes of physical parameters occur
so quickly that the ear is not able to register them and sufficiently slowly for
sidebands of the spectrum to belong to the same critical band; region of separation of
sidebands, where sidebands of the spectrum are outside the critical band, which
corresponds to the carrier signal.
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Measurements for a case of an irregular modulating signal were performed for a
signal with the carrier frequency equal to 1000 Hz and for three bands of modulating
noise with the width of 1.5% mid-band frequencies equal to 4, 64, 400 Hz.

In the course of all experiments the signal was presented monaurally through
SN 60 earphone. The intensity level of a signal was constant and equal to 75 dB, and
the phase shift between signals modulating amplitude and frequency was equal to
Zero.

Measurements were carried out on the basis of a modified tuning method.
According to this method, the listener with the application of a special controller set
such a value of amplitude modulation factor or its deviation, which was evaluated as
threshold. This was done in two series: ascending, from very small subthreshold
changes of m or f§ values to just noticeable values; and descending, from very high
supra threshold values of m or f, at which the modulation was clearly audible to the
moment at which the signal did not change at all, according to the listener. Data
obtained in ten ascending tests and ten descending tests were statistically tested with
the test of goodness of fit, test of rank sum, F-Snedecor test at the significance level of
o = 0.05, in order to determine whether results from both series are from one
population. Positive results of these tests have supported this hypothesis.

Two listeners with audiologically normal hearing participated in the ex-
periment.

5. Results of measurements and their analysis

Thresholds of perception of amplitude modulation and frequency modulation
were determined seperately in the first part of investigations in order to compare
them with data from literature and to verify applied methods. Experiments were
performed for a regular and irregular modulating signal. Obtained results are
presented in Figs. 2a and 2b — for listener EO and AS, respectively. These figures
also show experimental results achieved by ZwiCker [12] for comparative reasons.
Figs. 2a, b prove obtained results to be quantitatively and qualitatively consistant
with data from literature.

Thresholds of perception of amplitude and frequency modulation differ strongly
at low modulating frequencies (f,,,; < 70 Hz), while above this frequency they accept
approximately identical values. This happens due to the monoaural phase effect
(worked out by GoLDSTEIN [4]). A significant decrease of threshold values,
accompanying an increase of the modulating frequency above 70 Hz is observed,
because the spectrum of the modulated signal exceeds the width of one critical band.
In such a case the amplitude and frequency modulation are percepted as identical
phenomena and the phase effect disappears. As it has been mentioned previously also
thresholds of perception of amplitude and frequency modulation obtained with
irregular modulating signals have been determined separately. Research results are
shown in Figs. 2a and 2b.
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Fig. 2. Thresholds of perception of amplitude (AM) and frequency (FM modulation for a regular
(sinusoidal) and irregular (random) modulating signai in terms of modulating frequency, a — for listener
EO, b — for listener AS

Research was concerned mainly with the determination of thresholds of
perception of mixed modulation. To this end, at an adequately chosen subthreshold
value of the amplitude modulation factor, the listener himself increased the signal
deviation to the moment when he percepted (observed) just noticeable changes of
the signal (ascending series), or decreased its value to the moment when he percepted
a pure sound (descending series). Subthreshold values of the amplitude modulation
factor were equal to

0.2m,; 0.4m,; 0.6m,; 0.8m,; 1 m,

(i.e. expressed as a fraction of the threshold value m,, which has been determined in
the first part of research). Figs, 3, 4 and 5 present changes of thresholds of perception
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Fig. 3. Thresholds of perception of amplitu- Fig. 4. Thresholds of perception of amplitu-
de-frequency modulation of a tonal signal for de-frequency modulation of a tonal signal for
listener EO, for a regular modulating signal listener AS for a regular modulating signal with
with the following frequencies: 4, 64, 400 Hz the following frequencies: 4, 64, 400 Hz

of mixed modulation (amplitude-frequency) for regular (Figs. 3, 4) and irregular
(Figs. 5) amplitude and frequency changes of the modulated signal. The following
quantities are marked on the respective coordinate axes of these diagrams: adequats
frequency f and amplitude m modulation indices, normalized with respect to
threshold values (f,, m,), which were determined in the first part of investigations.
Curves marked 1 in Figs. 3 and 4 represent changes of thresholds for a regular
modulating signal with frequency f,, = 4 Hz, for listeners EO and AS, respectively. It
results from these diagrams that an increase of the amplitude modulation factor m
from O to the threshold value (i.e. when m/m, = 100%) for f,, = 4 Hz, causes a
significant decrease of the frequency modulation index.

Hence, we can infer that in the range of low modulating frequencies, i.e. in the
region in which the ear can “follow” the changes of values of signal parameters in
time, a coupling is observed in the sense of summation (aid) of sensations produces
by both types of modulation under consideration. Or in other words — subthreshold
changes of amplitude and subthreshold changes of frequency, which are produced
simultaneously in a sinusoidal signal (in the conditions of mixed modulation M M),
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Fig. 5. Thresholds of perception of amplitude-frequency modulation of a tonal signal for listeners EO and
AS for a random modulating signal with mid-band frequency equal to: a — 4 Hz, b — 64 Hz, ¢ — 400 Hz,
and width 1.5%

are percepted by listeners for definite values of m and . Similar relations have been
observed by Coninx [1] for threshold values, and Zwicker [10] for above threshold
values.

Such an effect of summation of sensations, created by simultaneous AM and
FM modulation, has not been observed in the case of an irregular modulating signal,
ie. for irregular amplitude and frequency changes of the tone (see Fig. 5a). In this
case the MM threshold does not depend on occuring changes of the amplitude of the
signal, which are determined by the value of the amplitude modulation factor. The
divergence of MM thresholds for a regular (sinusoidal) and irregular (random)
modulating signal is rather surprising, because threshold values determined from
separate investigations of amplitude and frequency modulation, were very similar for
both types of the modulation signal, i.e. regular and irregular (see Figs. 2a and 2b).
Curves marked 3 in Figs. 3 and 4 represent thresholds of mixed modulation for
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modulating frequency f,,,s = 400 Hz, for listeners EQ and AS, respectively. It results
from these figures that an increase of the amplitude modulation factor causes
a distinct increase of the frequency modulation index B. Therefore, here the
cooperation of both types of modulation preceeds in the opposite direction with
respect to the case for f,,q =4 Hz. It should be noticed that the modulating
frequency is high and so sidebands of the spectrum of the modulated signal are far
outside the critical band region determined by the carrier signal. Thresholds achieved
for this modulating frequency can be explained on the basis of HARTMANN’S and
HNATH’S theory. According to this theory the threshold of perception of modulation
(AM, FM or M M) for high modulating frequencies depends on the amplitude value
of the component with lower frequency, rather than on the frequency of the carrier
signal. Therefore, if we accept that in our case the threshold of mixed modulation
(M M) occurs for the amplitude of the lower component of the spectrum, equal to 4,
then from equation (4) we have,

L= 2m—p) ®)

and

AL
f=m-2 7 s 9
It results from equation (9) that at the threshold of perception of mixed modulation
the frequency modulation index is in linear dependence with the amplitude
modulation factor m. Such a relationship is presented approximately by curves
marked 3 in Figs. 3 and 4.

A similar situation takes place for an irregular modulating signal. Results of
investigations for this case are shown in Fig. 5b. Also here the frequency modulation
index increases linearly with an increase of the amplitude modulation factor in a
certain interval. This proves that the irregular character of rapidly changing physical
parameters of the signal does not influence perception significantly. Curves marked 2
in Figs. 3 and 4 represent thresholds of perception of mixed modulation for listeners
EQ and AS, respectively, when a sinusoidal signal with frequency f,.q = 64 Hz is the
modulating signal. It results from these figures that results obtained for both listeners
differ in quality. For listener AS (Fig. 4) an approximately linear increase of the
frequency modulating index f accompanies the increase of the amplitude modulation
factor m, while for listener EO (Fig. 3) the f value decreases with an increase of m.
Therefore, a cooperation of both types of modulation in the sense of their mutual aid,
very much like for the modulation frequency of 4 Hz, was stated for listener EO,
while in the case of listener AS, the cooperation has a reverse direction, like for
modulating frequency f.,a = 400 Hz.

Fig. Sc presents thresholds analogic to those in Figs, 3, 4 (curves marked 2), but
in this case a narrow noise band with mid-band frequency equal to 64 Hz is the
modulating signal. We can see that an initial increase of the amplitude modulation
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factor causes a small rise of the frequency modulation index, what suggests a case
analogic to that for f,.s = 400 Hz, ie. mutual weakening of sensations created by
both types of modulation. However, a further increase of the amplitude modulation
factor causes a decrease of f to its initial value, i.e. like for f,,a = 4 Hz. Presented
above results of experiments point to a rather complex mechanism of perception of
MM modulated signals. The spectral structurs, or in other words — the component
with frequency lower than the carrier frequency of the signal, is the factor, which
determines the perceptivity of changes in 4 case of regular amplitude and frequency
changes of the signal occuring very quickly (high value of f,.4). This means that the
component with higher frequency does not influence the perception process at the
threshold of perception, although its amplitude is by A4, f higher than the amplitude
of the lower component. Thus, the component with higher frequency undergoes
complete masking by the carrier signal at high modulating frequencies, what
HARTMANN and HNATH postulated in their theory [5].

The situation differs greatly for the modulating frequency equal to 4 Hz. In such
a case changes of physical parameters occur slowly enough for the ear to “follow” the
observation of successiove minima and maxima of loudness and pitch. A positive
coupling of amplitude and frequency changes occurs — sensations produced by both
types of modulation are summed.

Here, the time structure of the modulated signal is the main factor which
determines the perception of MM modulation.

The presented above two methods (mechanisms) of perception of modulated
signals, have been isolated considering only the value of the modulating frequency.
As it has been mentioned above, the time mechanism functions when changes of
physical parameters of a signal are relatively slow; while the spectral mechanism
functions when these changes are relatively fast. Tt is possible that these are two
independent mechanisms, which can occur seperately, or simultaneously as a certain
combination, especially for modulating frequencies from the range of so-called
roughness. The transition of the time mechanism into the spectral mechanism is
undoubtedly a continuous process, individual for different listeners and dependent
on values of modulation frequencies. Data presented in Figs. 3 and 4 (curves marked
2) confirm this. It results from them that for modulating frequency f.a = 64 Hz, the
spectral mechanism prevails for listener AS, while for listener EQ the time
mechanism dominates.

Relationships between adequate modulation indices, which were observed for
mentioned values of modulating frequencies, prove that the perception of one type of
modulation is not independent from the coexisting second type of modulation.

Research performed does not give a final answer to the question, in which
frequency ranges these mechanisms (spectral and time) occur. It is initial research,
which tries to explain the method of perception of signals varying in time. A rather
arbitrary choice of modulating signals, which was done on the basis of perception
ranges of modulated signals widely mentioned in literature, limits investigations to
only a part of phenomena accompanying the perception of these kinds of signals.
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Therefore, research seems worth continuing, especially in the domain of signals
modulated by irregular signals, which as we know constitute a great part of sounds
met in practice.
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WAVE
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Institute of Physics, Pedagogic High School in Rzeszow
(35-310 Rzeszow, ul. Rejtana 16a)

In this paper the author proves that the propagation velocity of an acoustic velocity
wave in the near field differs from the velocity of a pressure wave, while both differ from Co
in d’Alambert’s equation. The velocity of an acoustic velocity wave was calculated for a
point source, for a cylindrical source of zero order and for a circular piston and ring in a
baffle.

1. Introduction

In accordance with papers [8, 9], an arbitrary tensor physical quantity Dijk...
which propagates in the form of a harmonic wave, can be noted as follows

Pijk... = Aijk_,_(xi)eilﬁ"-f(xe)] (1)

where A;; (x;) is the amplitude in terms of position, and f (x;,) represents the
so-called wave front. The wave propagation condition is [4, 5, 7]:

wt—f(x;) = const (2

what leads to an expression for the local velocity (velocity dependent on the position
of the point in the acoustic field)

¢ = of|gradf]. (3)
If we write (1) for an acoustic pressure wave:
p = Polax)eler /s @

which propagates with a velocity given in formula (3), then we can easily prove that
in a general case a vibration velocity wave propagates with a different velocity. As we
know [3-6], the vibration velocity, called also the acoustic velocity, is related to the
acoustic pressure by Euler’s equation, which has the following form the a harmonic

2 — Arch. of Acoust. 1/87
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wave

U= —l-grad p ()
Qo

where g, is the rest desity of the medium.

Both, the amplitude and the phase, are differentiated when the gradient of
expression (4) is calculated. If we convert the obtained result into a form analogic to
formula (1) we have:

u= Uo (xi) eilot— 1l (6)

Hence, when a pressure wave propagates with velocity (3) (where f(x;) will be the
value of the wave front function from formula (4)), the velocity wave propagates with
velocity

¢, = w/lgrad f,| (7

where f,(x,) is a different function — the function of the wave front of an acoustic
velocity wave from formula (6).

It will be shown below that c, differs from ¢ for all waves (except plane waves)
only at relatively small distances, when the local velocity of a pressure wave c differs
from the material velocity ¢,

M. Kwiek [3] calculated the propagation velocity of a velocity wave for
a point source, considering this as a special case and neglecting the generality of the
problem. His calculation procedure is given in paragraph 2.

2. Propagation velocity of a velocity wave in the field of a point source

This example has been chosen purposely, because as we know the acoustic
pressure wave of a point source is an elementary spherical wave, which propagates
with a constant velocity, in paper [7] called the material velocity. The behaviour of
the propagation velocity of a velocity wave in such a case is very interesting. The
acoustic pressure at a distance r from the point source [6] equals

P= (A/r)e @k ko = wfcy ®)

of course a point source is an abstract source, but it can be replaced in practice by a
very small pulsating sphere.
Applying Euler’s equation (5) in (8) we obtain the acoustic velocity

u= L 1+__1_ éei(m!_koﬂ. (9)
0Co ikgr) r

By separating the absolute value and the phase we bring formula (9) to a form

analogic to (1)
A i ko A
3 1 {0t —kor 18~ 'kgr) 10
Wi + TR (10)
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Fig. 1. c,/c, versus kyr for a point source

where tg™' denotes arctg. The condition of wave propagation requires r and ¢ to
change in such a manner so the total phase remains constant, thus
wt—kor—tg~'— = const. (11)
kor

Differentiating both sides of (11) with respect to time we have

dr ke i dr ;
e i : b S 12
o e ( 1 )z L2 e {L2)
14 =
kor
Since
dr/dt = c, (13)
thus finally
cu(kor)/co = [1+(kor)*I/(kor)?, (14)

when k,r—0, c,/c,— co. This is-not surprising, because the acoustic pressure p (8)
and the vibration velocity (10) exhibits singularity at r = 0. Therefore, it is also not
surprising that the propagation velocity c, exhibits singularity in this point as well.
Whereas, when k,r — oo we have according to expactations c, —c,. In practice there
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is always a small sphere with a finite value of k,r. It results from calculations based
on expression (14) and from Fig. 1, which presents c./co = f(kor) versus kor > 10,
that ¢, differs from c, by less then 1%. Therefore, if the radius a of the small sphere
satisfies the condition

koa > 10 (15)

then the deviation of ¢, from c, will be practically not observable. However, a small
sphere, which has to, satisfy condition

koa < 1 (16)
should be the model of a point source. The effect of the local velocity has to occur
distinctly in its field.

In the above considereations we accepted the solution of a wave equation for
the acoustic pressure in the form of (8) and then we obtained the acoustic velocity in
the form of (10) with the application of Euler’s equation.

A question arises, what would happen if we would accept the solution of the
wave equation for the vibration velocity in a form analogic to (8), what is possible
from the mathematic point of view, because it is also solution of d’Alambert’s
equation. If we would repeat the above considerations for such a case we would
achieve a constant propagation velocity for a velocity wave and a variable
propagation velocity for a pressure wave.

It should be mentioned that this problem can not be solved with d’Alambert’s
and Euler’s equations solely. Formula (8) for pressure was also obtained with the
application of a different method, by differentiating Green’s function, which has a
definite physical interpretation.

3. Propagation velocity of an acoustic velocity wave in the field of a cylinder for a zero order wave

The acoustic pressure for a cylindrical wave of zero order is expressed by
formula [4-6]

p= PO[JO(kUr)—l'NO(kor)]ei“”, (17)
where P, denotes the pressure amplitude, which can be determined from the
boundary condition on the surface of the cylinder (source); Jo() and N,() are

zero order Bessel and Neuman functions, respectively; k, = w/c,. According to
Euler’s equation (5) the acoustic velocity equals [6, 2]

3
u = 2O oI ], (ko) —iN, (ko] (1)
Qo @

where J,() and N,() are first order Bessel and Neuman functions, respectively.
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Separating the absolute value in (18) we obtain

P * 3 Nikor)
u=—2 /B ko) + N, (kor)elLlo+ 7~ Tion] (19)
Qo
The condition of wave propagation has the form
~ 1Ny (kor)
ot—tg 1212 _ const. 20
: Jy(kor) -
Differentiating (20) with respect to time we have
@ d _N,(kyr) |dr
- tg 0 21
2 cod(kor)[ ; J;(knr)}dr o
where
dr/dt = c,(r). (22)

Applying known formulas for derivatives of cylindrical functions [1, 2] and for
corresponding Wronskians and differentiating we get the formula for c,/co in the
following form

Cn(k()r) =3 n
i
When kor— oo, in accordance with asymptotic formulae for cylindrical functions
[1, 2] we have

(kor)[J3(kor)+ Ni(kor)]. (23)

Ji(kor)+ Ni(kor) = 2/(nkyr) ko > 1 (24)
and then we get from (23) ‘
Gl =1 karpl. (25)
Whereas for small k,r< 1 we have
J k) =0 _kr <1, (26)
Ni(kor) = %é; 27)
and from (23)
cjeco—=>0  kor—0. (28)

Of course kyr = 0 is only a mathematical limit without physical sense and (28)
proves inly that the local velocity ¢, exhibits singularity for kor = 0.

Fig. 2 presents the function c,/c, = f(kor)c, differs from ¢y by less than 1% for
values of k,r higher than k,r = 7. Therefore, if a cylinder which radiates a zero order
wave has a radius, a, which satisfies the condition koa > 7, then the local velocity
effect of a velocity wave practically will not occur. Whereas, for koa < 7 this velocity
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Fig. 2. c/e, versus kor for a cylindrical wave of zero order

will be reduced with the distance from the source to the value c,, but this velocity
- will differ from the propagation velocity of a pressure wave. It has been shown in
paper [7] that the velocity of a pressure wave increases from 0 to c,.

4. Phase velocity of an acoustic velocity wave on the axis of symmetry of the field produced by a circular
piston in a rigid baffle

As in papers [7, 8], we will consider a circular piston with radius a vibrating
with a constant amplitude of vibration velocity u,, and situated in an infinite plane
rigid baffle. Axis z drawn from the center of the piston perpendicularily to its surface
is identical with the axis of symmetry of the obtained acoustic field. The propagation
velocity of a velocity wave (c,) was calculated with the application of a formula for
the acoustic pressure on the axis z for the field, given in a compact form by STENZEL
[, 6],

It to simplify the notation we will accept the formula given by STENZEL [5, 6] for
‘the relative acoustic pressure

n ko
B 5P y ot 28111|:£c22(,/112+z2 —z):le"[‘”'*f_f‘v ar+z2+2)] (29)

QoColUo
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where g, is the rest density of the medium, u,, is the amplitude of vibration velocity,
which is constant on the source, k, = w/c,.
In accordance to Euler’s equation (5) we have

1 ¥
_9'2@ = U dpw

g we dz Odz "

(30)

Further calculations are simplified by the fact that we only need the expression for
the phase of u in order to determine the formula for the propagation velocity c,.

After differentiating (29) with respect of z, we see that the total velocity phase
can be expressed by

ot~ o=/~ | S/ [ o

iz z

and the condition for the propagation of a velocity wave has the following form
@(z, t) = const. (32
In order to simplify formulas used in the further part of the paper we will denote
@(z, t) = wt—F(2), (33)

where

Fad 2
F(2) = %(, /a*+z%—2z) —tg'l{tg[%. /a2+zz—z]*\/-%}-' (34)

Differentiating both sides of (32) with respet to time and substituting ¢ (z, t) in the
form given in (33), we obtain
w —(dF (z)/dz)(dz/dt) = 0, (35)
where
dz/dt = c,. (36)
Therefore, from (35) we have

w

=— 7
“ = IF)dz 8%

The following notation simplifications were introduced
dF/dz = (ko/2)F,(2), (38)

hence

c(2)eo = 2/F (2), (39)
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where F,(z) equals

2\ z
koa £xr 2 o a 472
e TR
2 a a z\2
1+(%)
a
For a specific case, when z/a = 0, we achieve the following expression

kqa
tg( 2 ) sin(kna)]

ko o 2[1_ koa
2P+t(2)J
and from (27) we have

a0 _ (') .
c, '1 ; ,_(koa) (ko )/k 0
e 2

At z = 0 the value of c,(0) depends on k,a. For kya = 0 (limiting case without
physical sense) we would have ¢,—oo. When kya— o, ¢,—¢,, in spite of the
periodicity of function tg(kya/2). Fig. 3 presents the dependence c,(0)/c, = f (koa).

As for the full expression (40) we can see that when z/a — oo, then from formula
(27) we obtain at the limit F,(c0) =2 and from (27).

c.(©)/co = 1. (43)

F 0 =2<1-

(41)

?"'
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In Fig. 4 we have F,(z/a) curves versus koa. The lower the value of koa the
higher the boundary value F,(z) for z = 0. If the value under the tangens function is
n/2 in the range of small z/a, then the curve has a small extremum, which is shown in
Fig. 4 for kya = 2. Already at k,a > 2 the difference between c, and c,, is very small
and practically it occurs only near the source. This leads to an 1mportant conclusion;
in the case of a piston with dimensions very small with respect to the wave length (i.e.
for relatively long waves), velocity c, can be arbitralily high near the piston source,
while the propagation velocity of a pressure wave varies here from 2c, at the piston
to ¢g [7]. It is also worth mentioning that when the value of the parameter increases,
the ¢, /c, curves are packed more and more densily.

5. Propagation velocity of an acoustic velocity wave on the axis symmetry of the field produced by a circular
ring in a baffle

We will now determine the expression for the propagation velocity of an
acoustic velocity wave, when a circular ring with internal radius a, and external
radius a,, which vibrates with a constant amplitude of vibrations velocity u, is the
field source. The ring is situated in an infinit rigid plane baffle. The propagation
velocity is calculated on the axis, perpendicular to the plane and drawn from the
center of the ring.

We use STENZEL’S formula for the acoustlc pressure on the z axis (in the near
field) [5, 6]

k 3 n ko —7 T_z
P, = . :u = 2sin|:30( /2 + a3 — /zz_f_a%):le;[mwzgj(‘/z t+az+Yz2+a1)] (44)
oColo

In accordance with Euler’s equation we obtain the component of the vibration
velocity along the axis z in the following form

i dp dp
SR P 45
= wQ,dz dz #3)
where U, is the amplitude of the acoustic velocity. This quantity does not occur in
further calculations.
Differentiating (44) in terms of z and separating the summaric phase we can find
that the total phase of the acoustic velocity equals

wt—%(\/zz+a§+ \/z2+a%)—tg‘1{tg[k—;(\ﬁz+a%—\/zz +a§):| X

\/z +az+\/z +a }=const. (46)
\/z +a3 +\/z +a?

The constancy of the total phase of acoustic velocity is the condition for wave
propagation.
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Now we differentiate both sides of (46) with respect to time, knowing that
ko = w/cq 47

and that
dz/dt = c,(2) (48)

is the local propagation velocity of an acoustic velocity wave, we write in a short
form: :

Cu(z)/co = Z/FI(Z)! (49)

EeEzeiizarze

In formula (50) we denoted

a,=na, n<l. (51)

For n = 0 the ring‘ changes into a circular piston and formula (50) is transformed
into formula (40).
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Before we discuss the full formula we will consider a specific case, when
z/a, = 0. Here we have

F,(00=0 (52)
and from formula (49)

¢,(0) = oo. (53)
Whereas, when z— o0 we have

F(0)=2 (54)
and

c,(0) = cq.

Figs. 5, 6 and 7 present c,/c, versus z/a, for various values of k,a and n. Forksa < 1
the scattering of curves depending on ka is quite large. While for a given k,a, values
of n nearly do not influence the shape of curves, so they are even not marked in Fig. 5
(the influence of n is observable from z/a, < 0.2, what does not have practical
application). :

With the increase of k,a (Fig. 6, koa = 1) the dependence on n is observable
very clearly for small values of z/a (here z/a < 1). For koa = 5 (Fig. 7) the differences
between the oridinates of curves for n = 0 and n = 0.4 are even greater, but also only
up to z/a = 1. Hence, the effect of the local velocity of a wave occurs here only at
distances of the same order as the external radius of the ring, from the surface. But
this effect is much smaller than in the case of a pressure wave. For an infinitely thin
ring we have [7, 8]

ei(an —kov/ z2+a?)

p =P, (55)

were a is the radius of the ring.
When the derivative dp/dz is calculated and the full phase angle is separated,
then the condition of acoustic velocity wave propagation has the following form

wt —kor/7* +a* +1g ™1 (ko~/ 2% + ) = const. (56)
Differentiating both sides of (56) with respect to time we achieve the relative
propagation velocity:

@) _ 1+(koa)’[1+(z/a)’ (57

¢ (z/a)(koa)/1+(z/a)

For z/a =0 we have

o) = (58)
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and for z/a
c,(o0) = c,. (59)

The quantity k,a is parameter in formula (57). It results from expression (57) that for
koa—0 we have

i 00 (60)

koa— o cu

and for kya— o

3 c,,(z)_ 1+ (z/a)*
IRt T

This formula resembles exactly formula (16) given in paper [8] for the local velocity
of a pressure wave. An interesting conclusion arises: the local velocity of the
vibration velocity wave is equal to the local velocity of then pressure wave for large
values of parameter k,a. Fig. 8 presents c,(z)/c, versus (z/a) for various values of k,a.
A very high value of c,/c, is obtained for small values of kya and the value c, is
achieved in practice for the value of z/a of some scores. With the increase of kya the
value of c¢,/c, decreases, approaches unity more rapidly and the curves are packed
more densily. As it can be seen in the figure, it is not purposeful to draw curves for
koa > 1, because it would only complicate the picture and large differences between
¢, and ¢, would only for z/a < 1.

(61)
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RECTANGULAR PHASE SOUND SOURCES FOCUSING
RADIATED ENERGY OF VIBRATIONS
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Institute of Physics, Higher Pedagogical School in Rzeszow
(35-310 Rzeszoéw, ul. Rejtana 16a)

This paper is concerned with the acoustic field in the Fresnel zone of a focusing
rectangular phase sound source with the following amplitude distributions of the vibration
velocity: uniform, HAMMING’S, HANNING’S and BLACKMAN’S. Amplitude distributions of the
acoustic potential were determined along the main axis of such a sound source and in planes
parallel to the main axis. It was found that in the case of HAMMING’S, HANNING’S and
BLACKMAN’S amplitude distributions of the vibration velocity, the amplitude distribution of
the acoustic potential along the amin axis has only one maximum, which is situated near the
focal point. This maximum has the highest value for HAMMING'S distribution. When the
dimensions of the source are increased, the value of the maximum increases and it is shifted
towards the focal point, while its width decreases. Amplitude distributions of the acoustic
potential in planes parallel to the axis of the source have relatively narrow maxima, which
occur along this axis. They are narrower than for a Gaussian amplitude distribution of the
vibration velocity, which was analysed in previous papers. Besides the main maximum also
side maxima occur in the focal plane. They are strongly damped for HAMMING’S, HANNING’S
and BLACKMAN’s distributions.

Therefore, the acoustic field of a focusing rectangular phase sound source with
HammiING's, HANNING’s and BLACKMAN’s distributions is relatively uniform in the Fresnel
zone.

1. Introduction

In order to achieve the highest possible transverse resolving power of ultrasonic
diagnostic systems, sources are applied, which essure the radiation of a possibly
narrow beam of ultrasonic waves with a homogeneous internal structure, i.e. without
local maxima and minima. HASELBERG and KRAUTKRAMER have proved [3] that a
plane sound source with a Gaussian distribution of the amplitude of vibration
velocity radiates a wave beam with the required internal structure. Also a spherical,
focusing sound source with a Gaussian distribution of the amplitude of vibration
velocity can produce a relatively narrow beam of ultrasonic waves with an uniform

3 — Arch. of Acoust. 1/87
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internal structure, as it was shown by FiLipczyfski and ETIENNE [2]. Paper [9] deals
with the far acoustic field of a rectangular sound source with the following
distributions of the amplitude of vibration velocity: uniform, HAMMING’s, HANNING’S
and BLACKMAN’s. It was found that the directional pattern of such a source with
HANNING’S distribution has a relatively narrow main maximum and sufficiently
damped side maxima. It was also shown that a sound source, which radiates the
energy of vibrations to the far field with a sufficiently large directionality can be
realized by a rectangular mosaic system of plane sound sources with discrete
HANNING's distributions of their relative bulk efficiencies. This paper investigates the
near field of a rectangular phase source with uniform, HAMMING’S, HANNING’S and
BLACKMAN’s distributions of the amplitude of vibration velocity. Results obtained
prove further research on the possibility of producing a focusing sound source in the
form of a rectangular mosaic phase system of planar sound sources worth
continuing.

2. The acoustic field of a plane sound source in Fresnel’s zone

Let us assume (Fig. 1) that a plane sound source 6, which vibrates with a simple
periodic motion with frequency f;, is situated on plane z = 0, which is a perfectly
rigid baffle S,. Let it radiate energy of vibrations into half-space z > 0, filled with
a lossless and homogeneous fluid medium, in which the acoustic wave propagates
with velocity ¢. It was also accepted that the sound source o, in the plane of the
baffle S, produces an amplitude distribution of the normal component of the
vibration velocity described by the following function

%(x, y) # 0 for the surface o,; "
%(x,y) = 0 for the rest of the baffle S,.
Let us consider an arbitrary plane S, in the half-space z > 0, parallel to the plane of
the baffle S, (Fig. 1). z will denote the distance between these two planes. The
distribution of the complex amplitude of the acoustic potential in an arbitrary plane
S, can be determined from [4, 10]

o + o 2
o= [ | e =2 Dy, ®

where v = f,/c is the spatial frequency. It results from Fig. 1 that the distance
between point P, on plane S, and point P, on baffle S, is determined from

expression
—&)2 o
d=z\/1+(x 3 ;(y n’ 3)
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Fig. 1. Plane sound source o, located in baffle S, radiating energy of vibrations into a medium which fills
the half-space above the baffle

By r,,, we denote (Fig. 1) the greatest distance of points of the source contour o, from
the origin of coordinates, and by r,,, — the radius of the neighbourgood of point 0’ in
which axis 0z passes through plane S,. Let r,,, > /v, where A is the wave length.
It was assumed that the distance z is great enough in relation to r,, and r,,, so that
all terms with a power greater than two can be neglected in the expansion of the root
of expression (3) into a power series. In this case, at r, <r,, and r, < r_, it can be
accepted in approximation that [4, 10]

Etn? x*+y? xb+ym

4
2z 2z 2 @

d=z+

while
1/d = 1/z, %)
S B a0

The zone of the acoustic field of a sound source ¢, in which mentioned above
relations are valid, is called the Fresnel zone. Therefore, it results from what was
previously said and from (2), that in an area on plane S,

&+’ <rk, (6)
which fulfills condition r,,/z < 1, the distribution of the complex amplitude of the
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acoustic potential can be described as follows

(&, 1) = Po(&, MR, ), 0]

where
@ e (& 8
o(é, 1) = 5_—exp(j2rvz)exp J €+ |, (3)

while
R, m = J Jx(x, y)GXP[jE}(x’+y2)}exp[—j?(xé+yn)]dxdy- ©)

3. Focusing plane phase sound sources

A plane sound source ¢, will focus the radiated vibration energy in the focal
point F located on the main axis 0z of the source at a distance f from its surface (Fig.
2), if mutual phase shifts of the acoustic potential of partial spherical waves produced

£

s £l

Fig. 2. Determination of the phase distribution of vibration velocity on the surface of a plane focusing
phase sound source

by every point of the surface of this source are compensated in point F. This can be
obtained by chosing an adequate phase distribution of the vibration velocity on the
surface of the source a,. It results from Fig. 2 that the plane sound sporce o, will
focus the radiated energy of vibrations in focal point F, if the produced by it
distribution of the complex amplitude of vibration velocity in the baffle S, will be
determined as follows

x(x, y) = flx, y)exp[ja(x, y)] (10)
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where function
fix,y) #0 for surface source a,;

(11)
f(x,y)=0 for the rest of the surface of the baffle S,

describes the amplitude distribution, while function

a(x, y) = —200(\/f2+ x> +y* —f) (12)

describes the distribution of the phase of the vibration velocity in the baffle S,. Let us
accept that the focal point F is sufficiently distant from source o, so r,,, < f. In such
a case when the root of expression (12) is expanded into a power series, all terms
which have higher powers than second can be neglected. Hence we have

x(x, y) = f(x, Y)expl: —Jf—’rf—v(x2 +y2):| (13)

According to this and (7), the distribution of the complex amplitude of the acoustic
potential in area (6) of plane S,, produced by a focusing plane sound source g, can
be written as follows

P&, 1) = Po(&, MR, n), (14)

where

1} ¢ e ST

Do(E, ) = ECXPUZEVZ)GXP 17(5 +1°) |, (15)

while
R ) = 'f jf(x, y)exp[—f%(x’uﬂ}exp[—j%’f(xé+yn)]dxdy. (16)

and

1/w=1)f—1/z. (17

4. The distribution of the amplitude of the acoustic potential in the focal plane

Let us determine the distribution of the amplitude of the acoustic potential in
the region (6) of the focal plane (Fig. 2). In accordance with (9) and (13) we have

1P(S, Ml = |Po(S, MIRE, M, (18)

where

1
Po(E, 1) = Hexp(ﬂm’f )exp[f?(éz + nz)] (19)
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and

+o +w

R, n) = j Jf (x, y)exp[—-f-f—(xé +yn)}dxdy (20)

—Q0 T

It should be noticed that the right side of the above expression is analogic to a simple
two-dimensional Fourier transform. Taking into consideration the spatial spectrum
of the amplitude distribution of the vibration velocity in the baffle S, we have

+o +oo

F(v,,v)) = J J f(x, yexp[—j2n(xv, +yv,)]dxdy. 21

—a —o

Hence, as a result of this and (20) we achieve

R(&, n) = FOL/L, vnlf). (22)

It results that the amplitude distribution of the acoustic potential in region (6) of the
focal plane S, determines the spatial spectrum of the amplitude distribution of
vibration veloc1ty in the baffle S, Phase sound source o, under consideration
produces (20) in focal point F an acoustic potential with an amplitude equal to

|@g| = Fo/(2nf), (23)
where
=F(0,0) = j Jf(x, y)dx dy (24)

is the bulk efficiency of this source which is situated in baffle S,

Let us now assume that the focusing phase sound source g, is of rectangular
shape with sides: a and b (Fig. 1) and then let us determine the influence of the
amplitude distribution of vibration velocity in the baffle S,, which contains this
source, on the amplitude distribution of the acoustic potential in region (6) of the
focal plane S,. The following distributions will be considered: unform, HAMMING’S,
HANNING’S and BLackMaN’S. The influence of these distributions on the far field of a
rectangular sound source has been analysed in paper [9]. For comparison let us also
take into consideration the Gaussian distribution, which was analysed in papers [2,
3]

a) Uniform distribution. Let us accept that the amplitude distribution of
vibration velocity in the baffle is expressed as follows (Fig. 3)

f(x,y) =%, f(x) f (), (25)
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Fig. 3. Amplitude distributions a) and phase distributions b) of the vibration velocity on the surface of a
focusing rectangular phase sound source: 1 — uniform, 2 — HAMMING’S, 3 — HANNING,

4 — BLACKMAN'S, 5 — Gaussian distribution

where
)1 for x| < a/2,
S = {0 for |x| > a/2 (26)
and
)1 for |y| < b/2,
J0) = {0 for |y| > b/2. @7)

In this case the amplitude distribution of the acoustic potential in region (6) of the
focal plane S, has the following form

[B(E, )| = ~2|FO)IF ),

P 08



40 A. PUCH

where
F(&) = asinc(avi/f) - (29
and
F(n) = bsinc(bvn/f), (30)
while
sinc(ax) = sinc(ma)/(mar). (31)

Let us analyse properties of this distribution along axis 0¢. It has (Fig. 4) a main

a=2: f=10; A=002[cml]

-80 | |

Tem
-100 1 1 1 II L i 1 L
0 02 04 06 08 Elemi 10

Fig. 4. Amplitude distribution of the acoustic potential in the focal point plane, produced by a
rectangular focusing phase sound source with the following distributions: 1 — uniform, 2 — HAMMINGs,
3 — HANNING'S, 4 — BLACKMAN'S, 5 — GAUSSIAN

maximum in focal F equal to _
|Pr| = xoab/(2nf) (32)

and side maxima, which decrease with the increase of |§| with the rate of 20
dB/decade. The width of the main maximum on level —3 dB is equal to

AE = 0.9f f(av). (33)

The highest side maximum is by 13 dB lower from the main maximum.
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b) HamMiNG’s distribution. It was assumed that the amplitude distribution of
the vibration velocity in the baffle is determined by expression (Fig. 3)

Jx, y) = %o f(x) f (), (34)
where
0.54 4+ 0.46cos(2nx/a) for |x| < a/2,
Je) = { for |x| > a/2 (33)
and
0.54 +0.46cos(2ny/b) for |y| < b/2,
10) = { for |y| > b2. 29

In this case the amplitude distribution of the acoustic potential in the region (6) of
the focal plane has the following form

D&, ml = 5—=FOIIF @), (37

2 nf
F (&) = a[0.54sinc(av&/f)+0.23sinc(avé/f — 1)+ 0.23sinc(ave/f +1)] (38)
and
F(n) = b[0.54sinc(bvn/f)+0.23sinc(bvn/f — 1)+ 0.23sinc(bvy/f +1)]. (39)

This distribution has a main maximum in focal point F along the 0¢ axis (Fig. 4),
equal to

xqab

@, = 0.54
| Fl 4 21'tf

(40)

and side maxima, which decrease with the increase of |£| with the rate of 20
dB/decade. The width of the main maximum on level —3 dB is equal to

AE = 1.3f/(av). (41)

The highest side maximum is by 42 dB lower than the main maximum.
¢) Hanning's distribution. Let us assume that the amplitude distribution of the
vibration velocity in the baffle is determined as follows (Fig. 3)

flx, ) = %o f () f ), (42)

where

09 = {05+0 Scos(2nx/a)  for |x| < a/2, @3)

for |x| > a/2
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and

£y = [05+05cos@ry/b)  for Il <12,
= for |y| > b/2.

In this case the amplitude distribution of the acoustic potential in region (6) of the
focal plane has the following form

(44)

|, )l = %IF (ONFE @, (45)

where

F(&) = a[0.5sinc(avé/f)+0.25sinc(avé/f —1)+0.25sinc(avé/f +1)] (46)
and

F(n) = b[0.5sinc(bvy/f)+0.25sinc(bvy/f —1)+0.25sinc(bvy/f +1)]. 47)
This distribution has a main maximum in focal point F along axis 0¢ (Fig. 4), equal

to

_ 52%0ab
|@g| = 0.5 ] (48)

and side maxima, which decrease with the increase of |£| with the rate of 60
dB/decade. The width of the main maximum on the level of —3 dB is equal to

AE = 14f [(av). (49)

The highest side maximum is by 32 dB smaller from the main maximum.
d) BLACKMAN’s distribution. Let us assume that the amplitude distribution of te
vibration velocity in the baffle is determined as follows (Fig. 3)

[, ) =% (X)), (50)

where

_)0.42+40.5cos(2nx/a)+0.08cos(4nx/a) for |x| < a/2,
Jix) = {0 for x| > a2 55

and

L3 = 0.424-0.5cos(2nx/b)+0.08 cos(4ny/b)  for |y| < b/2,
B for |y| > b/2.

In this case the amplitude distribution of the acoustic potential in region (6) of the
focal plane has the following form

(52)

|2, )l = %IF(@HF(W)L (33)
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where
F(&) = a[0.42sinc(avé/f)+0.25sinc(avé/f — 1)+ 0.25sinc(avE/f + 1)+
+0.04sin(ave/f —2)+0.04sin(avé/f +2)] (54)
and
F(n) = b[0.42sinc(bvy/f)+0.25sinc(bvy/f — 1)+ 0.25sinc(bvy/f + 1)+
+0.04sinc(bvy/f —2)+0.04sinc(bvy/f +2)].  (55)

This distribution has a main maximum in focal point F along the 0¢ axis (Fig. 4),
equal to

Koab

2nf

and side maxima, which decrease with the increase of |¢| with the rate of 34
dB/decade. The width of the main maximum on the level of —3 dB is equals

A¢ = 2f [(av). (57)

The highest side maximum is by 57 dB lower from the main maximum.
e) Gaussian distribution. Let us assume that the amplitude distribution of the
vibration velocity in the baffle is determined as follows (Fig. 3)

|®,| = 0.422 (56)

S, ¥) = % f(x) f(), (58)
where

f(x) = exp(—x*/2a) (59)
and

f) = exp(—y?/20?). (60)

For comparison, Fig. 4 presents the amplitude distribution of the acoustic along the
0¢ axis, produced by a focusing rectangular phase source with a Gaussian amplitude
distribution of the vibration velocity. It was accepted that a = 7.065, and b = 7.064,.
For these values of parameters o, and ¢, the Gaussian distribution assumes
neglectable values along the edge of the source [11].

From among all analysed distributions, the main maximum of the amplitude
distribution of the acoustic potential in region (6) of the focal plane S, has the
smallest width for the uniform distribution and the highest for BLACKMAN’S
amplitude distribution of vibration velocity. The width of the main maximum for a
given distribution increases with the increase of the focal lenght f of source ¢, and
with the increase of wave length A, while it decreases with the increase of the a and b
dimensions of the source. Side maxima are damped to the greatest extent for
BrLackmanes distribution, and to the smallest extent for the uniform distribution. The
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Fig. 5. A comparison between amplitude distribution of the acoustic potential at the same distance from
a focusing and non-focusing rectangular sound source with HANNING’S amplitude distribution of the
vibration velocity

HANNING’s distribution seems to be of greatest practical application. It makes it
possible to locate sources in casings along its edge. For this amplitude distribution of
vibration velocity, the amplitude distribution of the acoustic potential in the focal
plane S, has a relatively narrow main maximum and sufficiently strongly damped
side maxima. For comarative reasons amplitude distributions of the acoustic
potential produced in region (6) of the same plane S, by a focusing and non-focusing
rectangular sound with HANNING’s amplitude distribution of vibration velocity have
been presented in Fig. 5.

5. Amplitude distribution of the acoustic potential along the main axis

Let us determine the amplitude distribution of the acoustic potential along the
main axis 0z of a focusing rectangular phase source o, Accepting in (14) that
¢, n =0 we obtain

1
12(2)| = 5 —IR()I, (61)

where
+aj2 +b/2

R(z) = f jﬂx, y)exp[—f%(xuﬁ)}dxdy. (62

—af2 —b/2

Amplitude distributions of the acoustic potential along the main axis of a focusing
square phase source ¢, with the following distributions of the amplitude
of vibration velocity: uniform, HAMMING’S, HANNING’S and BLACKMAN’S were
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Fig. 6. Amplitude distributions of the acoustic potential along the main axis 0z of a focusing square phase
sound source with the following distributions: 1 — uniform, 2 — HAMMING’S, 3 — HANNING'S, 4 —
BLACKMAN'S

calculated on a minicomputer with the application of the trapezoid method of
calculating the values of definite integrals. Results are presented in Fig. 6. It can be
seen that at a uniform amplitude distribution of vibration velocity, the amplitude
distribution of the acoustic potential along the 0z axis has a main maximum located
at a small distance before the focal point F and is preceeded by a series of initial
maxima and minima. As for HAMMING’S, HANNING’s and BLACKMAN’s distributions,
the amplitude distribution of the acoustic potential along the main axis 0z has only
one maximum shifted slightly further towards the source. The amplitude of the
acoustic potential in this maximum acquires the highest value for HAMMING'S
distribution and the lowest value for BLACKMAN’S distribution. The main maximum
is shifted towards the source the most for BLACKMAN’s distribution. For comparison,
Fig. 7 presents amplitude distributions of the acoustic potential along the main axis
Cz for a non-focusing square sound source with the following amplitude distribution
of the vibration velocity: uniform, HAMMING’s, HANNING’S and BLACKMAN’S. In this
case amplitude distributions of the acoustic potential along the main axis for the
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Fig. 7. Amplitude distribution of the acoustic potential along the main axis 0z of a non-focusing square
sound source with the following distributions: 1 — uniform, 2 — HAMMING'S, 3 — HANNING'S, 4 —
BLACKMAN'S
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Fig. 8. The influence of dimensions of a focusing square phase sound source with HAMMING'S amplitude
distribution of vibration velocity on the amplitude distribution of the acoustic potential along the main
axis 0z

[46]
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following amplitude distributions of the vibration velocity: HAMMING’S, HANNING’S
and BLACKMAN’S, do not exhibit maxima and minima, as opposed to the uniform
distribution. The influence of the dimensions of a square focusing phase sound
source with a HANNING’S amplitude distribution of the vibration velocity, on the
amplitude distribution of the acoustic potential along the main axis of this source is
shown in Fig. 8. It results from this figure that the maximum of the amplitude
distribution of the acoustic potential along the main axis is shifted towards the focal
point F when the dimensions, a and b, of the source are increased. At the same time
its width decreases and the maximal value of the acoustic potential increases.

6. Amplitude distributions of the acoustic potential in planes perpendicular to the main axis

The amplitude distribution of the acoustic potential in region (6) of an arbitrary
plane z # f, perpendicular to the main axis Oz of a focusing rectangular phase sound
source g, according to (14) can be determined from expression

1
126, nl = Z—IRE, n)l, (63)

where
+al/2 +b/2

R, n) = fix, y)exp [ —j%(x2 + yz)] eXDI: "j?(xé + n)}dxdy- (64)

—al2 —b/2

a=b=2;f=10; A=002 [crn]

7 [cm]
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Fig. 9. Amplitude distributions of the acoustic potential at various distances from a focusing square
phase sound source with a HANNING’s amplitude distribution of vibration velocity
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Fig. 10. Amplitude distributions of the acoustic potential at various distances from a non-focusing square
source with HANNING’S amplitude distribution of vibration velocity

The amplitude distribution of the acoustic potential in chosen planes perpendicular
to the main axis of a focusing square phase sound source with a HANNING’S
amplitude distribution of the vibration velocity were calculated by a minicomputer
with the application of the trapezoid method of calculating the value of definite
integrals. Results are presented in Fig. 9. For comparison, Fig. 10 presents amplitude
distributions of the acoustic potential in the same planes for a non-focusing square
sound source with the same dimensions and with a HANNING’s amplitude
distribution of vibration velocity. It results from the figure that acoustic fields of a
focusing and non-focusing square sound source with a HANNING’s amplitude
distribution of vibration velocity (as well as with the HAMMING’S and BLACKMAN’S
distributions) are very uniform in the Fresnel zone. Amplitude distributions of the
acoustic potential in planes perpendicular to the main axis of a source o, have
smaller widths; the smallest width of the distribution is observed in the focal plane
§,. The width of these distributions increases with the increase of the distance from
this plane, while at the same time their hight decreases. Distributions in planes
perpendicular to the main axis do not exhibit side maxima, except for the
distribution in the focal plane S,, where these maxima are strongly damped.

7. Acoustic field of a focusing sound source in Fraunhofer’s zone

Let us determine the distance z form the focusing phase sound source o, for
which the following factor can be neglected in expression (14)

exp[j?(x%yz)]. (65)

It was assumed that this is possible, if the phase of this factor will change more less
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than one radian in the region of the source o, Because
X2+ £ rom, (66)

where r,, is the greatest distance between the points of the contour of the source and
the origin of coordinates (Fig. 1); then factor (65) can be neglected when

nvrl,/z € 1. (67)
Hence, at a distance from source g, we have
ZPz, = N, (68)

ie. [4, 10], when the plane S, is located in the Fraunhofer zone of this source.
According to this and (14) the amplitude distribution of the acoustic potential in
plane §,, which is located in the far field of a focusing phase sound source ¢, can be

defined as ‘

1
|2(E, m)| = EIR@‘, . (69)
where
R(,n) = J ff(x, y)exp[—j?(xz+y%]exp[—j?(xcwn)]dxdy. (70)

It results from this and (20) that the energy of vibrations radiated by a focusing phase
source o, can not be focused in the Fraunhofer zone. Therefore, the focal point F has
to be located in the Fresnel zone of the source o, i.e. its focal length has to satisfy
the condition

T €22 = vz, (71)
om g

As for a non-focusing sound source (when f = o0), the amplitude distribution of the
acoustic potential in an arbitrary plane S,, located in the Fraunhofer zone, is defined
as follows

1
[, n)l = EIR(& nl, (72)
where
+wo +o -znv
R, n) = j J Sx, y)cxp[—JT(xHyn)]dxdy- (73)

It should be noticed that the right side of the above expression is analogic to a simple
two-dimensional Fourier transform (21). Hence,

R(E, n) = F(v¢/z, vn/z). (74)

4 — Arch. of Acoust. 1/87
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Therefore, the amplitude distribution of the acoustic potential in region (6) of an
arbitrary plane S,, located in the Fraunhofer zone of a non-focusing sound source
0,, is defined by the spatial spectrum of the amplitude distribution of the vibration
velocity in the baffle S,, produced by this source. Focusing properties of a source
become negligible with the increase of the distance from the source; the complex
character of radiation of the source vanishes and the field produced by it becomes
more similar to the field produced by plane sound wave.

8. Conclusions

On the basis of the above discussion, it can be stated that in the Fresnel zone
acoustic fields of focusing and non-focusing rectangular sound sources with the
amplitude distributions of vibration velocity: HAMMING’S, HANNING’S and
BLACKMAN'S, are very uniform, very much like acoustic fields in this zone of focusing
and non-focusing circular sound sources with Gaussian amplitude distributions of
vibration velocity [2, 3]. Amplitude distributions of the acoustic potential along the
main axis of a focusing rectangular phase sound source with HAMMING’S, HANNING’S
and BLackMman’s amplitude distributions of vibration velocity, have only one
maximum located near the focal point. This maximum has the greatest value in the
case of HAMMING’s distribution. The value of the maximum increases and is shifted
" towards the focal point when the dimensions of the source are increased. Maxima of

amplitude distributions of the acoustic potential in planes perpendicular to the main
" axis of a focusing and non-focusing rectangular sound source are located along this
axis and in the Fresnel zone of a focusing sound source these maxima are much
narrower. The main maximum in the focal plane has the smallest width and the
highest value. This maximum is accompanied by side maxima, strongly damped in
the case of HAMMING’s, HANNING’S and BLACKMAN’S distribution. From among all
analysed distributions, the width of the main maximum was smallest for the uniform
distribution and largest for BLACKMAN’s distribution. However, they are much more
narrow than the width of the main maximum of the amplitude distribution of the
acoustic potential in the focal plane, produced by a focusing sound source with a
Gaussian amplitude distribution of the vibration velocity. It seems possible to use a
focusing square phase sound source with adequately great dimensions with respect
to the wave length (e.g. a/4 = 200) and HANNING’s amplitude distribution of the
vibration velocity, in ultrasonic diagnostic systems in order to increase their
transverse resolving power. Such a source can be realized in practice in the form of a
phase system of piezoelectric transducers with a discrete HANNING’s distribution of
their bulk efficiencies. The desired efficiency distribution of individual transducers
and adequate phases of vibrations can be obtained by a suitable selection of
amplitudes and reciprocal phase shifts of input signals. Yet a more detailed analysis
of this problem requires a separate paper.
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ENERGETIC PROPERTIES OF RECTANGULAR SOUND SOURCES WITH LARGE
DIRECTIONALITY

ANDRZEJ PUCH

Institute of Physics, Higher Pedagogical School in Rzeszow
(35-310 Rzeszéw, ul. Rejtana 16a)

In this paper the author investigated energetic properties of rectangular sound sources
with the following amplitude distributions of the vibration velocity: uniform, HAMMINGS,
HannING’s and BLAackmans. The frequency characteristics of the active power, reactive
power and apparent power of these sources was determined, as well as their power factor. It
was found that sources under investigations effectively radiate vibration energy into the far
field (i.e. with the power factor equal to one) in the wave length range, in which they exhibit
large directionality. The energy of vibrations radiated by a source into the far field in a unit
of time is by an order of magnitude smaller in the case of HammING's, HANNING’s and
BLACKMAN’S distributions than in the case of a uniform distribution. Therefore, an increase
of the directivity of radiation of the vibration energy into the far field by rectangular sound
sources is accompanied by a decrease of the value of radiated energy.

1. Introduction

There is a need for sound sources with large directionality of vibration energy
radiated into the far field in many domains: metrology, diagnostics, hydrolocation
and ultrasonic technology. They are applied to obtain an adequate beam of
ultrasonic waves or to obtain a required concentration of energy in a certain area of
the medium. In these applications sound sources have to radiate energy of vibrations
effectively. The far field of a rectangular sound source with uniform, HANNING’s and
Brackman’s amplitude distributions of the vibration velocity have been investigated
in paper [5]. It was stated that the directional characteristic of such a source with
HANNING’s distribution has a relatively narrow main maximum (much more narrow
than for a Gaussian distribution [10]) and sufficiently strongly damped side maxima.
It was also found that a sound source, which radiates energy of vibrations into the
far field with a sufficiently large directionality, can be in practice realized by a mosaic
system of plane sound sources with discrete HANNING’S distributions of their
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relative bulk efficiencies. This paper analyses energetic properties of rectangular
sound sources with large directionality of energy radiate into the far field.
A developed by the author new method of determining frequency characteristics of
the reactive power of sound sources with the application of a fast Fourier transform
was used in investigations.

2. Acoustic field of plane sound sources

Let us accept (Fig. 1) that a plane sound source o, which vibrates with a simple
periodic motion with frequency f,, is situated in plane z = 0, which is a perfectly
rigid baffle S,. It was also assumed that the distribution of the normal component of
the amplitude of vibration velocity produced by source o, in the baffle S, is defined
by the following function

%#(xg, ¥o) # 0  for surface of the source a; M
#(Xg, ¥o) = 0  for the rest of the surface of the baffle S,.
Let us assume that source o, radiates the energy of vibrations into the half-space
z > 0 filled with a lossless and homogeneous fluid medium with density g, in which a
sound wave propagates with velocity ¢. The amplitude distribution of the acoustic
potential in this half-space is determined by the solution of Helmholtz’s equation

[2, 6]
AD(x, y, z)+4n2v2d(x, y,2) =0 2)

which satisfies Neumann’s boundary condition

0
E¢(xa Vs Z)z=0 = _“(xm yo) 3)
and Sommerfeld’s condition of finity
lim @(x, y,z) =0 4)
and radiation
g 0 ;
lim r adi(x, ¥, Z)+j2nv@(x, y, z) | =0 (5)

where 4 is a Laplacian, v = f,/c — spatial frequency of a sound wave with frequency
fo» which propagates with velocity ¢ in the direction of radius r (Fig. 1).

Let us consider an arbitrary plane S, situated in half-space z > 0 and parallel
to the baffle S, (Fig. 1). The distance between these two planes is denoted by z.
Function @(x, y, z) defines the amplitude distribution of the acoustic potential
produced by source o, in plane S,. Now we will define components of the spatial
frequency of a plane sound wave propagating in the direction of radius r:
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Fig. 1. Plane sound source o, located in baffle S,, which radiates energy of vibrations into a medium,
which fills the half-space above the baffle

v, = veos(x, r), (6)
v, = veos(y, 1), (7
v, = vcos(z, r). (8)

The spatial spectrum of the amplitude distribution of the acoustic potential in plane
S, is determined with the application of a simple two-dimensional Fourier transform
[1]. Namely,

+w +

F(vy, v, 2) = J .[ P(x, y, z)exp[ —j2n(xv, + yv,)]dxdy. 9)

s
In accordance to this, equation (2) and the boundary condition (3) can be written as
follows

dz
FF(V.VS Vy, Z)+4‘JT2V§F(VI, Vy, Z) = 0! (10)
where

v, =V —vi—v} (11)

z

and

i1“"(1:,:, vy, 2) = —K(v,, v)), (12)
dz z=0
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while

tw +o
K(v,, v,) = f I %(xo, J’o)exP[_jzn(xovx+J’O"y)]dxod.VO (13)

is the spatial spectrum of the amplitude distribution x(x,, y,) of the vibration
velocity in the baffle S,. The solution of equation (10) has the following from

F(v,, v,, 2) = A(v,, v,)exp(—j2nv,z)+ B(v,, v,)exp(j2nv, z). (14)

This solution will satisfy the boundary condition (3), and the conditions of finity (4)
and radiation (5), if

A(ve, v)) =0 (15)
and
K(v_, v
B(v,, v,) = % (16)

Hence the solution of (14) has the following form

exp(j2nv,z)

F(vy, vy, 2) = jK(v,, v)——

(17)
With the application of the inverse Fourier transform [1], we can determine the
interesting to us amplitude distribution of the acoustic potential in an arbitrary plane
S,, parallel to the baffle S, on the basis of dependence (17). Namely

+o +wo
exp(j2nv, z
D(x, y,2) = j _[ j K(v,, vy)%[ﬁn(xvx+ ) 1dv,dv, . (18)

3. Sound power of a plane source

The sound power of a plane source o, situated in baffle S, can be derived from
(2, 6]

+a + o

N =(1/2) f J #*(Xo, Yo) P(Xg» Yo)dxodyo, (19)

where function »*(x, y) denotes the distribution of the complex conjugate amplitude

of the vibration velocity in the baffle S, and function P(x, y) determines the
amplitude distribution of the acoustic pressure in this plane. Because [2]

P(xo, yo) = —j2mvec®(xo, Yo) (20)
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while for z = 0 from relationship (18)

4+ +a@
4| K(v,, v,) ‘
D(xg, ¥o) =]§1_t J. J. —v2 32 > > CXPDzﬂ(xo"x‘i'J’o"y)]ded"y (21)
=

thus substituting (20) and (21) in (19) we obtain

+o +o +w +oo

_vee K(vy, v,) J J .
N = 2 J. J‘ vz—vi—‘p)z’ X (xO! J”o)x
x exp[ji2n(xo v, +yov,)1dxodyedv,dv,.  (22)
For [1]
+o +o
K*(v,, v) = f f #*(xg, ¥o)expli2n(xqv,+ yov,)1dxody, (23)

is the complex conjugate spatial spectrum of the amplitude distribution of the
vibration velocity in the baffle S,, thus

+00 +o0
2
_ vee J' J |K(v,, v)| dh (24)

It results from this relationship that the acoustic power of a plane sound source o, is
a complex quantity. Let

N = Nz +jN,, (25)

_

Fig. 2. Integration regions in the determination of the active and reactive power of a plane sound source

N
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where N is the active power and N, is the reactive power of such a source. We will
consider the plane of components v, and v, of spatial frequency (Fig. 2). It results
from (24) that the active power of the sound source g, can be determined from

relationship
2 |K (v ,v 2,
R = TJ ih AL Gl dv’, (26)
Q J’
by integrating in the region €, of spatial components v, and v,, in which
vi4vZ < vi (27)
Whereas the reactive power of this source can be determined from
K(v,,v)?
e 'U K (s ) et ey ., (28)
vi4vi—v?

where the integration in done in the region 0 of spatial frequencies v, and v, in
which

V242 > 2, (29)

The active power of source g, determines its energy of vibrations, which is radiated
in a unit of time into the far field, while the reactive power determines the energy

Im

|

|

' i

$ |
|

I

|

0 N, . Re
Fig. 3. Components of the acoustic power of a plane sound source

exchanged between this source and its near field a unit of time. From the practical
point of view it is more convenient to use the notions [2] (Fig. 3) of apparent power

of the sound source
= |N| = /N +Nt, (30)

which determines the total acoustic energy of the source related to a unit of time, and
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power factor
cos@ = Ng/P, (31)

which informs what part of this energy is radiated by the source into the far field in a
unit of time.

4. Energetic characteristics of a sound source

It should be noticed that the acoustic power of the sound source o, (and hence
its active power, reactive power, apparent power and power factor) depend on the
vibration frequency f, of its surface through the spatial frequency v. Functions
presenting the relationship between the spatial frequency v and these quantities are
called energetic characteristics of sound source o, [2]. It is more convenient to use
normalized energetic characteristics when comparing energetic properties of sound
source. We have

lim N(v) = %C-Dz N, (32)
where
+ o + oo
= f J K (vy, v, 2dv,dv,. (33)

With the application of Parseval’s theorem [1] the above expression can be written
as

+wo +om

D* = J f #*(Xo, Yo)dxodY,. (34)

It results that D? it the meon square value [11] of the amplitude of the vibration

velocity distribution in the baffle S,. Therefore, normalized frequency characteristics
of the active and reactive power of the source o, can be defined as

Nx() = Nx)N,, = ” LS v"ﬁ 5 (35)
where as
i) = NyOYN., = Di” BT N e (36)

Vi vi—v?
0
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while

lim Nz(v) =1 (37)
and

lim N,(v) = 0. (38)

y=o0

5. Methods of determining energetic characteristics of sound sources

Energetic characteristics of sound sources are most frequently determined
directly form relationships (35), (36) and (30), (31) (e.g. [6, 7]). It was proved in papers
[9] and [10] that the characteristics of the reactive power of a sound source can be
determined on the basis of its frequency characteristic of the active power, with the
application of a simple Hilbert transformation. Namely,

+ o

o T 1
N;(v) = 'E;*NR(") i j

=

N‘R—(")dq. (39)
Bty

Now we will prove that the frequency characteristic of the reactive power of a sound
source can be determined on the basis of its frequency characteristic of the active
power, with the application of a simple and inverse Fourier transform. Fourier
transform of both sides of the relationship (39) were determined. Taking advantage
[11] of the theorem about the Fourier transform of a convolution and the theorem
about the Fourier transform of function 1/(nv) we obtain

N 1 = —jsgn() N g(n), (40)
where distribution
Lo for .5 0,
sgn(u) = 0 for u=0, (41)
—1 for p<O.

Hence, on the basis of the inverse Fourier transform [11] we can note

+

N, () = '( N r(wexp(2nvp)dp, (42)

— a0

where

N (p) = —jsgn(p) A g(p), 43)
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while

+ 0

F ) = f N(v)exp(—j2nuv)dy. (44)

-0
The resulting from above considerations algorithm of determining the frequency
characteristic of the reactive power of a sound source on the basis of its frequency

characteristic of the active power with the application of the Fourier transform is
presented in Fig. 4.

Ny(v) ¥ N, (p)
» - sgn(u)
o
N, tv) . N, (u)

Fig. 4. Algorithms of determining the frequency characteristic of the reactive power of a sound source:
# — Hilbert’s transform, % — Fourier transform, # ~' — inverse Fourier transform

The frequency characteristics of the active power of sound sources with large
directionality have been determined in this paper from relationship (35) with the
application of the trapezoid method of calculating the values of definite integrals.
While frequency characteristics of the reactive power of these sources were
determined in accordance with the algorithm presented in Fig. 4 with the application
of a simple and inverse discrete Fourier transform [3, 4]. The Cooley-Tukey
algorithm of the fast Fourier transform [3, 4] was used in the course of calculations.
Calculations were performed on a minicomputer.

6. Rectangular sound sources with large directionality

Let us accept that a sound source o, has a shape of a rectangular with sides a
and b (Fig. 1). We will analyse the following amplitude distributions of the vibration
velocity in the baffle S, uniform, HAMMING’S, HANNING’S and BLACKMAN'S. It was
proved in paper [5] that for HAMMING’S, HANNING’S and BLACKMAN’S distributions,
the directional characteristic of a rectangular sound has a relatively narrow main



62 _ A. PUCH
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Fig. 5. Amplitude distributions of the vibration velocity on the surface of a rectangular sound source a)
and their spatial spectra b): 1 — uniform, 2 — HAMMING’S, 3 — HANNING’S, 4 — BLACKMAN's distribution

maximum and sufficiently strongly damped side maxima, if the dimensions of the
source are sufficiently large in relation to the wave length.

a) Uniform distribution. Let us accept that the amplitude distribution in the
baffle S, is determined as follows (Fig. 5)

%(Xg, Yo) = %o%(X0)%(¥o)s (45)
where

1 for |x,| < a/2,
= 46
#(Xo) {0 for |xo| > a/2 9
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and

_J1 for |yl < b/2,
“Wo) =10 for Iyyl > b/2.

The mean square value of this distribution is equal to
D? = x3ab,
while its spatial spectrum (Fig. 5) is given as

K(vx’ vy) = xOK(vx)K(vy)!

where

K(v,) = asinc(av,)
and

K(v,) = bsinc(bv,),
while

sinc(z) = sin(nz)/(nz).

(47)

(48)

(49)

(50)

(51)

(52)

b) HamMMING’s distribution. Let us accept that the amplitude distribution of the

vibration velocity in the baffle is defined as follows (Fig. 5)
%(Xg5 Vo) = #o%(Xo)%(Vo),
where

s 0.54 +0.46cos(2nx,/a)  for |x,| < a/2,
uT o for |x,| > a/2

and

AR 0.54 +0.46cos(2my,/b) for |y, < b/2,
rolF e for |yl > b/2.

The mean square value of this distribution is equal to
D? = 0.158%%ab,
while its spatial spectrum (Fig. 5) is given as
K(ve vy) = % K()K(,),
where _
K(v,) = a[0.54sinc(av,)+ 0.23sinc(av, — 1) +0.23sinc(av, + 1)]

and

K(v,) = b[0.54sinc(bv,)+0.23sinc(bv,—1)+0.23sinc(bv,+ 1)].

(33)

(54)

(55)

(56)

(57)

(58)

(39)
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¢) HANNING’s distribution. Let us accept that the amplitude distribution of the
vibration velocity in the baffle is defined as follows (Fig. 5)

#(Xg, Yo) = %o %(Xo)%(yo), (60)
where
0.5+0.5cos(2nxy/a) for |xo| < a/2,
o = {0 for |x,| > a/2 (61
and
) = {g.s +0.5cos(2my,/b) g :iz: f gg )
The mean square value of this distribution is equal to
D? = 0.141x5ab, (63)
while its spatial spectrum (Fig. 5) is given as
K(v,, v,) = %, K(v)K(v,), (64)
where
K(v,) = a[0.5sinc(av,)+ 0.25sinc(av, — 1) +0.25sinc(av, + 1)] (65)
and
K(v,) = b[0.5sinc(bv,)+0.25sinc(bv, — 1)+ 0.25sinc(bv, + 1)]. (66)

d) BLACKMANs distribution. Let us accept that the amplitude distribution of the
vibration velocity in the baffle S, is defined as follows (Fig. 5)

%(xg, Vo) = ox(xg)%(¥y), (67)
where
_)0.42+40.5c0s(2nxo/a) +0.08cos(4mxy/a) - for |xo| < a/2,
(xo) = {0 P e
and
_ }0.42+0.5¢c0s(2my,/b) +0.08cos(4my,/b)  for |yol < b/2,
o) = {0 fordnyt S b2 N
The mean square value of the distribution is equal to
D? = 0.093%2ab, (70)

while its spatial spectrum (Fig. 5) is given as
K(v,, v,) = %, K(v,)K(v,), (71)
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a) a=b

05

£ 4
>
i
1= 3
05
2
1
I . n
0 1 2 2 av 4

Fig. 6. Normalized frequency characteristics of the active power a) and reactive power b) of a square
sound source with the following distributions: 1 — uniform, 2 — HAMMING'’S, 3 — HANNING'S, 4 —
BLACKMAN’S

5 — Arch. of Acoust. 1/87
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where
K(v,) = a[0.42sinc(av,)+0.25sinc(av, — 1)+ 0.25sinc(av, + 1)+ 0.04sinc(av, —2) +
+0.04sinc(av,.+2)] (72)
and
K(v,) = b[0.42sinc(bv,)+0.25sinc(bv,— 1) +0.25sinc (bv, +1)+0.04sinc(bv, —2) +
+0.04sinc(bv, +2)]. (73)

Fig. 6 presents frequency characteristics of the active and reactive power of
investigated sound sources with large directionality and Fig. 7 presents frequency
characteristics of their apparent power and power factor.

7. Conclusions

From our considerations it follows that in the wave length range, in which
analysed rectangular sound sources with HAMMING’S, HANNING’S and BLACKMAN’S
amplitude distributions of the vibration velocity exhibit an adequately large
directionality [5], these sources radiate effectively the energy of vibrations into the
far‘field (Fraunhofer zone), i.e. with the power factor close to unity. However, the
energy of vibrations radiated into the far field by these sources in a unit of time is by
an order of magnitude smaller than for a uniform distribution. (This results from
relationships (48), (56), (65) and (70)). An increase of the directivity of radiation of the
vibration energy by a rectangular source is accompanied by decrease of the vibration
energy radiated by this source into the far field in a unit of time. In comparison with
the uniform distribution, frequency characteristics of the active, reactive and
apparent power (Figs. 6a and b, 7a) of a square sound source with the following
amplitude distributions of the vibration velocity: HamMMING’s, HANNING’S and
BLACKMAN’S have only one maximum of a similar value, very much like for a
Gaussian distribution [10]. The maximum of the frequency characteristic of the
active and apparent power for these distributions (Figs. 6a, 7a) occurs at the
frequency of vibration of the source surface, at which the length of the radiated
sound wave becomes comparable with the dimensions of the source; while the
maximum of the frequency characteristics of the reactive power (Fig. 6b) occurs at
the frequency of vibration of the source, at which the dimensions of the source are
comparable with a half of the length of the wave. It was shown in [5] that a square
sound source with HANNING’s amplitude distribution of the vibration velocity has
directivity properties required in practice, if the length of the wave radiated by this
source satisfies condition 4 < a/2. Is such a case its directional characteristic has a
relatively narrow main maximum (its width is equal to cos (26) = 1.4 1/a at the level
of —3 dB) and sufficiently strongly damped (> 32 dB) and quickly decreasing (60
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dB/decade) side maxima. At wave length A < a/2 this source radiates its whole
energy into the far field (Fig. 7b).

The method of determining energetic characteristics of plane sound sources,
which was presented in this paper, can be applied in the estimation of energetic
properties of various real plane sound sources on the basis of experimentally
determined directional characteristics. It can be proved that the directional
characteristic of a sound source is a fragment of the spatial spectrum of the
amplitude distribution of the vibration velocity, produced by a given source in the
baffle. A detailed analysis of this problem is presented in paper [5]. Measurements of
the level of the directional characteristics of a sound source at a given spatial
frequency v can be used for the calculation of its active power (26) with a chosen
method of numerical integration. The frequency characteristic of the active power of
an investigated sound source in the interesting to us range of spatial frequency v can
be achieved by repeating these calculations for following spatial frequencies. In turn,
on this basis the frequency characteristic of the reactive power of this source (42) can
be calculated with the application of a chosen algorithm of a discrete Fourier
transform. The sampling interval of the frequency characteristic of the active power
and the truncate function of this characteristic has to be adequately chosen. These
problems have been analysed in detail in papers [3] and [4].

The basic advantage of this method of determining energetic characteristics of
sound sources is the possibility of its application in investigations of energetic
properties of sources and systems of sound sources with arbitrary shape and
arbitrary amplitude distribution of the vibration velocity on their surface. The
simplicity and speed of obtaining neccessary results with the application of a
computer is another advantage.

The limited applicability of this method is the disadvantage of this method.
Namely — it can be used in investigations of energetic properties of plane sources
and systems of sound sources situated in a baffle.
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THE NOISE-CON 87

“High Technology for Noise Control” was the theme of NOISE-CON 87, the 1987 National
Conference on Noise Control Engineering. One hundred and twenty-five papers on technical topics on
noise control engineering were presented at the three-day meeting which was held on the campus of The
Pennsylvania State University in State College, Pennsylvania on 1987 June 8-10. Professor Jiri TicHY,
Head of the Graduate Program in Acoustics at Penn State, was the General Chairman for the conference.

NOISE-CON 87 was sponsored jointly by the Penn State Graduate Program in Acoustics and the
Institute of Noise Control Engineering (INCE). It was the eighth in a series of national conferences on
noise control engineering which have been sponsored by INCE since 1973.

Subjects covered at the three-day meeting included noise emitted by gears, valves and steam tubes,
axial and centrifugal fan noise, drill noise, chain saw noise, combustion noise, noise barriers, highway
noise, sound absorptive materials, active noise cancellation, noise control of ships, and sound intensity
techniques.

The papers presented at the conference have been collected into an 800-page bound volume which
will be of interest to engineers concerned with noise control technology, government workers, consultants,
educators and other individuals concerned with noise control technology.
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