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The described investigation was aimed at the determination of the sub-
jective and objective quality of sound of four classic guitars. The investigation
of the subjective sound quality — carried out in the Laboratory of Music Acous-
tics, Academy of Music in Warsaw — consisted of two parts: general and para-
metric. The following parameters was used: brightness, timbre dispersion over
the instrument secale, fullness, carrying power, clearness, dynamics. The listeners
were students and co-workers in this laboratory. Investigations of the objective
quality earried out in Zwota (GDR) resulted in sound pressure level histograms —
presented in 20 diagrams for 20 frequency bands covering the full range of sound
frequencies produced by the investigated instruments. The analysis of these
histograms shows a significant corrclation with the results of the subjective
quality estimation.

1. Introduction

Among investigations of music instruments, which constitute a large part
of acoustics — the examinations of string instruments, particularily violins, have
an important place. These investigations concern also other string instruments,
including guitars. Most measurements were carried out in order to determine
improvements of the instrument design, essential to make the instrument bet-
ter in view of its physical parameters and sound quality. It is obvious that physi-
cal properties, or even mechanical properties, are closely related to the sound
quality of a given instrument.



204 T. BOEHM ET AL,

However, many investigations concerned only the measureable guitar
parameters. The resonance box and its properties, as a secondary source, were
the main objects of interest. It appeared that the frequency characteristic of .
the sound radiated by the box contained, in its lower range, several resonances
(formants) which significantly influenced the quality of sound. In the frequency
range up to 800 Hz, these formants are clearly perceptible and can be simply
investigated. The important problem, which presently is given a great deal
of attention, is the location of theseresonances (f,) and their width (@), peak level
and level exceeding the rest of the signal. Resonances of the top plate were
investigated widely. For example, [8] constructed systems of harmonic oscilla-
tors moving a piston, acting as individual sources, with a unipolar sound radia-
tion. Every oscillator corresponds to one formant in the frequency response.
Investigations conducted on 5 guitars have proved a significant correlation of
the experimental results with the frequency response obtained theoretically
from the analysis of a system of several oscillators. The author stated, that in
the frequency range up to 800 Hz the parameters of 4-6 harmonic oscillators
are sufficient. This procedure is much simpler that the investigation of the
frequency response of the guitar box. One of CHRISTENSEN’S earlier works [6]
was concerned with the first two guitar resonances only. These resonances were
defined as the result of overlapping of the fundamental vibration of the top
plate and the Helmholtz resonance of air inside the guitar box. Also in this
case a theoretical model of the frequency characteristies in the low frequency
range was proposed. It was found that the Helmholtz resonance was not equi-
valent with the air resonance. The Helmholtz resonance appeared as an anti-
formant between the first and second formant of the plate. The proposed model
(oscillator design obtained on the basis of the Newton equation) precisely descri-
bed the variation of the sound pressure level and the motion of the top plate
of the guitar in terms of frequency. In another paper, [7] investigated the middle
frequency range. The signal was recorded and than analysed with the applica-
tion of the Fourier transform, in order to obtain the acoustical power density
spectrum (APDS). Through averaging the levels in 1/3 cctave bands and cal-
culating the energy distribution, a curve with many informations about the
sound, was achieved. This curve usually has the same characteristic jump-
growing shape (the jumps are the regions of succeeding resonances) for every
instrument. The greatest amount of energy eomes from the 224-445 Hz range
(this leads to a conclusion that it is a very important range for guitar sound
quality). The following distinet jump oceurs about 400 and 550 Hz — for the
III and IV resonance. In this last range about 50 per cent (or more) of the energy
is radiated. This accounts for the main interest in the low and medium frequency
ranges (to about 800 Hz) in further investigations.

Among others, also CALDERSMITH [5] investigated the problem of vibrations
of the plate and the air mass contained in the resonance box. This research also
resulted in a theoretical model of the reflective casing, which was physically
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applicable and convineingly determined the most important parameters of
the investigated box — the location and width of the fundamental set of two
resonances (of plate air). The casing dimensions and the material it was made of,
have been taken into account. The model also pointed out the significance of
the location of the rose in the plate, in relation to the formant location in the
frequency scale (this relationship results from the influence of air vibrations
on the complete characteristic of sound radiation).

Similar research was also conducted by FieTmH [10], [9] and JANSSON
[12], [13].

In the first mentioned work, Jansson discussed acoustical tests of vibra-
tions of the guitar top plate. Vibrations modes, corresponding to succeeding
formants of the frequency characteristic, were studied with the application of
holograph interferometric method. This method leads to the determination of
the resonance frequency, f, and the quality factor, @. The characteristic obtain-
ed from acoustical measurements was compared with interferograms. Acoustic
investigations were conducted with the application of 6 various box excitation
points and 6 (different) measuring points of the characteristic. It was stated
that the frequency of individual formants obtained from these two methods
are constant with an error not exceeding 1 per cent, while @ — with an error
not exceeding 13 per cent. Therefore, both values can be achieved from acoustieal
measurements, on condition that the measuring points of the characteristic are
carefully chosen.

In order to explain acoustical properties of resonance holes another series
of investigations were carried out. Boxes of various shapes have been investi-
gated. The frequency response of the vibrations of air contained in these casings,
was measured. It appeared that guitars and violing had the same vibration
modes and generally they corresponded with rectangular and cylindrical casings.
The resonance density did not depend on the shape of the box, if the volume,
wall surface and lengths of the edges were identical. On the other hand, the den-
sity calculated from geometrical data for guitars, differed from the real density
by 60 per cent. Whereas, vibration modes changed even at the slightest change
of the box shape.

In his paper of 1977, FritH [10] described a physical model representing
the functioning of a guitar. For the reason to construct this model, the follow-
ing measurements were carried out: the resonance frequency (defined as the
formant at 0 Hz — the Helmholtz resonance), the shape of vibration modes
(with the application of Chladni figures), input admittance in the central point
of the bridge (in the first and second resonance range), and the input sound pres-
sure level and its phase.

All mentioned above papers were concerned exclusively with the physieal
aspect of the vibrations of the guitar resonance box. Methods of acoustic meas-
urements and various models allowing mathematical calculamon of various
parameters, have been hitherto described.
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The works of KRUGER [15], MEYER [17] and JAROSZEWSKI, RAKOWSKI,
ZERA [14] dealed with a different aspect of the problem. However, KRUGER
still taked up the problem of frequency response of the top plate vibrations,
but he conducted research on 20 guitars, which were subjectively rated as good,
middle and bad. He tried to relate certain characteristic estimations of physical
parameters of instruments to their individual ranks (e.g. a master guitar displays
a distinctly higher sound pressure level from any other instrument in the 200-
800 Hz range and somewhat less in the range of the so-called “bass”). In the
course of his experiments KrRUGER introduced variants of the design structure
of the top plate and studied their influence on the sound character. He reached
a conclugion that at a constant energy the lesser the losses during the process
of bending a plate (during vibrations) and the lesser its rigidity, the greater the
vibration amplitude (and thus the sound radiation level for a given frequency).

Energy losses caused by these two factors decrease with the decrease of
the plate thickness.

The other two papers described research concerned with the subjective
evaluation of the guitar sound quality. JARoszZEWSKI et al. [14] limited their
studies to one parameter, i.e. onset time. Subjective evaluations were carried
out by experts during individual 0.5-1.5 hour sessions. The sound arise time
was measured from a perceptible moment of the beginning of the signal to
the moment it reached 90 or 100 per cent of the maximal amplitude (in depen-
dence on shape of arise). A comparison between the obfained results and the
experts’ evaluation showed distinet correlation between them. Instruments with
longer attack were rated as a better. These better instruments had also a lower
relative dispersion of the onset time values (30 sounds for 13 guitars have been
investigated). MEYER’S paper [17] includes more criteria. It was aimed at find-
ing such resonance properties of the instrument, which would significantly
influence its quality. 15 guitars have been studied and 40 persons have subjecti-
vely evaluated instruments on the basis of an auditory test. Correlation of
obtained rank arrangements of instruments with data obtained from various
modifications of the frequency response was calculated (level averaging in 1/3
octave and wider bands of various ranges; determining formant levels and
widths, as well as determining how much this range exceeds the rest of the
frequency region ; establishing the distances between the box resonances and the
nearest sound, ete.). A distinet correlation was observed here between certain
criteria of the physical and subjective quality evaluation. E.g. the high level in
the 801000 Hz region occurred only in highly rated guitars — the better the
instrument, the higher level of the third resonance (buta smaller width), the
additional formant between the main formants was also a positive feature of the
instrument. :

In the final stage of these studies the correlation coefficient between the
results of subjective and objective evaluation was calculated for all 20 parame-
ters. The correlation was very high, namely r = 0.88, and excluding the guitar
with an unstable piteh, it equaled r = 0.97. However, even only seven criteria
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" gave a very high correlation coefficient of 0.85. It was found that for a high
correlation between subjective and objective evaluation, the most important
factors are: the level of third resonrence, level values in the 80-125 Hz 250-400
Hz and 315-500 Hz,and the occurrence of a formant between the first and second
resonance. Unfortunately, during the investigations it appeared that there is
a rather significant dependence on the kind of music played on the instrument.
This to a certain extent shakes the universality of the achieved results.

It should be mentioned here that musicians always select instruments to
the kind of music they are to play (solo, accompaniament, melody or rather
harmonie structures).

The experiment presented in this payer, performed by KAM in Warsaw
and the IfM in Zwota (GDR), was aimed at similar goals as the last discussed
paper. 4 guitars have been subjectively rated (auditory test). The comparison
and correlation of the achieved results were the final goal. Investigations of
the subjective sound quality were carried out in the Laboratory of Music Acous-
ties at the Academy of Music in Warsaw, while the objective parameters were
measured in IfM in Zwota (GDR).

2. Experimental materials

Guitars for investigations were chosen only from among concert instruments
of medium quality, corresponding to a class of higher quality instruments pro-
duced in large-scale. However, due to various designs, certain differences in so-
und timbre were expected. Instrument no. 1 (test guitar, produced by a violin
maker) was a hand-made experimental model, which had a modified resonance
plate in the bridge region, in order to improve radiation of low frequencies.
Other guitars were standard instruments produced by industry and widely
gold. Instrument no. 2 was one of the “Resonata” models, till now produced by
VEB Musima in Markneukirchen. Instrument no. 3 was a new achievement, na-
med “Musima Classic”, model 136. The new range of products from the “Classic”
series was developed in cooperation between VEB Musima and Institute of Music
Instruments Construction (IfM) in Zwota and it replaced the “Resonata” as-
sortment. It had an optimised radiation power in comparison with previous
models. Furthermore, this new assortment had a vaulted plate.

Tnstrument no. 4 (Marlin MC 315) has been included in tests as an instrument

for comparison, due to its high acoustic value distinguishing it from other
instruments produced by industry.

3. Subjective evaluation — arrangement of tests

The test was constructed under the method of comparing in pairs. Excerpts
of recordings of individual instruments were grouped in pairs, so every instru-

ment was compared with every other instrument. This way six pairs were form-
ed (from four elements).
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However, since an arrangement of two instruments was presented two
times — in a different sequence every time (4B, BA) — there were twelve
test items. Their sequence in a test was randomly chosen. Such a twelve — task
test constituted one out of three parts of the whole test material. These parts
differed from each other in the sequence of test items and, first of all in the
musie material, i.e, in every part a different music composition was used: in
part I — Preludium no. 1 by Villa-Lobos, in part IT — the second variation from
the Variation on Mozart by Ferynand Sor, in part IIT — Rondetto by Napoleon
Coste.

4, Conduction of tests

The subjective auditory estimation was divided into two parts:

1. So-called general evaluation (general impression) of the instrument
quality ;

: 2. Estimation of six subjective parameters: brightness, timbre dispersion
over the instrument seale, fullness, carrying power, clearness (clarity, absence
of disturbances and deformations) and dynamies (dynamic range).

In the second part the listeners were to estimate which instrument posseses
a given feature in a greater extend. That is, which one, within the pair, is bright-
er, has better dispersion, has better sound fullness ete. If the instruments dif-
fered greatly the listener was to give two points, when they differed less-one
point. The instrument with a given feature estimated lower, obtained zero
points. In the case of the general evaluation (part I) listeners gave one or two
points to this guitar out of a pair, which they liked more. This evaluation was
performed on the whole test material — on all three parts — while every para-
meter was rated with the application of only one part of the test. The bright-
ness and timbre dispersion were evaluated only for guitars in the first part of
the test; fullness and carrying power — in the second part; sound clearness
and dynamics — in the third part. Therefore every listener listened to the whole
test two times: first time — applying the uniform criterion of the general evalu-
ation and second time — applying the criterion of the parametric estimation,
different for every one of the three parts of the test.

The group of listeners consisted of 24 persons. These were students and
workers of the Academy of Music in Warsaw. Two persons were students of
a guitar class of the instrumental faculty, the rest of group consisted of students
and graduates of the Faculty of Sound Recording.

The test was reproduced on a Revox B 77 tape recorder and listeners were
equipped with SN 60 earphones.
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5. Results

In the results analysis first of all it had to be checked whether the kind
of music significantly influenced the results. If the general evaluation gave by
listeners would depend on the character of the stimulus, then it would not be
possible to sum up the results — points obtained for every guitar in individual
parts of the test, and the parametric estimation should have to be conducted
for all three parts separately. Moreover, due to the interdependence of results
and the test itself, it would be impossible finally to rank the instruments in a cer-
tain order. In order to state, whether there is such a dependence, a two-fac-
tor analysis an variance was performed [4]. ANOVA table is presented in

Table 1. Complete results of two-factor variance analysis — general estimation
Type of 8 Sum o2 7 B(a, 91, f11)
variability square 19 l 59
A (test) 2 0.337 0.1685 0.0543 4.68 3.03
B (guitars) 3 357.674 125.225 40.363 3.85 2.63
AB 6 427.857 71.3095 22.984 2.86 2.13
B 276 856.292 3.1025
total 287 1660.16.

Tab. 1. The application of such two-factor analysis was possible under an
assumption of a uniform group of listeners. Without such an assumption a multi-
factor analysis would be necessary, where the listeners would be the third
variable. This would seriously complicate the calculations. But since all listen-
ers were workers or students of the Academy of Music mainly from the Faculty
of Sound Recording, the group could have been considered as uniform and the
differences between individual persons could have been neglected.

An additional information about the group of listeners was obtained by
calculating the reliability coefficient for every listener. As the test was done in
such manner, that it could be easily divided into two halves (all pairs of instru-
ments oceurred in both halves, but in a reversed sequence), then we could apply
the RuLoxN’s equation [11]:

)

S|

62 — variance of differences between the two halves, o — variance of all test
results, which is a useful measure of reliability.

All data from every listener are presented in tables, confronting results
of corresponding pairs (e.g. 3—4 and 4-3, 1-2 and 2-1, ...). Then, both variances
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and reliability (») were calculated by choosing randomly external or internal
columns. : ;

Finally, the guitars were ordered on the rank scale according to the estima-
tion of the subjective quality. To this aim points given to every instrument by
all listeners were added up/an instrument could have obtained a maximum
amount 864 points: 6 presentations of the instrument x24 listeners x2 points
%3 parts of the test (Table 2). Also the mean values of estimations were calcu-
lated — their arithmetic mean, M = XX /N, and the standard deviations,

E 2
o= ]/ if; (Table 3, Fig. 1).

2X — the sum of points of all listeners,

2Zx* — the sum of squares of deviations of every result from the mean,
N  — number of results,
M  — arithmetic mean.

Table 2. Classification of the instruments Table 3. Means and standard deviations

on the rank scale — general estimation for points obtained by all instruments
— general estimation
Guitars Points Rank
Guitars M a
1 232 IIT
2 136 IV 1 3.222 1.863
3 350 I 2 1.888 1.939
4 313 II 3 4.861 2.519
Y, 4 4.347 2.124

master instrument (Markneukirchen)

industrial guitar (Musima)
investigated guitar
Japanese industrial guitar (Marlin MC 315)

Pt RO
i

On the basis of this data we can set ingtruments in an order from the
“best” to the “worst”, but we still do not know anything about the absolute
differentiation of these instruments, or what the “best” and “worst” means.
For in the case of a subjective rating we can not fix an absolute zero or any
unit, which would determine how many times one instrument is better (worse)
than another, we can only place instruments on a rank scale. Therefore, the only
information that could been obtained here, was the significance of differences be-
tween mean values for individual instruments. To this aim a Student’s { test

was applied for differences between non-correlated means in samples of equal
quantity, :

M,—M,

= e
l/ XXX
N(N -1)
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Fig. 1. Means and standard deviations — general estimation

M,, M, — means in two samples (in this case — mean results for two instru-
ments), XX}, 2X; — sums of squares in both samples.

Obtained quantities show which guitars significantly differ from each other,
and for which these differences may be neglected (Table 4).

Results of parametric estimations were processed in the same way.

Table 4. Significancy of differences between
means for individual instruments — general

estimation
Guitars t Significance
level
8] 2.09 0.05
2-3 2.91 0.01
4-2 2.8 0.01
1-2 2.45 0.05

master instrument (Markneukirchen)
industrial guitar (Musima)

investigated guitar

Japanese industrial guitar (Marlin MC 315)

B8 1D
LEtd

First, it was checked with the application of a two-factor analysis of
variance whether the obtained differentiation of results is caused by differ-
ences between ingtruments or criteria (parameters) according to which listeners
conducted the estimation. Results of the analysis are presented in Table 5.
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Table 5. Results of the two-factor variance analysis — parametric

estimation
Type of P Sum o p | ¥(e, 31, O1)
variability square 1% 5%
A (guitars) 3 387.88 | 129.290 | 45.566 | 3.82 2.62
B (parameter) 5 15.63 3.127 | 1.102 | 3.05 2.23
AB 15 | 922.73 | 61.516 | 21.679 | 2.12 1.71
B 552 | 1566.29 2.8375
total 575 | 2892.54
M M
a) b)  timbre dispersion
6.0Lr
£21+ 4.08L
2945
292
2661 &
192} } 28
M M
c) d d)
6.08
575F
529r
4421
350
283 }
0875+ { 104 {
1 1 1 Il L + i /|
M M :
e) clearness f) dynamics
STty
z -
& 4501
350+
296,
2.875 208l
1875
; 2 3 4 1 2 3 4
instrument

Fig. 2. Means and standard deviations — parametric estimation: a. brightness, b. timbre
dispersion over the instrument scale, c. fullness, d. carrying power, e. clearness, f. dynamies
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Table 7. Means and standard deviations of individual data for all of instruments — para-
metric estimation

Parameter | Brightness '_Tlmbl_'e Fullness Carrying Clearness Dynamies
dispersion power -
Guitars M o M I a M a M o M ‘ a M a
1 2.66 [1.88 |3.916 Il.5 3.5 1.615 |2.833 I1.007 !2.958 ’1.88 1.875 {1.329
2 6.04 [2.349 |2.333 [1.76 |[0.875 |1.115 |1.041 |1.232 |3.5 1.841 |2.083 |1.5856
3 4.21 |2.206 [4.083 |1.639 |5.75 |1.916 |6.083 |1.471 2.875 |2.132 4.5 (L.719
4 1.92 [1.176 |2.516 |1.442 |5.291 (2.095 |4.416 |1.501 {4.958 |1.731 |5.708 |2.095
1 — Master instrument (Markneukirchen)
2 — Industrial guitar (Musima)
3 — Investigated guitar
4 — Japanese industrial guitar (Marlin MC 315)
Table 8. Significancy of differences between means for indi-
vidual instruments — parametric estimation
Signifi-
Parameter Guitars t cance
level
Brightness 1-2 2.24 0.05
3-4 2.1 0.05
2-4 2.89 0.01
Timbre dispersion - all differences insignificant
Fullness 2-3 8. 17 0.01
2-4 3.62 0.01
1-2 3.08 0.01
Carrying power 1-3 2.25 0.05
2-3 3.75 0.01
1-2 2.53 0.05
2-4 3.29 0.01
Clearness all differences insignificant
Dynamics 2-4 2.63 0.05
1-4 2.84 0.01
2-3 2.12 0.05
1-3 2.37 0.05

Master instrument (Markneukirchen)
Industrial guitar (Musima)

Investigated guitar

Japanese industrial guitar (Marlin MC 315)

W G B
|

Also for the parametric estimation instruments were classified on rank
scales according to the possession of a given feature from the brightest to the least
bright, from most to least dispersed, ete. (Table 6, 7, Fig. 2). The significance
of differences between the mean value of points obtained by individual instru-
ments was checked with application of the Student’s ¢ test. These results
are presented in Table 8.
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6. Conclusions concerning the subjective estimation

The evaluation reliability of listeners was found to be in the greater part
high. Only for six persons the r coefficient dropped below 0.8, while for seven
persons it exceeded 0.95. The high reliability consistently chose the better
(according to them) instrument; that they had a certain constant quality eri-
terion according to which they rated instruments. On the basis of these coef-
ficients also a conclusion can be drawn that the sequence of instruments in
a pair test item is not significant in such tests. The reliability coefficient, cal-
culated from the Rurox’s formula brings information about the conformity
between both halves of the test. Since in this case, in the second half the sequence
of stimuli was reversed in comparison to the first half (4B and BA) and in
spite of that listeners chose the same instrument, then it means that it was
not significant which one occurred as the first and which as the second within
the pair. ‘

Another important matter was to check whether the results were influ-
enced by the kind of music played on tested instruments. Results ofthe analysis
of variance, presented in Table 1, bring an answer to this question. It was
found that individual guitars were the only significant factor — the value F is
higher from the critical value of the 1 per cent level. Whereas, the kind of musie
material, on which the evaluation was conducted, was statistically insignifi-
cant.

Therefore, it was possible to carry out the parametric estimation on only
one out of three parts of the test — not on the whole test. Obtained results can
be considered representative. ;

The analysis of variance, where guitars are one factor and the subjective
parameters — the second, give an interesting information. It was stated that
results was significantly influenced by the evaluation criterion on 1 per cent,
level while the variability caused by instruments was insignificant. This ean
mean that the differences between guitars in respect to a certain feature are
small and that every feature classifies instruments differently. E.g. the guitar
which achieved the most points in respect to the criterion of brightness, will not
have the best timbre dispersion or carrying power. These suppositions have
been confirmed by the number of points achieved by each guitar. Rank of instru-
ments in respect to particular parameters are shown in Table 6. And indeed
. various features classified instruments differently. The classification in respect
to the criterion of brightness proved itself to be the least similar to other para-
meters, while the fullness and carrying power gave the same results. A similar
classification was obtained in respect to the timbre dispersion over the instru-
ment scale; slightly different in respect to dynamies and clearness. However,
further conclusions could not be drawn from these results before it was stated
whether the differences between instruments with succeeding ranks are signifi-
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cant. It was stated that only some of them are significant. The dispersion over
the instrument scale and clearness were found insignificant as a parameter-
even the difference between the first and fourth rank was insignificant. The
difference between the first and second rank is insignificant for all criteria. In
respect to fullness, one instrument (no. 2) proved itself distinctly worse from
other instruments. The differences between this and any other instrument are
significant on the 1 per cent level. All other differences (between guitars with
ranks: I, IT and III) were insignificant. Therefore, in respect to fullness two
groups can be formed: first — including guitars no. 1, 3 and 4, second — guitar
no. 2. In respect to the criterion of dynamies, differences between the guitar with
rank I (no. 4) and guitars with ranks IIT (no. 2) and IV (no. 1), and between
guitar with rank IT (no. 3) and guitars with ranks ITI and IV, were proved to
be significant. This way two classes were obtained : the first one includes instru-
ments no. 3 and 4, the second — no. 1 and 2. Differences between no. 1 and 4
are significant on the 1 per cent level the other — on the 5 per cent level.

It was difficult to determine similar classes in respect to the criteria of
carrying power and brightness. In respect to carrying power, the instrument
with rank IV (no. 2) distinetly differed from others, while first three ranks
formed one class. The difference between the first and third rank (no. 3 and 1)
is significant on the 5 per cent level. The classes in respect to brightness were
slightly different. The first rank (no. 2) constitutes one class the second (no. 3)
and third (no. 1) — the second class, the fourth rank — the third class. The dif-
ferences between instruments no. 2 and 3, and no. 1 and 4 are insignificant.
The difference between the I and IV rank is significant on the 1 per cent level
while the others — on the 5 per cent level. The final clagsification of instruments
" according to subjective parameters is presented in Fig. 3.

The criterion of the general evaluation gives another, different classifica-
tion. In this case guitar no. 2 proved itself to be the worst. It significantly differs
on the 1 per cent level from guitars with the I (no. 3) and IT (no. 4) ranks. In rela-
tions to the gunitar with the IIT rank (no. 1), the difference is significant on the
b per cent level. Thus, in this case three classes of instruments have been form-
ed: first — including guitars no. 3 and 4, second — no. 1, third — no. 2. But
it has to be remembered that guitarsmo. 1 and no. 4 do not differ significantly
(Fig. 4).

As it can be seen from the above discussion, the general evaluation crite-
rion classifies guitars in the same way as the criterion of carrying power, full-
ness and timbre dispersion (because the reverse classification of guitars no. 1
and 4 is not significant). The criterion of dynamics classifies them in a very simi-
lar way — only the change of ranks of guitars no. 1 and 2 is important, because
the difference between these instruments is significant according to the general
estimation. The classification in respect to the criterion of sound clearness is
different, but it does not distinguish or disqualify any instrument, therefore it
can be left out of account. Instead the different sequence of instruments obtained
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according to the criterion of brightness, is important. Yet, it is not a reversed
classification. The guitar classified as worst proved to be the brightest, but the
best guitar in the general evaluation obtained the second rank in the classifica-
tion in respect to the criterion of brightness. Whereas, the guitar ranked second
in the general classification, was the least bright.

On the basis of above mentioned conclusions a hipotesis can be set up, that
guitars with the greatest carrying power, with the best and most dispersed
sound, and guitars with the widest dynamic range, are subjectively rated as
the best. It is important for the guitars to be bright, but not deprived of fullness
in the low frequency range. Darker guitars are ranked higher than bright gui-
tars without the “low register”. In the given case, the bright instrument with
a mnon-dispersed, low fullness sound was classified as worst, while the least
bright guitar with a dispersed, good carrying power and great sound fullness
was ranked second. Guitar no. 3 (the investigated model) proved itself best
among four tested guitars. It is characterized by high rates in brightness, carry-
ing power, dispersion and fullness of sound and by a wide dynamic range.

L

7. Objective estimation

Music phrases are temporal sequences of individual sounds harmonic struc-
tures. An analysis of characteristic features of the temporal microstructure of
observed functions is possible only with the use of such system which give
a particularily high accuracy in the domain of time at a relatively narrow
frequency band. An acoustical processor [2], which was specially constructed
for this experiment, has eight relatively wide frequency band filters. It proces-
ses the demodulated voltage of the filtered signal every 2.5 ms. Such a high ac-
curacy allows a precise determination of the sound attack and significant dy-
namic features of the arise and decay part of sound.

Fig. 5 presents exemplary results of an analysis of the first bars of a melody
played in the high register (III part of the test) of the Marlin MC 315 instrument
(no. 4). The short time spectrum (upper part of the figure) was obtained by
putting together five, in this case, values of neighbouring points of the envelope
curve. This way a time window of a 12.5 ms width, was formed. However, in
order to aceurately catch the sound attack, the differences between neighbouring
values of the envelope curve are presented in a 2.5 ms time units (in the lower part
of the figure).

As it can be seen from the figure, individual sounds of the phrase have
been clearly and distinctly marked. Every one can be characterized by its onseb
time, more or less distinct steady state [16] and its decay phase. According to
Fig. b these three “fragments” of a music sound should be clearly presented
in the form of two-dimensional diagrams. The left part of Fig. 6 presents arise
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phase diagrams. Maximal values of the changes of the envelope curve (i.e. level
“peaks” appearing clearly in the lower part of Fig. 5) have been marked on the
ordinate axis. Diagrams in the middle part of this figure show the steady state
for the individual sounds in the form of maximal spectrum values. Thus, they
represent these time intervals (from the top part of Fig. 4), which correspond
to the maximum level value. A measuring algorithm was applied here, which
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Fig. 5. Temporal analysis of melody from the high register of the Marlin MC 315 instrument

was developed during a psychoacoustic test concerning the subjective duration
time of piano and guitar sounds [1]. Comparing with each other columns from
diagrams in Fig. 6, we can clearly see distinct differences between them. Indivi-
dual sounds of the music phrases significantly change in their timbre features.
And thus, in this case in the region of higher frequencies sounds 1 and 4 show
more distinet characteristic features than sounds 2 and 3 (lined areas in Fig. 6).
Most probably this results from the fact that the musician wanted to accent
these two sounds (1 and 4) (compare with Fig. 5).

Generally it can be stated that presented parameters of a chosen sound
give an important ectosemantic information about music, i.e. such an infor-
mation which can not be obtained directly from the score. In particular this
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concernes the presentation of the emotional state of the performer and the prob-
lem of emphasis in music. The “inner states” of the musicians are converted
through analogue coding into acoustical parameters of the sound. The emotion
causes an increase of the size and power of adequate features. When the emotion
passes these parameters weaken until they fade in the noise. The possibility of
determining such slight changes of these parameters can be recognized as a signi-
ficant criterion of the sound quality of music instruments. Beside the estimation
of these sound features, based on computer calculations, also typical identifi-

7
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cation — diagnostic parameters of instruments are significant. The sequence
of sounds is of little importance in determining these parameters. It is impor-
tant, how often a particular features of the signal occur. These features are am-
plified or weakened sound radiation from the instrument in determined regions
of the frequency band (spectrum representation), distinet or weak development
of the tonal features (“tonal representation”), as well as several other dynamie
properties of the instrument in reacting to stimulation by pulse, tremolo, vibrato,
portamento, ete. sounds. ‘

Fig. 7 presents exemplary of results of a spectrum analysis. The acoustic
signal has been divided into 20 spectral components by a system of filters. A 10
sec fragment of signal, which belonged during a given time to a certain class
(every class has a 3 dB range), was presented for every one of the 20 frequency
bands. Distribution functions obtained for individual frequency bands (corre-
sponding to filter channels), only in exceptional cases conform to normal distribu-
tion functions. The long-ferm average spectrum (LTAS), marked by a thick
line in the figure, as a general rule is not related to the maximal frequency of
the occurrence ofa given level. For example, for channel 08, the mean value is
found in the region where the values of level oceur most rarely. It can be stated
that the mainrole in determining the spectrum envelope is played by parame-
ters of a mixed distribution [3]. These parameters supplement the described
above characteristic features of “analogue coding” and constitute the real
(main, significant, important) basis of acoustical diagnostics of the quality of
musie instruments.

8. Dependence between the objective and subjective estimation

The description of the dependence between physical parameters of sound
and subjective perception values is a fundamental problem of music acoustics.
Psychoacoustics contribute in the detection of these dependencies and there is
a particularily effective method of solving this problem. It consists in building
a technical model imitating step by step biological signal processing, on the
basis of analysis and synthesis.

Results presented in part 7 have been obtained with the application of such
a technical processor [2]. The model imitating organic signal processing, on
which the whole system is based on, is presented in Fig. 8. Initial processing
is carried out in section 1, where the frequency, amplitude and phase are convert-
ed into a series of nerve impulses with a definite — on the level of representa-
tion accuracy — structure. Section 2 analyses signal in respect of certain partial
properties. Obtained puls serieses are finally converted in section 3 into impres-
sion and perception quantities. A special type of summation of sensoric repre-
sentation of properties has an important role in this process. As it is presented
in the top part of Fig. 8, specific weight functions, which should determine the
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various degree of dependence on the fundamental frequency of sound, can be
determined for the most important spectral features of the macrostructure:
loudness, sharpness, fullness and density.

Achieved complex shape features of the series of pulses are then process-
ed in probably two relatively autonomic spheres:

— identification — diagnostic sphere section 4 and 5,
— emotional sphere (section 6 and 7).

The classification principle (quantization of the input quantities — sensorie
impressions — numerical representation), has been pointed out in section 5.
As it can be seen in the figure, the weights are established probably as a re-
sult of an active choice in collaboration with the “semantic information” con-
tained in the score. Obtained this way long-term histograms are reduced in
section B as a result of collaboration of partial procedures. Reference data,
marked at the top of the figure, are referred to at the same time.

According to the present state of knowledge, procedures functioning in

"the emotional sphere are organized in such a manner that first of all the fun-
damental emotional quantities are determined by interfering in the limbie
system. Research employing factor analysis points out the probability of col-
laboration of the three fundamental factors, presented in the figure. In connec-
tion with this, the representation of the whole emotional process is carried out
in section 7.

The technical copy of the described model, in concurrence with the present
state of hard and software technology, includes only few elements of the “lower
structure parts”, of which the original is composed. But even such elementary
models enable us to solve certain problems connected with the quality evalua-
tion of music instruments. This should become clear after analysing long-term
histograms of level of the four guitars, investigated in this case. Of course these
examples can solely determine the field of interest for further investigations.
In order to reach statistically representative results an objective and subjective
analysis of a significantly large random sample of instruments is to be carried
out.

Fig. 9 presents histograms of level of three investigated phrases in “bass”,
“middle”, and “treble” (accordingly to the I, II, and III part of the test) for
the Marlin MC 315 instrument (no. 4). Every histogram consists of 20 individual
diagrams corresponding to 20 filter channels (limiting frequencies of the filters
are presented in Tab. 9). Every individual diagram presents the time (¢,), which
the signal stays in a specific pressure level class, as a function of the general
sound pressure level. It can be seen in the left part of the figure, that for a melody
played in the bass (I part of the test) the low spectral components predominate,
while in phrases played in the middle (IT part of the test) and high (ITI part of
the test) registers — the high frequency components prevail (channels 11-18 are
“taken up” in a greater part).
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Table 9. Limiting frequencies used in the computer

No of filter channel Filter limiting frequency
1 70-170 Hz
2 170-270 Hz
3 270-370 Hz ~
4 370-470 Hz
5 470-570 Hz
6 570-680 Hz
7 680-810 Hz
8 810-970 Hz
9 970-1170 Hz

10 1170-1400 Hz
11 1400-1680 Hz
12 1680-2000 Hz
13 2000-2400 Hz
14 2400-2880 Hz
15 2880-3460 Hz
16 3460-4150 Hz
17 4150-4980 Hz
18 4980-5980 Hz
19 5980-7170 Hz
20 7170-8600 Hz

Beside these macrostructure features, also the microstrueture of individual
histograms depends on the properties of the music phrase. However, there
are several invariable properties, which contribute to the instrument specifity,
e.g. typically left-side askew distribution functions for channels 1-3 and a more
right-side askew distribution for channels 6-8. In order to specific properties
of the instrument, level histograms of all investigated instruments have been
compared; in the given case — histograms of the same music phrases. For
example, histograms of level for all four instruments, for a melody played in
the middle register (IT part of the test), have been presented in Fig. 10. The
analysis of this histograms shows a good correlation with the subjective sound
features (compare with Fig. 2). For example, fullness has been rated significantly
higher for the Marlin MC 315 instrument (no. 4) than for the Musima Resonata
instrument (no. 2). This is conditioned by the increased sound radiation of the
Marlin MC 315 instrument in the low and middle frequency range. Whereas,
the brightness of the sound obtained much higher values for the Musima Reso-
nata guitar (no. 2) than for Marlin MC 315 guitar (no. 4). This is the result of
mentioned differences in sound radiation in the low and middle frequency
range. Also, for melodies played in “treble” (IIT part of the test), histograms
of level show a significantly greater radiation of high spectral components in
the 1.7 — 4 kHz range (not shown in the figure) in the case of the Musima Reso-
nata instrument.
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Beside such typically spectral sound attributes, also other sound features
can be “translated” into the features (parameters) of sound pressure level
histograms. For example, dynamics is a subjective parameter correlated with
the width of the intensity distribution, shown in histograms. As it can be seen
from Fig. 6, the Marlin MC 315 instrument (no. 4) have very wide histogram
ranges. At the same time this instrument is subjectively rated as the instrument
with the best dynamics. :

Above mentioned examples suggest problems for further research. The devel-
opment of investigation methods of music instruments are presently aimed
at the estimation of even slight subjective differences in sound timbre between
instruments on the basis of objective measurement methods. The important
factor in these methods, is not as much measurement accuracy, as the “intelli-
gence of the measurement”. In the first place it is necessary to apply complex
analysing systems to all significant acoustic properties of a signal. Furthermore,
fundamental mathematic methods and models are important in reducing the
number of features.
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PROPAGATION OF NOISE GENERATED BY A TRAM MOVING WITH UNIFORM MOTION

KRYSTYNA BEREZOWSKA-APOLINARSKA

Centre of the Investigation and Control of Environment
(61-812 Poznan, ul. Kantaka 4)

The registration of level changes of sound generated by a single source
(e.g. a rail-vehicle — tram) allows the determination of the resultant level
of noise emitted by sets of mobile sources (e.g. rail-vehicle lines). Research was
aimed at the determination of the relationship between parameters a and L4 x,
which characterize the noise of a single source, and the distance from the ob-
servation point, d. Investigations were conducted in a not built-over, flat and
covered by grass area, for various types of trams and several speeds.

1. Introduction

A tram is one of the main sources of traffic noise. The noise it generates
determines the acoustic climate of the human environment. Among others,
the acoustic climate depends on the acoustic field generated by single sources,
e.g. arail-vehicle. If certain parameters of such a field are known, then the values
of the evaluation indicators of noise emitted by sets of these sources (e.g. rail-
vehicle lines) can be predicted. The equivalent sound level for averaging time
T, L,,r, was accepted as the best noise evaluation criterion for the external
environment. It is used in international regulations concerning the acoustic
climate. The high suitability of the equivalent level, L, ;, in acoustic comfort
classification is due to a high degree of correlation between its value and the
subjective evaluation of noise oppressiveness (correlation coefficient 0.96—
0.98 [4]).

In order to predict the numerical value of the equivalent level, L., the
value of parameter a; and the traffic volume N,/T has to be known; where
N, is the number of vehicles of the i-type, which pass the observation point in
time T (e.g. at night measurements were conducted from 10 P.M. to 6 A. M. —
8 hours). Parameter g, is the measure of noise reaching the observation point
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from a single vehicle.of the i-type, e.g. tram 102 N. (In road traffie two types
of vehicles are distinguished light: motorcars and delivery vans, ¢ = 1, and
heavy: trucks and buses, i = 2.)

The relation between a; and the noise exposure level, L, x; is as fol-
lows [1]:

Ly x; =10 log(a;/ty) (1)

where i, = 1 s.

Let us accept that there is a track-way at a distance d from the observa-
tion point O and that during the time T it is passed by N, trams of the 1-st type,
N, trams of the 2-nd type, etc. Then, the equivalent level for time T is:

Logr = 10 log { 3" (N,/T) a;+10"Ted} (2)

%

where L, is the equivalent sound level at the observation point when the tram
traffic is held up; it is the so called acoustic background.
Values of parameter a; can be determined from expression

+00
o= [ 10™50Od (3)

when the changes of frequency weighted sound level, according to the correla-
tion curve A, IL,;(t), are known [2].

2. The method of determining parameter a

The value of a can be determined from the direct measurement of L x
(Eq. (1)). If we do not have an adequate measuring device, then in order to
determine the value of parameter a; and the equivalent level, Lz, according
to equation (2), the actual values of the sound level for the noise generated by
a single source I;(t) (equation (3)) has to be known. L,(t) can not be measured
at daytime, because of strong signals from other sources, which reach the ob-
servation point. These signals are weaker at night. Nevertheless the acoustiec
background L (f) occurs in every case. Therefore, changes of the sound level
registered for a single source are described by the following function:

L(i)(t) = log {100.1Li(!)+100.1L(0)(£)} : (4)

If we accept that the heoustic background L®(f) is constant in time, LOt)
~ IO, then for a measurement done during # seconds, we have (equations (3)
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and (4)):

N
@ = AtZ 101200 _ py 100120 ‘ &

k=0
where L9 (t,) are actual values of the sound level at the observation point 0,
while ¢, = 0, #,, = 5 (Fig. 1). 1 second is the unit of parameter a.

[dB(A)]

L

Lt

{0}

tis]

Fig. 1. Sound level Ll)(f) — superposition of noise generated by a single source Z;(f) and
the acoustic background IA%

3. Research method

Measurements were performed in order to determine the value of parameter
a. They consisted in the registration at different distances from the track-way
of changes of the sound level of trams passing with various speeds.

Measurements were carried ont at night (12 P.M. — 3 A.M.), when the acous-
tic background was at the level of 30-45 dB(A). The value of the acoustic
background was registered and included in calculations of parameter a. The weath-
er was rainless and windless. The air temperature fluctuated from 10 to 15°C.

The apparatus produced by Bruel-Kjaer was used in the course of investi-
gations. It consisted of: a 1’ microphone (type 4145), sound level meter (type
2209) and sound level recorder (type 2306). The apparatus was calibrated with
a pistonphone (type 4220) before every measurement.

The microphone was placed 1.2 m above the ground level at various dis-
tances from the track-way, beginging at 1 m. The distance was measured
from the outer rail head. :

3 — Arch. of Acoust. 3/86
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The following three types of trams have been investigated [3]:

— type 4 N — consists of 2 wagons, maximal speed — 42 km/h,

— type 102 N — jointed, developing higher speeds; has wheel shields
(especially for middle wheels), resulting from the con-
struction of the body,

— type 105 Na — hasthegreatest maximal speed, reaching 70 km /h (only
one wagon was used in the course of measurements).

ek

; o

4 0
MW e me
—*gsphalt roadwdy J
d

Fig. 2. A cross section of the area in which the experiment was performed

Measurements were carried out in various places of the city, in which the
srea surrounding the track-way was not built over, and was flat and grassy.
In every case a parallel asphalt roadway accompanied the track-way. It was
closed to traffic during measurements (Fig. 2). The tram passed on the track
closer in relation to the observation point and maintained a constant speed on
the distance of 80—40 m to the right and left from the determined direction of
rclocation of the microphone.

Measurements were performed for a tram, type 4 N, which moved with
the speed of 10, 30, 42 km /h, and trams, type 102 N and 105 N, which moved
with the speed of 50 km/h.

4., Research results

Measurements of the changes of the sound level I9(t) and calculations,
done according to Eq. (5), have resulted in the determination of parameters,
a and L, at various distances from the source of noise and at various speeds.

Table 1. Mean values of parameter a [8] at various distances of the
observation point from the tram (type 4 N moving with constant

speed V)
dfmj V[m/s]
2.(7) | 8.(3) | 1L(6)

1.0 1.68 x 108 2.34 x 10° 5.56 % 109

8.0 1.25 x 107 4.38 X 108 9.04 x 108
10.0 = 2.44 % 108 2.87 x 108
12.6 3.91 x 108 “ i
15.8 1.66 % 107 7.77 % 107 1.33 x 108
20.0 1.36 x 108 3.64 x 107 8.92 % 107
25.0 5.22 x 108 3.29 x 107 6.94 x 107
40.0 2.66 x 10° 1.24 % 107 1.30 % 107
63.0 8.33 x 10° 5.70 x 108 7.65 x 108
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Table 2. Mean values of parameter a [s] at various

distances of the observation point from the trams

(type 102 N and 105 Na) moving with a constant
speed of 50 km/h (13.(8) m/s)

Yol Type of tram
102N | 105 Na
0 1.03 x 109 1.14 x 1010
0.4 - 8.51 x 10°
0.6 - 8.77 %107
0.8 - 2.32 x 107
0.9 4.59 x 108 —
1.0 — 1.28 x 10°
1.1 4.46 x 108 —
1.2 2.94 x 108 T2 %108
1.3 1.49 x 108 —
A 1.36 x 108 2.56 x 108
1.6 3.44 x 107 4.56 x 107
1.8 - 1.28 x 107
2.0 — 3.22 x 108
LA)’
L]
96 F
92
'] 42 km/h .-,,..’. e
g8k x 30 km/h
L o 10 km/h
84 L‘
80
7.6
72 F
6.8 -
64
6‘0 1 cms o) 1 1 | 1 | 1 1

1
0 (20 06 08 10 12 14 16 oo 20 logd

Fig. 3. Relationship between the mean value of I 4x and the logarithm of the distance from
the track-way, for tram 4 N moving with uniform motion with the speed of 10, 30, 42 km/h
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88

84

80

76

72

6.8

6.4 i 1 1 1 1 1 1 ! 1 1
=0 02 04 06 08 10 12 14 16 18 20 log d

Fig. 4. Relationship between the mean value of L4 and the logarithm of the distance from
the track-way, for three types of trams moving with constant speeds (50 km/h for types
102 N and 105 N and 42 km/h for type 4 N).

Mean values of a for tram 4 N are shown in Table 1, while for trams, 102 N
and 105 Ne, in Table 2.

Fig. 3 and 4 present L, (Iiq. (1)) in terms of the logarithm of the distance
from the observation point to the path of the source.

5. Conclusions

This paper presents a method of determining parameters, « and Ly,
which characterize the noise generated by a single source. These parameters
have been calculated for rail vehicles moving with uniform motion, with regard
to the speed and type of the vehicle and distance of the observation point from
the path of the source.

Parameter L,y achieved the highest values for tram 105°Na; the lowest
for tram 4 N (Fig. 4). Moreover (Fig. 3), values of L , 5 increase with the increase
of speed (type 4 N). :
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Hence, it results that trams 105 Na are the loudest. Trams 102 N are slightly
less loud and trams 4 N are the least disturbing to the environment. Similar
results have been obtained in paper [3].

The relationship between parameter L, and the logarithm of the distance
(Fig. 4) for tram 102 N differs from such relationships for other types of trams.
This is due to the construection of the body of the tram-shields placed especial-
ly on the middle wheels, cause that part of the energy does not reach the ob-
servation point, i.e. the microphone placed at a distance of about 10 m and 1.2 m
above ground level.

Derived values of parameter a can be applied in calculations of the equi-
valent level L, in town planning, but only at distances not exceeding 90 m.
For example, at a distance of d = 256 m (log25 = 1.4) we have from Table 2
for tram 105 Na that a = 2.49 108, If during T' = 8 hours = 28800 s (at night)
N = 10 trams pass, then from Eq. (2) we have:

28800

If we accept the background sound level at L,, = 30 dB(4), then the equi-
valent sound level during 8 hours of the night, from 10 P.M. to 6 A.M., will be
Lyyr = 49.4 dB(A).

L,z = 10 log{ a+1o°-13ca}.
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MUTUAL IMPEDANCE OF AXIALLY-SYMMETRIC MODES OF A CIRCULAR PLATE

WITOLD RDZANEK

Department of Physies, Higher Pedagogical School
(35-310 Rzeszéw, ul. Rejtana 16)

This paper presents an exact calculation of the mutual radiation impedance
of axially-symmetric modes of a fixed at the edge circular plate. Linear and
harmonic processes in respect to time have been considered and it has been
aceepted that the plate radiates acoustic waves into a lossless gas medium.
Included here expressions for the mutual impedance in the form of single inte-
grals have been adopted on the basis of several simplifying assumptions to
numerical calculations for low and high frequencies of radiated waves. Achieved
results are used in the analysis of the impedance and sound power radiated
by a circular plate excited to vibrate by ‘a known (from the assumption)
superficial distribution of the exciting force.

Notations

plate radius
flexural rigidity
constant quantity for m-mode (10)

— propagation velocity of a wave in a gas medium

frequency of free vibrations for mode (0, n) (4)

plate thickness

first type, m-order Hankel function

second type, m-order Hankel function

first type, m-order modified Bessel function

m-order Bessel function

wave number

m-order cylindrical MacDonald function

m-order Neumann funetion

mutual power of modes, (0,n) and (0, s), of the circular plate (6)
acoustic pressure produced by the vibrating plate through mode (0, n) and exerted
on the same plate through mode (0, s)

radial variable of point on the surface of the plate, in polar coordinates
m-order Struve funection
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i — ftime

By — vibration velocity of points on the surface of the plate for mode (0, n) (2)
Zoa — mechanical impedancé of modes, (0, n) and (0, s) of the circular plate (3)
Yn — n-root of the characteristic equation (3)

B — Kronecker delta

Eas — mnormalized mutual impedance (12)

0,5 — normalized mutual resistance (13) :

A — length of an acoustic wave in a gas medium

& — transverse dislocation of points on the surface of the plate

e — density of the material of the plate

@ — rest density of the gas medium

o — area of the plate

¥ns — normalized mutual reactance (14)

Wy — angular frequency of free vibrations, corresponding to mode (0, n)

1. Introduction

Only few published papers in the field of the generation of acoustic waves
by superficial sources are concerned with the problem of acoustic mutual
interactions of plates or circular membranes. The carried out analysis was
done for a system of two plates or circular membranes for a case of axially-
symmetric free vibrations.

Besides theoretical work on acoustic mutual interactions between two sour-
ces, research is also performed on acoustic interactions of two different vibra-
tion modes of only one source. Results of the analysis of a circular membrane
are presented in papers [6] and [7].

Hitherto the problem for a circular plate has not been solved.

This paper undertakes the problem of acoustic interactions by calculating
the mutual impedance of two different axially-symmetrie, (0, ) and (0, s),
vibration modes of a circular plate fixed at the edge, which radiates acoustie
waves into a lossless gas medium. Linear and harmonic in time processes have
been examined. :

Obtained expressions for mutual impedance can be a basis for further
investigations of the radiation impedance of a circular plate with a determined
superficial distribution of the force exciting vibrations.

2. Superficial distribution of the vibration velocity

The motion equation for free axially-symmetric vibrations of a circular
plate, made from a homogeneous material of density p, and of small in respect
to the diameter 2a thickness h, is as follows [2]:

18 9\ PE(r, 1)
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\

where £ is the transverse dislocation of points on the surface of the plate, B —
flexural rigidity of the plate.

Solving this equation for effects which are smusmdal in time, in the case
of a plate fixed at the edge leads to a formula for the vibration velocity [2]

.3 Jo(?n) r 3

V(1) = vﬂn{JO(a ?’n) 1,(7.) Iu(a ?’n)}° (2)
In paper [2], v,, denotes the maximal value of the vibration velocity of the
central point of the plate for mode (0, #). Occurring here special function I,(x)
is a zero order modified Bessel function of the first type, which can be express-
ed by a Bessel function J,(iéz) of an imaginary argument, i.e. I,, (z) = i~™J,, (i)
for m = 0,1,2, ...

From the frequency equation (2)

Lo () T2 (n) + Ly (7a)d o () = 0 : (3)

we obtain an infinite number of values &k = k,(ka = y,), which determine
frequencies of free vibrations

1 B

4
e Vn > (4)

fn=

while for n =1, 2, 3 we have (e.g. [3]): y; =3.195 ...; ¥, = 6.306 ...; y,
= 9.439 ... If » is sufficiently large, then according to relationship [3] y, ~ n=,

2
instead of ka = Tﬂa = y, We have ni = 2a.

3. Integral expression for mutual impedance

The mechanical mutual impedance between axially-symmetric free vibra-
tion modes, (0, #) and (0, ), of a circular plate placed in a rigid and flat acoustic
baffle is calculated on the basis of the definition (compare [7])

2§
o ———m—— ns’usd (5)
2V v, < 1v, 1% f fer

where p, is the acoustig pressure produced by the vibrating plate through mode
(0, ») and exerted on the same plate through vibration mode (0, s),

b
ng Efpﬂs'vsdo (6)
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is the mutual power of modes, (0, n) and (0, s), of the circular plate, while

1
o1y = 5= [ vh(r)da (6a)

is the mean of the square of velocity of the vibration mode (0, 7).
On the basis of paper [4] the mutual impedance (5) can be expressed by
the following formula

2 @f2-+ic0
dan b7 Mletle <ot I, (0) M, (9) sin 0d9 (7)
V{0,150, 1D
where
a J ’19” =% :
I,00) = v [ (0[5 ) = P Lo )| Fohrsinoyrar @)

¢, — propagation velocity of a wave in a gas medium of a rest density of g,, &,
= 27/h — wave number, 2 — acoustic wave length in a gas medium. Applying
the integral formula (A3) and the frequency equation (3), we achieve

% ot oy
M () = 2 vy — k“S";’ {b,,Jo(koasmﬁ)—
2 e (L) sin*s
Vn
ko . 3
- 5 smﬂJl(koasmv?)}, (9)
B

Xos Jf\ = j

b
JEN

0 6?{

LY

sl
\J/* |

-04

)
!

g

0 2 4 6 8 0 kya

Fig. 1. Normalized mutual impedance of two, (0, n) and (0, 5), axially-symmetric vibrations
modes of a circular plate in terms of parameter kja
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Fig. 3. Normalized mutual impedance of two, (0, n) and (0, s), axially-symmetriec vibration
modes of a circular plate in terms of parameter kya
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where
_ dil)
. Jﬂ(yn)

In order to caleulate the mean value of the square of the vibration velocity
{|v,]*> we take into account the property of orthogonality (A4) for function

J,
q'n('r) = Jﬂ (‘?2_ yn) = ID::'“; ID (_:;_Vn)

(10)

and we obtain
0,1 = 15,5 (7a)- (11)

Relating the mutual mechanical impedance to the specific resistance of
the medium, g,¢, and to the area of the plate, wa? we obtain the normalized
mutual impedance

k
oiays " | BaTolloasind) — “ Sin 97, (koasin )
Cns = - Zﬂ4 % ;
Yolt d 1— (—-9-) sin‘d
Vn
. koa . .
byJ, (kyasin &) — sin 9J, (kyasin )
s L singdd  (12)

koa \*
i ( 2 ) sin'®
Vs
and after separating its real and imaginary components we attain the following

expressions

w2

Ops = [ T (#) Fy(#)sin 0'ad’ (13)
0

for the normalized mutual i;npedance between modes (0, n) and (0, s) of the
circular plate, and

2

Zos = [ Ga(y)6,(y)sin~ydy (14)

0

for the normalized mutual reactance between modes (0, n) and (0, s) of the cir-
cular plate, where

koo

b, o (koasin §') — —— sin 8'J, (koasin §')

2k qa k'yn = , (15)
a
Iy 1—( : ) sin*®’
Vn

Fn('ﬂ’) o 3
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1; - ( @ ) ko [ ko
ok ™ °\siny| y,siny '\sin
Guly) = —" LT L. (16)
Vn 1 (koa)

ypsin'y

If we accept 8 = n, then we acquire the following expressions
nf2
O = [ Fr(0')sind'ad" (17)
0
and

nf2

tn = | G(y)sin~*ydy (18)
0
known from papers [4, 5]. They express the radiation impedance of a circular
plate excited to vibrate with a resonans frequency for mode (0, n).
4. Mutual resistance for a special case
The analysis of the mutual resistance (13) is much more convenient when

kya[y, <1, or more accurately when (kw/y,)* < 1. We make the following
simplifications in formula (13)

k 4 -1 'k 4 -1
[1 - ( "a) sin‘a?’] ~1, [1 — ('La) sin‘ﬁ'] ~1 (19)
Yn Vs

and reach an expression in the form of a summation of integrals

/2

9%,a)?

g {b,,b,, f I (kyasin &) sin §'d9’ —
?ﬂyg 0 i

n/2
.o h
—kya (-;- +—S) f I, (koasin ') J o (koasin §') sin? &'dd’ -+
N Tal

(k(la‘)2 ™ 2 : "\ o 387797
A le(koasmt‘})smi‘}dﬁ}. (20)
nrs 0

These integrals are known [4] and have been presented in formulae (A5),
(A6) and (AT). Integrating we acquire the following form of the mutual resi-
stance (20)

Ors ¢ (200" (s o) U 01 (e Bt 20) = 5 s (20)] - @1)
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where: # = ks, U(xr) = %[J 1(22) 8, (2@) —J o (22) 8, (22)], 8, (%) is the m-order
Struve function,

: 3 1 3
= b,b — —by,—b 22
Qg Vol [ n s+ 2?117’3 (‘1 n¥n s?ﬂs)]! ( )
B - 23
ns 2?2”}: ? ( )

b,b,

Bns = 7 24
i 1% (24)

If moreover # = k,a < 1, then we can apply approximate formulae, (A9)
and (Al11), and thus

0,, ~ (2u) == b.bs [1—1(1+ 3 ¥ 3 )w%] (25)
. i YuYs 3 20, - Yaby
whereas for n = 8
0,, = (22) (b )2[ 1( + 2 ) 2] (26)
s e z*].
Vn 3 Ynbn

We will also analyse the mutual reistance when k¢ > y,, ,, or more ac-
curately when (k,a)* > 5, ¥s.
We perform a change of variables in formulae (13) and (15)

A (R AT) | AU R AT I

: (Vo —P) (i —1) ]/1 (
koa
We use the approximate formula

t \2]2 1/ 1t \? 8/ t\4
-G T omegls) +als) - o

and this results in the expression

s = [ 4,04, [1+§(~;—) +%(§)‘]m (29)

Ops = 4 ('Vn?s)a

(27)
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where

b () — — T, (2)
Y.

An(i) =2 yi ‘}’:—tr o (30)

Three terms of the series (28) have been taken into account in order to ensure
the convergence of integral (29) for very large values of # = kya. If ¢t = y,,
then function A4,(t) is an indeterminate symbol, which has the following limit

by (1) — — (1

lim A, () = 293 lim s

i—syp i=vp

I3 (V) + I3 (72)
Jo(?’n)

Integral (29) within limits (0, ) is presented in the form of a difference of inte-
grals, i.e.

&k
i (31)

Pk )

The integral within limites (0, o) is calculated from formula (Al14), while the
value of the integral within limits (2, co) can be neglected, because it is a small
quantity in comparison to the value of the integral within limits (0, cc). More-
over if we take into account the characteristic equation (3) and Wronskians, (A1)
and (A2), then finally we obtain

Vs B D 0™ (33)
where & = ko & > Y, Ve :
(Vu?s)’ [ J1 (V) Jl(}’a)]
by, =2 - 34
e Vo7 Lo AP E P e

for n s s. In order to achieve higher accuracy of calculations, the integral
within limits (#, cc) has to subtracted in expression (33). The approximate value

Table 1. Coefficients hy,g, ayss fnss and g

n, 8 jixe] 1,3 2,3
Bd —1.7275 —1.459 —3.504

Ois 4.904-10-2 3.278-10-2 1.678-10-2
Bus 1.232:10-3 5.499-10-4 1.412-10-4
e 3.773-10-2 2.599-10-2 1.459-10-2
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of the integral for (k) = a* > 4,9} is

o0 2
f s v ) e S (35)
J 10 b1

Values of several coefficients are gathered in Tab. 1 to facilitate numerical cal-
culations.

Though there is a value of coefficient (34) within limits for # = s, but ex-
pression (33) for n = s can not be used in calculations of the self-resistance.
In this cage an approximate formula, given in paper [8] should be applied.

5. Conclusions

Mutual acoustic interactions between vibration modes, (0, n) and (0, s),
of a single circular plate take place for determined intervals of parameter kqa.
Extreme values of the mutual impedance occur for k near y, and y,. For
higher modes maximal interactions occur when the linear dimensions 2a of the

plate are comparable with the integral multiple of the length of radiated
waves, ni.

Tt is characteristic that acoustic interactions suddenly decay for wave
lengths 2 slightly differing from 2a/n. When the wave length is decreased still,
then the mutual resistance also decreases assuming negative values and within
the limit for A—>0 it equals zero. The mutual reactance also decreases with the
frequency increase of radiated waves. It assumes positive values and within
the limit for k, = 2n/A—oco0 approaches zero.

Acoustic interactions through a fixed mode (0, ») and an arbitrary different
mode (0, s) are the smaller, the higher the value of n—s. If the value of m —s
is fixed, then acoustic interactions decrease when higher and higher modes,
(0, ») and (0, s), are considered.
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Appendix A

The following Wronskians are known for the Bessel function J,, (), Neu-
mann function N,,(z) and the MacDonald function K, (z) [9]:

2
J1(2) No(2) —d o(@) Ny (2) = e (A1)
1
I, (2)Ky(x) + Io(2) K, (2) = = (A2)
The indefinite integral [9]
f 10T o (110) Ty (0) 0 = —== (1T, (1) Ty (1) =W o () Ty (o)} (A3)

can be applied also for complex quantities #, 1.
Using the indefinite integral (A3) it can be proved that eigenfunctions

Jo(¥n
qn(r)=Jo(—:-?n) (y) ( ?n)

Lo(yn)
are orthogonal for 0 < r < a in the sense of the Kronecker delta, i.e.
f (1) G () 1dr = a2T3(9,) By (A4)
0

if 9, is the n-root of the characteristic equation (3).
The following definite integrals [5] are found in expression (20):

nf2

Ay = f JE(wsint)sintdt = J,(22)+
+ 5 [71(20)80(22) — o (20) §1(20)],  (AB)

4 — Arch. of Acoust. 3/86
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~

ﬂfﬁ 1
Ay = [ Jy(@sint)dy(@sint)sin®tdt = 5= [du(@) = J,(20)]

0

- .=__f J;(wsint)sin3tdt =

0 !
1

2 (2)?

It is convenient to introduce function
T
Uiw) m [J1(22) 8o (22) — J o (22) 8, (2)]
which for # < 1 can be approximated by the expression

2
U(x) == —3—5&2 (1-— 1—3:)-952)

if we use approximate formulas for Struve and Bessel functions [3]:

; 8y (@) E—50(1'__): 8y () Eiﬂﬂ(l—ﬁ):

et 2 36 zf(l_ m—z)

Appendix B
The contour function (compare [9], [8])

1 HY (az)dz

e, -1
2mi 4 #2008 A =)

3
= 2 A0 (@) + 5o [oo(0) =207, (20) — Jo(20)]-

(A6)

(A7)

(A8)

(A9)

(A10)

(Al11)

(A12)

where a > b > 0; r,8 — complex numbers; Z,— u-order cylindrical function;
lul+ 7| < o < 10, can be expressed in the form of a sum of residues in poles

of the integrand. When a = b, then o < 9.

With the application of the Jordan lemat and the Cauchy residuum theo-
rem [1], the integration contour can be closed in the top half-plane of the com-
plex variable 2. Four poles of the integrand, for z = r, 2 = ir, 2 = sand z = s,
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—

are enclosed during integration. We obtain

2me {Z,,(bx) HY (ax) — exp (oni) Z,, [bwexp (i) | HY [awexp (ri) ]} X
0
z°-1d 1 :
e (;_84) = oy O HD (an) — 12, (be) x

x HM (as) +i° [1°~*Z,,(ibr) HD (iar) — s°~*Z,, (ibs) HD (ias)]}.  (A13)
For a special case, when Z, = J,,a = b = 1, taking into account rela-
tions

7tia) = exp i ) L), BOG) = 2 exp| —itr+1) 2| & 0,

Ju[vexp(wi)] = exp(uni)d, (¢), HP[zexp(mi)] = —exp(—ivr)HP (a),
Hf’l)(a:) o J,(.’E)—]—'i.N,,(.’B), Hsuz}(wa o J,,({L')—%.N,(m)
in place of (A13) we have

2w 1]
—ri)(at—st)  4(r*—sY)

[ u@)(o {—W‘J,,(r)ﬂ‘:’(r)—
1]

— 804 (s)HY(s) + % cos(o+pu—w) % (=%, (r) K, (r)— sg““Iy(s)K,,(s)]}
(Al14)

for p+pu—v=2n,n=1,2,3,... and

a®dy % r
(@ —r")(a*—s")  4(*—s")

[ 7@, @ (e, B9 ) -

— 84, (8) HY(s)+ —?; sin (g + p—»)m[2[r** T, (1) K, (r) —s*~*1(s)K, (s)]}

(A15)
for p+pu—v =20+1, n =0,1,2,...
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MULTI-DIMENSIONAL TRANSFER FUNCTIONS FOR A NON-DISSIPATIVE
BURGERS’ EQUATION

ROMAN DYBA, BRONISELAW ZOLTOGORSKI

&

Institute of Telecommunication and Acoustics, Wroclaw Technical University
(50-370 Wroclaw, Wybrzeze Wyspiafskiego 27)

The propagation of acoustic disturbances in a continuum medium was
analyzed under the assumption that the non-dissipative Burgers’ equation is
a reagonable mathematical model of the phenomenon under study. Regarding
the propagation as a transformation of the time dependence of the acoustic
veloeity in a system with an input signal and employing the Banta’s solu-
tion, the non-linear Burgers-Banta system was obtained. This system was
described in the form of Volterra’s series; the kernels of the series being
determined with the help of the method of harmonic excitations. The r-di-
mensional Volterra’s kernels given in the paper and their Fourier transforms
(transfer functions) enable the parameters and probabilistic characteristics of
the output signal to be determined under the condition that the input signal
is known.

1. Non-dissipative Burgers’ equation

Navier-Stokes equations [1, 2] define the dynamics of a viscous gas medium
with the consideration of heat conduction. These can be reduced to one equation
for the potential of the acoustic veloeity, with general agsumptions concernmg
the disturbances of the medium [3]:

2 ' [1)]
a® (2+ T 1)vV 9P _ 299 9o 4y 1)%\7295

2v3 T
5 é o

, (1)
where besides typical notations, there also are: :
¢, — adiabatic sound velocity, y — exponent of the adiabate (= ¢,/¢y), 7 —
first coefficient of viscosity (coefficient of dynamie viseosity), ' — second
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coefficient of viscosity, » — coefficient of kinematie viscosity (= 5/g,), Pr —
Prandtl number.

Applying the approximation of the theory valid for waves with a small
but finite amplitude and limiting the case to a one-dimension problem, the
above equation can be written in the following form:

% T a

0 o\ 0D i o3P 1 oD 02
( ) @)

"2 mm T3t =

which, by integrating in terms of ¢ and differentiating in terms of , can be con-
verted to the equation for acoustic velocity:

ou y+1 ou 1 .
aﬁ( 3 “)'5;—5555 | (3)

d in equations (2) and (3) marks the coefficient of sound dissipation:

a=w( +C+ Prl) @)

2
where { = '+ 37 is the total coefficient of viscosity. The coefficient of sound

dissipation represents losses in the medium due to viscosity and heat con-
duction.

This paper is concerned with such a ecase of propagation of dlsturbances,
in which the right side of equation (3) can be neglected. Thus, equation (3) is
replaced by the non-dissipative Burgers’ equation:
ou y+1 \ ou
2 +(o+—2 )aw = (5)

2, Banta’s solution

The unconventional solution of equation (5) given by Banta [4], has the
following form:

oo

7 n—1
wl@, ) = p+ D (— 1) s [P0} (©)
where
1 d
F(g) oot P 'P i '_‘P} P p(t) = u(0,1). (6a)
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In further considerations a slightly different expression for ¥ will be used;
applying the assumption about finite but small (with respect to ¢,) acoustic
velocities it can be accepted, that

Flg)=——=— ——50; (6b)

in expressions (6a) and (6b): g = (y+41)/2.

The approximation in (6b) is sufficient; e.g. if the level of acoustic pres-
sure equals 174 dB (re 2-10~° Pa) what corresponds to the velocity of the acous-
tical particle of 0.1 ¢,, the approximation error in (6b) does not exceed 1.5 % [56].

3. Application of the harmonic input method in the construction of a transfer function of
a system defined by Banta’s series

The phenomenon of non-linear propagation, defined by Banta’s series (6),
can be presented in the form of a system with an input signal X (f) = (%)
= u(0,?) and output signal Y () = u(x,t) (Fig. 1) [6].

X(t) f_rsurgers -Banta Y(t)
system

Tig. 1. Illustration of the “input — output” relations for propagation described by the Banta
series

The Burgers-Banta system is a non-linear inertial system without the
hysteresis effect. In a general case such a system can be described by Volterra
geries [7, 8]; the general form of this series is as follows:

Y(t) = 2“,?11_ fh,,(rl, T ﬁm(t—mdrf (7)
r=1 R je=]1

where h, are the Volterra kernels of the r-order. Their analytic form depends
on the properties of the system; the integration domain R" is the r-multiple
Cartesian product of R = {r:7e(—o0, o0)} and di" = dr,...d7,.

This paper is aimed at the determination of kernels &, and their r-dimen-
sional Fourier transforms, i.e. r-multiple transfer functions of a system presented
in Fig. 1, which is described by series (6). h,(t;,...,1,) denotes the Volterra
kernel and k,(t;,...,1,) denotes the kernel of the Burgers-Banta system. The
harmonic input method [6, 8, 9] was used to determine the set {h.}. In order
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to apply this method effectively the. series (6) should be converted to a form
more convenient for further calculations. From

n—1 n

dt"'_l [Fn(gD)F'((p)(p] e _ﬁ at" [Fn+l(‘P)]

series (6) can be converted to

ﬂ dil
w(@, ) = gt +Z(— e g CLU)

n=1
and then using equation (6b) and taking into consideration that
n+1
n—+1 i b
g = (") i (- 5]
~\ k Q* B

we have

n+1l

ﬂ ; g+ ar 1 ﬁ k -+
u(w,t) = @(t)+ % Z( i PR kg; aE (-;[2:) @ ().

(8)

This new form of the Banta series is particularily useful in the generation
of Volterra kernels with the harmonic input method. This method consists in
the determination of coefficients of exponential factors of the exp [j(w,+...+o,)]
type in the input signal, under the assumption that the signal exp(jw,t)+ ...

. +exp(jo,t) acts at the input. As it has been proved in paper [8] these coef-
ficients are r-dimensional transfer functions and their r-dimensional inverse
Fourier transforms are Volterra kernels of the »-order. Thus, in order to deter-
mine the transfer functions of the first order (denoted by H,(w, «)) it was ac-
cepted that () = exp(jot). Finding the coefficient of the exp(jwt) factor
in series (8), H,(w, @) is obtained. Making the substitution in expression (8),
we obtain the series:

: bl o o ekl &
— ¢lot V T avain T 8 § n+1} 1 o _ﬁ) jot
u(m 'ﬁ) € + ( ) (n+1)' dt” ( L cawh.k Gg €

which, after differentiating, has the form:

A u(m t) o 6jwi+ig(_1)n+l mn'l'l n+1 (ﬂ+1 1 ( ﬁ )k( .k )nejml
LTS fw - (n+1)!"§ % )63+1—k o é JEw .A
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The sought coefficient can be derived from the above expression by acceptmg
kE = 1; then the expression for H, will be:

n41

o X @ 1 i} 3
l(w x) =14 21‘ s n+1)! (n+ )—‘ '—;;*) jw) pa—

hence
hi(t, o) = F1{H,(w,2)} = F"{exp(—j;m-w)} = 5( ..-éi)

where §(:) denotes the Dirae delta. In order to obtain the transfer function of
the second order we have to accept

(l) = 14 ¢#°2!
and then we have to find the coefficient of the harmonie factor with a w;4 w,
pulsation in series (8) with the ¢(t) function accepted as above. The series of

caleulations (as above) leads to the following expression for the transfer func-
tion of the second order:

= : P z .
Hy(wyy 0y, 2) = J(01+ wz)c—geXP [“"G_J(ﬂh"{* wz)].
0

0

The kernel of the second order will be expressed by:

Ez(tu ty, @) = Fz-l {3(w1+ wz)‘c—a:"exP [" cij(col—}- “’2)]} =
2 ;

- Gla ) b))

In a general case, the following expression for the transfer function of the r-order
is obtained :

ﬁw r=1

H, (015 00y 00, @) = (?’) (o34 ... +w,)] " 'exp ['_jcio (w01 + ... +wr)]
(9)

0

hence the general form of the Volterra kernel is:

z,.(tl, ceg @) = F:l[ﬁ,.(w“ v @y, X)] =

_ [Be\ (D a \r=! x @ '
‘(T) (at+ +az) 6(““?0)“"’(”"?.,)' 54
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The obtained expression for the general form of Volterra kernels leads
to a more compact than in (6) form of the Banta series [4]. Namely, substituting
(10) in (7), expressions for succeeding terms of the Volterra series are obtained.
Thus, let V, denote the r-term of series (7), i.e.

1 r
- fh,.(tl,...,tr)HX(t—-ri)dr’ | (11)
Rr

i=1
and then in case of the Burgers-Banta series it is:

hp(tyy ooy ty) = Ry(tyy ooy ty, @), X (1) = @(1), X (1) = u(w, ).
The final result is:

E, = lé(r—%)qa(t—r)dr:tp(t-cﬁo),

1 By S - x @) @
L 0 00 v K e R e L e
XP(t—1,) @ (t — 75 drydry = ﬁf-qa(t_i)@;(g“ﬂ) = Lﬂ_figpa(,_i),

ﬁmrldrl T
Vo= t——.
g ""(00) dtrltp( Go)

Hence, a different, more compact form of the Banta series is achieved:

el d?'—
wn-SE D

r=1

4. Conclusions

The approach applied in this paper to the description of the “input-out-
put” relations of a Burgers-Banta system consists in treating the propagation
of an intensive acoustic signal from the point of view of the analysis of non-linear
changes of the signal initiating disturbances in the medium, i.e. signal X (t)
= %(0,1?) = ¢(f), where the signal ¥ (f) = u(x,t) reflects these non-linear
changes. Such a formulation of the problem suggests that the non-linear pro-
pagation phenomenon should be treated as a non-linear system; and the method
of Volterra serieses was used, because of its versatality.
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=

New elements of the description of lossless non-linear propagation have
been achieved. A compaect analytical Volterra description of the Burgers-Banta
system was derived; the form of kernels (10) shows that the said system is
quasi-memoryless.

Analytical forms of r-dimensional Volterra kernels and transfer functions,
presented in this paper, make it possible to determine easily all parameters
of the output signal, when the input signal is known. Also the construction of
all probabilistic characteristics (e.g. multi-dimensional probability distributions,
power spectrum density) of the output signal is possible, when the input signal
is a stationary Gaussian process [7]. This can find application in investigations
of non-linear propagation of intensive acoustic noises [2,10].
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CALCULATION OF THE ACOUSTICAL FIELD OF A SEMI-INFINITE CYLINDRICAL
WAVE-GUIDE BY MEANS OF THE GREEN FUNCTION EXPRESSED IN CYLINDRICAL
COORDINATES
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The exact solution to the problem of the acoustic wave propagation is
presented for a half-infinite cylindrical wave-guide with rigid walls, i.e., with
taking into account the diffraction phenomena on the open end of wave-guide.
The problem was solved by means of the theory of acoustic field without sources
and the use is made of the Green’s function method in the cylindrical space co-
ordinates, leading to two integral equations which are solvable with the help
of the Wiener-Hopf method.

The wave number considered was taken to be a complex quantity,
and the reduced forms of the final formulae are presented for the limiting case
of real wave number.

Notations
f(u) — directivity factor,
Jm(2) — funection of apparent sources,
Fp(w) — Fourier transform of functions of apparent sources,
gm(2) — source function,
Glo, o', w) — Fourier transform of Green function,
— constant,
In(2) — nucleus of the integral equation, =
L(w) — Fourier transform of the nucleus of the integral equation,
Ly (w), L_(w) — factors,
I,m — integers, indexes of wave mode,
N — order of the highest acceptable mode,

w — partial wave number,



262 A, SNAKOWSEKA, R. WYRZYEOWSKI

v — radial wave number,

S(w) — function determining factors L, L_,

X(w), ¥(w) — real and imaginary part of function S(w),

Ym — radial wave number of mode numbered m,

& — imaginary part of wave numbered &,

7 — imaginary part of variable w,

B — m root of the Bessel function J,(z2),

¥(z) — jump of the potential on the wall of the wave-guide,
: 3 L N - o=

2(v) function equaling tg 7,0) 5

Other notations used in this paper are typical and have not been included in
the above list.

1. Introduction

The determination of a wave-guide acoustic field consists from the mathe-
matical point of view in the solution of a wave equation with given boundary
conditions, generally applied to the normal component of the vibrational velocity
on the walls. Such solutions are known only for a few cases, where the boundary

“conditions are accepted on highly symmetrical planes (e.g. infinite wave-guides).
In other cases the symmetry of vibrating systems is corrected by supplementing
them with infinite acoustic baffles. However, only few problems have an exact
solution. &

From among papers concerned with theoretical and experimental acoustics
in the field of phenomena taking place in cylindrically symmetrical wave-guides,
the fundamental work of Rayleigh should be mentioned [17]. Rayleigh calculated
the quantity called the “correction for the open end”, which is the measure of
the phase shift of a plane wave due to the reflection at the wave-guide orfice
supplied additionally with an infinite rigid acoustic baffle. The method of sepa-
ration of variables, applied to the wave equation expressed in cylindrical coor-
dinates [2], gives a solution, which points out that not only a plane wave can
propagate in the wave-guide, but also higher wave modes can occur. They ap-
pear above certain limit frequencies, depending on the pipe radius. It is by
intuition evident that the same modes can also oceur in a half-infinite wave-
guide and that their generation can be related to diffraction effects taking place
at the orfice. This proves that the Rayleigh method applied in certain cases
especially with waves shorter than the doubled pipe radius can give completely
erroneouns results.

LevIN'S and SCHWINGER’S, and WAJNSZTEIN’S papers published in the
40-fies have contributed in particular to significant progress in the mathematie
theory of vibrations in a pipe. The first two scientists [3] have achieved an exact
solution of the wave equation with boundary conditions characteristic for a
semi-infinite cylindrical pipe with perfectly rigid walls, under an assumption



COYLINDRICAL WAVE-GUIDE 263

that only a plane wave propagates in the direction of the orfice and in the reverse
direction. Of course, this limits the practical application of the results to waves
not shorter than the pipe radius, when the generation of higher Bessel modes
is imposgible. WAJNSZTEJN, on the other hand, in his works [4, 5] gave an exact
solution to the problem of electromagnetic wave propagation in a flat and cylin-
drical wave-guide, and then on the analogy of electric waves (in a flat wave-
guide), or magnetic waves (in a cylindrical wave-guide) and acoustic waves,
he established an expression for the acoustic potential, postulating, also by
analogy, such a form of the jump of the potential on the wall of the wave-guide,
which would result in integral equations identical with equations obtained for
electromagnetic waves.

This paper presents a method of obtaining an exact solution to this problem
with the sole application of the acoustic field theory, for a region without sour-
ces, including constraints of the mathematical solution resulting from its physi-
cal interprefation as the potential. The theory of Green functions expressed
in eylindrical coordinates has been applied.

2. Formulation of the problem in the form of an integral equation

Our analysis will concentrate on the acoustic field inside a cylindrical
wave-guide stretching from z = 0 to oo, with its axis of symmetry coinciding
with the z-axis. The wall of the wave-guide is described by the equation of the
side surface of a semi-infinite cylinder with a radius e (Fig. 1):

D ={le,9,9):0=0,2>0}. (1)

Xy

z

Fig. 1. Geometry of the system — semi-infinite cylindrical wave-guide with radius ¢ and
the axis of symmetry coinciding with the ¢-axis of the coordinate system

Let us consider a case when the wave-guide is axially excited (the velocity
distribution is independent from the angular variable) to vibrate with a deter-
minate circular frequency w. The expression for the acoustic potential inside
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an infinite wave-guide, obtained from the wave equation, is

1 90,1
AD(F, 1) =~6;—5(ﬁ’—)

with the condition of the decay of the radial component of the vibration velocity
on the surface of an infinite wave-guide

o0D(7, 1)

do -

(2)

=0, —oc0o<2z< +oo. (3)

e=a

Considering only harmonic vibrations and assuming that the time dependen-
ce of the potential is expressed by factor exp ( —iwt), we obtain the following solu-
tion [2], which satisfies physical conditions of the potential:

J (%L’ 9)
5 .e—iyﬂz
JO(Jun)

where y, is the radial wave number related to the vave numbered &, by the

following relationship
3 2
yn=1/W—Fh) (3)
a

and u, is the n root of the Bessel function J,(z). The J,(u,) factor, which ap-
peared in the denominator in (4) is a standarizer, so constant 4 denotes the am-
plitude. Index #n numbers successive allowed wave modes. Of course, in a general
case, the potential of an incident wave can be a superposition of the potentials
of individual modes. Equation (4) shows that when » = 0 a plane wave is ob-
tained, while for other values of n, succeeding higher Bessel modes oceur. More-
over, formula (4) will describe also a travelling wave, but only when the expo-
nent will be an imaginary number, i.e. when ¢, will be real, that is when

?,(¢0,2) =4 (4)

2
kz—(ﬁ) > 0. (6)
a
Int—roducin;g a dimensionless diffraction parameter
x®=ka; (7)
the condition (6) becomes 3
# > i (8)

Denoting by N the greatest integer, so

By < %< fing (9)
then N determines the order of the highest Bessel mode which can propagate
in the wave-guide without loss, with an assigned diffraction parameter x.
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In order to determine the acoustic field of a semi-infinite wave-guide, the
wave equation (2) has to be solved with a boundary condition of the decay of
the normal component of the vibration velocity on the wave-guide surface,
i.e. only for z> 0:

8D (7, 1)

=0, z>0. (10)
de

-

An assumption is made that the sound wave, which propagates towards
the open end, has a potential expressed by formula (4), i.e. it is a single wave:
mode. It undergoes diffraction at the orfice — part of the energy is radiated
outside, and part returns to the wave-guide as a reflected wave. We postulate
that it can consist of all Bessel modes, which can propagate in the given wave-
guide. Therefore, the solution of the diffraction problem lies in the determina-
tion of complex amplitudes of modes in a wave returning from the open end.

Fig.- 2. Integration surface limiting the region without sources; that is with the wave-guide
wall out

In order to solve the problem of the acoustic field of an investigated wave-
guide the second Green theorem can be used, but one of the scalar functions
is substituted by a Green function for a free space G(7,#’) and a sphere with
a radius approaching infinity, with a surface out from it comprising the wall of
the wave-guide (Fig. 2) is accepted as the integration surface. The Green function
G(7, 7') satisfies the following differential equation

(A+EkG(F, 7) = —o(F—7) (11)

where the function on the right side is the é Dirac distribution. Using the men-
tioned above theorem and including the fact that the spatial part of the expres-

5 — Arch. of Acoust. 3/86
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sion for the potential fulfills the Helmholtz differential equation, it can be
written

®(7) = { [G(F,F)WV'DF)—BF)W VEF,7)ldd, (12)
8

The “prim” mark at the deloperator means, that the differentiation is
done in respect to variables marked “prim”, so %' is the unit vector normal
to the do surface element. If we want to use the form of the Green function for
a free space

iklr—

H

'l

-

€

i
G, F) =4 (13)

~I

=

then there should be no sources in the range limited by surface 8. The surface
of the wave-guide with apparent sources related to the potential discontinuity
hss been cut out from the integration range. The adequately chosen integration
surface is shown in Fig. 2. Tt consists of sphere §, with a radius R approaching
infirity, circle §, which is a cross-section of the wave-guide at z = R and
cylivdrical surfaces, Sy, and S,_, situated infinitely near the inner and outer side
f the wave-guide wall. Now we will calculate integrals (12) on individual parts
£ surface §. The potential of a spherical wave, modified by a directivity factor
f(n'), can be accepted as the acoustic potential @(7') on the surface S8,

D7) ex f() —- (14)

For great values of r, the considered potential satisfies the Sommerfeld’s
radiation and finity conditions; the Green function fulfills the so-called sharp-
ened Sommerfeld’s radiation and finity conditions; the (12) integral on the
surface of sphere 8, vanishes, what has been proved among others by RuBINO-
wicz [6]. The integral on surface §, tends to zero for R—>co due to the finite value
of the potential, finite integration surface and the decrease of the Green function
with inverse proportion to distance. Thus, the value of potential @(7) will
be determined only by an integral on surfaces 8,, and §,_. Considering that
the side surface of the cylinder satisfies the boundary condition (10) of the
decay of the normal component of the vibration velocity, and that 7'V’ = &/dp
for elements of the surface 8,,, and &'V’ = —3/dg for elements of the surface
8,_, the expression (12), which determines the acoustic potential, can be writ-
ten in the form

®(F) = 2na f A O R (15)

oe' o' =a
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where the function ¥(z’) determines the jump of the potential on the surface
of the wave-guide

Y (&) —Dipts z’)le,_m+ —@(g', 3| R (16)

The analysis of expression (15) shows that the acoustic potential in an arbitrary
point of the field is univocally defined by the jump (discontinuity) of the po-
tential on the surface of the wave-guide. The application of this form allows
the notation of the boundary condition (10) in the form of a homogeneous
integral equation

ng, e 39 7y F)gmae’ = 0;  23>0. (17)

e=a

Thus, the calculation of the acoustic potential of a semi-infinite cylindrical
wave-guide has been reduced to the determination of the value of the jump of
the potential ¥(z') on the wave-guide surface, i.e. to the solution of integral
equation (17). Because the problem is cylindrically symmetrie, then the Green
function expressed in cylindrical coordinates can be applied, ie. the Green
function for a cylinder, which has been discussed in detail in papers [2], [7].
It results from the free form of the Green function (13) that this is a function
of the following variables (¢, o', p—¢', 2—2'). Solving equation (11) in eylindri-
cal coordinates, the following expression is derived for the Green funection:

co4in oo

AR g
2 etm(vpmp){gni; ("DQ)Jm(’UQ )} ezw(s—z’) dw,

G(e, 0’y 9—9'y2—2) = O (ve")J,, (ve)

i

87 :

—00+4in m=-—c0

e>e

e<e”

This is the Green function for a cylinder. It has the form of an inverse

Fourier transform, while the integration path is a line parallel to Rew, and
coefficient # satisfies the inequality

(18)

—Imk <y <Imk. (19)

When the excitation is axial (the case under investigation), then the infinite
series under the integral is reduced to one term for m = 0. Then we obtain

oo+in
’ g, .y i H“)( ) ('UQ ) w:(z——z‘) e = 9’

=oo+in

where v is the radial wave number

v =Vik—w?. (21)
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The form of the obtained Green function differs in dependence on whether
the point of the field lies inside (¢ < @) or outside (o > o') the wave-guide.
This oceurs because from among a family of solutions of equation (11) we have
to chose those, which fulfill the physical eonditions of the problem. Both solu-
tions are symmetrical with respect to the change from p to ¢’, what corresponds
to the change of location of the source and the observation point. The expres-
gion in braces describes the propagation of eylindrical waves along the radial
coordinate p.

imW

!
T
L

N )()( vfﬂk) ReW

Vs

{

xm-

Fig. 3. Analyticity regions of Fourier transforms, L(w) and F;(w). Common analyticity
region —e& < Im < &.

Using expression (20) in the equation describing the potential (15) and the
boundary condition (17), two integral equation are obtained

+in :
H(ﬂl) (Q}Q)Jl (’{‘}a) iw(z—2") g>a
gl 4fl‘” f I e LR
—oo+1in A
(o] co+in
[ #ede [ oHY(va)d,(va)e™ = dw =0, 220, (23)
0 —cotin

The acoustic potential can be found by solving the second equation, i.e. fining
the function ¥(z'). The problem of solving a wave equation with a boundary
condition of the decay of the normal derivative on the side surface of a semi-
infinite cylinder has been reduced to the problem of solving a pair of integral
equations, (22) and (23).

3. The determination of source functions on the surface of a wave-guide

The jump of the potential on the surface of the wave-guide can be accepted
as the ocecurrence of apparent sources on this surface. The function describing
gources on the surface of the wave-guide is marked g(z). When a single allowed
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wave mode (e.g. 1-st) propagates in the wave-guide, then this function can be
expressed as a sum

9:(2) = fi(2) + Py(a, 2) (24)

where f;(z) determines apparent sources, which appear on the surface of the
wave-guide due fo diffraction, and ®,(a, ) is the value of the potential of the
wave inciding on the wave-guide wall. For z < 0 sources do not occur, there-
fore

gi(2) =10, ;.2 <0, (25)

It results from the above discussion that the function of sources equals
the sought value of the potential jump on the surface of the wave-guide and zero
on its extension :

B ey

Therefore, the integration range can be widened onto the interval (— eo,
-+ o0), antd then expressions (22) and (23) will have a form convenient for fur-
ther calculations. The boundary condition, in particular, will have the form of
a convolution, so it will be simple to find its Fourier transform. Moreover, if
we denote

(26)

co4in
i :
l(zg—2') = — f e =27 (pa) J, (va) dw (27)
¥l
—oo+4in

then the boundary condition for a I wave mode reaching the open end will be

[ ate)lz—21d =0, 2>0, (28)

- 00

while the expression for the acoustic potential will equal

- o oo+19
ai 5 HY (v0) 1 (va)] st >a
o= [ae) [ ofgh(OTEN set-irzy, €0 (a0)

-0 —co+in
The function of sources is equal to
5:(2) = fi(2) + Ay~ (30)

because the form of the second term in expression (24) is accepted as explicit.

Equation (28) is an equation with a nucleus with a translated 4rgument.
It can be solved with the factorization method, which consists in the distri-
bution of the Fourier transform (if it exists) of the investigated equation onto
the product of analytical functions (factors), which do not have zeroes respecti-
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vely in the upper and lower half-plane of the complex variable w. The upper
half-plane will be noted by {w:Imw > —Imk}, and the lower by f{w:Imw
< Imk}. It should be noted that these half-planes have a common part, denoted
by expression {w: —Imk < w < Imk}.

As it has been previously stated, expression (28) presents a convolution, so
its Fourier transform can be easily found. Expression (27) has the form of an
inverse transform, so the transform will be

L(w) = v*H,(va)J, (va). (31)

Certain conditions have to be satisfied by both functions in order for the
transform to exist. The analysis of the function of sources proves that fi(z) as
a diffraction term, must tend to zero for z—oo, 80 it has a Fourier transform

(=]

Fi(w) = [ filz)e"a (32)

—00

while if Tm% > 0, then Imy, > 0, and thus for z— oo the second term in expres-

sion (30) approaches infinity. At the same time it results from transform L{w)
that .

L(ya) =0 (33)

2
80 set {yn = ]/kz— (%) } is the set of roots of equation (31). Taking all that

was up to now said into consideration we obtain the following form of the Fourier
transform of the boundary condition

J ez [ g l(z—2")dz’ = Fy(w)L(w). (34)
-0 -—_00
The last equality is true if both transforms F(w) and L(w) have a com-
mon analyticity range. This range is the zone of the complex plane w, defined by
equality —Imk < Imw < Imk. Now, additional conditions, which the trans-
form of the function of apparent sources, F,(w), must satisfy will be determined.
The function of sources g;(2) equals zero when z < 0, therefore

fi() = —Ae™" z<0. (35)

This equality will be satisfied if the transform F,(w) will have a first order pole

with the residuum equal to =% in point w = —v;, and furthermore it will
2

uniformly tend to zero on the lower half-plane, for |w|->oco. Then
1 +in
= f F(w) e dw 4 A,g=" =0, 2z < 0. (36)

—00+41in
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The physical interpretation of this equation is as follows: for 2z < 0, i.e. on the
extension of the wave-guide surface, the potential is continuous.

The boundary condition will be noted with the use of Fourier transform.
The inverse Fourier transform of expression (34) is

[ a)e—2de" = [ Fy(w) L(w) e"*dw (37)

hence the boundary condition (28) becomes

[ Fy(w)L(w)e™dw = 0, z>0. (38)

—e0

This equation will be satisfied when the product of functions F;(w) and
L(w) is an analytic function in the upper half-plane and tends uniformly to
zero on the infinite semicircle on the half-plane. :

Both equations, (37) and (38), can be written in the form of homogeneous
equations

[ Fy(w) ™ dw = o, 2<0 (39)
C
[ Fy(w0) L(w)e™dw =0, 2>0 (40)
¢
where ( is the integration contour, consisting of a line parallel to the real axis
(it can be the axis itself in particular) and a loop around point w = —y, (Fig. 4).
ImW
“"—'“1| r--— ———————— Re W
l) L\
Lo ok
Y

Fig. 4. Integration contour ¢ in the plane of the complex variable w. Consists of a line parallel
to the real axis and a loop around point w = y;

It follows from this paragraph that the condition of continuity of the
potential on the extension of the wave-guide surface (36) and the condition of
decay of the normal component of the vibration veloecity on its wall (38) are
fulfilled, when
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1. Funetion F(w) is analytie in the lower half-plane, Imw < Imk, exclud-
ing the point w= — y,, where it has a first order pole with a residuum equal to
4,/i, and it tends to zero on this half-plane for |w|—co.

2. Product Fy(w)-L(w) is an analytical function in the upper half-plane,
Imw > —Imk, and it uniformly tends to zero for |w|—oco in this range.

Thus, the problem of the acoustic field of a semi-infinite cylindrical wave-
guide can be solved by determining funection #;(w), which satisfies conditions
(24) and (25), i.e. by solving the pair of integral equations (36) and (38) or (39)
and (40).

Integral equations derived in this paragraph are identical with WAJN-
SZTEJIN’S equations for electromagnetic waves [5]. Therefore, his methods and
results can be applied in further considerations.

4. Application of the Wiener-Hopf method in solving obtained integral equations

As it has been mentioned in the preceeding paragraph, the integral form (28)
of the boundary condition (10) is a Wiener-Hopf type equation, so it can be solved
with the factorization method. In this paper only a short outline of the solution
will be presented, because of the applied complicated calculation methods [11].

An assumption is made at present that the distribution of function IL(w)
onto analytical factors, respectively in the upper and lower half-plane of the
complex variable w is known

L(w) = L, (w)L_(w). (41)
L
‘It can be seen that when function F,(w) is chosen in the form
P
F,(w) = —————— 42
) = L) fo

where K is a constant, then both conditions are satisfied.
The factorization of function L(w) results in the following expressions

L, (w) =(k+w)(H“) va)J va)H”‘+w) ¢Stz (43)

N

L_(w) = (k—w)(Hgl)(m)Jfl(m)n %‘;—z)m g=S(w)/2 (44)
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where
S(w) = X(w)+i¥ () (45)
k ’
2w =2 [ 29 4w, )
-k

1 r
¥ (10) = .2;‘:_“ —9(m)+%;}m [Z Pt s SRS f s dw'].

Pp— W w—w

(47)

The integral in formula (46) should be understood as its principal value.
Two last equations are valid for variable w from interval 0 < w < k. Function
Q(va) equals

N,(va) ™

AR L e R o X2
Q(va) = tg T.ioa) -+ = arg Hy" (va) + 5 (48)

Knowing factors, L, (w) and L_(w), the Fourier transform F;(w) of the
function of apparent sources can be found, and thus the diffraction problem
can be solved. Using equation (30), an expression for the acoustic potential
(31) inside the wave-guide can be determined in the form

o> a

ai [ ;
O, =5 [ oED(a)Ti(00) 2 A0+ )+ Fulwldo, D

(49)

The integration path (—oo+ix, co+in) coincides with the real axis,
because in final calculations we accepted Im% = 0. Using properties of cylindri-
cal functions and integrating, we have

:
@,(0,7) = A e Y R f oHD (va) Ty (v0) Fy(w) e dw, °7 0.
110, 1 Ti5) £ J 1 0 ! 1o z=id)
(50)

The first term describes the potential of the incident wave; thus it can be
accepted that the second term describes the reflected and transformed waves,
which are generated due to diffraction at the open end. The improper integral
in equation (50) can be calculated from the theory of residue, remembering
that variable v is an elemental variable, so the integrand is not unique. From
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formulae (41)—(44) the expression for the potential of reflected waves is

J e

bt O(pﬂ; o<a

ref Y2

(o z)—ZB*" STy (51)
ne=

B, is the complex amplitude of the »n Bessel mode formed due to diffraction
at the open end ‘

1
T (w+yy) (Lo (w))

By, = AL, () Tes (52)

Summarizing, onece again we will write the expression for the acoustic po-
tential inside a semi-infinite cylindrical wave-guide with rigid walls, when a 1-8t
Bessel mode with an amplitude 4, propagates towards the open end. In such
a case the potential equals

e
7o (#J —) i Jo(ﬂng)
O —ws Cf ives e<a

¢1(973)=A1m“6 +Z—mﬂ ¥ Sy (53)

n=0

The analysis of the exponential function in the second term shows that
for an established diffraction parameter ke, only a certain part of the terms of
the sum will represent progressive waves, Beginning from a certain N, so uy < ka
< fiy 41y coefficients y with an index greater than N will be imaginary numbers
and in that case corresponding to them addends will represent disturbances
exponentially damped with the increase of the 2z coordinate. These disturbances
are not waves from the point of view of energy transport, thus they do not
have to be taken into consideration in energetical calculations as well as in case
of great values of variable z (a long distance from the orfice). In this case the
following expression for the potential ean be used

e

Jo (;“i E) = Jo (J“n g) &
—iy2 z a
0e,8) = dy—3 T ALy DR, sy
0 o\Hn

n=0

R, , is a complex transformation coefficient and it is equal to the ratio of the
amplitude of the induced mode and the amplitude of the incitent mode

R, = Bjm

N (55)
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For | = n it is simply a reflection coefficient. Diagrams present moduli
and phases of these coefficients, with the diffraction parameter ka, varying
from 0 to 20.

5. Conclusions

To recapitulate, effects taking place at the end of the wave-guide are as
follows: one of the Bessel modes, which is allowed from the point of view of
the diffraction parameter ka, propagates towards the orfice. In undergoes dif-
fraction at the orfice — part of the energy is radiated outside, the rest returns
to the wave-guide in the form of allowed wave modes — higher, lower and also
the mode of the same order as the incident wave. In order to determine the acous-
tic field inside the wave-guide in such a case, N complex reflection and trans-
formation coefficients have to be established. The number of these coefficients
has to equal the number of modes which can propagate in the wave-guide at
an assigned diffraction parametéer. Furthermore, if we include that the incident
wave can be a superposition of all allowed modes, then the number of coefficients,
describing the field, increases to N2 This may complicate the univoeal inter-
pretation of the results. This is a view shared by many authors occupied with
this problem. They consider that the Wiener-Hopf method applied to diffraction
problems is mathematically very complicated and the interpretation of the results
is difficult due to their complicated form [8, 9]. This statement is only partly
true, because the mathematical description of the theory is indeed difficult -
(it is not presented in this paper, because only final formulae have been used
in paragraph 4), but the interpretation of the results can be carried out with
the application of the analysis of energetic quantities, such as impedance for
example [10].

Thus the problem of the acoustie field of a cylindrical wave-guide is im-
portant from the cognitive point of view, because it is one of the fundamental
diffraction problems, as well as from the practical point of view, because ele-
ments which can be approximated by a long cylindrical pipe without a baffle,
occur frequently in acoustic systems.
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The detectability of calcifications in women breast by means of the ultra-
gonic echo method was estimated on the basis of the transient analysis of the
ultrasonic pulse reflection. Two calcification models in the form of a rigid and
an elastic sphere were considered.

Echoes obtained at tissue inhomogeneities form an interference back-
ground which masks echoes from small calcifications. The level of the tissue
interference background was determined on the basis of measurements in 100
femal breasts and it was shown that the obtained experimental results are proba-
ble from the theoretical point of view.

Ag the result of the performed analysis and experiments the author conclud-
ed that microcalcifications are not detectable by the ultrasonic echo method.
The radii of ealcifications which can be found at the frequency of 5 MHz are
equal to 0.6 mm or 1.6 mm depending on the maximum sampling error assu-
med for a single measurement of the tissue interference background,

\

1. Introduction

The detection of microcalcifications is of basic significance in the early
diagnosis of breast tumors. The reactions occurring in breast tissue cells causing
calcifications in the case of tumors appear already at the very early stage of
their development. In view of this the question of possibilites of detecting small
calcifications by the ultrasonic method becomes one of essential significance.
Two versions of this method, the echo and the shadow techniques are of inter-
est [2].

In both cases examinations involve short ultrasonic pulses at frequencies
usually contained between 3 and 5 MHz.
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In previous papers [1], [2] the problem of calcification detection by means
of the echo method was investigated on the basis of the steady-state analysis.
The purpose of this paper is to extend the analysis of transient phenomena
and to discuss in detail the obtained experimental results.

2. Assumptions

It is assumed for simplification that the calcifications are rigid or elastic
sphereswith the radius a. The longitudinal wave velocity in the calcification
and its density are assumed similarly to those for bone tissue, to be, respectively,
¢z = 3.2. km/s and ¢ = 2.23 g /em? [14]. The literature contains no information
on the velocity of transverse waves in bone tissue, therefore the value of Pois-
son ratio » = 0.2 will be assumed. In follows from Table 1 that this assumption

Table 1. Poisson’s ratio » for various materials and the value
assumed for the calcification

Material v Material v
Lead 0.44 Bismuth 0.33
Gold 0.42 Nickel 0.31
Platinum 0.39 Cadmium 0.30
Silver 0.38 Steel 0.28
Brass 0.35 Glass (crown) 0.27
Perspex 0.35 Zine 0.25
Tungsten 0.35 Glass (flint) 0.24
Copper 0.35 Poreelain 0.23
Constantan 0.33 Calcification 0.2
Ice 0.33 Fused quartz 0.17
Tin 0.33 Berylium 0.05

is most probably, when this value is compared with those of other materials.
The wave velocity and the attenuation coefficient of the breast tissue is as-
sumed to be ¢; = 1.5 km/s and a = 1.1 dB/em MHz, respectively. It is also
assumed that pulse of a plane ultrasonic wave, composed of two high frequency
b MHz periods, is incident on the spherical calcification.

To analyse the detection ability of the echo method with a typical ultrasono-
graph we assume its sensitivity to be 10 pV, the transmitter pulse voltage:
250 V and overall transducing losses (double piezoelectric transducing) equal
to T = —156 dB.

3. The reflection of ultrasonic pulses from rigid and elastic spheres

The transient analysis of the ultrasonic pulse reflection enables us to find
the smallest calcification size which is potentially detectable with a typical
ultrasonograph (scanner). In our computations we applied the procedure as



DETECTION OF BREAST CALCIFICATIONS 289

presented by RUDGERS [11] and HICKLING [7] for pulse reflections from rigid
and elastic spheres, respectively.

The acoustic pressure p; of a plane continuous wave, travelling in the »
direction, incident on the sphere, has the form

Pi = Py exp[j(ot—kx)] or p; = p; exp[jk(et—2)]  (la,b)

where p;, denotes the pressure amplitude, = 2=f, f — frequency, ¢ — time,
k = w/e, ¢ — wave velocity in the soft tissue. :

The acoustic pressure p, of the wave reflected from the sphere can be ex-
pressed as

Ps = Dio D, (2m+1)(—j)" e, k) (kr) P, (cos6)exp (jot) (2)
m=0

where m denotes natural number, j = ]/—_1, B2 (kr) — spherical Hankel func-
tion of second kind P,,(cosf) — Legendre polynominal, ¢, — scatternig coeffi-
cient of the m-th partial wave, § — azimuth. For the backward reflection 0
= 180°, P,,(cos 0) = (—1)™. The function A (kr) can be represented by the
assymptotic expression (for kr > 1)

: | » m-+1
(2) e = SO
ko (kr) = o exp[ 3(1&:1’ 5 7:)] (3)
Thus, Eq. (2) becomes
a
Pso = Pio gfoo(ka) (4)
where
2% ©
folka) = =L 3 @m41)(—1)"0, (ka) )
m=0

when r > a [1], [7], [12]. p,, denotes the pressure amplitude of the reflected
wave.

Figs. 1 and 2 show the far field form function (for backward reflection)
[7] fw(ka) which was computed Eq. (5). For computations of ¢, formulae of
HASEGAWA [6] were applied. The diagrams of the far field form function present-
ed in Figs. 5 and 1 in the papers [1] and [2], respectively, are incorrect due to
an error in the computing program.

In the case of a rigid sphere, the longitudinal and transverse wave velocities
in the sphere tend to infinity. It can then be shown that Eq. (5) takes a much
simpler form as ¢,, = —j,, (ka) W (ka), where j,, (ka) and k% (ka) denote deriva-
tives of spherical Bassel and Hankel functions with respect to the argument.
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Fig. 2. Modulus of the function fy(ka) as in Fig. 1 but calculated for small arguments of
ka (v = 0,2)
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It follows from Eqs. (1a, b) that the acoustic pressure varies as a function
of two variables, ¢ and . It is convenient to introduce one dimensionless variable
in the form

T = (ct—r)la (6)
then Eq. (1b) becomes
P; = Pypexp (jkar). (7)

The last expression is valid for steady-state. In the case of transients the
incident wave pulse can be represented in the form [11]

D = Do ” (z/l —1/2)sinkyaz (8)
where

e 1 when || <1/2,
" |0 when |z|>1/2

and I = 2xb/k,a is the dimensionless pulse duration, & — number of high fre-
quehcy periods, equals 2 in our case, k, — wave number corresponding to the
carrier frequency of the incident wave pulse.

The incident wave pulse can be represented in the frequency domain as
a function of a. However, in view of the form of Eqs. (7), (8), it will be given
in a more general form, as a function of the dimensionless variable wa/c = Fka.
By using the inverse Fourier transform [8] the pulse reflected from the sphere
can be represented in the form

+ o0

pi(0) =g | g Fe(halGelha)exp(kar)iha) ©®)

where G;(ka) represents the spectrum of the incident pulse in the domain of
ka, expressed as the Fourier transform of p,;(r)

+o0
Gi(ka) = [ pi(x)exp(—jkar)dr. (10)

In Eq. (9), each monochromatic component of the incident pulse spectrum
G, (ka) is weighted by the function (a/2r) f, (ka) [12] which represents the reflec-
tion speetral characteristics of the sphere.

Fig. 3 shows the reflected pulse shape computed as the real component
from Eqs. (9), (10), (5), (8) for kya = 2.5 (f = b MHz, a = 0.12 mm). Its rela-
tive amplitude is equal to 2.2, while the one of the reflected continuous wave,
obtained directly from Fig. 1. equals 2.7. For ks = 1 transient and steady-
state analysis do not show any difference in the relative amplitude of the
reflected wave being equal to 0.45.
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The reflected pulse (Fig. 3) starts at » = —2, as this point corresponds
to the pulse reflection from the anterior sphere surface (r = a) which takes
place in the time t= —a/e. For our time coordinate starts at the instant in
which the incident wawve arrives at the sphere center, ie., 1 = 0 for r = 0.

2r

ot et ) ﬂ
20} . k=25

St | |

Fig. 3. Ultrasonic pulses reflected from elastic sphere under consideration for kye = 2.5

The frequency bandwidth of the incident wave pulse (between first zeros)
falls within the interval (0.5-1.5) w, = (0.5-1.5) k,a, where w, denotes the an-
gular carrier frequency of the pulse. It follows hence, that in the formation of
integral (9) averaging of the function f(ka) will oceur over a large range of ka
(see Fig. 1). In the case elastic sphere the function f (ka) shows many peaks which
correspond to many resonances oceurring in the sphere. FLax et al. [3]have shown
that the scattering by elastic sphere is the superposition of the scattering by
a rigid sphere and a number of resonances arising in the sphere, These resonan-
ces differ in character, since they correspond to different wave types, including
also transverse waves, surface waves, of the “whispering gallery” type and so on.
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Therefore, in the case of calcifications with irregular shapes and corru-
gated surfaces, one should expect that a number of resonances will not occur
at all an average value of the function f,(kae) could, approximately, be taken
a8 1 for higher values of k,a. This approximation signifies in practice that the
caleification model of the rigid sphere is accepted in this case.

4. Determination of the tissue interference background level

Many echoes obtained at the boundary of fat, fibre and gland tissues and
on their inhomogeneities form a tissue interference background which may mask
echoes from small caleifications. To determine the tissue interference background
level, measurements were performed in 100 femal normal breasts of 50 women
21-54 years old at a depth of »r = 4 cm by means of an echoscope with a non-
focused ultrasonic beam of 5 MHz frequency (transducer radius ¢, = 2.5 mm).
The level of the tissue interference background was found D = 27 dB higher
than the electronic noise level of the echoscope. The standard deviation of a sin-
gle measurement was equal to ¢ = 8 dB. The electronic noise level was equal
to 10 wV corresponding to the level N = —148 dB in respect to the transmitter
gignal of 240 V (in pulse), assumed as the reference level of 0 dB. Thus the over-
all electrical dynamics of the echoscope equated W = 148 dB.

The measurement idea is illustrated in Fig. 4. Taking into account trans-
ducing-losses T = —15 dB, attenuation losses A = a-2r [em]-f[MHz] = 44
dB diffraction losses of the beam equal to 4 dB (not shown in Fig. 4) and the
measured level D, one obtains the remaining value of the overall electrical dy-
namies equal to AW = 58 dB. This value is crucial for the detection ability
of ecalcifications.

To show that the obtained experimental results is probable from the theo-
retical point of view, we introduced a hypothetic reflector formed by the surface
of the half-space H (Fig. 4) with characteristic acoustic impedance p'¢" = gc--
-+ Ape. It can be assumed that tissue interference echoes result from the reflec-
tions of the ultrasonic beam when it is incident perpediculary at the plane sur-
face of the reflector H. Different breast tissues may have irregular boundaries,
however, highest echoes will be received from these surface elements of tissue
boundaries, which are plane perpendicular to the ultrasonic beam axis.

If we assume that the plane reflecting surface element of the tissue bound-
ary has a form of a disc with the diameter d, then the echo signal 85 can be
expressed by the formula

d
Sy = (—) 0 8p for d< D, (11)
D,
where D, denotes the ultrasonic beam diameter, 8, — transmitting signal,

g — reflection coefficient equal to
g = (¢'e"— o) /("¢ + oc) = Aec/2ge. (12)
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Fig. 4. The idea of the experimental determination of the tissue interference background

level in womans breast: P — ultrasonic probe, B — breast, H — hypothetic reflector, 0 —

level of the transmitting signal, T' — transducing losses, 4 — attenuation losses in breast

tissues, N — electronic noise level, W — electrical dynamics of the ultrasonograph, D —

difference between the levels of the tissue interference background and the electronic noise,
r — distance from the probe (depth)

The coefficient 6 = d(r/l,, d/D;), depending on undulations in the ultra-
sonic field, ecan be found from the diagram determined experimentally by
KRAUTKRAMER [9], [10]. Its value tends to 1 for r/l,—0, where r is the distance
between the reflector and the transducer, I, = a7 /A is the near field length.
Eq. (11) is a generalized formula which for ¢ = 1 was given and experimentally
verified by KRAUTKRAMER [9], [10]. For instance, in the case under consider-
ation D, =5 mm, d =1 mm, r = 40 mm, /, = 21 mm. For r/l, = 2 and
d/D, = 0.2 the coefficient 6 = 1.8—5 dB [10]. If one assumes for breast tis-
sues dpc/oc = 59, then Eqs. (13) and (14) give

8g/Sp = 0.0018 = —55 dB. _ (13)
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In this way we have shown that a small plane surface element of the tis-
sue boundary, with the diameter of ¢ = 1 mm, gives in uor case a maximum
echo signal which is 55 dB lower than the transmitting signal S;, incident at
our hypothetic reflector. It means, that the resulting value — AW = 8z/8;
= —b58 dB obtained in measurements of the tissue interference background,
seems to be most probable.

Now, equating AW to the ratio P, /P, one obtains from Eq. (4) the
relation

am
AW = 2= foo (Kim) (14)

where a,, denotes the radius of the calcification which given an echo on the
level of the tissue interference background.

Table 2
- R E@@ = 0.2) Ek R
femi]r | om ka | om ka | a0 | ka | azs | ka
[mm] [mm] [mm] [mm]

0.09| 1.9 | 0.085 1.77| 0.4 | 85 | 1.0 | 21
0.1 2.256| 0.09 | 1.9 0.6 13 1.6 34
0.11 | 2.25 | 0.09 | 1.93 | 0.7 14 153 35

= ]

If we assume that this level depends on the distance s according to the
diagram of KRAUTKRAMER [9] then AW for » = 2 cm is 4 dB greater and for
r = 6 em is 5 dB smaller than that one determined experimentally for the
distance r = 4 em. In this way one can find a,, from Eq. (14) for various values
of r. Results of the calculations are shown in Table 2 for rigid and elastic spheri-
cal models of calcifications. The far field form function f,, (ka) presented in Figs. 1
and 2 was applied in these computations.

It seems reasonable to assume the maximum error of single measurement
of the tissue interference background to be 2¢ or even 3¢. Then, according to
the theory of error estimation [8] in the first case 97.72 9% of all the values of
D = 27 dB are smaller than D420 = 43 dB; the last value corresponding to
AW = —42 dB; in caleification detection to be certain, we assumed these limit-
ing values in our calculations, thus determining the overestimated radius a,,
of the calcification which gives echoes higher by 2¢ = 16 dB (6.5 times) than
the mean level of the tissue interference background. This seems to be necessary
as in the case of small calcifications only the echo amplitude and no additional
information e.g., on the shape, can be obtained. For the maximum error of 3¢
one obtains the above values equal to 99.86 % and AW = —34 dB, respectively.
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Fig. 5 shows ultrasonic pulses reflected from elastic spherical calcifications,
computed from Eqgs. (9), (10), (5) and (8) for kya = 5 and 10. Their relative
amplitudes are equal to 0.7 and 0.8, while those ones for the reflected continuous
wave would be 1 (for f,(ka) = 1). Thus the far field form function f,(ka) can
be for ka = b or 10 approximated by the value of 1 giving an error in amplitude
of 2 and 3 dB, respectively which can be neglected in our estimations. However,
it is interesting to notice a great distortion of the shape of these reflected pulses.

5. Conclusions

Microecalcifications in the breast can not be detected with the ultrasonie
echo method. The detectability is restricted by the tissue heterogeneities which
constitute the background of tissue interference signals. The level of these signals
was determined experimentally in 100 femal breasts. Assuming rigid and elastie
spherical models, the radius of calcification which gives the same signal level
was estimated to be a, = 0.1 at the distance r = 4 ¢m and at the frequency
of b MHz (standard deviation ¢ = 8 dB). This value does not depend distinctly
on the distance » = 2-6 cm. For maximum sampling error 2¢ and 3¢, assumed
for a single measurement of the tissue interference background, thé radii of
detectable calcifications are equal to a,, = 0.6 mm and a;, = 1.6 mm, re-
- spectively.

a) P(t)
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Fig. 5. Ultrasonic pulses reflected from elastic spheres under considerations for kya = 5 (a)
and kg = 10 (b)

Both, rigid and elastic models give similar estimation results of calcification
gize. Therefore, it seems to be useful to apply the rigid spherical calcification
model, in further research, as it is much simpler for computation than the elas-
tic one.
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AN ACOUSTIC MICROSCOPE IN MEASUREMENTS OF MECHANICAL PROPERTIES
OF SURFACE LAYERS — V()
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Department of Ultrasonics, Institute of Fundamental Technological Research,
Poligh Academy of Sciences
(00-049 Warsaw, ul. Swietokrzyska 21)

The V(2) measuring technique, i.e. the application of the acoustic miero-
scope as a measurement tool is presented and explained. In the measurements,
the pressure amplitude distribution on the surface of the lens is controlled in
a certain range, enabling ¥V (2) curves to be optimized with respect to oscillation
amplitudes obtained for the given material. .

¥ (2) curves obtained with this set-up and calculated from them Rayleigh
wave velocities are included in the paper. The possibility of using such a set-up
in thin film measurements has been pointed out.

1. Introduction

The ¥ (2) measurement technique has been developed parallely with acous-
tic microscopy [1,2]. First investigations have been conducted independently
by A. ATALAR at the university in Stanford and R. G. WILsoN in Hughes [3, 4].
This technique applies the acoustic microscope which acts in reflection mode.

A strongly focused beam of ultrasounds (frequency 20 MHz — 100 GHz)
is reflected from a sample loeated in the focal plane, returns to the piezoelectro-
nic transducer and induces an electric signal, which controls the brightness
of the spot on the screen [5, 6]. The sample is scanned in the XY plane and the
location of the focal point on the sample is correlated with the position of the
spot on the screen.

If we stop X ¥ scanning and the distance along the Z-axis will be changed,
i.e. the distance between the sample and the lens, then the voltage on the trans-
ducer proves to depend strongly on this distance. Graphs of voltage in terms of
the lenssample distance have been called V(2) curves. The ¥ (2) curve for a dis-
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tance z, between the focal point of the lens and the radius of curvature of the
lens seems particularily interesting. In this range, the oscillation period of V (2)
curves is velocity-dependent and the amplitude is dependent on the attenua-
tion of Rayleigh waves, which can propagate on the surface of the sample.
Therefore, V (z) curves are called “acoustic material signature”, because they
univocally characterize the investigated material,

Leading research centres conduet work on the utilization of the V (2) tech-
nique in many fields of science; such as:

' — measurements of velocity and attenuation of surface waves [7, 8, 9],

— film thickness measurements [10, 11],

— crystal acoustic anisotropy investigations [12],

— detection of subsurface cracks [13],

— measurements of rates of surface hardening [14],

— investigations of the influence of heat treatment on the surface [14],

— measurements of residual stress patterns [15], :

— determination of surface distribution of the coefficient of reflection
[16,17],

— acoustic parameter distribution measurements in living eells [18].

Theoretical and experimental research of the process of forming of V(2)
curves can lead to the interpretation of images obtained in the acoustic micro-
seope. However, although acoustic microscope technology is highly advaneed and
‘microscope images of various materials and biologic samples are being obtained,
this problem has not been solved yet.

In our case the lens is located in the near field of the tmnsducer, what
through frequency tuning of the sending-receiving transducer enables changes
of the pressure amplitude distribution on the lens surface, and thus the optimi-
zation of the ¥ (z) curve in terms of the oscillation amplitude.

2. Physical interpretation of the V(2) curve forming effect

W. ParvoN and H. L. BERTONI have given the simplest physical inter-
pretation of V (z) forming on basis of the approximation of “geometric acoustics”.
From among rays reflected directly from the investigated surface (located outside
the focal point) only rays near the axis of the system can reach the transducer.
At the same time, waves inciding onto the sample under an angle close to the
Rayleigh angle induce a LEW surface wave (Leaky Rayleigh Wave), which
propagates on the sample surface and radiates a longitudinal wave under the
Rayleigh angle, 0z, into the liquid. After passing through the lens a part of
these waves reach the transducer. The interference of the directly reflect-
ed wave and the wave induced by the surface wave occurs on the surface of the
transducer. Changes of the distance, 2, give rise to a change in the path and
phase of the wave, what leads to the oscillations of the V(z) function. The
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Fig. 1. a) Diagram of the acoustic part of the system for obtaining V(2) curves; b) Diagram
of waves composing V(z), i.e. wave directly reflected and wave from LEW

oscillation period of the V (z) can be determined on the basis of the given above
interpretation. According to the denotation in Fig. 1, the phases of both ray
beams can be expressed as follows:

47z 47z 4dnztg O

o o e R e cos Oy A

: +n M

A
where @, — ray phase for z =0, 6 — Rayleigh angle (sin br = —Z—"’), Ap
R
— Rayleigh wave length, 4,, — wave length in water.
The phase of the wave radiated into water was increased by = according to
[20]. The phase difference is:
47(1 —cosbp)?

D, — D, = : 2
1 2 Apsin O +7 (2)

The minimum of the V(z2) curve is obtained when the phase difference
is equal to the = odd multiply. Thus, the calculated V(z) period is:

o 'AR (1+eosBR)- (3)
sin O 2 .

This result is in very good concurrence with experiment.

3. The set-up for obtaining V(z) curves

The experimental set-up built at the Department of Ultrasonics of the
IFTR operates in the 30-40 MHz frequency range. Differences in time in which
the signal directly reflected from the sample and the signal coming from LRW
reach the transducer can be derived from eq. (2) for this system. This difference
equals 0.2 ps for the reflection from an aluminium sample at a frequency of 36
MHz. Hence, sending pulses of a 1 ps length were used in measurements, because
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such a length ensured overlapping of both signals in the middle part of the
pulse. Fig. 2 presents a diagram of the sending and receiving system. The elec-
tronic system has an output, which enables the visualization of the signal on
the oscilloscope screen, and an output for the registration of V(z) curves on
the ay plotter.

impuls power P
s m E—
amplifier oauilator separator generator

g

-

switch master
N-0 synchronizer

transduser I

0 amplitude testing -me -
L S recorder
I tHEr detector mory system)| pak detector
duplicate i

Fig. 2. Diagram of the electronic part of the system for obtaining ¥V (2) curves

The lens with the radius of the spherical cap of 3 mm, was made from
aluminium, for which the measured coefficient of damping of a longitudinal
wave in this frequency range does not exceed 0.12 dB/em. Geometrical dimen-
sions of the lens and the whole cylinder were chosen in such a manner that
interfering signals reflected from the cylinder walls reached the transducer in
a longer time than the signal reflected from the sample. The transducer has
a 3 mm radius and the distance between the lens and the transducer equals
22.5 mm. Thus, the lens is situated in the near field of the transducer. When
the distance # is changed, then the measured signal moves in a range free from
acoustic noise, determined by signals generated by the first and second reflection
from the surface of the lens.

The area between the lens and the sample was filled with water. The dia-
meter of the focal point formed by such a system theoretically equals 1.8 wave
lengths in water (about 74 pwm). The mechanical system ensures sample move-
ment in three directions with the accuracy of setting of 0.01 mm, and the regu-
lation of the inclination of the sample with regard to the axis of the system with
the accuracy of 0.5 min.



Fig. 3. Photograply of the set-up for obtaining ¥ (2) curves, built at the Department of Ultra-
sonics IFTR

R

Fig. 4. Photograph of the oscilloscope sereen. High frequency signals, from the left: 4 —
sending signal, B — reflection from the lens surface, 0 — signal reflected from the sample,
D — second reflection from the lens surface
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4. The influence of the pressure amplitude distribution on the surface of the lens on the
oscillation amplitude of V(z) curves

The interpretation of the precess of forming of V(2) curves given by PAR-
MON, BERTONI [19] suggests, that the pressure amplitude distribution on the
surface of the lens should decisively influence the oscillation amplitude of V(z)
curves. Especially, it should depend on the ratio of pressure amplitudes in two
regions of the lens — the region near the axis of the system, where radii reflected
from the sample directly reach the transduecer, and the region at such a distance
from the axis of the system, that radii after going through the lens incide into
the sample under an angle close to the Rayleigh angle and generate a LRW
surface wave.

In order to investigate this relationship the spherical surface of the system
lens was located in the near field of the transducer. The thickness of the applied
here transducer is equal to 1/120 of its diameter. It is made from LiJO, (g,
= 18.5-10°kg/s m?) and radiates into aluminium (g, = 17.3-10° kg/s m2).
Therefore, it can be assumed that it vibrates with a piston motion [22, 23] and
thus calculation results from ZEMANEK’S paper [26] can be applied in this case.

Fig. 5. Pressure amplitude distribution in the near field of the transducer with a radius a,

for a/i = 20; the position of the lens is denoted. Lined and not lined regions mark places

where the pressure amplitude exceeds 0.85 and is below 0.35 of the maximal value of the
amplitude, respectively

Fig. b presents the theoretical pressure amplitude distribution for a trans-
ducer vibrating with a piston motion and with a radius @, and a lens situated
in this field [26]. Coordinate D(D = li/a?) depends on the product of the wave
length 2 and the distance from the transducer, I. Hence, changes of the operating

-frequency of the transducer cause (by changing the distribution of the near
field) such changes of the pressure distribution on the surface of the lens, like
a displacement of the lens in the near field by a certain distance. Frequency
changes between 30 and 40 MHz correspond to changes of coordinate D from
0.4 to 0.55 (Fig. b).
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Phage changes in the pressure distribution on the surface of the lens, due
to changes of the operating frequency of the transducer, do not influence the
oscillation amplitude of the V (z) curve, because possible additional phase shifts
between the wave reflected directly from the sample and the wave from the
LREW add up with the phase difference generated during the formation of the
V(z) curve (2) and thus the V(2) curve is only shifted along the Z-axis without
a change in its shape.
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Fig. 6. V(z2) curves for an aluminium sample obtained for various frequencies: a) 40 Mz,
b) 36.5 MHz, ¢) 34 MHz, d) 30 MHz

Measurements were performed for four frequencies (30, 34, 36.5, 40 MHz).
Fig. 6 presents ¥V (z) curves for an aluminium sample. The coefficient determin-
ing the degree of oscillation of the V(z) curve (WO — coefficient of oscillations)
has been calculated for every curve. It is defined as the ratio of the mean oseil-
lation amplitude of V(z) to the value of the signal received when the sample
is exactly in the focal point.
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where: N — quantity of oscillations, 4; — amplitude of the i-th oscillation,
A, — amplitude of the voltage from the transducer for a sample in the focal
point. :
Calculated WO values are given in Table 1.

This coefficient has the maximal value at the frequency of 34 MHz and
hence the distribution of the pressure amplitude in this frequency range is
optimal for the formation of a ¥V (z) curve.

Table 1. Coefficient of oscillations of ¥(z) curves
obtained for various frequencies

Measurement Number of Oscillation
frequency V(2) | coillations coefficient
[MHz]
40 7 I 0.202
36.5 7 0.220
34 6 0.348
30 4 0.242

Fig. 7 presents theoretical distributions of the pressure amplitude on the
lens surface in terms of the distance from the lens axis, for adequate frequencies.
They have been achieved on the basis of ZEMANEK'S caleulations [26]. The
tilled in fields in Fig. 7 are responsible for V(z) formation. The ratio of the
pressure amplitude of the wave which generates LEW and the amplifude of

Z z
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s, 7
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7 7
Z Z
i : \Z
0 2 rimm] 0 2 rlmml]

A £

SNANNNNNNNN

i 1 1 i 1 é 1 L 1 1 1 1 1 1
0 % rimm] 0 2 rimml
Tig. 7. Distributions of pressure amplitude (4) on the surface of the lens in terms of distance
(r) from the axis of the lens, ealculated for various frequencies: a) 40 MHz, b) 36.5 MHz,
¢) 34 MHz, d) 30 MHz
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the wave which propagates along the axis is greatest for the frequency of 34 MHz.
Because also the maximal oscillation amplitude of V(z) is obtained for this
frequency, then such conditions ensure an optimal ratio of the V(z) compo-
nents, i.e. the wave from the LRW and wave reflected directly from the sample.

5. Measurement of surface waves velocities with the V(2) method

V(2) curves have been obtained with the described above set-up for sam-
ples of : aluminium, steel, glass, sapphire, molten quartz and perspex (Fig. 8).
In every case the frequency was measured.

Formula (3) can be written as:

V. 2q1/2
rac -]

hence we have a relationship from which the LRW velocity can be found in
terms of the oscillation period 4z. ¥; marks the wave velocity in a coupling
medium, and f is the operating frequency of the system.

Using formula (5) the LRW velocity can be calculated from V(z) curves.
Table 2 containsg obtained results. The velocity in water was accepted at ¥,
= 1.48 mm [us. Because the lens is spherical, the system measures the velocity
V,, averaged over all directions on the investigated plane, in the ciase of an
Al,O; sample. Velocity measurements for anisotropic materials, carried out
with the application of the ¥ (2) method, can be done with a lens which produces
a line-focus [12].

Table 2. Velocity of Rayleigh waves, Vg, obtained with the V() method

: Number of Period Vi calculated Aensurammont
Material oheiliatines of V(z) [10%m s-1] accuracy

[10—% m] [%]
Aluminium (37.1 MHz) 5 0.150 2.97 3.4
Steel (NC 10) (37.1 MHz) 6 0.158 3.04 2.6
Glass (crown) (37.1 MHz) 4 0.180 3.23 3.1
Molten quartz (33.3 MHz) 3 0.214 3.36 1.5
Al,0,C (34.1 MHz) 2 0.535 5.25 4.2
Perspex (35.6 MHz) 3 0.137 2.82 4.3

Interesting results have been obtained for the perspex sample. In this case
LEW generation does not oceur, because the velocity of Rayleigh waves is
lower in perspex than in water. So here the lateral wave, which propagates
on the water-perspex interface with the velocity of a longitudinal wave in per-
8pex, is responsible for the generation of V(z) curves [24].
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Tig. 8. V() curves obtained for a) aluminium, b) Al,05, c¢) crown-glass, d) steel — NC10,
e) molten quartz, f) perspex

The accuracy of obtained results depends mainly on the error in determining
the period 4dz. An inaccuracy of 45 wm in measuring Az causes a velocity
error of 0.1 mm /ps. Additional disturbances are introduced by low-amplitude

- oscillations, with a period equal to 0.5 wave lengths in water, which overlap
V (). Measuring errors can also result frem inaccuracies in setting the sample
perpendicularily in respect to the axis of the system.

Very accurate velocity measurements can be done with the application
of the numerical technique in finding the oscillation period of V(z), by deter-
mining the spectrum of the V(z) function [25].
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6. Film thickness measurement with the V' (2) method

The V (#) technique also ean find application in indirect measurements
of the thickness of thin films [10]. To this end the dispersion curve of a surface
wave in the film has to be found. Having the relationship between film thickness
and surface wave velocity, the film thickness can be determined from velocity
measurements.

The following experiment confirms the applicability of the V (2) technique
and the built set-up to velocity measurements of surface waves in terms of
film thickness. :

L L L L L R s 1 L L L L " 1

Olfi -zlmml 0 05 -z{mml

0 05 —_zlmm] 0

Fig. 9. V(2) curves obtained for a molten quartz sample with a gold film: a) sample of pure
molten quartz, b) sample with a 0.2 pm gold film, ¢) sample with a 0.8 ym gold film

A sample of molten quartz has been covered in two places with a gold film
of a 0.2 pm and 0.8 pm thickness (this is 0.002 4, and 0.008 1,, respectively,
where 4, is the length of a Rayleigh wave on the surface of molten quartz).
¥V (2) curves have been obtained for these covered areas and for pure molten
quartz. The measurement frequency was optimized and set at 33.3 MHz. The
oscillation period of V(z) curves decreased with the increase of thickness. This
corresponds to a decrease of the surface wave velocity. The measured oscillation
period was used in the calculation of the Rayleigh wave velocity. Table 3 presents
the results in terms of film thickness.

A relatively high velocity decrease (~59,) for a very thin layer of gold:
(0.002 2,) indicates high sensitivity of the method in film thickness measure-
ments. The velocity measuring error for a quartz sample equals about 1.5 %.
Therefore, the application of this set-up and method should make it possible
to observe a gold layer of a 0.0006 4, thickness. This leads to a conclusion that
a system with the lens situated in the near field of the transducer is more sen-
sitive than a system with the lens on the boundary of the far and near field [10].
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Table 3. Measurement results of LRW velocities
on a molten quartz sample with a gold film

Gold film Ogcillation Calculated
thickness period velocity
[10-8 m(4,)] [10-3 m] [10% m s71]

0 0.214 3.36
0.2 (0.002) 0.192 3.19 959%
0.8 (0.008) 0.163 2.96 889%

7. Conclusions

Performed measurements have proved that V(z) curves can be obtained
with the build set-up. The lens in the near field of the transducer changed the
pressure amplitude distribution on the surface of the lens and this influenced
the oscillation amplitude of V(z) curves.

Usually, the lens in systems for obtaining V(z) curves is located on the
boundary of the near and far fields of the transducer. This gives a maximal
pressure amplitude distribution on the axis of the lens, which then decreases
with the distance from the axis. It was proved that the most advantageous
distribution with respect to the size of the oscillation amplitude, is this which
has a minimal value of the pressure amplitude near the axis of the system,
then increases with distance from the axis and achieves a maximum near the
part of the lens which refracts the wave in such a manner that it incides onto
the sample under the Rayleigh angle. It seems that an adequate choice of the
pressure distribution on the lens can lead to “better” V(z) curves, i.e. curves
which allow more accurate velocity measurements or observations of velocity
changes on the surface of materials strongly damping to Rayleigh waves.

The measuring accuracy can be increased still by inereasing the accuracy
of reading of the oscillation period 4z and by obtaining a precisely perpendicular
_position of the investigated surface in respect to the lens axis.

The greatest advantage of measurements conducted with the ¥ (2) method
are results averaged over scarcely ten to twenty wave lengths. Due to this
maps of velocity distribution of Rayleigh waves on a given surface can be
made.

V (z) curves are sensitive to changes of velocity and damping of surface
waves and this causes changes of frequency or oscillation amplitude. Also
faults in the investigated material, which interact with the propagating surface
wave, should influence V (z) curves. Therefore, the V (z) method is particularily
useful in investigations of surface layers of materials.
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DETERMINATION OF AVERAGE LENGTHS OF CONCENTRATION WAVES
AND OF THE DIFFUSION COEFFICIENT OF THE CRITICAL
N-AMYLIC ALCOHOL-NITROMETHANE MIXTURE*

MIKOLAJ LABOWSKI, TOMASZ HORNOWSKI

Institute of Acoustics, A. Mickiewicz University
_ (60-769 Poznari, ul. Matejki 48/49)

The kinetics of concentration fluctuations in the eritical n-amylie aleohol-
-nitromethane mixture have bheen analysed in this paper. Average lengths of
concentration waves and the diffusion coefficient for investigated mixtures
have been established on the basis of results obtained previously by the authors
from estimations of the average relaxation time of concentration fluctuations
and the radius of their correlation.

1. Introduction

The structure of various liquid mixtures and their molecular miesibility
has not been hitherto sufficiently explained. Various methods are being applied
in this problem, but optic and acoustic methods prove to be the most useful.
The method of olecular light scattering proved very effective in explaining:
the state of short-range order in liquids, liquid molecular micsibility and the
influence of various factors on the miesibility. Molecular light scattering is
caused by non-homogeneities of the dispersion medium. These non-homogenei-
ties in mixtures are: density, concentration and orientation fluctuations of
anisotropic molecules.

A strong increase of the absorption of acoustic waves in mixtures in the
direct nearness of the critical point, an intensity increase of the central compon-
ent in the fine structure of Rayleigh light scattering and a strong decrease of

* This work was performed within the framework of problem CPBR 02.03/2.3.

8 — Arch. of Acoust, 3/86
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the diffusion coefficient are all caused by an increase of concentration fluctua-
tions and an increase of its radius of correlation when approaching the critical
point.

This paper presents the analysis of the kineties of concentration fluctua-
tions in an investigated mixture, carried out on the basis of earlier acoustic
and optic measurements. Values of the following parameters have been estab-
lished : average relaxation time of concentration fluctuations, average length of
concentration waves, diffusion coefficient.

2. Thermodynamic fluctuations

The fluctuation of an arbitrary thermodynamic quantity is an instantaneous
departure of this quantity from its average value. Density and concentration
fluctuations in mixtures are important from the point of view of molecular
acoustics. For example, in a volume of 10~ m?® and at a temperature of T
= 20°C, the density fluctuation for an acetone-nitromethane mixture (con-
centration # = 0.5) is 4, = 1.7 107%, while the concentration fluctuation is
8, = 1.7-107% i.e. 10 times greater. The average value of concentration fluctua-
tions in critical mixtures near the phase transition point, i.e. in the |T—Ty]
< 1-2° temperature range, is several hundred times greater than density flue-
tuations. Therefore, the investigation of properties of critical mixtures ean be
limited only to concentration fluctuations.

Concentration fluctuations and their characteristic dynamic properties
influence the optic and acoustic properties of critical mixtures. According to
the thermodynamic theory of fluctuations, the average value of concentration
fluctuations in a two-component mixture with the concentration of the eompo-
nents, #, and ,, respectively, is expressed by formula [1]

Ly
{Aw)Dy = —(ﬁIFa)— (1)
N

0 |pmr
where N = N,+ N, is the number of particles of the mixture in volume V, p,
is the partial pressure of the saturated vapour of component “27, i.e. vapour
in thermodynamic equilibrium with the mixture. The above formula is valid
only for systems in thermodynamic conditions far from critical. It was derived
under an assumption that fluctuations in neighbouring volume elements are
independent. On the basis of the effect of light scattering near the critical
point L. S. ORNSTEIN and F. ZERNIKE [2] as the first assumed that fluctuations
in neighbouring volume elements are interdependent, so a correlation between
them exists.




LENGTHS OF CONCENTRATION WAVES 315

Spatial correlation — radial corvelation function

If AV, and dV, denote two small volume elements of a liquid, distant from
each other by a distance r, then the probability d¥, that particle “1” is con-
tained in volume element dV, is

aw, = av,|v. : 2)

Whereas the probability dW, that particle “2” is contained in volume
element dV, is

aW, = dV,|V. (3)

If positions of particles would be totally independent from each other,

then the probability dW,, that particle “1” is contained in element dV, and
particle “2” in element dV, would be expressed by formula

av, av,
o (4)

dW12 =

Instead, if we assume that there is a certain correlation between positions
of particles, then equation (4) should be written as

av, av,
Vo )

AWy = g(r)

The function g(r), which describes the correlation, does not depend on

the direction of vector 7 and is called the radial funection of the distribution of
particles. When r— oo, then g(r)—1 and edition (5) changes into equation (4).

Because function g(r) is related to probability dW,,, it can be considered
as the averaged statistic characteristic of the structure of the liquid. The appli-
cation of the radial distribution function, g(r), allows the determination of
the relative frequency of occurrence of various intermolecular distances in the
liquid, when the thermodynamic parameters, namely density, temperature
and concentration, are given.

The radial distribution function of atoms for simple liquids can be deter-
mined on the basis of data obtained from the scattering of X-rays, neutrons
or electrons. The relationship between the radial distribution function and
distance r usually has a shape as in Fig. 1; 7, is the radius of the atom. Fune-
tion g(r) has several maxima and minima ; their value tends to 1 with the increase
of r. Far from the critical point, function g(r) reaches 1 already for distances
equal to 4-5 atom diameters. There is a “long tail” near the critical point, shown
at the right side in Fig. 1.
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Fig. 1. Radial correlation function for a liquid [3]

Taking advantage of the idea of a correlation between density fluctuations
in a liquid in critical conditions, ORNSTEIN and ZERNIKE [2] derived a formula
describing the intensity of scattered light near the eritical point (critical opales-
cence). Due to the existance of the correlation there is an asymmetry of scatter-
ing (dependence of the intensity of scattered light on the scattering angle),
which can be used in the experimental determination of the radius of density
(or concentration) fluctuations correlation [4]. Also on the basis of the above
correlation, ArRooviTo, FALoor, ROBERTI and MISTURA [3] proposed a simple
explanation of the diffusion effect near the critical point in liquids. According
to them, when there is a correlation between density fluctuations with a radius
of correlation & then we can imagine that a diffusion process of droplets, which
have a radius of the same order as &, takes place in the liguid. Of course the atoms
“evaporate” and “settle” on the surface of the droplets all the time. In obedience
to the Stokes law the mobility of a sphere with a radius £ is described by expres-
sion (67n,£)~", while in accordance with Einstein’s expression the relationship bet-
ween mobility and diffusion coefficient has the following form: D = (kzt) X
(mobility). Hence, the diffusion coefficient can be drived from the following
expression :

D = T [67n,6. (6)

Further theoretical considerations, carried out on the basis of the mode
coupling theory developed by KAwWASAKI [5], and KADANOFF and Swirr [6],
have resulted in an expression for the diffusion coefficient in a hydrodynamie
range, which differs from the one presented above only by a constant factor
of 1.05.

3. Kinetics of fluctuations

Mixtures with developed concentration fluctuations resemble disperse
systems with very small non-homogeneities. They differ from ordinary disperse
systems by the fact that concentration fluctuations are unstable. These fluctua-
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tions are formed and disappear very quickly. Average lifetimes of eoncentration
fluetuations are inversely proportional to the diffusion coefficient of the mixture,
It was experimentally proved [1] that for mixtures with positive departures
" from the ideal and in thermodynamic conditions distant from critical, relaxa-
tion times can be contained in the range 10~°~10~" 5. Moving towards the eriti-
cal point average lifetimes of concentration fluctuations approach infinity.

Kineties of fluctuations are closely related to the process of propagation of
an acoustic wave in eritical mixtures. When an acoustic wave propagates in
a mixture, the pressure and temperature change periodically. This effect influen-
¢es the average value of concentration fluctuations and their distribution fune-
tion, because the average amplitude of concentration fluctuations is p- and
T-dependent. The fluctuation distribution attains the equilibrium value with
a certain delay, which depends on the diffusion coefficient D). ‘

Fig. 2. Example of possible changes in the distribution of concentration fluctuations due
to an acoustic wave I — distribution in equilibrium; 2 — distribution at reduced pressure;
3 — distribution at increased pressure

A part of the energy of the acoustic wave causes a change in the distribu-
tion of concentration fluctuations and then is transformed into heat. The pro-
cess is irreversible, so acoustic waves are absorbed. When the frequency of
acoustic vibrations is sufficiently increased, then the change of the distribution
of concentration fluctuations will not oceur during one wave period and the
fluctuation-induced absorption is not observed. A case in which the distribution
function of concentrationfluctuations is changed by an acoustic wave is illus-
trated in Fig. 2.

Let |Awx(r)] = «(r)—Z represent concentration fluctuations. Expanding
the distribution of fluctuations into a Fourier series (formal operation intro-
duced by Einstein), we have

o)) = Yoeer. (7)

g
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Harmonic components of this speetrum are represented by concentration

waves with wave vector ::; and amplitude ¢,. In the state of thermodynamiec
equilibrium the average amplitude of the Fourier component with wave vector

g, equals
¢ =f(V,T,u). (8)

The distribution function of concentration fluctuations in the field of an
acoustic wave differs from the distribution in equlibrium. Therefore, average
amplitudes of concentration waves assume new values ¢). After the acoustic
wave has passed through the mixture, the system will change in the direction
of the initial state and cf—¢,. According to ONSAGER’S hypothesis it can be ae-
cepted that the change of ¢, in terms of time is subject to the macroscopic law
of irreversible processes, so

%(c;—aq) = —% (ch—7,), (9)
where 7, is the relaxation time of the ¢g-Fourier component. Let us assume, as
it is usually done, that the change of average amplitudes of concentration waves
Ao}, = ¢4 —7T, occurs in accordance with Fick’s diffusion equation [7]

gt. (4cf) = DV*(4d}). (10)

The solution of equation (10) is sought in the form of a concentration wave
with length A,, which decays in relaxation time r,. Hence we have

2
Adt = Ce""acos (ﬂ) (11)
Aq

Substituting solution (11) in equation (10), we achieve the following relationship

between the g-concentration wave and its relaxation time z,:

1
= = 4n2D/A2. (12)
Tq

An analogical relationship can be written for a concentration wave, which
has an amplitude decaying in relaxation time 7,. This is the average relaxation
time of concentration fluctuations, defined by the following formula [8]:

(=]

f tﬂ(r)d(lﬁr)

0

Fﬂ(t)d(lnr)
0

Ty =

(13)
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where funection H(7) is the density of the relaxation time spectrum. H(v)dw
deseribes the contribution of all Maxwell mechanisms, which have their relaxation
times in an interval from 7 to =4 dr. Function H (7) can be determined as the
global module per unit interval of the logarithm of relaxation times (In7).

Concentration waves, hitherto considered only as a result of a formal
expansion of concentration fluctuations into a Fourier series, correspond to
density waves in mixtures; and these — according to MANDELSZTAM [9] — are
elastic Debye waves. Taking advantage of this analogy and basing on Debye’a
considerations we can estimate the smallest possible length of a concentration
wave. If we consider a crystal as a continuum, then its normal vibrations can
be determined from the elasticity theory with adequate boundary conditions.
The total number of normal vibrations with frequencies contained in an inter-
val from o to o+ do, is equal to

3widw

onp? ]

aD(w) = (14)
where v is the average velocity of elastic waves in an amorphie solid body when
3/v* = 2/v}+1/v}; v, and v, are propagation velocities of a transverse and longi-
tudinal wave, respectively. The maximal frequency of elastic vibrations ean be
determined approximately from

“max Vo .
D s,y f aD(w) = =% — 3N (15)

0

where N is the number of particles in volume V. Assuming that d* = V/Nd is
the lattice constant or the average intermolecular distance in liquids, we have [9]

27w [ 3 \'° dm |\
wmax = T(_Z-ﬂ_) ’ Amax = (?) d. (16)

The maximal frequency of elastic Debye waves, @,y = 10 Hz, and their
minimal wave length, A, = 1.5 A, can be estimated from formula (16). All
3N elastic waves propagate in the medium in all directions forming a complex,
spatial “lattice” of optical non-homogeneities. However, if a parallel light beam,_
characterized by wave vector k, incides onto such a medium and scattered
light is observed in the direction determined by wave vector k', then the maxi-
mal intensity of the scattered light will be observed only when wave vectors k, k’
and q satisfy Bragg’s condition [9]. In such a case |g| is described by formula

- 4mn

— 1 1?
B apein. (17)

It results from equation (17) that if we use He-Ne laser light with wave
length 4 = 6328 A, then the minimal length of the concentration wave, which



320 M. LABOWSKI, T. HORNOWSKI

3

can be examined in scattered light will equal approximately 2000 A (scattering
angle equal to 180°). As it will be proved further on, the average length of a con-
centration wave in critical mixtures will be by 1-2 orders of magnitude shorter.

The Debye approximation of the description of lattice waves [10] assumes
that the spectrum of lattice vibrations D(w) has a rather specific form, Namely,
it is accepted that D(w) is proportional to w® near = 0, where the material
behaves like a continuous elastic medium, and quickly decreases to zero for
frequency wp,.. Such a form of function D(w) is not justifiable for solids [10],
but ean considerably well describe the situation in liquids. It has been experi-
mentally and theoretically proved that the spectrum of lattice waves in solids
spreads over a considerably wide frequency range and has sharp maxima cor-
responding to modes with various polarizations and velocities. In low viscosity
liquids generally only longitudinal waves occur and they propagate with
the same velocity in all directions. Therefore, the spectrum of lattice waves
should not exhibit such maxima in liquids. Furthermore, many similarities
¢an be noted between the character of function D(w), proposed by Debye,
and the distribution function of relaxation times, presented in paper [8]. In this
poper we also have a sharp maximum for shorter times and a graduate decrease
cf the value of the distribution function for longer times.

4. Determination of the average length of a concentration wave in a critical n-amylie
alcohol-nitromethane mixture

The determination of the spectrum of concentration waves in a series of
critical mixtures would supply valuable information concerning the kinetics of
concentration fluctuations and widen the knowledge of such phenomena and
effects as light scattering or propagation of acoustic waves in such media.
Yet this is a rather complex problem for solids and a very complex one for
liguids with their random character of particle motion. Most formulations of
the spectrum of concentration waves in liquid media have the character of
qualitative predictions rather than exact empirical or theoretical solutions.

On the basis of the above mentioned analogy between concentration waves
and, density and elastic Debye waves, it can be found that the determination
of the spectrum of concentration waves is tantamount to the determination
of the spectrum of normal vibrations. In a solid body the problem is reduced
to the solution of the following system of 3 N equations [10]:

DG — 0* M 8,00} ULy = O (18)
8'j’
where U, , are lattice deflections with a time factor exp (iwt); G;,+(q) is the ten-

sor deseribing interatomic interactions; M, is the mass of the s- atom The solu-
tion of these equations for a dense network of wave vectors q gives values w,
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from every interval dw,. As it has been mentioned previously the situation is
more complex in liquids, which are randem media, and the determination of
the distribution of Debye waves is still to be done. Of course the determination
of the averdage length of concentration waves is not tantamount to the deter-
mination of the speetrum of these waves. Yet all the same it leads to several infer-
ences concerning the behaviour of such a spectrum in terms of temperature
and concentration of the mixture.

In order to establish the average length of concentration waves according
to formula (12) we have to know the average relaxation time of concentration
fluctuations and the diffusion constant of the mixture. Relaxation times, 7,,
in the critical n-amylic aleohol-nitromethane mixture have been determined
with the application of the method described in papers [8, 11] for various con-
centrations and for two temperatures. Values of diffusion coefficients for these
temperatures and concentrations have been calculated from formula (6). The
radius of correlation, & for this mixture has been determined by the authors
previously with the utilization of the effect of Rayleigh light scattering [4, 12].
Values of the radius of correlation for chosen concentrations and temperatures
were calculated from [13]: :

§ = &[T —T| +d(@—x,)' 1" - (19)
Final calculation results are presented in Table 1.

Table 1
Concentration Vi & : D-10° A3 T
of
ﬂ-CsIInOH
[mole fraction] [K] [10-10m] [m? 51 [10~2m] 5]
0.1 302.356 6.1 39.2 2.5:10-¢ 4.05-10-10
313.15 4.0 74.3 3.8-10-¢ 5.03-10-10
0.3 302.36 18.5 7.4 1.1-10°° 4.04-10-8
313.16 5.5 31.2 6.7-10-% 3.60-10—*
0.385 302.35 20.4 5.9 2.2-10-5 2.23-107
313.15 5.6 26.3 4.4-10-6 1.91-10-°
0.5 302.35 16.4 5.9 9.6:10-% 3.99-10-8
313.15 5.4 22.9 3.4:10-8 1.34-10-% =

Figs. 3 and 4 illustrate D and 7, in terms of concentration in a critical
n-amylic alecohol-nitromethane mixture for two temperatures: 29.2 and 40°C.
In accordance to the theory, the average relaxation time of concentration flue-
tuations increases when approaching the critical point, while the diffusion
coefficient decreases. Figs. b and 6 present the relationship between the average
length of concentration waves and the concentration of the mixture for the same



322 M. LABOWSKI, T. HORNOWSKI

D«10” -logt,
Im%sll. ekl
- T=302.i K e s
L8 e R 43
E 14
60 + 45
& : 2B
‘0 = 17
ks 48
20 49
L 40
R s e
0 Db 02 S e O o

mole fraction

Fig. 3. D and 7, in terms of concentration in the critical n-amylic alecohol-nitromethane
mixture at temperature 7' = 302.35 K
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Tig. 4. D and v, in terms of concentration in the critical m-amylic alcohol-nitromethane
mixture at temperature 7' = 313.15 K

two temperatures. As it can be seen, the average length of concentration waves
increases by one order of magnitude, when conditions of the mixture approach
critical conditions. This indicates that the spectrum of concentration waves
moves towards lower frequencies.
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Fig. 5. The average length of concentration waves in terms of concentration in the critical
n-amylic alcohol-nitromethane mixture at temperature T = 302.35 K
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Fig. 6. The average length of concentration waves in terms of concentration in the critical
n-amylic alcohol-nitromethane mixture at temperature T = 313.15 K
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To:
DR B C MOORE
Department of Experimental Psychology
Downing Street, Cambridge CB2 3EB Tel: 0223 333550

INSTITUTE OF NOISE CONTROL ENGINEERING

Post Office Box 3206 Arlington Branch
Poughkeepsie, NY 12603, U.8.A.

FOR IMMEDIATE RELEASE:
THE INTER-NOISE 86 PROCEEDINGS ARE AVAILABLE

INTER-NOISE 86, the 15th International Conference on Noise Control Engineering,
was held at the Massachusetts Institute of Technology on 1986 July 21-23. The meeting
was sponsored jointly by the School of Engineering at MIT and the Institute of Noise Con-
trol Engineering. Five hundred and twenty-five delegates from 36 different countries at-
tended INTER-NOISE 86.

The Proceedings of INTER-NOISE 86 have been published and are mow available
to individuals who were unable to attend the conference. The two-volume set contains
1472 pages of technical information. A total of 271 papers technical papers has been publi-
shed; these papers cover all areas of noige control engineering, including machinery noise
emission, sound propagation, community noise, surface transportation noise, aireraft noise,
instrumentation for noise control engineering and standards for noise control.

The two volume set of INTER-NOISE 86 Proceedingg is available for $75.00, and
is shipped postpaid both within the United States and overseas (by surface mail). An ad-
ditional $30.00 per get must be added to overseas orders which are shipped by air. Payment
must be made in U.8. funds on a U.S. bank or on a bank that has a correspondent bank
in the United States. The INTER-NOISE 86 Proceedings may be ordered from Noise Con-
trol Foundation, P.0. Box 2469 Airlington Branch, Poughkeepsie, NY 12603, U.S.A.

INTERNOISE 88

Inter-Noise 88, the seventeenth International Conference on Noise Control Engineering,
will be held in Avigon in the South of France from August 30th to September Ilrst.

The conference is gponsored by the International Institute of Noise Control Engi-
neering and organized by the industrial and Environmental Noige Group of the French
Acoustical Society. It will strongly emphasize the theme: “The Sources of Noise” including
the following topics:

]
— Physical Generation and Radiation Mechanisms
— Measurement and Analysis Techniques
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— Location, Identification, Modelling

— Stationnary Sources (machine and equipments, domestic appliances).
— Moving Sources (road, rail, aircraft, ship).

— Techniques for noise reduction at the source

— Active Noise and Vibration Attenuation Y

— Trends in test codes, labelling, regulations for noise sources.

A large exhibition is scheduled where the latest instrumentation and equipment for
noise control will be presented as well ag domestic and industrial sound proof equipments.

For further information, please contact:

Inter-Noise 88 secretariat
BP 23

60302 SENLIS CEDEX
Tel. (33) 44 58 34 15
telex: 140 006 F
telecopie: (33) 44 58 34 00
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