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A series of experiments has been performed in order to find specific features of pitch
memory in persons possessing the so-called absolute pitch.

Sixty one music students were given a test of passive absolute pitch (pitch-naming
test); then a part of this group was subjected to another test in order to determine their
ability to produce required musical pitch without being given any reference tone (active
absolute pitch). A criterion for absolute pitch was proposed on the basis of the evaluation of
the precision of tuning a pure-tone generator to the required musical pitch. Finally, two
musicians, one of them possessing absolute-pitch, were given a task of tuning a pure-tone
generator to the pitch of a standard after various delay times. The results were presented in
the form of pitch-forgetting curves.

1. Introduction

Absolute pitch is the ability, possessed by some people, to recognize exactly or
reproduce musical pitch without reference tones. The ability to recognize musical
pitch of tones is called passive absolute pitch, while the ability to imagine and then
reproduce a given pitch is called active absolute pitch. People without absolute
pitch usually can recognize and reproduce the pitch of definite musical tone
only when they are presented with another tone and know its name. In such
a case the so-called relative pitch is employed, i.e., the knowledge of the learned
and permanently memorized musical intervals. Absolute pitch is only possessed
by a small part of the human population, probably about one to several percent. It is
positively related to other music talents, though not necessarily a condition for their
occurence. Hitherto, absolute pitch has been the subject of many investigations.
Results of some of these works have been recently discussed by WARD and
Burns [1].

It is accepted by most authors that absolute pitch is an inborn talent and that
people with this talent differ greatly from people without absolute pitch in the
domain of pitch recognition. However, many musicians who initially did not
distinguish absolute pitch of tones developed this ability to a certain extent through
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practice and utilization of additional evaluation criteria. Such additional criteria
usually consist of remembering one musical pitch and having it as a standard
reference point in evaluating pitch of other tones. In some people the phenomenon of
absolute pitch is limited to recognizing the pitch of tones of one familiar instrument,
or it consists of remembering a specific colour of a given musical key.

The present experiments were designed to investigate in detail some of the
unknown properties of absolute pitch, compare the features of auditory memory in
people with absolute and relative pitch, and try to determine criteria for both types
of audition.

2. Investigations of passive absolute pitch

Sixty one listeners, who were students at the Academy of Music in Warsaw,
participated in the experiment. Every student had completed at least a two-year
course in ear training at secondary music school and currently attended courses on
this subject at the Academy. Students listened to tests recorded on tape and
reproduced from a loudspeaker at a comfortable listening level of approximately
75 dB SPL. Listeners were divided into 6 groups, each consisting of about ten
persons.

The listeners’ task was to recognize the names and tone registers (octaves) of 24
or 23 notes of the musical scale presented in random order. Each tone was presented
only once in a test; it lasted for two seconds and was separated from the next tone by
a two-second time interval. Identification of tones and octaves was performed by
subjects to make the process of answering as quick and simple as possible. The
answer was given by marking out one of twelve names of tones (chromatic tones
were marked twofold, e. g. G#/4b) and additionally. by marking out one of eight
octaves on a draft piano keyboard (see Fig. 1).
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Fig. 1. Part of the answer sheet in a pitch-naming test
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There were two versions of the test: first, with the application of piano tones
recorded on tape (P), second, with the application of pure tones from a generator (G).
Tones with the lowest frequency were not presented in the generator test due to
technical difficulties. Instead other tones from the low register were presented, and
the number of tones was decreased to 23; there were 24 tones in the piano test. The
piano test was conducted first, and the generator test followed after a few days.

Figure 2 shows the distribution of all errors made by the listeners during the
first presentation of both tests. Both non-octave (false tone name) and octave (falsely
determined octave) mistakes were included. Also a lack of an answer was considered
as an error.

The results in Fig. 2 show that fewer mistakes were made in the piano test than
in the generator test. Most probably this was caused by better familiarity of the
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Fig. 2. Distribution of errors made by 61 listeners when 24 piano tones (P) and 23 pure tones from
a generator (G) were presented for the first time

listeners with the timbre of piano tones than with the timbre of pure tones from the
generator. It can also be noted that sounds from the middle tone register were
recognized better than those from extreme registers.

Figure 3 presents the distribution of errors made by individual listeners during
the first presentation of the piano test. This distribution, arranged according to the
increasing number of non-octave errors, is shown as filled circles. The corresponding
octave errors are presented as open circles. In groups of listeners, who had made
equal numbers of non-octave errors, sequential arrangements of listeners (affecting
their octave-error distributions) were randomized. The correlation coefficient,
calculated for so-arranged distributions of non-octave and octave errors in the whole
group of 61 listeners, equalled — 0.45.

The tests were repeated with a part of the previous group of listeners two weeks
after the first presentation; 31 listeners participated in the repeated piano test and 30
listeners in the generator test. The distributions of errors made by the listeners in the
first and second presentations of the piano and generator tests are shown in Figs. 4
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Fig. 3. Distribution of non-octave errors (filled circles) and octave errors (open circles) made by individual
listeners in the piano test. r = correlation coefficient of both distributions
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Fig. 4. Distributions of errors made by the same subjects in first (/) and second (II) presentation of the
piano test. r = correlation coefficient
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Fig. 5. Distributions of errors made by the same subjects in first ({) and second (II) presentation of the
generator test. r = correlation coeflicient

and 5. A good repeatability of results was obtained; the correlation coefficients of
distributions were +0.83 and +0.79 for piano and generator tests, respectively.

3. Investigations of active absolute pitch

Fourteen subjects, members of a group which participated in the tests of passive
absolute pitch, took part in the next experiment concerning active absolute pitch.
Some subjects were selected because they achieved best results in the first test of
piano tones recognition, while the others were picked randomly.

Each of the 14 subjects was given a task of tuning a sine-tone generator to a
series of musical pitches. Experiments were carried out in individual sessions, in an
acoustically isolated booth with the use of high quality binaural earphones at a
loundness level of 40 phons. Subjects tuned the tone generator starting alternately
from the upper or lower position outside the audible range. Tuning was done with
one knob. The scale of the generator was covered, and all other visual or mechanical
criteria were also eliminated, so listeners could only employ their auditory memory
in tuning the required pitch.
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The experiment consisted in tuning the generator to six musical tones: A%,
(116.5 Hz), F%, (185.0 Hz), C%#, (277.2 Hz), A, (440 Hz), C, (1047 Hz) and D,
(2349 Hz); no reference tone was given. The name of musical pitch to be tuned was
given by the operator just before the beginning of a task. The tones were chosen
pseudo-randomly.

To avoid relative pitch assessments, consecutive tunings were separated by
4-minute intervals during which subjects stayed in a silent booth and were allowed to
read. The experiment was conducted with every subject in several sessions (about one
hour each) until values of twenty frequency set-ups for each of the six musical pitches
were obtained.

Each frequency set by a listener was read off a frequency counter and noted by
the operator. After the data from twenty set-ups were collected, mean values and
standard deviations of the obtained distribution were calculated in cents (hundredth
parts of a semitone). The mean values were expressed as differences (in cents),
between the mean of a given distribution and the frequency of a given musical tone
in normal tuning based on the standard A, = 440 Hz.

The results achieved by fourteen listeners in the tuning experiment described
above are presented in Fig. 6. Results for individual tones are shown as vertical lines.
The position of each line along the horizontal axis represents the mean value, and its
length — the standard deviation of a given distribution.
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Fig. 6. Results of fourteen subjects in tuning six tone frequencies to the required musical pitch. Departures

of average values of twenty tunings from standard frequencies S (4%, — O, F#; — x,C#, — [, 4, — +,

Ce — A, D, — V) are shown on the horizontal axis. Values of standard deviations of individual
distributions are shown along the vertical axis
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Hence, for each of the 14 listeners, lines situated near zero on the horizontal axis
represent mean values not very different from the standard musical scale, while
shorter lines are typical of more reproducible tuning.

Data presented in Fig. 6 illustrate the well-known fact, that individual listeners
differ greatly in théir ability to produce a required musical pitch from memory. To
expose these differences, the averaged results of each listener are shown in Fig. 7. The
averaged absolute values of frequency departures from standard pitch are shown
along the abscissa, and the averaged standard deviations in sets of results along the
ordinate.
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Fig. 7. Averaged values of standard deviations ¢ and averaged values of constant errors (X —s) obtained in
free tuning of six music tones by fourteen listeners

The next experiment was carried out with the participation of three new
subjects, who were students, possessing a very good absolute pitch, according to the
opinion of their teachers. Subjects were told to tune a sine-wave generator to 13
musical notes from C, to C;. The experiment was conducted under conditons similar
to those in the previous one. Tunings were performed in a pseudo-random order
with 5-minute time intervals in between, in order to eliminate the influence of
short-term memory and relative pitch. About 13 frequency set-ups, corresponding to
13 chromatic tones, were obtained during a one-hour session. Twenty sessions were
conducted with each subject within approximately one month; the medians of the
distributions are shown in Fig. 8. It appears that all three listeners tended to raise the
frequency of lower tones and reduce the frequency of higher tones in relation to
standard tuning.
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Fig. 8. Results achieved by three listeners with absolute pitch in tuning thirteen tones of the musical scale
from C, to C,. Each point represents a median of 20 frequency set-ups

4. “Pitch forgetting curves” in relative and absolute pitch

Two subjects participated in this experiment. One of them had very good
absolute pitch, and the second one had excellent relative pitch. Both had consi-
derable experience in psychoacoustic experiments dealing with pitch discrimination.

The subjects’ task was to tune a sine-wave generator to match the pitch of a
standard tone at various time intervals between the standard and variable tones.
Time intervals between these tones varied from one second to 30 minutes. (In
addition, data for a 24-hour time interval were obtained using a procedure which will
be described later). Listeners performed 20 tunings for each value of the time interval.
Two procedures were applied: one in the range of short time intervals only
(procedure of a repeated standard), and a second one in both short and long time
interval ranges (procedure of a single standard).

In the procedure of a repeated standard, 3-second pulses of the standard and
variable tones were presented interchangeably, separated by time interval a At. The
variable tone (subject to tuning) was additionally signalled by a light. The tones were
presented binaurally through headphones at a loudness level of 40 phons while the
subject was seated in a sound-isolated booth. The presentation of stimuli was
continuous until the subject announced that tuning was completed. Twenty
frequency set-ups were taken at each of the 4 values of At (1, 5, 10 and 25 s), and
standard deviations calculated. The results are presented in Fig. 9.
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Fig. 9. “Pitch forgetting curves” — standard deviations of the distributions of frequency set-ups of tuning

a pure tone to equal pitch with a standard tone after time interval At. Squares — subject with relative

pitch; circles — subject with absolute pitch. Filled symbols — procedure of a repeated standard; open and

half —filled symbols — procedure of a single standard. All symbols concern tuning of a tone 440 Hz (A,),
exluding half-filled symbols which concern tone 457 Hz (A, + 66 cents)

The single standard procedure consisted of a single presentation of a 10-second
standard tone of 440 Hz (A4,) or 457 Hz (A, + 66 cents). After a time interval At, this
presentation was followed by a continuous tone which appeared alternatively in a
very high or a very low range of the frequency scale. This second stimulus (variable
tone) had to be adjusted by the subject to equal the pitch of the previously-heard
standard tone. Subjects stayed in an acoustically isolated booth and were en-
couraged to keep the auditory image of the standard tone in mind during the silence
time intervals 4t. (1, 5, 10, 30 s, 1, 2.5, 5, 10, 30 min; each value applied at separate
session or group of sessions). They were visually informed about the time remaining
until the appearance of the variable tone, which was also signalled by light 3 seconds
ahead. In the case of 24-hour time intervals, this procedure was not used, and the
results were obtained just after the arrival of the listener at the laboratory, knowing
that he had participated in the experiments with the same standard on the day
before. Although the time of tuning was not limited, it generally did not exceed 3
seconds. By shortening the tuning process, subjects tried to minimize the interfering
effect of a variable tone on the memorized pitch of a standard.

5. Discussion and conclusions

As can be seen in Figures 3-5, the experiment on pitch identification (pitch-na-
ming test) did not give results sufficient for establishing a criterion for absolute pitch.
The distribution of errors made by the subjects in the tests was rather continuous.
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However, it was verified that those students who made the fewest mistakes would be
qualified by their teachers as persons with absolute pitch. It is also certain that those
listeners, whose results were at random level did not satisfy general criteria of
absolute pitch. But still there was a significant group of listeners, whose results
greatly exceeded the level of randomness, although they made so many mistakes that
they could not be included in the group of persons with absolute pitch.

Short time intervals between sounds (2 s.) were purposely applied in the test in
order to make the task difficult for persons with so-called pseudo-absolute pitch.
Pseudo-absolute pitch means the ability to memorize permanently one standard
pitch and to recognize the pitches of various musical tones by relative judgements
refering to that standard. It is supposed, however, that the applied duration of time
intervals was still too long for such a selection. As a matter of fact the time for
making a decision in this test was closer to the value of 4 sec. rather than 2 sec.,
because the tone duration times themselves were about 2 sec. The experiment should
be repeated in future for shorter time intervals or shorter tone durations.

Although the experiment on pitch identification did not enable the identification
of all possessors of absolute pitch, it led to another very important observation. It
can be seen in Fig. 3 that persons who made a small number of non-octave mistakes,
had rather poor results in distinguishing octaves. The correlation between octave
and non-octave errors was negative (r = —0.45). This result strongly supports the
theory of a two-dimensional character of musical pitch sensations (Revesz [2];
Bacuem [3]). These two dimensions of pitch are: pitch quality (“chroma”) and pitch
register (octave). The following hypotheses can be made to explain the negative
correlation between distributions of non-octave and octave errors:

1. The recognition of the “musical name” of a tone (ie. chroma) as a pitch
category is done nearly independently of the recognition of its pitch register (octave).

2. Listeners with the ability of chroma recognition (those, who have “absolute
pitch”) usually do not exibit any specific ability of octave recognition better than that
exibited by listeners with relative pitch.

3. The fact that listeners who made fewer non-octave mistakes had worse results
than other listeners in tests of octave recognition was explained in the following way:
Listeners who were sure of their abilities in pitch naming (recognition of pitch names)
and who justly considered this part of the test as fundamental, devoted more
attention to it, as well as a greater part of the limited answering time. Recognition of
the octave was considered by them as secondary, and they spent less time on this
task. Listeners, who knew from practice that recognition of chroma is for them
practically impossible, acted appositely. They spent most of the time on the task
which they justly considered as solvable, i.e. on recognition of the octave. This way
they had a lower percent of octave errors.

Experiments on pitch tuning were supplementary to identification experiments
and led to establishing criteria of active absolute pitch. It can be concluded from
Fig. 6 that individual listeners differed greatly in the precision of tuning individual
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tones. Individual differences may be clearly seen also in Fig. 7, where the averaged
results of individual listeners are presented as separate points. The arrangement of
points in the diagram depends on two kinds of parameters: averaged absolute values
of tuning frequency departures from the standard pitch scale and averaged standard
deviations of the distributions. Points situated near the origin of the coordinate
system represent better performance in active absolute pitch. It can be seen in Fig. 7
that particularly good results were achieved by listeners: 1, 2, 3, 4, 9, 10 and 11.
Average frequency departures, as well as average standard deviations for these
listeners did not exceed 60 cents (somewhat more than a quarter-tone). According to
the teachers of ear training at the Academy of Music all these listeners had absolute
pitch, as opposed to seven other listeners. Hence, application of the active method
(tuning) and two-parameter evaluation of results can be used as a foundation for
operational quality criterion of active absolute pitch.

Interesting conclusions may be drawn from the results presented in Fig. 8. In the
process of tuning thirteen chromatic tones within an octave, a distinct effect
appeared as raising low tones and lowering high tones. The explanation of this may
be following. Due to prolonged operation within a limited memory standard range
(one octave) an effect of partial assimilation of the standards occured in the subjects.
This resulted in deviations of these standards in the direction of the centre of gravity
of the whole set. Such effects have been observed by psychologists with respect to
various sensations. Harris (1948) described them with respect to short-term pitch
memory and introduced the term “effective standard”. They may also be explained in
terms of the adaptation level theory (Helson [5]). Results presented in Fig. 8 reveal
this phenomenon in the domain of absolute pitch.

The experiment which led to the construction of “pitch forgetting curves”
enabled a more detailed observation of the mechanism of short — and long — term
memory in subjects with relative and absolute pitch (Fig. 9). First of all, a very high
precision of tuning was observed in both listeners when the repeated standard was
applied. The values of standard deviation at At = 1 sec can be interpreted as
frequency discrimination thresholds measured with the method of adjustments. The
standard deviations increase when the interval between stimuli is increased to 25 sec,
but still they remain within a range of 2 cents (1/50 of a semitone). This experiment
reveals a surprising accuracy of the short-term pitch memory in experienced musical
subjects. It is also worth mentioning that although only one subject possessed
absolute pitch, both of them achieved similar results. This is in agreement with
previously obtained results (Rakowski and Hirsch [6]) showing that absolute pitch
does not interfere with short-term auditory memory.

While comparing the repeated and single standard precedures, one can see that
the results obtained with the latter one are much less precise (i.e., standard deviations
are larger). This is due both to the disturbing effect of the variable tone in the initial
phase of tuning and to the lack of the possibility of repeated comparisons when the
method of single standard is applied. With this procedure, the results obtained from
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both listeners differ significantly at most of the time intervals applied. At shorter time
intervals, the results of the absolute-pitch listener appear to be somewhat worse than
those of his relative-pitch colleague; however, at At longer than 5 minutes they are
definitely better. This fact can be explained in the following way: The listener with
absolute pitch from the very first presentation of a standard knows that he is dealing
with the musical tone A,. He can tune this tone easily using the internal pitch
standard stored in his long-term auditory memory. Such a tuning strategy is
somewhat less accurate than the application of short-term memory, but it is less
tiring and does not require such great concentration. Hence, it may be assumed that
our absolute-pitch subject changed his strategy at time intervals of about 10 sec, and
for longer time delays used his long-term pitch memory. In such a case his tuning
operations were practically independent of the time delays applied, and his results
were more or less constant.

The situation was different in the case of a listener not possessing absolute pitch.
He did not have any internal pitch standards at his disposal, therefore he tried to
prolong the contact with the external standard by straining his short-term memory.
The short-term memory for pitch is very accurate; therefore up to a 3-min delay he
achieved even better results than the absolute-pitch subject. But at a time interval of
several minutes the short-term memory trace of the non-absolute pitch listener was
rapidly decaying and the accuracy of his tuning became worse.

The results achieved by the subject with absolute pitch appeared to be
somewhat less accurrate, when the standard frequency was changed from 440 Hz
(A,) to 457 Hz (A, + 66 cents). This leads to an important conclusion: Absolute pitch
is not equivalent with readiness for retentive remembering of a new pitch standard.
The process of remembering such a pitch, differing from twelve pitch standards
stored in the long-term memory, is carried out by comparing it with these standards
and appropriate verbalization. For example the subject states: “This tone is
somewhat lower than A%”. Consequently, the reproduction process of that pitch is
more complex; it consists of two phases: 1) recalling the nearest standard; and 2)
producing the estimated microinterval in relation to it. Hence, a greater variance
results.

It may be concluded, that the “pitch forgetting curves” presented in Fig. 9 are a
good illustration of memory processes characteristic of absolute and relative pitch.
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SPECTRAL ANALYSIS OF VIBRATIONS IN CONTROL
INVESTIGATIONS OF VIBROACOUSTIC HEADS KGS-320
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Mechanization Center of the Mining Industry KOMAG
(44-100 Gliwice, ul. Pszczynska 37, Poland)

Diagnostic investigations were performed in order to evaluate the usability of the
spectral analysis of vibrations in the process of control diagnostics of vibroacoustic arm
heads of combined cutter loaders KGS 320. Tests were carried out at the acceptance
inspection stand during idle running of the head with the consideration of both directions of
rotation of the output shaft.

Frequency components corresponding to rotational speeds of some kinematic
elements of the system under investigation were isolated on the basis of the spectral analysis
of vibrations. A comparison of discrete amplitudes obtained from vibration spectra, allowed
to evaluate the range of variability of vibration levels in determined frequency bands, as well
as to isolate some kinematic pairs, which are characterised by the maximal vibration
intensity. It was found that the rotation direction of the output shaft influences values of
amplitudes of some vibration parameters in frequency bands, which contain characteristic
frequencies of some elements of the system.

1. Introduction

The question of providing a longlasting reliability of technical objects produced
by many branches of industry is one of the important problems of production
enterprises. Progress in the domain of construction and technology of production
and control of operation processes of determinate machine elements has led to the
formation of many various, frequently complex, technical objects. The practical
usability of such objects is determined by the type and occurance frequency of
failures, and by the repair time. Therefore, in order to improve the quality of
technical objects, their dynamic properties have to be investigated during control
diagnostics. The physics of processes leading to failures constitute the basis of a
scientifically-founded choice of the most effective construction and technologic
method, which would increase or the life of basic machine elements [10]. In view of
rapid development of technology and high requirements for machinery, concerning
their reliability, production precision, life, etc. technical diagnostics should enable to
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determine the condition of a machine on the basis of its certain parameters, without
disassembly or interruption of the technologic cycle. Hence, indirect methods, in
which the condition evaluation is performed on the basis of investigations of
processes accompanying machine functioning, have to be applied [4]. Such methods
are utilized in vibroacoustic diagnostics which infer about the dynamic state of an
object from investigations of the vibroacoustic process generated in various points of
the body of an investigated object [12, 5]. Vibroacoustic phenomena correspond to
most significant physical processes, which take place in the machine and which
determine correctness of functioning, such as for example: strain, stress, cooperation
of elements etc. Various estimators of a deterministic character, which describe these
phenomena, and the dynamic state of dynamic pairs of the machine can be
determined by averaging the process in the domain of time, frequency or amplitude.

Performed vibroacoustic investigations were aimed at the relative evaluation of
the dynamic state of arm heads in mining combined cutter loaders. The evaluation
was carried out on the basis of results of a vibration spectral analysis, which
included n = 10 heads during idle running with the consideration of both rotation
directions of the getter.

2. Applied measuring system

The choice of the research method, which would enable useful signal separation
from disturbing signals, is the main problem of vibroacoustic diagnostics. At present,
three fundamental separation methods are applied [8]. They concern the domains of:
space, time and frequency. The method of signal separation in the domain of time is
based on time gating (sampling) of signals with respect to the dynamics of the
material system and on obtaining information contained in time intervals of the gate
opening. The frequency signal separation method consists in the transformation of
the time function into the domain of frequency and then in the analysis of this
function in adequate diagnostic bands. The choice of an analysis method depends on
the type of machine under investigation and is based on an assumption that the
useful signal can be found in certain frequency ranges, while outside these ranges
disturbing signals or signals carrying little information, prevail.

At present, the spectral analysis method is measuring method most frequently
applied in machine diagnostics [14, 16]. Due to the randomness of vibroacoustic
processes related to machine work, the diagnosis of the state of an object is based on
signal estimators achieved through analogue or digital signal processing. Analogue
signal processing finds wide application in practice, especially when the dynamic
state of a machine can be determined from the measurement and analysis of only few
estimators of the vibroacoustic signal [15].

Digital processing allows quicker and more complex investigation and analysis
of a signal, according to a previously programmed algorithm of digital processing. It



SPECTRAL ANALYSIS OF VIBRATIONS 91

should find wider application in vibroacoustic diagnostics of machines in the nearest
future.

In order to estimate the dynamic state of arm heads two series of measurements
were carried out, and rms and peak values of vibration parameters were recorded
respectively for the right and left rotation of the output shaft. Including the
assumption that the dynamic state of heads is conditioned by the so-called vibration
rate and that the frequency of the primary motion of main drive elements is low
(below 50 Hz), it can be approximately accepted that this rate should be:

1) proportional to the displacement amplitude of vibrations, conditioned by the
play misalignment of drive shafts,

2) proportional to the velocity amplitude of vibrations, caused by incorrect
mating of toothed wheels, :

3) proportional to the acceleration amplitude of vibrations, due to manipulative
and assembly errors of rolling bearings.

Vibration parameters were measured with a piezoelectric sensor and then the
voltage from the transducer was recorded on magnetic tape. The block diagram of
the system for direct registration of vibration parameters is presented in Fig. 1. The
registered signal was filtered in order to reduce the influence of disturbances with
high and very low frequencies. The block diagram of the laboratory system for
amplitude — frequency analysis is shown in Fig. 2. Rms and peak values of
measured parameters were read off directly from the vibrometer during investi-
gations.

> HE

Fig. 1. Block diagram of the system for measurements of vibration parameters: 1) ACC/U transducer type
4370, 2) vibrometer type 2511, 3) magnetic recorder “Tandberg” type 115D

1 2 3 4 a 6

o O, 1 il e ) o

Fig. 2. Block diagram of the system for frequency analysis of vibration parameters: 1) beat frequency

generator type 1022 (path calibration), 2) magnetic recorder “Tandberg” type 115D, 3) voltage amplifier

type 2606, 4) digital recorder type 7502, 5) third-octave analyser type 2113 or heterodyne analyser type
2010, 6) level recorder type 2305

3. Localization of measuring points

The localization of measuring points on the body of a head is a very important
problem in vibroacoustic measurements. As the greatest surpluses of dynamic forces
in machines with rotational elements are transfered by bearings and transmissions of
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kinematic elements, thus measuring points were located in the direct nearness of
bearings of main drive units of the head, such as idle wheels, main shafts, layshafts,
planetary gear. Tab. 1 presents the distribution diagram of measuring points
adjoining mentioned kinematic elements of the system. In principle, such measure-
ments should be done in three perpendicular directions, but in our case (head with
mainly rotational elements) measurements were limited to the radial and axial
direction, what is absolutely sufficient [3].

Table 1. List of revolutions frequencies and mesh frequen-
cies of specified toothed wheels

Measurement ; Measurement
: Gear wheel Bearing s daid
point number directions
1 Z3 5 radial
2 Z1 — radial
3 £l 4.3 radial
4 Z4 6 radial
S5 Z4 6 axial
6 Z5 7 radial
7 Z4; 75 7 axial
8 Z10; Z11 13 axial
9 Z8 11 radial
10 Z9; Z10; Z11 10 radial
11 VAl 9 axial
12 - 14; 15 radial

A head with an adjustable arm is a toothed gear consisting of several cylindrical
gears and a planetery gear, which drives directly the output shaft of the mining
organ, as the last transmission. The mining organ is supplied with power from an
electric motor according to the kinematic system shown in Fig. 3.

Although vibroacoustic phenomena accompanying gear functioning are easily
measured, yet the signal which reaches the casing of the gear is a complex signal
conditioned by reactions in the interpenetration range of the changeable (with
rotations) bearing susceptibility [5]. This is due to a modulation effect produced by
the series connection of dynamic reactions in the range of interpenetration of
dynamic reactions of ball bearings. Furthermore, the casing of the gear has a very
complex resonance structure and thus various filtration effects will occur in various
signal reception points on the casing and a modified signal corresponding to gear
functioning will be obtained.

The evaluation of the technologic state of a gear and its elements with the
vibroacoustic method is difficult, because of complicated paths of reactions from the
range of interpenetration to individual vibration reception points on the casing of the
gear.
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N=132 kW
n=1460 min™

Fig. 3. Kinematic diagram of a head with a specification of shafts (I-VII), toothed wheels (Z, —Z,,) and
bearings (1-15)

4. Frequency selection of vibrations of kinematic elements

Toothed gears, ball or barrel bearings are fundamental elements of most
machines. In order to compare adequate components of the spectrum of vibrations,
frequencies of forced vibrations of definite kinematic elements of the head, such as
main shafts, layshafts and toothed wheels, have to be determined.

Every element of a toothed gear is an elastic body and can be excited to vibrate
and generates a signal, which has a spectrum of a rather wide frequency range. The
level of vibrations is especially high in certain frequency bands of the spectrum,
especially for frequencies which are an integral multiple of the excitation frequency
[11]. This means that the highest power in toothed wheels is emitted at mesh
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frequencies and its harmonics. Unbalance of wheels and their excentric mounting on
the shaft as well as the kinematic deviation of meshing are a source of low frequency
vibrations. In most cases the number of teeth of wheels, z, and z,, are prime numbers
with respect to each other. Hence, the small wheel with z, teeth has to make z, full
rotations in order to repeat a situation in both wheels. The revolutions frequency of
the small wheel equals:

fi = n,/60 " [Hzl. (1)
The frequency of meshing of the same teeth, i.e. a full cycle of mesh, equals
fi2 = ny/60z;  [Hz] )

and most frequently lies below the audio frequency band; higher harmonics can
overlap the audio frequency band. j
Frequencies related to the mesh of teeth

f,=2z,n0,/60 =z,n,/60 = [, 2, (3)
and their harmonics

Jo = Kz (3a)

are of fundamental significance in the process of vibroacoustic signals generation.

Due to bearings, the spectrum of vibrations of the casing can be so complicated
that it may be impossible to find individual discrete components related to rotations
and meshing of toothed wheels, even with the application of a narrow-band
spectrum analyser [2]. Every pulse produced by a defect with a definite excitation
frequency will cause free vibrations of elements of the bearing and then of
neighbouring parts of the casing. These are ordinary high-frequency vibrations
observed sometimes in the acceleration spectrum of vibrations. Revolutions and
meshing frequencies for main kinematic elements of the system under investigation
have been calculated from mentioned above formulae and are specified in Table 2.

Table 2. Measuring points assigned to specified kinema-
tic elements

Rotation frequency [s~ '] | Meshing frequency [s™']
[Hz] : [Hz]
falm 243 Fy, = 4641
fur = 9.06 F,, =464.1
fv =65 Fj, = 3094
fv = 464 Fy, =182
o= el Fyyle= 182
Lot 0.64 Bty remd 2
Bt 789
Fan o == 13.9
F,, = 789
Fzs =621
Fy0= 309
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Investigations were performed at idle running with both directions of rotation of
the output shaft, taken into consideration. When a pair of toothed wheels rotates,
following pairs of teeth mesh and the torque is transferred to every pair of teeth. This
process conditions the so-called pulse idle load. Such a pulse consists of a local
collision of a meshing pair of weels, slip and friction along the side contact parts of
teeth, and a local impact, when a pair unmeshes. The pulse magnitude depends on
the accuracy and tolerance of backlashes preserved during assembly, as well as on
the workmanship of the wheel rim. The shaft can be periodically forces by these
factors and the precession effect will take place. This effect manifests in the amplitude
magnitude of vibrations in frequency bands containing characteristic frequencies.
Backlashes in identical wheels belonging to different gears of the same type will
differ, because of the randomness of backlash magnitude during assembly. Significant
divergencies in the character and intensity of vibrations, stated also after a change of
the rotation direction, can be an effect of overstandard assembly tolerance of head
elements. Such tolerance influences the durability and reliability of such a system
during exploitation.

The determination of evaluating criteria of dynamic states, which correspond to
optimal conditions of backlash tolerance, are of great importance in control
diagnostics, even at idle running. Optimal assembly tolerance, of some elements at
least, can be determined even at idle running in a well-planned and performed
experiment, when vibroacoustic estimates, which characterize definite parameters of
the dynamic structure of main kinematic elements, are determined. This will facilitate
and reduce costs of vibroacoustic investigations conducted presently at variable
dynamic load.

5. Analysis of paths of diagnostic signals in a machine

A signal undergoes distorsions and disturbances due to other sources of
vibrations on its path from the source to the transducer, in the dynamic system of a
machine. The received signal often is a superposition of all generated signals, because
of complex paths and size of signals which reach the receiving point on the machine
body. It depends on the transmittance structure of the system under investigation.
Therefore, the separation of characteristic frequencies in the spectrum of vibrations is
a very complex problem. In order to present the complexity of this problem the
influence of transmittance on power spectral density functions are analysed in a
simple line system during the change of the rotation direction of the output shaft.

Many papers on machine diagnostics neglect a very important problem of the
path of a signal x(t) from the source of vibrations to the point of signal reception by
a transducer mounted most frequently on the machine body. Instead of the real
signal x(t) we obtain signal y(t) on the machine body. If we assume a line dynamic
system (shown in Fig. 4), then the relationship between the power spectral density
function of input x(f) and output y(t) signals is as follows
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Xft) y(t) EI}

z(t)
= xrm

Fig. 4. Simplified diagram of a single input line system

G,(f) = IH(NI*G.(f) “

where: G,(f), G,(f) — one-sided power spectral density functions of signals x(t) and
y(t), H(f) — transmittance of the system, corresponding to the amplitude-phase
characteristic of the path of the signal.

Having the power spectral density G.(f) of the input signal and the gain
coefficient H(f) of the system, we can determine the power spectral density G,(f) of
the output signal.

Let us consider now a superposition of n line systems (Fig. 5) with constant
parameters, with g strictly determined output signals x,(¢), i = 1,2,3,..., 4, measu-

Fig. 5. Diagram of a multi input line system

red at the output through the global output signal y(t). This signal will be a sum of n
components of output signals

¥y =Yy beadS)
i=1

Several typical transformations based on the Fourier transform lead to the
following form of the expression for the power spectral density of the output signal:
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q 49
G,(f) = X X HXNH(N)G,(), (6)
i=1j=1
where: G;;(f) — mutual power spectral density of signals x;(t) and x;(t), H*(f) —
complex function conjugated with function H(f).
For uncorrelated processes we have:

G, = 3 KNG, (6a)

A change of the rotation direction of the output shaft should not lead to
transmittance changes of the system. Hence, we can accept that the transmittance of
point n on the head casing is constant for a right (P) and left (L) rotation

{IH,(f)2}2" = const. ()

In such a case power spectral densities of signals registered in a given point can
be expressed as

4q q

Gy(f) = X IH(NPGI(f),  Gy(f) = X IH(NI?GE(Sf). )

i=1 i=1

This means that the power spectral density in a given measuring point will not
have the error of transmittance estimation when the direction of rotation is changed.
Differences in the power spectral density structure occuring in various points after a
change of the rotation direction should be conditioned mainly by the assymetry of
precession, which takes place in motion dynamics of definite kinematic pairs.

6. Results and discussion

Such fundamental parameters of vibration as displacement, velocity and
acceleration, have been measured and analysed. Their comparison in certain
frequency intervals has lead to a classification of heads under investigation with
respect to intensity of emitted vibration signals. The spectral analysis of vibration
parameters, presented in the form of amplitude-frequency characteristics, enabled us
to determine dominating frequencies and to assign them adequate revolutions
frequencies of certain kinematic elements of the investigated system.

6.1. Line spectrum of vibrations displacement

A narrow-band analysis in the frequency range 0-50 Hz has been performed at
both rotation directions of the output shaft, in order to determine amplitu-
de-frequency distribution of vibrations displacement in individual measuring points
on heads under investigation. Displacement spectra of vibrations for right rotations,
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recorded in point n =7 of casings of heads numbered N = 27 and N = 28,
respectively, are shown in Fig. 6. These heads have significantly diversified
displacement amplitudes in certain frequency bands, especially in the sub-audio
range. Rms values of amplitudes were determined from obtained spectrograms of
displacement of vibrations. Considerations were limited to a frequency range
0-30 Hz due to a lack of sufficient amplitude resolution for frequencies
exceeding 30 Hz. Figs. 7 and 8 present graphically the displacement spectra of
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Fig. 6. Line spectra of vibrations displacement: a) Head no 27, point 7, right rotation of the output shaft,
b) Head no 28, point 7, right rotation of the output shaft

vibrations for heads N = 27, 28, determined respectively for points n = 2 and
n =12, for a right (P) and left (L) rotation of the system. A considerable
amplitude-frequency variability has been observed in registered spectra of displa-
cements in most measuring points of the casing. It results from the spectral analysis,
presented in the form of a frequency distribution of amplitudes for all measuring
points, that displacement amplitude maxima of vibrations occur mainly in bands
with mid-band frequencies: f =1, 2, 4, 6, 9, 16 and 25 Hz.

A comparison of calculated characteristic frequencies corresponding to rotatio-
nal speeds of shafts and certain toothed wheels (Table 1), with the graphic frequency
distribution of displacement of vibrations proves that frequencies dominating in the
frequency spectrum determine bands which contain calculated characteristic frequ-
encies. Global changes of displacement of vibrations averaged with respect to all
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Fig. 8. Frequency analysis of vibrations displacement for heads N = 27 and 28 in point n = 12 for both
directions of rotation (P — right rotations, L — left rotations)
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measuring points of specified heads for right and left rotations have been presented
in the form of rectangles at the right side of diagrams in Figs. 7 and 8.

In order to illustrate the range of displacement amplitude changes of vibrations
in all examined heads, the distribution of amplitude values for points n = 3, 7 in the
band with midband frequency f = 6 Hz for both rotation directions of the output
shaft is presented in Figs. 9 and 10.

A significat variability of amplitude values was observed. It depends on
investigated head and also on the rotation direction of the dynamic system of the
head.

Thus it results that vibration amplitudes produced by the same exciting force
undergo considerable variations which are related to differences in the assembly

210°
fmmi|

1 1 1 L l 1 1 1
022 ok 24 25 27 28 29  number of sound box

Fig. 9. Dependence of the displacement amplitude of vibrations in points n = 3, 7 upon investigated heads
N, in a frequency linear band with f =2 Hz
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Fig. 10. Dependence of the displacement amplitude of vibrations in points n = 4, 8 upon investigated
heads N, in a frequency linear band with f= 6 Hz

method and workmanship of definite kinematic pairs of the system. It also seems
important to present the range of changes of the relative level of vibrations related to
heads which have minimal values of vibration displacement in given points and
given frequency bands. The minimal value of the amplitude, characteristic for a given
head, was accepted as the zero reference level in a given point of all heads under
investigation. Various measuring points had various minimal values related to
individual heads. Using expression

A
L, = 20log=%=2  [4B],

sk(min)
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maximal and minimal levels of vibrations displacement were calculated with respect
to the accepted zero level

Figs. 11 and 12 present maximal and minimal displacement levels with respect
to zero levels accepted in marked points for dominating in the spectrum frequencies:
f =9 Hz and f = 25 Hz, respectively. Numbers of heads which have minimal
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Fig. 11. Graphic distribution of relative maximal and minimal amplitude values of vibrations displa-
cement in individual points of the cassing in a frequency linear band with [ =9 Hz

amplitude values, accepted as zero levels, are marked at the left side of measuring
points. While heads with maximal displacement levels of vibrations are marked at
the top of these diagrams. Diagrams on the right side express minimal level values of
specified heads (numbers in the top part) with respect to the same reference levels as
in the previous case. It is worth mentioning that level changes range from 0 to 33 dB.
This is an effect of a great diversification of dynamic processes taking place in
individual heads. Also a change of the direction of rotation significantly influences
generated dynamic processes.

A very important conclusion results from criteria stated in standard ISO 3945 —
a change of the level of vibrations in a 6:1 ratio is always a cause for a change of the
classification of the machine vibration condition from good to inadmissible. The
following classification of the dynamic state can be accepted on the basis of this
standard:
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Fig. 12. Graphic districution of relative maximal and minimal amplitude values of vibrations displacement
in individual points of the casing in a frequency linear band with f = 25 Hz

— a change of the amplitude of vibrations less than twice its value is
insignificant,

— only a level change exceeding L, = 20log2 = 6 dB can be a cause for a
change of the dynamic state of a head,

— it can be accepted approximately that a change of the level of vibrations in a
6:1 ratio (equivalent to 16 dB) is equivalent to a change of the dynamic condition
from good to inadmissible,

— according to these criteria a change of the level of vibrations which exceeds
16 dB should be equivalent to a transition to a supralimiting state, in which the head
is unfit for exploitation.

If the presented above classification is taken into account, heads in the
supralimiting state can be separated on the basis of diagrams of distributions of
limiting levels of vibrations. '

6.2. Third-octave spectrum of velocity of vibrations

On the basis of a third-octave spectrum analysis of the vibration velocity in a
Irequency range 1-200 Hz and in measuring points of the same heads, frequency
bands with maximal velocity amplitude values of vibrations were determined.
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Although the band width increases with frequency in analysers with constant
relative band width, it was stated that such an analysis allowed to determine
frequency bands with increased vibration intensity, as well as to assign them with
characteristic frequencies of certain kinematic elements. A comparison of velocity
amplitudes in definite frequency bands for both rotation directions of the output
shaft led to the determination of the range of changes of this parameter for individual
heads in all measuring points [15, 16].

A typical velocity spectrum of vibrations in third-octave bands has been drawn
in Fig. 13 for head N = 24, for measuring points n =8, 12 for both rotation
directions of the output shaft. Considerable differences of amplitudes in certain
frequency bands were stated. Relatively high values of velocity amplitudes were
observed in bands with mid-band frequencies: f = 4, 10, 25 Hz. They also dominated
in the linear spectrum of displacement of vibrations and thus are most important
factors in vibroacoustic diagnostics of heads.

In order to illustrate the scale of changes of velocity amplitude values with
respect to all heads under investigation, changes of the velocity amplitude of
vibrations in points n = 6, 10 for all tested heads in the third-octave band with
mid-band frequency f = 10 Hz for both rotation directions of the system have been
presented in graphical form in Fig. 14. A diagram of distribution of velocity levels of
vibrations in individual measuring points has been drawn (Fig. 15) on the basis of
results of the amplitude-frequency analysis in the third-octave band with mid-band
frequency f = 16 Hz in order to isolate heads with maximal and minimal values of
levels. Maximal values of velocity levels of vibrations in this band were stated for
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Fig. 13. Frequency analysis of velocity of vibrations in third-octave bands for head N = 24 in points
n=_8, 12 — right rotations, — — — — left rotations
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Fig. 14. Dependence of the velocity amplitude of vibrations in points n = 6, 10 upon investigated heads N
in a third-octave band with mid-channel frequency f = 10 Hz

head N = 27 in nearly all measuring points for right and left rotations of the system.
Hence, this frequency band dominates for this head. Highest values of the maximal
velocity level for this band occured in points n = 9, 12, situated radially with respect
to the main shaft of the planetary gear. Mid-band frequency f = 16 Hz, which
dominates 1n the third-octave spectrum, corresponds to the characteristic frequency
dependent on the superposition of vibrations generated by a series connection of a
system consisting of a toothed planet wheel Z,, = 19, m = 10 and a toothed sleeve
Zy = 29.m = 10 (Table 1). Taking mentioned above data into consideration, the

3 — Arch. of Acoust. 2/87
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Fig. 15. Graphic distribution of relative maximal and minimal amplitude values of vibrations velocity in
individual points of the casing in a third-octave band with mid-channel frequency f = 16 Hz

characteristic frequency, revealed in the third-octave spectrum, can be determined
from formula

= ﬁ‘(zg'*’zm)
¥ A 3

For k =1, we have

f. = 16 Hz.

This characteristic frequency was also found in the line displacement spectrum
of vibrations (Fig. 7) in points n =9, 12 of some of the investigated heads.

6.3. Third-octave spectrum of acceleration of vibrations

Also a spectral analysis of vibrations acceleration in third-octave bands was
performed in frequency range 20-2000 Hz for all measuring points on bodies of
investigated heads. A typical spectrum is shown in Fig. 16. It is a spectrum registered
in measuring point n = 12 for heads N = 27, 28 in bands with marked mid-band
frequencies. Rms acceleration values averaged with respect to all measuring points
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Fig. 16. Frequency analysis of acceleration of vibrations in third-octave bands for heads N = 27, 28 for
both directions of rotation (P — right rotations, L — left rotations)

for right and left rotations of the system, respectively, are presented at the right side
in the form of rectangles.

An analysis of obtained amplitude-frequency distributions of acceleration for all
tested heads in various measuring points proved that maximal values of acceleration
amplitudes occur mainly in the frequency interval 200-2000 Hz, and main maxima
occur in bands with mid- frequencies equal to f =200, 500 and 1000 Hz.
Taking into consideration that the technologic state of bearings is represented
relatively best by acceleration [2], it can be accepted that these maxima can reflected
principally by peripheral wavines or bearing cage backlash and run-out, which occur
in some rolling bearings. It results from calculations of characteristic frequencies of
vibrations related to mentioned above defects, that acceleration spectra of vibrations
in bands with specified above midband frequencies contain the following characteri-
stic frequencies: f,, = 194 Hz (bearing 4), f,, = 173 Hz (bearing 1) and f, = 501 Hz
(bearing 2) (Fig. 3). Various values of acceleration amplitudes of vibrations in these
frequency bands can reflect the dynamic state of specified bearings.

Figs. 17 and 18 present changes of acceleration amplitudes of vibrations in
pomnts n =9, 10 of investigated heads in bands with mid- frequencies equal to
f = 800 Hz and 1000 Hz. In these bands these amplitudes dominate in mentioned
measuring points. Various values of acceleration amplitudes, which occur here,
depend mainly on the investigated head (its dynamic state) and also on the rotation
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Fig. 17. Dependence of the acceleration amplitude of vibrations in points n = 9, 10 upon investigated
heads N in a third-octave band with mid- frequency f = 800 Hz

direction of the output shaft. It is impossible to evaluate the importance of
accelerations of dominating frequencies revealed in the third-octave spectrum at this

stage of research. However, they may be of great importance in the process of
vibraacoustic diagnostics.

7. Conclusions
Results of the amplitude-frequency analysis have indicated that the structure of

vibrations received in individual points on the body of investigated heads is distinctly
diversified. Frequency intervals with characteristic frequencies of certain kinematic
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Fig. 18. Dependence of the acceleration amplitude of vibrations in points n = 9, 10 upon investigated
heads N in a third-octave band with mid-channel frequency /' = 1 kHz

elements of the system have been determined on their basis. A comparison of
amplitudes in adequate frequency bands led to the determination of the range of
maximal variations of measured parameters. A significant influence of the rotation
direction on the structure of generated vibroacoustic signals was indicated. An
analysis of measurement results has led to the following conclusions:

1. A spectral analysis of vibration displacements has disclosed discrete compo-
nents related to revolutions frequencies of all main shafts and layshafts (Table 2),
which testifies to their good frequency correlation. Considerable relative displa-
cement amplitude level changes of vibrations, which were determined for revealed
discrete components in definite points on the body of investigated heads, are due to
unbalance or backlash in adequate rotary pairs or lack of their coaxiality.
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2. The selection of measuring points on the body of investigated objects has a
significant influence on the magnitude of discrete components of displacement
amplitades of vibrations. A certain relationship between the distance of the
measuring point from the element (shaft) and the magnitude of the displacement
amplitude of vibrations, determined for a frequency related to the speed of the shaft
which neighbours upon the given point, was stated. This relationship characterizes
mainly rotary pairs with high inertia.

3. Heads characterizes by maximal vibration intensities, caused mainly by lack
of coaxiality and radial clearences of shafts, have been separated on the basis of a
comparison of discrete amplitudes which occured in the displacement spectrum of
vibrations in bands corresponding to characteristic frequencies of these shafts
(Figs. 11, 12).

4. Frequency bands with increased intensity of vibrations, corresponding to
characteristic mesh frequencies of certain toothed wheels, have been separated on the
basis of velocity spectral analysis in third-octave bands.

5. Maximal velocity amplitudes contained in third-octave bands with center
frequencies coinciding with frequencies for which amplitude maxima were observed
in the displacement spectrum of vibrations, were stated in the range of low
frequencies.

6. Heads with maximal and minimal velocity levels of vibrations were found
from comparison of certain components of the third-octave spectrum of the velocity
of vibrations. This means that the assembly and production of the kinematic system
of investigated heads varies greatly.

7. Frequency intervals in which components with considerable amplitudes
occured, were found on the basis of a spectral analysis of acceleration of vibrations in
third-octave bands. These intervals are related to the dynamic state of rolling
bearings and the precision of their mounting on shafts. Considerable variations of
the level of vibrations were observed in investigated points during a comparison of
maximal amplitude values, especially in the band of medium frequencies. This gives
evidence of dynamic cooperation non-homogeneities of definite elements of tested
heads.

8. The rotation direction of the output shaft influences significantly the value of
discrete components in described spectra of vibrations. It is not unlikely that
giifferences of values of definite spectral estimates, conditioned by the rotation
direction of the output shaft, can carry important information about the assembly
correctness and cooperation of certain elements of the system.

If detailed classification criteria would be worked out on the basis of many
investigated objects of the same type, then the described method could become one
of more effective quality inspection methods of produced heads.
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THE REFLECTION OF A GAUSSIAN PULSE OF A PLANE ULTRASONIC WAVE
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FROM RIGID AND ELASTIC SPHERES IN WATER
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(00-049 Warszawa, ul. Swictokrzyska 21)

The authors have determined shapes and amplitudes of Gaussian pulses with limit
frequencies equal to 2. 3. 10 and 20 kHz. which were reflected backwards from rigid and
steel spheres with a 0.5 m radius, immersed in water. For this purpose spectral analysis,
transmittance theorem and inverse Fourier transform were used. Reflected pulses exhibited
two maxima corresponding to a specular reflection from the face surface of the sphere and
to a creeping travelling wave around the sphere. These maxima were masked by many
resonances inside of the clastic sphere. The masking effect decreases with the decrease of the
limit frequency of the Gaussian pulse incident upon the sphere. In such a case the shape of
the reflected pulse tends to a time derivative of the incident pulse. The peak to peak pressure
of the reflected pulse remains unchanged in the range of limit frequencies under
investigation. The measurement of the time interval between the first and second maximum
of the reflected pulse makes it possible to determine the radius of the elastic sphere, if the
limit frequency is sufficiently low.

Notation

— auxiliary function

— sphere radius

— auxiliary function

— wave velocity in water

— velocity of creeping wave

— velocity of longitudinal wave in the sphere
— velocity of transverse wave in the sphere

— expansion coefficient

— auxiliary function

— auxiliary function

— auxiliary function

— limit frequency

— shape function of the sphere

— spherical Hankel function of the second type
— derivation of function h{* with respect to the argument
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L — spherical Bessel function

g — derivative of function j,, with respect to the argument
G; — spectrum of the incident wave pulse

k= wle — wave number

m — natural number

5 — spherical Neumann function

n, — derivative of function n, with respect to the argument
P, — Legendre polynomial

Pi — acoustic pressure of the incident wave

Po — acoustic pressure amplitude of the incident wave
Ps — acoustic pressure of scattered wave

q — constant

¥ — radial coordinate

s — constant

t — time

x = wajc

x*, = wajc,

X; = wgfc;

B — constant

M — auxiliary quantity

0 — azimuth

Ay = clfy — limit wave length

s — auxiliary variable

0 — water density

0 — density of the sphere

T — normalized time

@ — angular frequency

w, — limit angular frequency

1. Introduction

The reflection of ultrasonic waves from spherical objects immersed in water is of
fundamental significance to many problems of ultrasound technology, such as
hydroacoustic surveying. This problem has been undertaken in many papers. The
first one to solve this problem theoretically for elastic spheres and a continuous wave
was FARAN [4]. Later, other authors have pointed out a small mistake in FARAN’S
very complex formulae [3, 12, 16]. Experimental research in the domain of the
reflection effect, performed with the application of aluminium and brass spheres
immersed in water in the range of ka = 4.1-+57, has confirmed the theory [8].

This paper deals with the effect of backward reflection of a Gaussian pulse of an
ultrasonic wave incident upon rigid and elastic spheres immersed in water. It was
accepted that a plane wave pulse, which is a time function near to a Dirac pulse,
assumes a shape close to a Gauss pulse, due to imperfect generation and propagation
conditions in water. Such a pulse incident upon a fixed sphere, is reflected from it and
returns in the direction from which it was emited.

This paper is aimed at the determination of the shape and amplitude of the
reflected pulse. It also tries to answer the question: Can any information concerning
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the reflecting sphere be obtained on this basis? HaseGawa’s formulae [9, 10, 11]
describing the reflection of a continuous plane wave from an elastic sphere, with the
correction made by ANSON and others [1], have been applied in this paper.

The procedure introduced by RUDGERS [18] and HickLING [12] will be applied
in order to analyse the reflection of pulses.

2. Gaussian pulse of an ultrasonic wave

A system of polar coordinates is being accepted (Fig. 1A). Considering axial
symmetry we have two coordinates: r and 0. A Gaussian pulse of a plane wave
moving along the z-axis (z = rcos() is the following time function (at a fixed value
of z)

P = poexp(—p*t?). (1)
T TR vas

LA Y
S |

Fig. 1. A — Applied coordinate system — a plane progressive wave is incident upon sphere with radius a
along the z-axis. This system was applied by authors of papers [4, 5, 11, 18]. B — Coordinate system
applied by RsHEVKIN ([17], p. 258)

Assuming p, = 1 and applying a Fourier transform [13], we achieve the pulse
spectrum in the following form

Giw) = | pit)exp(—jotyds = %exp(—w%ﬂﬂ, 2)
where the identity [6]
Tj exp(—u?s® +gs)ds = #exp(qzﬂuz) for u>0, (3)

was applied.
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If we define the limit frequency f, (as well as the limit angular frequency ). as a
frequency at which the spectrum amplitude is equal to 1/10 of the maximum value,
then we have

B = nf;//IIn0.1] = 2.07f, = 0.3290,. 4)

The shape of the Gaussian pulse whic¢h corresponds to the limit frequency
f, =20 kHz is presented in Fig. 2, while its spectrum is shown in Fig. 3.

2,2
pt)=e#"

10
i f, =20 kHz

05 + P=414:10°s"!
)..

1 1 1 1 1 1 1 1
-005 0 005 tims]
0073 ms

Fig. 2. Gaussian pulse corresponding to limit frequency f, = 20 kHz

In further analysis we will introduce a dimensionless quantity ka = wa/c in
place of the angular frequency w. Hence, we achieve the following expression, if we
include factor a/c in the exponent in expression (2) and also include (4)

z
G,(ka) = Jr exp[—(ka)2/0.433(9§3) j| (5)

03290,

3. Reflection of a continuous wave and a Gaussian pulse from rigid spheres

First of all we will determine the value of a continuous wave reflected from a
rigid sphere. The acoustic pressure of a harmonic plane wave propagating in the
direction z = rcosfl (Fig. 1) has the following form [11, 9, 10]
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2 U e—wz/f.,az

00428

000428

0 10 20 flkHz]

Fig. 3. Spectrum of Gaussian pulse from Fig. 1

Z (2m+ 1)(—j)"j,,(kr) P,,(cosO)exp(jwt) (6)
while the acoustic pressure of a wave reflected from a sphere is expressed as

ps= Y (2m+1)(—jy"c, h? (kr) P, (cosO)exp(jwt). (7)
m=0

Coefficient ¢, is determined from boundary conditions on the surface of the
sphere. In the case of an elastic sphere this coefficient is a function of: velocity of a
longitudinal and transverse waves in the sphere, sphere density, wave velocity in the
fluid surrounding the sphere, fluid density, frequency and radius of the sphere. This
relationship becomes simpler in the case of a rigid sphere, because the velocity of

longitudinal and transverse waves tends to infinity. Hence,

(>, ;2 0)=x,-0 and x,-0, (7a, b)

and HaseGawa's formulae [8, 11, 1] for an elastic sphere can be simplified to the
form for a rigid sphere, because then

Cm = [ X X) = F i (X) Y LF B () = xH3 ()] = — fu(X)/ 1 () @)
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as
0x3(A,.—B,,)
Fo= 2¢.(D,,—E,) G ©)
where
i M) (X1) = X1 jim+1(X4)
m = 1)jne)—Xjms 1 (50) 49
2m(m+1)j,(x,)
B = 11
™ (2m? —x3 = 2)j (%) + 2% 3 jm+1(%2)’ ()
- [x22/2—m(m—1)]jm(x1)—2x1jm+1(x1), (12)

(M —1)j (1) = X jm+1(x1)

_ 2mm + D[ =m)jn52)+ a1 ()] .
= (zmz_x%"z)jm(xz)+2xzjm+1(x2) '

The limit of formula (9) is zero as x, and x, tend to zero. This could be shown
by applying the following properties of spherical Bessel functions [15]

jm +1 (é) i é
Jm(@)  2m+3
and the de 'Hospitals principle twice with respect to (9). Approximating the Hankel

function by an asymptotic expression ([17], p. 211) for a distance much greater than
the radius of the sphere, r > a

for £-0 (14)

h(kr) = lexp[—j(kr—m; ln)] (15)
including identity
(—jymexp[j(m+D)n/2] = +j, (16)
and assuming backward reflection (0 = 180°)
P,(cos0) = (—1)" (17

we achieve from formulae (7) and (8) the final form of the formula for the acoustic
pressure of a continuous wave reflected from a rigid sphere [5]

m(k ;
p, = ;_I: m}; jCm+1)(— I)MI:(Z)(,(;;):'exp[—j (kr—ot)]

bt 5= oka)exp[ =) (kr —on)]. (18)

The expression in first $quare brackets in formula (18) is called the shape
function of the backward reflection from a sphere in the far field. It is denoted by
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fw(ka). Function (a/2r)f,, (ka) can be treated as the transmittance of the sphere which
is the response of the sphere to a harmonic input signal [6]. In paper [6] the
transmittance of the sphere was accepted without the factor a/2r.

Formula (18) can be also achieved on the basis of RUDGERS paper [18]. The
author introduced function sinn,,exp(jn,,) in expression (9) and (11) in his paper. It
can be proved that tgn,, (see formula (10) in the quoted paper) satisfies relationship

Jm(ka)
= . 19
tgh, nka) (19)
Then we have the following identity
’ . . Jm(ka)
Sln”mexp(ﬂ?m) = hﬁﬂz)f(ka)' (20)

Hence, we have an identical form of the shape function f, (ka) as in the first
square brackets in formula (18). A similar formula can be obtained also on the basis
of formulae (8.24), (8.26) and (9.6), which were given by Rshevkin [17]. In such a case
differently defined coordinates have to be taken into consideration (Fig. 1B).

Fig. 4 presents the modulus of the function f, (ka) for a rigid sphere (curve R).
For ka > 10 this curve oscillates around the value of 1 with decaying oscillations.

1£, (k)
G;(ka)

2F

E
1 N\ [N ‘l‘ L1 i
|I "u :I'. T
AV
Iy h
AL N
I~
J \
3 kHz
f =20 kHz
0 ] 10 5 20 25 30 ka
[} 3 477 955 K3 flkHz]

Fig. 4. Shape function [, (ka) for a rigid (R) and steel (E) sphere, and spectra of a Gaussian pulse with limit
frequency f, = 20 kHz and 3 kHz (related to the maximal value). Sphere radius a = 0.5 m
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When the wave incident upon the sphere has the shape of a pulse, then two
variables, r and t, are substituted by one dimensionless variable in the following
form [18]

T = (ct—r)/a. (21)

This procedure is justifiable, because the same shape of a pulse is obtained at
a fixed time t when its shape is observed in terms of distance r, or on the contrary at
a fixed distance r when its shape is observed in time t.

The pulse of a reflected wave will be presented in the domain of time normalized
by expression (21) with the application of the linear theory of networks [14]. To this
end an inverse Fourier transform was determined from the product of the
transmittance of the sphere, a/2rf, (ka), and pulse spectrum G;(ka). Including
formulae (18) and (5) we have

1+cn

pu(0) = 5= | 5:S(ka) Gi(ka)expGkar)d(ka) (22)

- a0
or in full notation

o aite =220 wdnlka) |/
O = gy 1| 2, Jom DD hsmka)]osz%g i

x exp[—(ka)2/0.433(%)2 + jkaz}d(ka). (23)

The shape function f,, (ka) for a rigid sphere (R), also spectra of pulses G,(ka),
calculated for frequencies f, = 20 and 3 kHz have been shown in Fig. 4. The wave
velocity in water was accepted as equal to ¢ = 1500 m/s and the radius of the sphere
a=0.5m

Shapes of pulses reflected from rigid spheres were determined from the real part
[18, 2] of formula (23). They are presented in Figs. 5, 6, 7 and 8 (pulses R) for limit
frequencies equal to 2, 3, 10 and 20 kHz, respectively. Shapes of transmitted signals
T are also shown for comparative purposes, their amplitudes are relative quantities
here.

From formula (21), for value 7, at a fixed distance r,, we have

Ty = €to/a—ry/a (24)
and
To+ 41 = c(ty+ At)/a—ry/a. (25)
Hence,
At = (a/c)At. (26)

This last relationship can be used for converting the t-scale into the t-scale —
different for every radius a of the sphere.
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Ps Ps
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Xz'_- L X =S
7 R -
02} 02}
o1t o1t

3 » & A ek -3-2-!0/23 At
-Or -
f,=2 kHz
a=05m

Fig. 5. Transmitted pulse (T), reflected from a rigid (R) and steel sphere (E) presented in terms of
normalized time 7, for f, = 2 kHz

q

Ps Ps
a
err

or r

f,=3kHz
a=05m

Fig. 6. As in Fig. 5 but for f, = 3 kHz
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Fig. 7. As in Fig. 5 but for f, = 10 kHz
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Fig. 8. As in Fig. 5 but for f, = 20 kHz
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4. Reflection of a continuous wave and a Gaussian pulse from elastic spheres

A similar calculation procedure was applied in order to determine the pulse
reflected from an elastic sphere. It was accepted that the sphere is made of steel and
has a radius a = 0.5 m, equal to the radius accepted for a rigid sphere. Also in this
case formula (22) was applied, but the form of the shape function f, (ka) for an elastic
sphere is very complex. It was determined from relationship [12, 5]

a
P, = Pig S (k) @

and formula (7), taking into consideration relationship (15). Hence, for a backward
reflection (0 = 180°) and r > a we achieve

folka) = (2j/ka) Y. 2m+1)(—1)"c,,. (28)
m=0
Coefficient c,, was determined from formulae (8)-(13). The modulus of the shape
function f, (ka) is presented in Fig. 4 (curve E).
Shapes of pulses reflected from steel spheres (pulses E), determined from formula
(22) for various limit frequencies, are presented in Figs. 5-8 in the same scale as for
rigid spheres.

5. Results and discussion

Pulses reflected backwards from rigid spheres at a great distance with respect to
the radius (r > 10a = 5 m), exhibit two maxima (Figs. 5-8), when absorption in
water is neglected. These maxima occur at © = —2 and 3.2. Shapes of pulses reflected
from elastic and rigid spheres differ. Resonances of the sphere exhibit their influence
in a case of elastic spheres. This is due to the shape function f, (ka), (curve E in
Fig. 4). The inverse Fourier transform was performed on the product of this function
and the spectrum of the transmitted signal G,(ka). These resonances do not occur in a
case of rigid spheres (R). Undulations of the function f,, (ka), which distinctly occur at
ka < 10, are a result of standing waves produced in water around the sphere.

The Gaussian pulse under consideration in this paper can be considered to be a
function which approximates the Dirac distribution. The system response to a Dirac
pulse (pulse response) would contain all informations on the investigated system,
because the frequency spectrum of a Dirac pulse is a horizontal, unlimited straight
line in the range of high frequencies. Then we would have a unity instead of function
G;(ka) in formula (22).

The application of a Gaussian pulse limits high frequencies when formulating
integral (22). The longer the duration time of the pulse, the more smoothed is the
response of the system due to filtering of high frequency components with respect to
the transmittance function of the sphere.
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Maximal amplitudes of reflected pulses with respect to the limit frequency f, are
shown in Fig. 9. They are only slightly lower for steel spheres than for rigid ones.
This is due to great differences between specific acoustic impedances of water and
steel, so only a small part of the energy penetrates into steel spheres, while it does not
penetrate into rigid spheres at all. These amplitudes decrease rapidly when the limit
frequency f, is decreased. However, if we take into consideration the overshoot,
which is observed directly after the first maximum (for. —2 < 7 < 0), then we observe
that the maximal value of the reflected signal peak to peak is independent from the
limit frequency.

02}

gl [ i 1 i L

4] 3 0 flkHz] 20

Fig. 9. Maximal amplitudes (positive) of a pulse reflected from rigid (R) and elastic (E) spheres in terms of
. limit frequency f, (at © = —2)

Figs. 10 and 11 present transmitted pulses and first maxima of received pulses
placed over them for f, = 20 and 3 kHz. In the second case it is visible that the shape
of the reflected pulse approaches the shape of the time derivative of the transmitted
pulse. This can be explained by the shape of the transmittance curve (a/2rf,, (ka) for
small values of ka (at a/2r = const) (Fig. 4) similarly as for a differentiating
four-terminal network RC. for which it would be a straight inclined line.

The differentiation of the reflected pulse can be also explained by the fact that
for ka < 1 components of the waves incident upon the sphere with higher frequencies
(shorter wave lengths) are reflected from the sphere with greater amplitudes than
components with lower frequencies.

First maxima of pulses, corresponding to a specular reflection, occur always at
T = —2, because the initial time ¢t = 0 was accepted in the moment when the wave
propagating along the z-axis (Fig. 1A) would reach the origin of coordinates, r = 0.
Hence, the wave is incident upon the surface of the sphere in point r = —a in the
time t = —a/c. Substituting these in formula (21) we achieve 1 = —2.
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0

a5

o1 r[m?]

-o7

o ———

psl(t)

Fig. 10. Shape of transmitted pulse p; with the first maximum of the pulse p, reflected from a rigid sphere
drawn over it, for f, = 20 kHz

a

The second maximum of a reflected pulse was observed in all cases at t = 3.2.
Its value is much lower than that of the first maximum. Because this effect also
occurs with rigid spheres, it must be related to phenomena occuring outside the
sphere. Such an effect had been observed by RUDGERS [18] in his theoretical paper.
He related it to a creeping wave, which propagates around the sphere with a velocity
only slightly lower than that in water. The path of a creeping wave, according to this
author, is shown in Fig. 12. The first maximum is produced by a direct reflection of a
pulse from the front surface of the sphere; the second one occurs much later, when
the wave has propagated around the sphere. The difference of propagation time was
equal to At = 5.2 in all cases. This corresponds to velocity

¢ = naf(4tajc—2a/c) = 098¢, :' e o)

where the numerator denotes the path around the hemisphere travelled by the pulse
of a creeping wave, and the denominator denotes the time of thls process, calculated
from relationship (26).

The idea of a wave travelling around the sphere seems justfiable by the fact that
the curve f, (ka) exhibits an oscillatory behaviour for a rigid sphere. For, this testifies
to the existence of waves around the sphere, which cause inteferences in the steady
state (see curve R in Fig. 4).
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Fig. 11. S.hape of transmitted pulse p; with the derivative dp,/dt and first maximum of the pulse p, reflected
from a rigid sphere drawn over it, for Jy = 3 kHz in order to compare more casily these functions, they
have been shifted in time and their maximal positive values have been equalized

Therefore, it is possible to determine the unknown radius of the sphere on the
basis of the time interval At,_, measurement, from formula

a=cAt_yn+2d/c)" =~ cdt,_y(n+2)7 L. 30)
‘ 1-nl

However, it may be difficult to determine the second maximum for a case of real
(elastic) spheres. It can be seen from comparison between Figs. 5-8 that the shape of
a pulse reflected from an elastic sphere becomes similar to a pulse reflected from
a rigid sphere at lower limit frequencies. This effect can be explained on the basis of
Fig. 4. The spectrum of a Gaussian pulse at a limit frequency of 3 kHz includes such
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I

Fig. 12. Pulse (T) incident upon the sphere, pulse reflected from the front surface of the sphere (I) and pulse
of a creeping wave circulating around the sphere (II) according to RUDGERs [18]

parts of the shape function f, (ka) of an elastic and rigid sphere, which have similar
shape. While at a limit frequency of f, = 20 kHz the spectrum of this pulse includes
curve E with all its maxima and minima, which are absent in curve R. Hence, we
have a complex shape of a pulse reflected from an elastic sphere (Fig. 8E).

It results from a comparison between Figs. 5-8 that the second maximum can be
determined at limit frequencies equal to f, = 2 and 3 kHz. Or more general in the
case when

Aa=1-15. | | - G1)

Besides a creeping wave which circulates the sphere once, also cases of repeated
circulation can take place, but amplitudes of these waves are two orders of
magnitude smaller [18]. Therefore, they can be neglected

6. Conclusions

a) A Gaussian pulse of a plane ultrasonic wave incident upon a sphere produces
a reflected pulse, which exhibits two maxima for a rigid sphere model. The first
maximum is formed due to a direct specular reflection of a wave from the front
surface of a sphere (at t = —2, see curves R in Figs. 5-8), while the second one
(at T = 3.2) is formed due to a creeping wave which circulates the sphere.

b) The second maximum in the case of an elastic sphere (steel) is masked by
many maxima and minima, produced by internal resonances of the sphere (see curve
E in Figs. 5-8).

¢) The second maximum can be determined ‘when relationship (31) is satisfied.
The masking effect decays then. |

d) The lower the limit frequency f, the higher the value of the second maximum,
equally for a rigid and elastic sphere. The second maximum becomes more easily
detectable then.

e) At a limit frequency of f, = 20 kHz, the shape of the first maximum is very
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much like the transmitted pulse (Fig. 10). Whereas it approaches the shape of the
time derivative of the transmitted pulse when frequency [, decreases (Fig. 11).

f) The amplitude of the first maximum of the reflected pulse decreases with the
decrease of the limit frequency (Fig. 9). However, if the oveshoot is taken into
account, then the height of the pulse measured peak to peak, remains constant in the
frequency range under consideration.

g) The radius of the sphere can be determined from formula (30) on the basis of
the measurement of the time interval between the first and second maximum.

The above conclusions have been formulated on the basis of calculations carried
out in frequency range f, = 2-20 kHz on models of a rigid and steel sphere with a
radius of @ = 0.5 m, It was found that at low frequencies the incident Gaussian pulse
does not “see” the interior of the sphere — is unresponsible to its internal structure.
While at the same time the magnitude of the echo is independent from frequency,
because of the overshoot in the reflected pulse.
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AN ANALYSIS OF ACOUSTIC WAVE RADIATION CONDITIONS WITHIN
THE STRUCTURAL SYSTEM OF AN AXIAL DYNAMIC GENERATOR

TOMASZ ZAMORSKI

Department of Acoustics Institute of Physics, Higher Pedagogic School in Rzeszow
(35-310 Rzeszow, ul. Rejtana 16a)

This paper analysis radiation conditions of an acoustic wave in an axial generator
with outlets of the stator entering a common horn with a ring-shaped cross section.
Acoustic properties of the generator horn, including the wave reflected from the outlet, were
considered. The influence of the impedance misfit in the outlets of stater openings-horn inlet
system, on the acoustic power emission was estimated. A theoretical and experimental
analysis was performed in order to determine the influence of a finite horn length on the
power emission and generator efficiency.

1. Introduction

Acoustic axial dynamic generators belong to a group of flow generators which
convert energy of compressed air into acoustic energy. The vertical section in Fig. 1
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Fig. 1. Axial section of an axial dynamic generator
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shown main elements of the structural system of an axial dynamic generator. An air
flux which escapes the pressure chamber (4) through channels (3) in the plate of the
stator (2) is periodically cut-off by a rotating rotor (1) with openings spaced in
a regular manner on its perimeter. Thus, a sound wave is generated at the outlet of
the stator channel and radiated outside through the horn (5).

In first constructions of generators [2] the stator was equipped with few holes
only. Every one of them had a separate acoustic horn. Such a‘structure is still applied
in audio frequency, high power generators [11]. Trials of constructing generators of
high frequency waves have led to structural changes in the stator-horn system, such
as increasing the number of ‘openings (from tens to several hundred) with small
diameter (several milimeters), spaced regularly on the perimeter of the rotor and
stator. All openings are opened into a common horn with a ring:shaped cross
section, because building seperate horns for every channel of the stator was
impossible for technological reasons. Such a structural model of an axial generator is
most frequently applied at present [5, 7-10].

Presented above trials of obtaining high acoustic frequencies generally were not
accompanied by an analysis of radiation conditions of generated waves, although
they were subjected to significant changes. Introduced structural modification causes
an“impedance misfit between outlets of the stator and inlet of the horn, thus
inevitable losses of radiated acoustic power. This problem has not hitherto attracted
attention of scientists, mainly because the theory of acoustic horns with ring-shaped
cross sections has not been sufficiently developed. Calculations of generators with a
common horn for all openings of the stator are at present limited to approximations
which accept that the impedance of the generator horn outlet with a ring-shaped
section is expressed by an identical formula as for a horn with an identical wall
profile, but with a circular section [8, 9]. Furthermore, an ideal acoustic matching of
the horn outlet with the surroundlngs was assumed [2, 5, 6, 8-10, 12-15, 18, 19].

Radiation conditions of an acoustic wave generated at the outlet of the stator
channel (3) have been analysed in this paper. To this end a trial of determining
acoustical properties of a generator horn with a ring-shaped section has been
undertaken. Then the effect of impedance misfit between outlets of the stator and
horn inlet was estimated and the assumption of an ideal matching of the generator
horn outlet with the surroundings was verified.

2. Generator horn

Certain physical properties of the horn closely connected with its geometry are
required to match the acoustic impedance with the aid of a horn. A wave which
reaches the generator horn outlet propagates in a medium with acoustic impedance
equal to the impedance of a waveguide for x = I, where x is the generator axis of the
horn and [ is its length; while the impedance of the outlet seen from the outside
depends on the shape of the outlet, as well as on the shape of the isophase surface
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and length of the wave leaving the horn. If real parts of both impedances are equal
and their imaginary parts are equal to zero, then a wave which reaches the horn
outlet will be radiated into the surrounding medium without obstacles and the
generator will radiate outside maximum of the acoustic energy. The equality of real
parts of the impedance prevents a reflection of the wave from the outlet, while the
absence of their imaginary parts means that a phase shift between the pressure and
vibration velocity of particles of the medium does not occur. Such a specific case of
ideal impedance matching at the outlet is called a “horn with infinite length” [16],
because only in a hypothetical, infinite horn a wave propagating towards the outlet is
not accompanied by a reflected wave. In such a case the total acoustic power is
released on the real part of the outlet impedance. This impedance can be considered
focused. An analysis of impedance frequency characteristics of the outlet as well as of
an arbitrary horn at the outlet proves that a given horn approaches the ideal of an
infinite waveguide when the wavelength decreases with respect to the dimensions of
the outlet. Then real parts of both impedances approach the acoustic self-resistance
of the medium and imaginary parts approach zero.

Mentioned above arguments concern a plane wave. The enlargement of
transverse dimensions of the horn with respect to the wavelength could lead to
amplified transverse vibrations of the medium in the horn. It would have an adverse
influence on power radiation, because it causes reflections of the wave from walls of
the horn and accumulation of a part of the energy inside the waveguide. Therefore,
the diameter of the horn outlet can not be arbitrarily increased, even when the
construction demands concerning generator dimensions and weight are neglected.

In practice we have to choose from opposed postulated when determining the
dimension of a horn and then the impedance matching at the outlet can greatly differ
from the ideal of an infinite waveguide.

Therefore, in this paper we will calculate the generator horn as a “horn with
finite length”, i.e. including the wave reflected from the outlet.

There are certain regularities concerning the dimensions and shape of a horn in
constructions of axial generators with a common horn for all openings of the stator:

— the width of the ring-shaped channel at the horn inlet is equal to the
diameter of openings of the stator and amounts to several milimeters,

— the width of the ring (the cross-section of the horn) increases from inlet to
outlet and at the outlet changes into a circle with the diameter equal to the doubled
diameter of the rotor (Fig. 2),

— the length of the horn is 1-1.5 times greater than the radius of the outlet
opening,

— the profile of walls of the horn is defined by formulae [17]

(1/2)dy ) = (1/2)dy+(1/2) ho[cosh (x/xo)+ Tsinh(x/x,)], (1)

(1/2)dyy = (1/2)dy—(1/2)ho[cosh(x/x,)+ Tsinh(x/x,)], (2)
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Fig. 2. Axial section of the horn of an axial generator

where x, is a constant determining the rate of flare. In practice parameter T most
frequently equals one or zero, what corresponds to an exponential or catenoidal
profile of walls, respectively. Hence, we will limit further consideratons to the case of
Te[0,1].

It results from formulae (1) and (2) that the crosssectional area S of the
generator horn has the following form

S = S,(cosha+ Tsinha), (3)

where o = x/x,, S, = nd,h, is the area of the inlet. On the basis of [16] and [17] it

can be stated that the equation of wave propagation in a horn (3) has the following
form

d*Fldo? +[u2—V,,]F = 0, @)

where F is the so-called wave function, u is the dimensionless frequency and function
Vi, which characterizes the geometry of the horn, is expressed by

Vi = 1/2—(1/4)tgh?(a+ ), (5)
where @ is an abbreviated notation of
Q = arctghT. (6)

It should be noted that equation (4) describes the propagation of a plane
harmonic wave, which propagates in the generator horn without energy loss [16].
This equation can be solved in an approximate manner for values T € [0, 1), while
for T = 1 we achieve a linear differential equation with constant coefficients and
with an accurate solution in the finite form [3].
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Let us consider closer the case of T = 1. From (6) and (5) it results that wave
equation (4) will accept the following form

d*F/de*+ K*F =0 (7)
where K is independent of position and is expressed by formula
K? =p2=1/4. (8)

The solution of equation (7) has the following form [16]
F.o= AetiRE ©)

where A is independent of position. It results from (8) and (9) that the frequency
which delimits periodic solutions from aperiodic ones, and is frequently called the
cut-off frequency of a horn, is equal to

Hoy = 1/2. (10)

From the theory of acoustical horns [16] we know that for a case of K independent
of position, the admittance* of a horn with finite length is expressed by formula

K > Ko i dS
p= ;ctgh{n[e—:(é—?)]}+2—“%. (11)

The real and imaginary part of the expression under the hyperbolic cotangent
characterize the amplitude decrease and phase shift of the wave reflected from the
horn outlet, respectively. Within the framework of mathematic formalizm accepted
in the theory of horns [16], quantity 2ne is equal to the amplitude ratio of the
reflected and incident wave, and expression 2n(d— Ka/n) characterizes the phase
shift between the wave progressing towards the outlet and the reflected wave.

Including (3), (8), (11) in the case of the horn T = 1 under consideration,
u > p,. we achieve the following formula for admittance

=
T :
1—4ifctgh{n[s—i(a— . 4a>}}+i. (12)

Quantities ¢ and 6 can be derived from the boundary condition

B = B (13)

where f, is the elementary relative admittance of the horn outlet, while 8, is the
elementary relative admittance of the outlet opening of the horn seen from the
outside. f§, is obtained by substituting o = «, in (12), where o, is the dimensionless
abscissa of the horn outlet. i, can be achieved by rearranging the well-known

p

* At this stage of considerations we will use the notion of admittance in place of impedance in order
to simplify used formulae.
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Rayleigh formula for elementary acoustic relative impedance of a circular piston in
an infinite baffle. Thus, introducing abbreviated notations, condition (13) has the
following form

2—--
ala

ctgh[n(e—io)] = Q+iW, (14)
where
1
#Z—Z
O'! = 6_ P a[’ (15)
: 1 =172 W2 — ZWIl(w) ‘
= [l . (16
. Q ( 4#2') [W—ZII(W)]2+4{S1(W)]2 )
W={1-—— — 17)
( 4#) [w—211)]% +4[S1m]? 5 1 (

Iy, and Sy, denote Bessel and Struve functions of the first order, while
w=kd, (18)

where k is a wave number and d,, is the diameter of the horn outlet.
Rather arduous rearrangements allow us to determine ¢ and o, from (14):

2me = arctgh[20/(1+ Q>+ W?)] (19)
2mo, = arctgh[2W/(Q* + W2 —1)]. (20)

Then, having ¢, we can determine § from (15)

1

2—«.—7
o
(s = O""‘

o. 1)
s
When we include (21) in the imaginary part of the expression under the
hyperbolic cotangent in formula (12), we reach a conclusion that the phase shift
between the wave reflected from the horn outlet and the incident wave, is a linear
function in terms of position on the horn axis:

|

v
oy

O = 0+ (ot; —0x). (22)

Whereas, quantity &, which characterizes the amplitude ratio of the reflected and
incident wave, is constant (formula (19)) 4nd depends solely on the impedance at the
horn outlet. :
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At present we will consider cases of u = p,, and u < p,,. Two methods can be
applied to the limiting case, u = p,, (ie. K = 0). The first one consists in a rather
complicated rearrangement of formula (12) with repeated application of the de
I'Hospital principle; while the second one is based on the solution of the wave
equation. In the case of K = 0 this solution has the following form:

d*Fldo® = 0, (23)
Both methods lead to the same final result
pi= i[l ~2/(C+tx):| . (24)

where C is expressed by

i[Wz —2wl l(w)] o ZWSI(W) =
= 1 — . 25
¢ 2{[1&—211(“]2%4[&(“]2 # - o~

In the case of u < p,, in formula (12) we accept

K=—i [-—u? (26)
and reach

2

. . 1 1 3 ,
= el i i
f=——-ctgh<n| | e+ —o ) =i | p . (27)
Iz T 2u

Introducing o = 0 in formulae (12), (22), (24) and (27) we achieve the admittance
and thus — the impedance of the horn inlet. This is the mcst useful quantity in the
analysis of wave radiation conditions in the structural system of a generator.

To conclude our considerations of the case of T = 1 we will present a numerical
example and calculate the elementary relative impedance of the horn outlet in terms
of frequency on the basis of formulae (12), (24) and (27). The following dimensions of
the horn were accepted for calculations:

~ — width of the horn channel at the inlet hy = 1.5-10™% m,

— inside diameter of the ring-shaped horn channel d, = 107! m,

— diameter of the horn outlet d, = 2-10"' m,

— horn length [ = 151072 m.

These dimensions ‘are typical for designs of axial flow generators.

Diagrams in Figs. 3 and 4 illustrate calculation results. Oscillations caused by
the reflection of the wave from the horn outlet can be seen in frequency
characteristics of real and imaginary parts of the inlet impedance. In the range of low
frequencies oscillations of the inlet impedance are considerable and can influence the
acoustic power emission and efficiency of ‘the generator.
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Fig. 3. Inlet acoustic resistance of the generator horn with an exponential profile
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Fig. 4. Inlet acoustic reactance of the generator horn with an exponential profile

Now we will consider the case of T € [0, 1). It results from (4) that the frequency
delimiting periodic (u* > ¥,,) and aperiodic (1 < Vi) solutions is equal to

= = /1/2—(1/4tgh*(a+ Q). (28)

We can see from formula (28) that the cut-off frequency is a function of the
position on the axis of the horn, when values from interval [, 1] are accepted.
While,

Hor, = /12— (1/4)1gh* (@, + ), (29)
By = \/1/2—(1/8)tgh* Q. (30)
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This is the so-called broadening of the cut-off frequency of a horn and it has
been described in [17]. An approximate method of solving the wave equation of a
horn, which was given in [18] will be applied in order to calculate the admittance.
This method consists in the approximation of function Vi by a broken line. Horn
Te[0,1) is considered to be a polyadic horn and every unit corresponds to one
segment of the broken line. A rearrangement of formulae given in [18] results in an
expression for the elementary relative impedance of the n-unit of the horn

£ et Cola+b,)[I -¥3e32)— D, I%{%gafz)] 1
B = m rm—— S —5tgh(x+Q)r, 31

where C, — slope of the n-segment of the broken line, b, = (4> = Vju1,)/C, Vian—1)
denotes the value of function ¥, at the inlet of the n-unit of the horn, D, — constant
derived by equating the outlet admittance of the n-unit and the inlet admittance of
the (n+ 1)-unit of the horn.

Quantity £, which is found in the argument of the Bessel function in formula
(31), is expressed by the following expression

¢ =CilP(a+b,). (32

Formula (31) is valid for £ > 0. Rearranging general relationships given in [18]
we reach an expression for the admittance of horns under consideration for a case of
&='0 and ¢ < 0:

for £=0
_ —=i[BCc)Pr@) 1
b5 gera i
where I' is the Euler function:

and for £ <0

: _l{—l C,,Ia+bn][I—%(—i%|§|3ﬂ'2)_Dnlé{_iémyz)] 1 h( 9)} (34)

- ——tgh(ax+ .

K Ly(-gigp) + Dol y(-i3012) $

The admittance of the horn inlet should be calculated in several stages,
beginning from the outlet and ending at the inlet. First of all, the inlet admittance of
the end unit has to be found by accepting it as equal to the outlet load of the
preceeding unit, then the inlet admittance of this unit has to be found, etc. In
numerical calculations based on formulae (31)(34) a catenoidal horn (T = 0), with
dimensions identical to those of the exponential horn analysed before, was
considered. As in case of T = 1 it was accepted that the horn T = 0 is loaded at the
outlet with the impedance of a circular piston with the diameter equal to the
diameter of the horn outlet, which vibrates in an infinite baffle. Calculation results
are illustrated in Figs. 5 and 6. Diagrams of real and imaginary parts of the
elementary relative impedance of the horn outlet in terms of frequency exhibit

5 — Arch. of Acoust. 2/87
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oscillations due to the reflection of a wave from the outlet. A comparison between
Figs. 5, 6 and Figs. 3, 4 shows that a change of the horn profile from exponential to
catenoidal at constant dimensions of its inlet, outlet and length, leads to significant
quantitative changes in frequency characteristics of impedance. In particular the
average level of the real part of the relative impedance becomes higher with a
simultaneous increase of the first maximum with respect to the other ones. On the
other hand resonant and antiresonant frequencies of the horn undergo only slight

changes.
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Fig. 5. Inlet acoustic resistance of the generator horn with an catenoidal profile
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3. Horn with a stator

The acoustic wave is produced in an axial generator at the inlet of the stator
channel. The condition of its radiation to the surroundings depends not only on the
horn, but also on other elements of the generator structure (see Fig. 1). In order to
analyse this problem in detail we will make use of the generalized theoretical model
of an axial dynamic generator [9]. Model [9] accepts that the pressure chamber and
the stator channel with the horn are acoustic four-terminal networks in a series
connection and the acoustic impedance of the inlet opening of the stator channel is
a sum of:

— the input impedance of the pressure chamber Z,, which loades the inlet of
this channel,

— the input impedance of the stator channel Z,, which can be called the input
impedance of the stator-horn system.

It was proved in [9] that Z,, excluding frequencies close to resonant and
antiresonant frequencies of the pressure chamber, can be neglected in calculations of
typical axial generators. In such a situation the input impedance of the stator
channel with the horn Z, is decisive for acoustic power radiation of the generator.
The stator channel can be considered to be a cylindrical pipe loaded at the outlet by
the impedance of the horn inlet. Hence, the conditions of acoustic power radiation by
the generator should improve when the length of these channels is decreased and
when their number is increased. In theory best radiation conditions can occur when
all openings of the stator join together into a ring-shaped inlet opening of the horn.
This corresponds to a situation in which the input impedance of the stator-horn
system changes into the impedance of the horn inlet. Therefore, in order to estimate
the influence of the stator (as a separate element in the acoustic system of the
generator) on the conditions of acoustic power emission, the frequency characteristic
of the input impedance of the stator channel together with the horn should be
compared with an analogic characteristic of the inlet of the horn itself. In particular
frequency characteristics of real parts of both impedances should be compared,
because the real part of the relative impedance of the horn inlet, or another matching
system, is known in acoustic literature [16] as the so-called coefficient of trans-
mission and characterizes acoustic power transmission.

Let us assume that a plane wave propagates in the stator channel. Then the
acoustic impedance of the inlet of the stator channel and horn can be expressed as

.0oC
Z+i—tg(kL,)
@oC Sy ey

Z,= (35)

8. gac :
k Q€ | i7tg(kL,)
Sk
where: g, — rest density of the medium, ¢ — adiabatic propagation velocity of a
sound wave, §, — cross-sectional area of the stator channel, /, — length of stator
channel, Z — impedance loading the outlet of stator channel.
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In accordance with the theoretical generator model [9] we can note that
Z =nZ, (36)

where n is the number of openings in the stator and Z,, is the impedance of the horn
inlet.

It was accepted in numeric calculations of the input impedance of the stator
channel Z, that openings in the stator enter the catenoidal horn (T = 0) with
dimensions as given in paragraph 2. Furthermore, the following parameters were
accepted: n = 50, [, = 107> m, and the diameter of the stator opening equal to
1.5:1073 m.

Calculation results of real and imaginary parts of the elementary relative
impedance of the inlet of the stator channel and the horn are presented in Figs. 7
and 8. Both diagrams were drawn in the frequency range from zero to four kHz,
what corresponds to the range of application of the assumption about the plane
wave in the horn. A comparison between diagrams in Figs. 7 and 8 frequency
characteristics of the inlet impedance of the horn itself in Figs. 5 and 6 shows that the
introduction of a stator as a separate element in the acoustic system of an axial
generator does not influence the shape of impedance frequency characteristics, but
causes a considerable decrease of its average value. This occurs, because resonant
and antiresonant frequencies, and proportions of individual maxima and minima are
in both diagrams nearly identical. While, values of real parts of the impedance at a
fixed frequency are at least four times smaller for the inlet of the stator-horn system
than for the inlet of the horn itself. This is due to the reflection of a wave at the
connection of the stator channel outlet with the horn inlet and has to cause a
considerable decrease of the acoustic power emitted by the generator. A theoretical
power frequency characteristic of a generator with given above dimensions of the
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Fig. 7. Inlet acoustic resistance of the stator channel and horn
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Fig. 9. Comparison of theoretical frequency characteristics of power for a generator collaborating with a
catenoidal horn with finite length (solid line) and infinite length (dashed line). Openings in the rotor were
taken to be circular and the overpressure in the generator chamber was taken to be equal to 0.5-10° N/m?
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stator and horn is presented in Fig. 9. Two methods of calculation of the emitted
acoustic power are shown in the diagram: in the first one (full line) the generator is
considered to be a finite waveguide, while in the second one (broken line) the wave
reflected from the horn outlet has been neglected. Calculations have been based on
the theoretical model [9, 19]. Formulae (31)+(34) have been applied to the finite
horn, as well as results of considerations concerning an infinite horn, given in [18].
Comparing both calculation r'nethods“.,we can see that oscillations of the power
frequency characteristic due to finite horn length can be considerable, while maxima
and minima of emitted power correspond to resonant and antiresonant frequencies
of the real part of the tube inlet impedance.

§

4. Analysis of experimentai research results

Mentioned above phenomena have to be supported by experiment. This
requires measurements of the generator power at 50-100 Hz intervals on the
frequency scale, in order to determine possible resonances and antiresonances of
radiated power*. A well known method [4, 10] of emitted acoustic power
determination on' the basis of directional characteristic measured in the far field of
the generator horn, was applied in measurements. The measuring system did not
differ significantly from the system described in [19]. A generator with dimensions of
the stator and horn T = 0 as in paragraphs 2 and 3, was analysed. Power frequency
characteristics were determined for two overpressures in the generator chamber
(0.2:10° N/m? and 0.5:10° N/m?) and for two types of rotors: with oval openings
with a 3-10~3 m length and 1.5:10"% m width, and with circular openings with a
1.5-10"3 m diameter. The number of openings in. the rotor and stator: n = 50.
Investigations were limited to a frequency range from 600 to 5000 Hz. because it
resulted from analysis in paragraphs 2 and 3 that the effect of a finite length of the
generator horn can have a significant influence in this range. On the other hand, this
frequency interval also coincides with the range of optimal operation of this type of
generators [9, 10]. l

Results of acoustic power measurements are shown in Figs. 10 and 11 against a
background of full lines illustrating results of theoretical calculations. Theoretical
power frequency characteristics are consistent with experimental data, except for the
interval 3.5-4 Hz. Thus, results of the analysis of the finite horn length influence on
the power emission of the generator (paragraphs 2 and 3) have found experimental
confirmation. These results can be formulated as follows: the reflection of the wave
from the horn outlet causes oscillations of the power frequency characteristic,
irrespective of the supply pressure and geometry of rotor openings. Oscillations of
power correspond to fluctuations of the real part of the impedance of the stator-horn

Frod ' i )
* Measuring ‘points on power frequency characteristics "have been given ir¢ previous papers
[9, 10, 197 most frequently at 500-1000 Hz ifitervals: !
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and 0.5-10° N/m? (upper diagram)
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system inlet, and this corresponds to resonances and antiresonances of the inlet of
the horn itself. It results from Figs. 10 and 11 that fluctuations of acoustic power due
to finite length of the generator horn are considerable. Let us accept the arithmetic
mean of the maximal and minimal value of the oscillation as the reference point for
the evaluation of a given oscillation. Hence, we have a 35% power drop between the
first maximum and first minimum of the frequency characteristic with respect to the
reference point. Analogic estimations for the increase of the acoustic power between
the first minimum and second maximum of the characteristic give the value of about
60%. Next oscillations are adequately smaller and amount to about 20-25%.
Fluctuations of acoustic power due to wave reflection from the outlet are distributed
in a relatively wide frequency range; intervals between successive maxima (minima)
are equal to 900-1000 Hz.

A close relationship between the value of the real part of the stator-horn system
inlet impedance and the rate of radiated acoustic power confirms observations of
acoustic power losses due to the misfit of the impedance of stator outlet openings
and of the impedance of the horn inlet. Emitted acoustic power can be several times
smaller than in the case of an ideal acoustic matching of openings of stator outlets
and the horn inlet.

Measurements exhibit a minimum of radiation in the interval 3.5-4 kHz, which
was not obtained in calculations. According to the author this radiation decrease is
caused by transverse wave modes in the horn, because for frequency 3400 Hz the
wavelength is equal to the diameter of the horn channel at the outlet (0.5d, = 0.1 m).
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Fig. 12. Supply power of an axial generator with a rotor with circular openings versus frequency of an
emitted acoustic wave at overpressure 0.2-105 N/m? (lower diagram) and 0.5-10° N/m? (upper diagram)



AXIAL DYNAMIC GENERATOR 145

Calculations of the horn were based on the assumption that the wave was
one-dimensional, and thus the theoretical description (solid curve) does not include
this phenomenon. The considered radiation drop is greater from drops due to finite
horn length. '
The ratio of radiated acoustic power and the power of generator supply with
compressed air determines the acoustic efficiency of axial generators [10]. Supplied
power was determined with the application of a known method [4, 10], as the
product of the mass discharge of air drawn from the generator pressure chamber and
the technical work of isotropic compression from feed pressure to the pressure in
the chamber. Measurement results of the feed power of the generation under
consideration are presented in Figs. 12 and 13. It can be seen in diagrams that the
feed power can be considered constant in the investigated frequency range. From the
definition of the acoustic efficiency of a generator results that in our case the
frequency characteristic of efficiency will be analogic to the frequency characteristic
of power. Therefore, observations concerning the frequency characteristic of genera-
ted power refer also to generator efficiency.
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Fig. 13. Supply power of an axial generator with a rotor with oval openings versus frequency of an emitted
acoustic wave at overpressure 0.2:10° N/m? (lower diagram) and 0.5-10° N/m? (upper diagram)

5. Conclusions

Dimensions of the generator horn outlet, and indirectly of its other parameters
such as length or a constant determining the rate of flare, should be a result of a
settlement between two opposed postulates. On one hand, the necessity of reduction
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of wave reflections from the horn outlet requires the diameter of the horn outlet to be
large with respect to wavelength, and on the other, the demand for reduction of
energy loss due to transverse mode formation requires transverse dimensions of the
horn to be small with respect to wavelength. Hence, the application of one horn in
the generator can not ensure optimal radiation conditions in the whole frequency
range of generator operation. This range can be divided into intervals — each of
them requires the application of a different horn. This problem can be solved in
practice in two different ways:

— by supplying the generator with a set of replaceable horns, which would be
used in adequate intervals of generated frequencies,

— by designing a folding multi-element horn — its elements would be installed
or taken off depending on the frequency interval.

If one horn would be used for the whole frequency range of generated waves,
then the effect of a finite horn would have an adverse influence, because it would
disturb the stability of frequency characteristics of generator power and efficiency.
Solutions mentioned above will lead to the application of a given horn in a narrower
frequency range (of several hundred hertz for example). In such a case the effect of
finite horn length can be utilized as a positive factor by so choosing the geometry of
the waveguide that the frequency range of horn application will coincide with the
resonance of the frequency characteristic of the real part of the horn inlet impedance.
As it results from our considerations, such a frequency interval corresponds with
generator acoustic power and efficiency maximum.

Considerable power losses due to the impedance misfit of stator outlet openings
and horn outlet can occur in axial generators with a common horn for all stator
openings. They can be reduced by increasing the number of openings in the stator.
Unfortunately this treatment is limited for technologic reasons, especially when oval
openings are used in the rotor. And that is a very common case. The application of
stator channels in the form of miniature horns with the cross-section increasing
towards the channel outlet can be another solution to this problem. However, this
solution is technologically difficult and expensive. If the application of these
solutions proves to be impossible, then the application of traditional designs may
appear optimal. Traditional generators have a small number of openings and owing
to this every opening can be supplied with a separate acoustic horn. The frequency
drop caused by the reduction of the number of openings can be partly compensated
by an increase of the rotational velocity of the rotor due to utilization of newer
bearing constructions (e. g. air bearings). On the other hand, present experimental
research has revealed that a frequency increase is accompanied by a considerable
decrease of the power and efficiency of generators, so the obtainment of very high
frequencies may prove to be unprofitable [9, 10, 14].
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INTERACTION OF A TWO-LAYERED HALF-CYLINDRICAL SHELL
WITH ACOUSTIC MEDIUM
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(836-06 Bratislava, ul. Februarového vitazstva 75)

Some numerical results of investigations into the coupling between the acoustic field
inside a two-layered half-cylindrical shell and the vibrations of the containing structure are
presented in this paper. An analytical approach has been used to find resonant frequencies
of the system as a whole.

1. Introduction

Interaction effects that exist between the structure and the enclosed acoustic
medium have been receiving increasing attention during past years. Such effects can
cause resonant frequencies of the whole structure to be considerably different from
these in vacuum.

2. Equations of motion

The differential equations of motion of a double-layered cylindrical shell were
derived by MARkUS [1]. With an internal fluid enclosed they can be written in the
following form [2]

RA,(0*u/0x?)— A,,0w/dx+ 1/2R(A, — A,,)0*u/dp* +
+(1/2)(A, + A,,)0%0/0x 09 — Rmy 0*u/dt? = 0,
[D,,/AR+(1/2)(A, + A,,)]8%u/dx ¢ + RP(%v/0x?) +
+(4,/R + B,/R¥)(0%0/09%) — A, /R (6w/09) @)
— Rmg(0%v/0t?) = 0,
Ay, 0u/0x +(1/R) A, (0v/d@)— (1/R) A, w+ D, (8*w/0x2)— RB, (0*w/dx*) +
+(2/R?)(@*w/0x? 39+ (1/R*)(@*W/0¢*) — Rmy(0*w/01?) = — Rg (8®/31), .,
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where (u,v,w) are the components of displacement of the shell in the axial,
circumferential and radial directions, respectively; r, ¢ and x are cylindri-
cal coordinates as shown in Fig. 1; h,, h, — thicknesses of separate layers; E;, v;,
i =1,2 — Young’s moduli and Poisson’s constants of the inner and outer layer,

respectively.

u,x
vy
.///"._' —"\\\ .
7
4 N E;.V,
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h, L hy g d
i BV,

Fig. 1. Geometry and co-ordinate system of a two-layered shell

S B 2 A St St A = Sy baat Sahaas
By = (1/3)(Sy b3 4 Syh3)—d (S, h3— S, h)+d>(S thy+S;hy);
By, = (1/3)(3 vy +8,h3vy)— d(S h2v, — Szh2v2)+d2(slhlv,i'szhzvz);
= (S h3v,—S,h3v,)—2d(S hyv,+8,h,v,);
i (1/2)(5 hz;'s hD/(Syhy+S,hy);
P =(1/2)(4,- An) 3Dn/4R+1/R2(B —B,);

m, — mass per unit length of the shell t — time; R — equlvalent radius of the shell;
a=R—h,+d; ¢ — density of the fluid; & — velocity potentlal of the fluid.
The ve]omty potentlal @ satisfies the wave equation

20 —(1/cg)(0*@/or*) = 0, ()
wherc V2 is the Laplacian operator in the form '
(1/r)(5/6r)[r(5/6r)]+ 1/r2)(az/a(p2)+(az/ax2)

and ¢, is the velocity of sound in the fluid. It is assumed that the shell and the fluid
remain in contact and so ; ;

ow/dt = — 0d/or|, . b #Y (3)
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3. Solution of the problem

The task is to find resonant frequencies w of the system described by equatioas
(1)—(3). The normal modes are harmonic functions in the axial and circumferential
directions, and Bessel functions in the radial direction.

Considering a simply-supported half cylindrical shell with the length [, solutions
are taken to be in the form

it

u = AcosA*xsinngpe ',

v = BsinA*xcosnpe ',

w = CsinA*xsinnpe !, (4)
@ = DJ,(Br)sin A*xsinnge ", .

where J,(fr) — Bessel function of the first kind and order n,
A¥=mn/l,m =1,2,3,... bending mode number, n = kn/p,, k =1,2,3,... circum-
ferential mode number, (¢, = n for a half-cylindrical shell). '

Substituting solutions (4) in equations (2) and (3) we have

B?+ %2 = w?/cd, (5)
iwC = DBJ,(Ba). (6)

The following relations between 4, B and C can be obtained, from equations (1),
using equation (6) to eliminate D:

AH,—Q*)+BH,+CH, =0,
AH,+B(H;—Q*)+CH, = 0, (7
AH,+BHg+C{H,—Q*[1+K/F,(&)]} = 0,
where
H, = 2+(1/2)[(A,-A)/Adn?,  H, = (1/2)[(4,+A4,,)/A,1in,
Hy=H,=(A,,/A)i, H,=in[D /44, R+(1/2)(A,+A,,)/A,],
Hy = (P/A,)2*+n*[1+B,/(4,R?)], H,=H; =n|
Hy = 1+(D,,/JA;R)A*+ B, (A, R})(A*+n?)?, Ai=A*R, Q=w’myR*(1/4,),
B = /(1/R*)(Q*A,/(myc)—4), K = gafm,, & = pa,

F,(&) = [Ja(OM,(D]E.

Equations (7) are valid simultaneously, when the determinant of coefficients
vanishes. This condition can be written as

Q° — K, (Q)Q* + K, (Q)Q* — K,(®Q) = 0, )
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where
K,(2) = Hg+H,+uH,,
K,@=H,H;—H,H,+uH Hy+ HiHy—H,H,—HgHy),
Ko(Q) = pHHiHy+H,H,Hg+ H,H;H,—H,;H;H,—H,H,Hy—H,H Hy),
= F,(O/F,(&)+K).

4. Numerical results
As an example, the transcendental equation (8) has been solved for the system
with parameters as follows:
R=05m, E;=2110MPa, ‘E,=102MPa, v,=03, v,=04;
7, = 78103 kgm™3, 9, =12:103kgm 3, mg =y, h,+yh;, by =hy.

Three positive real values of frequency parameter 2 were found for any acoustic
medium enclosed, but only the lowest value Q, (corresponding to the predominant
shell bending mode) has been influenced by the interaction.

n]
20
10
1 1 1 k 1
0 10 20 30 40 50 A 60

Fig. 2. Q, versus A for different ratios h/R, n = 1 (acoustic medium — air, ¢ = 1.2 kgm~3 ¢, = 343 ms™ )
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Values of Q, versus wave number A for different ratios h/R and
for circumferential mode number n =1, with air as the acoustic medium
(@=12kgm >, ¢, =343 ms™!) are plotted in Fig. 2.

Resonant frequencies Q, plotted in Fig. 2 are significantly influenced by the
ratio h/R and they are higher for higher values of the wave number A

In the research carried out, the same shell as treated above has been analysed in
interaction with different acoustic media. Results show only a slight difference
between the values of frequency parameters for the coupled system with vacuum
(¢ = 0) and those with any gaseous acoustic medium under atmospheric pressure.
However, the lowest values of frequency parameters are considerably reduced for
any liquid medium. This is illustrated in Fig. 3 for a system with water as an acoustic
medium (¢ = 1000 kgm™3, ¢, = 1500 ms ).

)
60
40
20 + h/R=001
L 002
0,05
1 1 1 1 i 1 1 | 1 i IQI
0 10 20 30 40 50 %A 60
Fig. 3. Relative difference & versus A for different ratios h/R, n = 1 (acoustic medium — water,

o = 1000 kgm ™3, ¢, = 1500 ms™?)

The relative difference

X o Ql(va(:uum) _'Ql(wﬂlel')_ 100 [%]

Ql(vacuum)

versus the wave number A for different ratios h/R, n = 1 is plotted. The values of §
are lower for higher ratios h/R and they decrease with increasing wave number A.

Let us pay our attention to air as the acoustic medium, again. A question arises,
how the resonant frequency Q, of the coupled system will be influenced by an
increase of the wave impedance gc, of air.

It is well known, that the velocity of sound Co in any gaseous medium does not
depend on its pressure. The wave impedance of air may thus be increased by
pressurizing the structure (increasing the density of air 0).

6 — Arch. of Acoust, 2/87
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The resonant frequency €, is presented in Fig. 4 in dependence on the wave
number 4 for different values of g, for h/R = 0.01 and n = 1. The thick line stands for
uncompressed air (¢ = 1.2 kgm73). Compressed air tends to re-tune the enclosure in
the following way: @)s increase for A < m, then Q}s decrease and for 4 > 4 they
increase again. There is a local maximum at 4 = T, what means that an extreme of
Q, occurs when the length of the structure is set by an integer multiple of the relevant
radius R of the shell. This conclusion holds, of course, for simply supported shells
(A = mmR/]) only. ,

06

04 +

02 h/R=0.01

n=1

o 2 4 6 8 A 10

Fig. 4. Q, versus A for different values of g, h/R = 0.01 and n = 1 (acoustic medium — compressed air)

5. Conclusion

The following concluding remarks can be yielded from the analysis carried out:

— eigenfrequencies of the system coupled with any gaseous medium under
atmospheric pressure enclosed do not differ from those of the structure in
vacuum; y '

_ lowest values of the frequency parameter Q, (corresponding to the predominant
shell bending mode) are considerably reduced for any liquid medium;

— by pressurizing the enclosure with air inside, the structure may be “re-tuned” to
higher, as well as to lower values of eigenfrequencies 2, (depending on the wave
number A4).
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