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In this paper, an expression was derived for the acoustic pressure distribu-
tion in the near and far fields, radiated by a system of planar concentric annular
sources. The propagation of the pressure wave was considered for a parallel-
-piped layer, bounded by rigid baffles, filled with a lossless gaseous medium.
It was assumed that the system of sources, with known axially-symmetric vibra-
tion velocity distribution, was on one of the planar and rigid baffles. Linear
phenomena dependent sinusoidally on time were analysed.

By solving the Neumann boundary problem by means of the method of
Hankel transforms of the zeroth order, an integral expression was obtained for
the acoustic pressure distribution in a parallel-piped layer. The pressure, ex-
pressed by an integral in the complex variable plane, was represented in the
form of a series of residua at the poles of the subintegral function, giving a for-
mula, convenient for practical calculations and easy to interpret, in the form
of a series of normal waves. The theoretical analysis of the acoustic pressure
distribution was supported by numerical examples, for which curves of acoustic
pressure were plotted as a function of the distance from the source.

1. Introduction

This paper is concerned with investigations of the acoustic properties of
a system of concentric annular sources, consisting in the determination of the
acoustic field distribution in a parallel-piped layer.

Most of the previous studies on the wave generation and propagation were
concerned with analyses of the acoustic pressure distribution in the far field for
the whole space or for a half-space. In the latter case, it was assumed that the
source of the acoustic wave was in a planar and rigid baffle.

* This investigation was carried out within the problem MR.I.24
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Considering these problems, McLACHLAN [4] carried out a detailed analysis
of the problem of the directional characteristic of a planar annular piston with
uniform vibration velocity distribution.

A similar expression for the directional characteristic of a single circular ring
was given by THoMPSON [T7].

A detailed analysis of the pressure distribution in the far field, radiated by
a membrane or a circular plate, excited to axially-symmetric or axially-nonsym-
metric self vibration, was carried out in paper [6]. This analysis was an attempt to
determine the way in which the field distribution is affected by the individual
elements of the vibrating surface of the membrane or plate, i.e. a system of
planar concentric annular sources.

More complex acoustic phenomena occur for generation of acoustic waves
in a layered medium, and in the simplest case-in & parallel-piped layer.

Within this range of problems, deep theoretical research was carried out by
BREKHOVSKIKH [1], by analysing both electromagnetic waves and acoustic
waves generated by point sources.

The present paper refers to papers [6] and [1]. The object of the analysis
carried out in this theoretical study is the investigation of the pressure distribu-
tion in the near and far field, radiated by a system of planar concentric annular
sources. The wave propagation was considered for a parallel-piped layer, filled
with a lossless gaseous medium, bounded by rigid baffles. Linear phenomena
dependent sinusoidally on time were analysed on the assumption that the
system of sources was on one of the planar and rigid baffles.

Assuming knowledge of the vibration velocity distribution on the surface of
the system of sources, the Neumann boundary problem was solved and an
integral expression obtained for the acoustic pressure distribution in the parallel-
-piped layer. In view of the axially-symmetric vibration velocity distribution
assumed here, the general method of Hankel transforms of the zeroth order was
used. The pressure, expressed by an integral in the complex variable plane, was
represented in the form of a series of residua at the poles of the subintegral
function, giving a formula, convenient for practical calculations and easy to
interpret, for the acoustic pressure in the form of a series of the so-called normal
waves.

In the numerical example, calculations were made for the acoustic pressure
radiated by a circular membrane, excited to axially-symmetric vibration, i.e.
by a system of planar concentric annular sources. The surface of the membrane
was divided in such a way that the annular surfaces were bounded by nodal
circles for the respective vibration modes. In view of the axially-symmetric
vibration assumed here, all the points on the surface of any of the rings vibrate
in phase, whereas those of the adjacent rings vibrate in antiphase.

The theoretical analysis carried out in this paper for the acoustic field ra-
diated by a planar system of annular sources in a parallel-piped layer was sup-
ported by numerical examples, for which curves of pressure were plotted as
a function of the distance from the source.
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2. Expression for the acoustic pressure in integral form

‘We consider the problem of acoustic wave propagation in a parallel-piped
layer of a homogeneous gaseous medium with the rest density g, and the sound
wave velocity ¢,. The parallel-piped layer of the medium is bounded by planar,
rigid baffles spaced at the distance h. The sound source is a vibrating system
of a finite number of concentrically situated planar circular rings, placed on the
plane z = 0, which is the rigid baffle.

We consider linear phenomena dependent sinusoidally on time. It is assumed
that the vibration velocity distributions on the surface of the rings are axially-
symmetric, assumed to be known. Thus, the value of the normal component
of the vibration velocity is known, no = —uv, where m is a unitary vector normal
to the surface of the source, directed in a direction opposite from that of the
velocity vector ». The vibrating surface of the sth circular ring, arbitrarily
chosen from the system of sources, is bounded by circles with the radii r, and
Y1y With 7,_; <7,.

Within the parallel-piped layer, filled by a gaseous medium with the density
0o, for the acoustic potential @,(r, z)exp (iwt), whose source is the sth vibrating
circular ring, the Helmholtz equation

AD,(r, 2) +E2 D, (r, 2) = 0 (1)

is valid. The quantity ¥ = w/¢, is the wave number, o is the angular frequency-
One should find such a solution of equation (1) for the region {0 <z<h
0 < r < oo}, which satisfies the inhomogeneous Neumann boundary condition

oD, (r, 2)

0z (2)

0 beyond the ring,

& {— (r) for the sth ring
z=0

and the homogeneous Neumann boundary condition

00,(r, 2)

Fw =0, (3)

g=Hh

where »,(r) is the vibration velocity distribution function assumed to be known,
Following the general method of Hankel transforms of the zeroth order, the
solution is sought in the form
B,(r, 2) = [ g(z, 2)Jo(r)7dr, (4)
0

where

g(r,2) = [ @,(r, 2)Jo(xr)rar, (8)
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J, is a Bessel function of the zeroth order, while the complex parameter z is a pro-
pagation constant in the radial direction. Equation (1) can become

a’ g(z, 2)
dz?

with the following solution:

+ (K ~7)g(7, 2) =0, (6)

g(7, 2) = Aexp(—iyz)+ Bexp(iyz), (7)

where 4 and B are integration constants, ¢ is a propagation constant towards
the axis z and %2 = 272
Relation (2) is replaced by

dg(z, 2)

- = —W,(7) (8)
dz r,_o 1Sr<rg foal
where
Wo(v) = [ v,(ro)do(wre)rodr, (9)
Te—1
is a characteristic function of the sth ring, which is the set of points {r,_, <r<r,,
0 < ¢ < 2w},

The integration constants 4 and B can be determined from relations (3)
and (8). This gives

cosy(h—2)

0 2) = = W) =L

(10)

The use of inverse Hankel transformation from formula (4) and considera-
tion that for phenomena sinusoidally dependent on time the dependence of
pressure on the potential is linear: p(r) = iko,c, P (r) give the sought solution
in integral form for the acoustic pressure generated by the sth ring, in the form

==

; cosy(h—z
p(ry2) = “'@keocof ___ZS_,_Z
0

iR We(z)do(2r) vdr. (11)

3. Expression for the acoustic pressure in the form of a series of normal waves

When the distance at which a point of the field is, is much larger than the
linear dimensions of the source and than the length of the acoustic wave radiated,
it is convenient to transform formula (11) to a form in which the integral is
calculated within the limits (—oc, +o0). The following dependence can be
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~ used [8]:
1 .
Jo(u) - [HD () —HP (—u) 1, : g s

where H{» is a eylindrical Hankel function of the zeroth order, of the second
kind, satisfying the radiation condition of the time dependence exp (iwt). The
substitution of (12) in (11) and the taking advantage of the evenness property
of the characteristic function W,(7) with respect to the variable 7 (see definition
(9)) give

—ik +j-° cosy(h—2)

=Y :
2 o W, () Hy' (vr) rdz (13)

(7, 2) = 000

Integration will be carried out over the real axis, where the singular point
7 = 0, in integrating for the transition from negative real values to positive
ones, is bypassed along a small half-circle underneath, since H{"(zr) has a lo-
garithmic singularity at the point 7 = 0.

Expression (13) can be represented in the form of a series of residua at the
poles of the subintegral function. To achieve this, it is possible to use Jordan’s
lemma and Cauchy’s residua theorem [2], closing the integration path in the
lower halfplane of the complex variable = (Fig. 1).

Im(t)

3 Coote ’

Fig. 1. Integration path in‘clluding poles of the subintegral function (13) in the lower half-
plane of the complex variable

The poles of the subintegral function (13) are at the points defined by the
roots of the equation sinyh = 0, whose solutions are yh = mmn; m =0, =1,
+2,... In the neighbourhood of the points, defined by a root corresponding
to m =0,

Yo o 1
ysingh  h(K —7)

(14)
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Expression (14) has poles of the first order at the points 7, =k, 7, = -k.
In general, when m =0, +1, +2,..., from the expression yh = mm, for the
poles 7,, = + Vk* —(m=/h)*.

It will be easier to analyse integral (13) when it is considered that in real
conditions in a gaseous medium there is the phenomenon of absorption of pro-
pagating waves. In view of this, it is assumed initially that the wave number &k
has a low negative value of the imaginary component & = k,—id; ko, 6 > 0.

The integration will thus include the poles in the lower half-plane of the
complex variable 7, i.e. those for which 7, = k, 7,, = V k* —(m=/h)*. The inte-
gration gives as a result a final expression in which it will be possible, in the
limits, to pass from the value of & to zero.

The residuum of the subintegral function (13) can be calculated, i.e.

38 14 (2) .
Res[F () Liar,, = TmCO8Y,(h—2)W,(7,) H” (7,.) Res [ ki ]mrm (15)

For the pole m = 0, considering relation (14),

piciakogH| 1 1
T o w B e = —— 16
i E7Y7 “[km—wnk+ﬂ]hk ) (e
For the poles m =1, 2,...
B —1
P Ml i il L cadlots S oo (17)
| ysinyh |, & ht,, cosy,, b
™ y — sinyh
dr Te=Tp,
The following dependence can also be used:
co8y,, (h—2z) = cosy,, hcosy,?, (18)

where y =0, y,, = m=/h.

The integral over a half-circle with a large radius R in the lower half-plane
of the complex variable 7 will tend to zero, when R —oo. For very large K the
function H? (zr) will tend to zero, when r # 0. The value of the integral over
the half-circle €, with a small radius ¢ in the limits for ¢—0 will also tend to zero.

The use of Cauchy’s residua theorem indicates that integral (13) is equal to
the sum of the remainders of the subintegral function at the poles, multiplied by
the factor —2ri. There emerges the following expression for the acoustic pres-
sure, in the form of a series of normal waves:

P(ry 2) = po(r)+ Y Pulr, 2), (19)

m=1
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where
=k (2)
Polr) = 9000“2_‘-,'&‘ W, (k) Hy (kr), (20)
=k mmz
pm (‘l", z) = 00Co T COo8 T Ws(rm) HEZ)(TTm)' (2]-)

Each of the components p,,(r, 2) in expression (21) is suitable to describe
the pressure wave, propagating towards the increasing values of the radial
variable » and the standing wave towards the variable z.

When 7, tends to zero, the amplitude of the mth normal wave tends to
infinity, in view of the infinite value of the Hankel function. This specific case
corresponds to a resonance at which the pressure value is in theory infinitely
large. This follows from the analysis carried out for the acoustic wave propaga-
tion in a lossless medium. The parameter y,, = m(=/h) is called the critical wave
number (the cut-off wave number), since it determines the wave frequency w,,
at which free propagation of a normal wave of the mth order decays, i.e. the
frequency at which 7,, takes a zero value. This occurs when y,, = k, i.e. when
kh = mr.

For such frequencies o (the wave frequencies in a free space) at which
® > w,,(k = m=[h), the normal pressure wave p,, considered propagates freely.
Expression (21) can deseribe a current wave only when 7, is a real, positive

quantity, i.e.
2
T =]/ 1%(%) > 0. (22)

When the value of w approaches w,, (kb —>m=), the frequency of the normal
wave in the parallel-piped layer tends to zero, until, at kh = mmr, the free propa-
gation of the wave of the mth order decays.

In a case when M denotes the highest integer, such for which

Mz < kh < (M +1)x, (23)

then M will define the order of the highest normal pressure wave, p,,, which can
propagate in the parallel-piped layer with a preseribed value of the interference
parameter Lh.

For w < w,,(kh < m=) the normal pressure wave p,, considered is damped
along the propagation direction. In this case m > M, whereas the phase of the
square root is assumed to be —=/2, i.e.
= —i|tnl, (24)

Tm
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where

R ]/ (%)2 K> 0. (24a)

The characteristic function W(z,,), defined by formula (9), is even with
respect to the parameter 7,,, which takes real values for m < M and purely
imaginary ones for m > M. It is thus a real function, i.e. W(z,) = W* (7,)-
For real 7,, (m < M) [8]

ng, (Trm) S JO (Trm) _"iNO(rTm) ’ (25)

while for purely imaginary 7,,(m > M)
Sy 1 2¢
HO (—'Trlfml) =—;K0(T}Tm|)! (26)

where N, is a Neumann function of the zeroth order and K is a MacDonald
function of the zeroth order.
After geparating the real component p’ = Re(p) and the imaginary one

p" = Im(p), the acoustic pressure (19) can be written in the following way:
p =p' +ip”, (27)
where
k - mmz
i TC TC.
P'(r; 2) = @oCooa- g £, COS (‘ﬁg‘) Wo(v,)do(r7y,), (28)
1 - m :
T e
P17y %) = 00y — { -- £,, COS W, (Tp) Nolrery) +
2h = h
2 o0
+—;m§“ S L D ACHTENTS NN )

&, =1lform =0 and ¢, =2 form =1,

In expression (29) the infinite series (M +1 < m < oo) can be replaced in
specific numerical calculations by a finite number of terms M'— (M +1). Sum-
mation is then carried out over theindex m fromm = M +1 to the valuem =M,
dependent on the magnitude of the parameters ka, kh and kr.
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4. Acoustic pressure for much larger distances with respect to the length of the wave radiated

In a specific case, when the distance r of a point of the field is much large
than the length of the wave radiated, 4, and when z,, # 0, the Bessel, Neumann
and MacDonald functions in expressions (28) and (29) can be replaced by their
asymptotic representations:

2
Jo(r7,,) z]/ o (r-rm — %) ’
2% 3
No(rey,) =~ l/ — sin (r'rm - %) )
m

Ko('-"]fmn l—’]/ 2?"[::." I GXP(—?'ETmI)- (30)

From the practical point of view, it is very important to be able to predict
the pressure distribution about the source, when the distance r of a point of the
pressure studied is larger than the linear dimensions of the source. When, in
addition, in series (28) and (29) r > h, then in practical calculations only the
finite number of M terms can be considered, for which mi < 2h(m= < kh). Con-
sideration of dependencies (30), (28) and (29) gives then

e M
ta k T im mnz exp(—irr,,)
p(r, 2) = 9°c°fl/§ exp (z I) 2 £, COS ( W )W,(-rm) —7;—.

m=0

5. Characteristic function

Bearing in mind the practical applications, the surface vibration velocity
distribution can be assumed to be the same as that which occurs in the case of
a circular membrane excited to axially-symmetric vibration. Such dimensions
of the individual annular surfaces are assumed that they are bounded by cir-
cles corresponding to nodal cireles for the (0, n) mode of the vibrating circular
membrane. Since the object of the analysis is axially-symmetric vibration,
then all the points on the surface of any of the rings vibrate in phase, while all
the two adjacent annular surfaces vibrate in antiphase.

For phenomena harmonie in time, the distribution of self vibration velocity
for the (0, n) axially-symmetric mode is expressed by the formula [3]

0,(7) = Oonds (% _,,,,), (32)
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where ¢, = a(w,[cy) is a root of the equation Jy(g,) =0, w, is the angular
frequency of self vibration, ¢,, is the wave propagation velocity on the membrane,
¥y, 18 the maximum vibration velocity. The radii r, of the nodal circles for the
(0, ) mode of vibration, as found from the equation

7, ("—) g =0, (33)

a

arer, = a(q,/q,),s =1,2,..., n—1; with, for s = n, r, = a being the radius of
the membrane, i.e. of the external nodal circle (see [5]).
The characteristic function (9)

Wg/p,

W) =vo [ (2 a) Tutemiradn 1)

agg— llqn

for the sth ring, being the set of points {a(q,_,/q,) <r < a(g,/q,), 0 < ¢ < 2m7,
after considering the integral property [8]

[ wdy)Jouo)dw =~ (17, ()T o(10) —T o) Iy (W}, (36)

is

w Yn8 s )_ (_!ls—l )
We(r) = ¢ —(ar)? lqul(qﬂ)Jﬂ(qﬂ at) —qy_1J1(8-1)J o 7. at), (36)

where Jo(q,) = Jo(g,_y) = 0.

When in turn the source of the acoustic field is a system of concentrie cir-
cular pistons, i.e. when the vibration velocity distribution on the surface of the
sth annular piston is uniform, v, = v,, = const., then the characteristic function

Wo(e) = 0w [ Joleroredrs, (37)

Tg—1

after considering the integral property (35) for I = 0, is
v,
Wy(r) === [nda(mr) =111 (wra0) ] (38)

In calculating the characteristic funetion from formulae (36) and (38), the
quantity = should be replaced by 7,,, as defined by relation (22) or (24), depen-
ding on whether m=n << kh or mn > kh.
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6. Numerical example with analysis of results

In analysing the acoustic pressure radiated by a circular membrane for the
axially-symmetric vibration mode (0, 2), two vibrating surface elements, sepa-
rated by the nodal circle a(q,/q,), where a = 2 cm, ¢, = 2.4048 ..., and ¢, =
5.5201 ..., were distinguished. The central element of the membrane is a circular
source, being the set of points {0 <7 < a(g/g.), 0 <@ <2z}, the external
element is an annular source, being the set of points {a(q,/g.) <r < a, 0< @<
2m}.

In the numerical example the value of the acoustic pressure p radiated by a
surface source wasreferred to the pressurep,, = g,¢,v,. Therelative pressure value
p[p, was represented graphically depending on the dimensionless parameter /k,
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Fig. 2. Relative acoustic pressure p/p, of the sources separated on the circular membrane

for the (0, 2) vibration mode, depending on the parameter r/h in the parallel-piped layer.

It was assumed that @ = 2 em, ke = 2, kh = 10. Pressure distribution in the plane z = h

— 10 em: 1 — ecircular (central) source, curve 2 — annular (external) source. Pressure distri-

bution in the plane of the source (¢ = 0): curve 3 — circular source, curve 4 — annular
source
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or r/a, with a fixed distance between the baffles, & = 10 cm, and the radius
a = 2 cm.

The curves of the relative acoustic pressure, depending on the parameter
r[h, for a separate central element and the external element of the circular
membrane are shown in Fig. 2. These curves show that in the variation interval
of the parameter 7 /h under analysis the relative acoustic pressure of the exter-
nal source exceeds that of the central circular one. This property is satisfied
both on the surface of the baffle in which the source is and also on the surface
of the baffle at the distance k from the plane of the source. On the baffle at the
distance h from the plane of the source there are circles in which the value of
the pressure drops to zero (see curve 1 in Fig. 2).

Fig. 3 shows the curves of the relative acoustic pressure, depending on the
parameter r/h, radiated by the circular membrane for the (0, 2) vibration mode.
This vibrating membrane is a system of two sources: the central circular and

S o

7

0.02

004

0021 5. \A—7-=_ e | \

: D o =
6

= i 2 2

\-—

st ;/

OI.O 1.

Feoulpts Loy 80 ha0n | 2 % 26 28 30 32 /b

Fig. 3. Relative acoustic pressure, depending on the parameter r/h, in the parallel-piped

layer. Curves 1, 2 and 3 show the pressure distributions of the circular membrane for the

(0, 2) vibration mode, respectively in the planes: s = 0, h and h/2. Curves 4, § and 6 show

the pressure distributions of the point source, respectively in the planes: 2 = 0, & and h/2.

It was assumed that the bulk efficiency of the point source was equal to that of the circular
membrane for the (0, 2) vibration mode, ka = 2,-kh = 10, a = 2em

the external annular ones, separated by a nodal circle with the radius a(g,/g,).
This figure also shows analogous curves for the point source whose bulk efficien-
ey @ = 2na®v,[J,(q,)/q.] is the same as that of the circular membrane analysed
for the (0,2) vibration mode. For the membrane and the point source separate
acoustic pressure curves were plotted depending on the parameter r/h in three
planes: in the plane of the source, in a plane at a distance h/2 from the plane of
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the source and in the plane of the baffle situated at the distance h from the
plane of the source. These curves show that larger pressure fluctuations occur
on the surfaces of the baffles in the case of the point source. The almost mono-
tonous decrease in the acoustic pressure occurs in the plane z = h/2 with inecre-
asing parameter r/h, both for the point source and the circular membrane
(see curves 3 and 6 in Fig. 3).

As in Fig. 3, acoustic pressure curves, depending on the parameter r [k, were
also plotted for the circular membrane in Fig. 4. Curves are also shown for the
pressure radiated by a circular piston with the radius @ = 2 em. Different

Al
o
06
— 2
0z Tl
/ \\ : =]
0.2\ __L/ \\ \K__h__ /{_ \\
0
006
5 4
004 > /\
= \\// :\\\74/—:\\\ |
2 _— -._.__.)Q\
00.4 0.6 0.8 1.0 12 14 16 .8 20 22 2.4 26 1 rih

Fig. 4. Relative acoustic pressure, depending on the parameter r/h, in the parallel-piped

layer. Curves 1, 2 and 3 show the pressure distribution of the circular piston, respectively

in the planes z = 0, k and k/2. Curves 4, § and 6 show the pressure distributions of the eir-

cular membrane for the (0, 2) vibration mode, respectively in the planes: z = 0, 4 and h/2.
It was assumed that ka = 2, k = 10 and ¢ = 2c¢m

variation intervals of the parameter »/h were assumed for the membrane and
the piston (see curves 4,56 and 6 in Figs. 3 and 4). Analysis of the curves (Fig. 4)
shows distinct differences among the values of the pressures generated by the
membrane and the circular piston for given values of the parameters »[h. It can
be assumed with approximation that the value of the pressure from the circular
piston is higher by an order of magnitude from that from the circular membrane
with a given value of the parameter r/h.




16 W. RDZANEK

The curves in Figs. 2, 3 and 4 were plotted from calculations for ka = 2.

Curves of the relative pressure, depending on the parameter r/a, for the
circular membrane are shown in Fig. 5. It was assumed that ka = 5.52, which
corresponds to the resonance vibration frequency.

s34
0.05 /
._——3(

Q

7
O I
£ 2 4 5 6 r/a

Fig. 5. Relative acoustic pressure p/p, of the circular membrane for the (0, 2) vibration

mode, depending on the parameter r/a, in the parallel-piped layer. Curves 1, 2 and 3 show

the pressure distributions, respectively in the planes z = 0, h/2 and h. It was assumed that
ka = 5.52, kh = 10 and a = 2 cm
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RECTANCULAR SOURCES AND SYSTEMS OF SOUND SOURCES WITH LARGE
DIRECTIONALITY

ANDRZEJ PUCH

Institute of Physics, Higher Pedagogical School
(35-310 Rzeszéw, ul. Rejtana 16a)

This paper presents a method for constructing plane, rectangular sound
gources with large directionality of vibration energy radiation into the far field.
The directional properties of sound sources of this type were analysed for uni-
form, Hanning and Blackmann distributions of the vibration velocity amplitude
on their surface. It was found that a rectangular sound source with large direc-
tionality of vibration energy radiation into the far field can be realised in prac-
tice in the form of a plane, rectangular mosaic system of sound sources with
a discrete Hanning distribution of their relative bulk efficiencies.

1. Introduction

In a large number of ultrasonic applications, e.g. in metrology, diagnostics
or ultrasonic technology, there is the need for using sound sources with large
~ directionality of vibration energy radiation into the far field, in order to obtain
the appropriate shape of and ultrasonic wave beam or the required energy
concentration in some region of a medium.

The construction and study of the properties of sound sources with large
directionality of vibration energy radiation have to date been the subjects of
a large number of theoretical and experimental investigations (e.g. [2], [3],
[10], [12], [13]). The authors of these papers paid most attention to the selection
of an appropriate vibration velocity amplitude distribution on the surface of
a planar or spherical sound source with given shape, most often a circular one.
In the 1970's much interest was enjoyed by the properties of a sound source
with & Gaussian vibration velocity amplitude distribution on its surface [2],
[3], [10] and [13]. Recently, intensive research has been carried out on the pro-
perties of systems of sound sources (e.g. [6], [7] and [8]).
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This paper presents a method for constructing rectangular mosaie system
of sound sources with large directionality of vibration energy radiation into the
far field.

2. Radiation directionality of a planar sound source

Let us assume that in the plane z = 0 (Fig. 1), which is an ideal rigid baffle
8,, there is a planar sound source o, which vibrates harmonically at the frequen-
cy fo. Let it radiate vibration energy into the half-space 2z > 0, filled with a loss-
less and homogeneous liquid medium with density p, in which the sound wave
propagates at the velocity ¢. Let us assume that, as a result of the vibration

Fig. 1. The gound source o, placed in the baffle §, and radiating vibration energy into the
medium filling the half-space over the baffle

of the sound source o,, the distribution of the normal component of the vibra-
tion velocity in the plane of the baffle 8, is defined as

v(8y, t) = x(8o)exp(—j2nf,l), (1)
where
%(8,) #0 for the surface of the source a,, (2)
%#(8,) # 0 for the other part of the baffle §,;

is a function determining the vibration velocity amplitude distribution on the
plane 8,. \

In the half-space z > 0, let us consider the surface of the hemisphere § with
the radius

r > 1, = nforialc, (3)
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surrounding the sound source o, in its far field [4], [9], where 7, is the longest
of the distances between points of the contour of the sound source o, and the
origin of the coordinate system. The acoustic pressure distribution generated
by the sound source o, on the surface of the hemisphere 8§ can be expressed
by the formula [4], [9]

?(8, t) = P(8)exp(—j2=nfyt), (4)
where

P8) = —j f:_Q exp (j2mrfy/e) f #(8o)exp [ —j2nfyrycos(ry, r)/c]dS, (5)
8o

is a function determining the acoustic pressure amplitude distribution on the
surface of the hemisphere 8. Since the funetion [4], [9]

Py8) = — 2 exp(jamrfyfo ©)

defines the acoustic pressure amplitude distribution generated on the surface
of the hemisphere 8 by a point sound source with unit efficiency, placed in the
baffle 8, instead of the planar sound source g,, expression (5) can then be repre-
sented as

P(8) = Py(8)RE(8), (7)
where
R(8) = [ %(8,)exp[—j2nforscos(ry, r)[e]dS, (8)

8o

is a function defining the relative acoustic pressure amplitude distribution on
the surface of the hemisphere 8. It can be noted that the function R(8) does
not depend on the radius r. In view of this, this function determines the relative
acoustic pressure amplitude distribution on the surface of the hemisphere §
with any radius r which satisfies condition (3). Since at a given vibration fre-
quency f, of the sound source ¢, the function R(8) depends only on the angle
between the radius » and the axis 0z, the function E(S) can then be used in
evaluating the sound source o, in terms of directionality of acoustic pressure
wave radiation in the far field. In comparing sound sources with respect to
one another, it is more convenient to use the normalised function B(S), i.e. the
function R(8) satisfying the condition

R(8) =1 for the angle (r, r,) = =/2. (9)

It follows from dependence (8) that for the angle (r, ;) = n/2 the function
R(8) takes the value

Vo = f #(8,)d8,) (10)
5y
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equal to the bulk efficiency of the sound source ¢, placed in the baffle §,. In
view of this and from (8),

R(8) = R(8)V,, (11)

The function R(8) is called the directional characteristic of the sound source
o, [4]

3. The spatial spectrum of the vibration veloecity amplitude distribution function

Let us represent expression (8) in a rectangular coordinate system. Let
v = fy[e denote the spatial frequency of a sound wave radiated by the sound
source o, into the medium filling the half-space z > 0. Since [4], [9]

¥roCO8 (7, 1) = wry[cos(ry, «)cos(x, r)+cos(ry, y)ecos(y, r)], (12)
then, when
& = ryC08(%y, X), (13)
Y = 1,c08("q, ¥) (14)
are the coordinates of points of the baffle §,, and
v, = vCos(z, 1), (15)
v, = vCos(Yy, 1) (16)

are the components of the spatial frequencies of partial planar waves whose
spatial superposition represents the wave radiated by the sound source ¢, into
the medium filling the half-space z > 0 [1], [15], the function E(S) can be
given in the form

400 400

Ry ) = [ [ (@, y)exp[—j2n(ov, +y»,)dody. (17)
It follows from dependencies (15) and (16) that in the half-space 2z > 0 the
spatial frequencies », and », can take values from an interval defined by the

inequality
I/vi, Yot (18)

It can be noted that expression (17) has a form analogous to a simple, two-
dimensional Fourier transform [1], [15]. Let us consider the spatial spectrum
of the distribution function x»(, y) of the vibration velocity amplitude in the
plane of the baffle §,, defined by the expression

400 oo

E(yv) = [ [ =@ y)exp[—j2n(ar, +y»,)ldedy, (19)

—00 —00
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where —oo < ,, %, < + oco. It follows from dependencies (17) and (19) that the
distribution R (v,, »,) of the relative acoustic pressure amplitude on the surface
of the hemisphere S can be determined from the spatial spectrum K (»,, v,) of
the distribution function %(z, y) of the vibration velocity amplitude in the plane
of the batfle §,. Namely,

R(v:u vy) 5 K(v:r.! vy)HV("'a:’ "'y)! (20)

where

B, %) =1" far'Vv, v, (21)
H,(v,,v,) =0 for the other »,, v,

with — oo < 9, », < + oo. It follows from dependencies (20) and (21) that the
baffle S, plays the role of a low-pass spatial filter [1]with the spatial transmitta-
nce H,(»,, »,), causing restriction of the spatial spectrum K (»,, v,) of the distri-
bution x(x, y) to the region of spatial frequencies defined by expression (18).

It can be noted in turn ((10) and (19)) that the bulk efficiency of the sound
source o, is given by the expression

+oo  4eo

Vo= [ [ (= ydedy = K(0,0), (22)

where K (0, 0) is a component of the spatial spectrum K (v,y »,) of the distribu-
tion function »(, y) for the spatial frequencies », = », = 0. In view of this and
from (11) and (20), the directional characteristic of the sound source g, can be
determined in the following way:

E(”m! vy) s K(va:? vy)Hn(vx, vy)/K(O’ 0)' (23)

It follows hence that the directional characteristic of the sound source g,
for a given spatial frequency », can be determined from the spatial spectrum
K(v,, »,) of the function x(, y) defining the vibration velocity amplitude dis-
tribution in the plane of the baffle 8,, which contains the sound source o,.

4. The effect on the directional characteristic of the sound source of its shape and that of the
vibration velocity amplitude distribution on its surface

The function x(, y), defining the vibration velocity amplitude distribution
in the plane of the baffle §,, can be represented as the product of the function
J(@, y), which was used to define the shape of the vibration velocity amplitude
distribution on the surface of the sound source oy, and the distribution z(z, y),
defining the shape of this source. Namely,

#(@, ¥) = f(, y)2(2, y), (24)
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where

z(z,y) =1 for the surface of the source o, (2b)
2(w,y) =0 for the other part of the baffle §,.

Let us determine the spatial spectrum of the distribution funection (24). The
use of the theorem on the Fourier transform of the product of the function and
the distribution [1] gives

400 4o
K(”z! ”lr) _— f f F(ya'.? .luy)z("z —Hzy Yy '—'Juy) dluzd-uv

= F(vyyn) *Z(vyyv). (26)

Hence, it follows that the spatial spectrum K (»,, »,) of the distribution
function x(x, ¥) of the vibration velocity amplitude in the plane of the baffle
8,, containing the planar sound source o,, is a convolution of the spatial spec-
trum F(»,, »,) of the function f(z, y), which was used to define the shape of the
vibration velocity amplitude distribution on the surface of the source ¢,, with
the spatial spectrum Z(»,, »,) of the distribution z(x, y), defining the shape of
this source. In view of this and from (11) and (23), the directional characteris-
tic of the sound source o, can be determined by the expression

E(Vz, "y) = [F(va:! vv) ¥ Z(vz! vy) ]Hv(”z! "'y) VO' (27)

The authors of previous papers [2], [3], [13] and [14], on the study of the
properties of sound sources with large directionality of vibration energy radia-
tion into the far field, did not go beyond the analysis of the effect of chosen
functions of the shape of the distribution f(x, ¥) on the directional characteris-
tic of the sound source, neglecting the effect on this characteristic, of the distri-
bution z(x, y) defining the shape of the source. Further considerations here
will propose a method for constructing sound sources with large directionality
of vibration energy radiation, consisting in selection of an appropriate function
defining the shape of the vibration wvelocity amplitude distribution on the
surface of a source with presecribed form.

5. Sound sources with large directionality of vibration energy radiation

The absolutely directional sound source will be understood here to be a sou-
rce radiating vibration energy only towards the axis 0z. Accordingly, the spa-
tial spectrum of the vibration velocity amplitude distribution function in the
plane of the baffle §,, containing such a source, can be determined in the fol-
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= lowing way:

K(v,, v,) = %9 0(v,, ”y)' (28)

where é(v,, »,) is a Dirac distribution.
Let us determine the vibration velocity amplitude distribution in the plane
of the baffle 8,, containing the absolutely directional sound source. The use

~ of the theorem of the inverse Fourier transform of the Dirac distribution [1]

gives
%(2, y) = %o, (29)

Hence, it follows that the absolute directional sound source is a source with
infinitely large size and uniform vibration velocity amplitude distribution on
its surface. Using this idealized model, unrealizable practically, of the sound
gource, it is possible to determine the method for constructing sound source
with large directionality of vibration energy radiation. Since the distribution
(v, »,) can be defined as the limit of the function series K (»,, v,; 4, B) satis-
fying the conditions [11]:

imK(v,v,; 4, B) =0 for », v, #0, (30)
A0
B0
and
+o0 400
[ [ E( v; A, B)dv,dy, =1 for all 4, B>0, (31)

the distribution function »(z, y) of the vibration velocity amplitude in the plane
of the baffle §,, containing a sound source with large directionality of vibration
energy radiation into the far field, should be chosen in such a way that the func-
tion series K (»,, »,; 4, B), derived from the Fourier transform K(v,,v,) of the
distribution function x(x, y) would satisfy the conditions given above. Accor-
dingly, it can be shown that the sound source with a Gaussian vibration velocity
amplitude distribution analysed in papers [2], [3], [10] and [13] is a sound
source with large directionality of vibration energy radiation in the sense de-
fined above, since the function series K (v,, v,; A, B), derived from the spatial

- spectrum K (v, »,) of the distribution function x(«, y) of the vibration velocity

amplitude in the plane of the baffle 8;, containing this source, which has the

- following form in a rectangular coordinate system [13]:

-K(vx! Vy3 -A! -B) =-K(va:; A)K(”y; B), (32)

where

E(sy; 4) = exp(—m3/4%), (33)
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whereas
1
K(»; B) =— exp(—m}/BY), (34)

satisfies [10] conditions (30) and (31). Since a sound source with a Gaussian
distribution, as the absolutely directional sound source, is a source with infi-
nitely large size, therefore, strictly speaking, it is realizable in practice realiza-
ble only in approximation [2]. Further considerations will show that it is not
possible to construet practically realizable sound sources with large directiona-
fity of vibration energy radiation into the far field.

6. Rectangular sound sources with large directionality of vibration energy radiation

Let us now construet a rectangular sound source with the sides @ and b
showing large directionality of vibration energy radiation into the far field.
The following series will be used for that purpose [11]:

K(v,, v,; A, B) = K(v,; A)K(»,; B), (35)
where
K(v,; A) :—}{ sine(»,/4), (36)
whereas .
K (v,; B) =% sinc(,/B), (37)

satisfying conditions (30) and (31), with A =1/a, B = 1/b, while

8in (mz)

sinc(z) = (38)

174

Let us consider uniform, Hanning and Blackmann distributions. The Fourier
transforms of these distributions are functions of the form of (35) [6].

a) Uniform distribution. Let us assume that the vibration velocity amplitu-
de distribution in the plane of the baffle 8, is defined in the following way
(Fig. 2): g

#(wy Y) = %ox(w)%(y), (39)
where
%(@) =1 for |2|< a2, (40)

#(z) =0 for |z|> a2,
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| whereas
x(y) =1 for |y|<?/2, . (41)
%(y) =0 for |y|>b/2,

Let us determine the spatial spectrum of the distribution function (39).
The use of the theorem on the ourier transform of the product of distribution
with separated variables and the theorem on the transform of the distribution

‘sgn(z) [11] gives

K(vyy v)) = %K (v,) K(v,), (42)
where
K(»,) = asine(ar,), (43)
whereas
K (v,) = bsinc(by,). (44)

The transform K (v,) (Fig. 2) of the distribution funection (40) is a function
having the main maximum for », =0 and side extremes decreasing as |v,|
increases, at a rate of 20 dB [decade. The highest of the side extremes are larger
by 13 dB than the main one.
~ b) Hanning distribution. Let us assume that the vibration velocity amplitude

~ distribution in the plane of the baffle 8, is defined in the following way (Fig. 2):

#(@y Y) = xoen(@)%(y), (45)
where
%(®) = 0.540.6cos(2rzfa) for |#|<al2, (46)
%(@) =0 for |@|>a/2,
whereas

%(y) = 0.64+0.6cos(2ny/b) for |y|< b/2,
#(y) =0 for |y|> b/2. (47)

Let us determine the spatial spectrum of the distribution function (45).
This gives

K (v, v,) = K (v,) K (v,), (48)
- Wwhere :
7 K(v,) = a[0.5sine(av,) +-0.258in(av, —1) +0.25sine(av, +1) 1, (49)
- Whereas
K (v,) = b[0.5sinc(by,)+0.25sine (b, —1) +0.25sinc(by, +1) ]. (50)
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The transform K (v,) (Fig. 2) of the distribution function (46) is a funetion
having the main maximum for », = 0 and side extremes decreasing as A
increases, at a rate of 60 dB/decade. The highest of the side extremes are larger
by 32 dB than the main maximum. Compared with the uniform distribution,
the transform K (»,) of the distribution function x(«) for the Hanning distribu-
tion has a wider main maximum, but lower and more slowly decreasing side
extremes.

¢) Blackmann distribution. Let us assume that the vibration velocity ampli-
tude distribution in the plane of the baffle 8, is defined in the following way
(Fig. 2):

#(@, Y) = #o%(0)%(Yy), (51)
where
#(@) = 0.42 +0.5cos(2nz/a) +0.08cos (4nxfa) for |2| < af2,
#(@) =0 for |z|> a/2, (52)
whereas

#(y) = 0.424-0.5cos(2wy [b) +0.08cos(4=y/b) for |y|<b/2,
%(y) =0 for |y|>b/2. (53)

Let us determine the spatial spectrum of the distribution funetion (51)
This gives

K(”m! vy) - an(Vz)K(i’y)! (54)

where
K(v,) = a[0.42sin¢(av,) +0.25sine(arv, —1) +
+0.258ine(av, +1) +0.04 sine (av, —2) + (55)
+0.04sinc(av, +2) ],
whereas

K (v,) = b[0.42sinc(by,) +0.25sine(by, —1) +
+0.258ine(by, +1) +0.04sinc (by, —2) + (56)
+0.04sinc(by, +2) 1.

The transform K (»,) (Fig. 2) of the distribution function (52) is a function
having the main maximum for », = 0 and side extremes decreasing as|»,|
increases, at a rate of 34 dB /decade. The highest of the side extremes are larger
by 57 dB than the main maximum. Compared with the Hanning distribution,
the transform K (»,) of the distribution function »(x) for the Blackmann distri-
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~ bution has a wider main maximum, but lower and more slowly decreasing side
extremes.

Tt follows from these considerations that each of the distributions: uniform,

~ Hanning’s and Blackmann’s, can be used to construct a rectangular sound

“gource with large directionality of vibration energy radiation into the far field.

:- o achieve this, for a given frequency f, of vibration of the surface of the sound

* source, appropriately large size of the source, compared with the length of the
und wave in the medium where this source will radiate vibration energy,

% (x/a)

(aw)l!

o ATAT
Fig. 2. Vibration velocity amplitude distribu-  _gp}| r\ﬂ {-\r\f\
tion function (a) and their Fourier transforms (b) [\
for uniform (1), Hanning (2) and Blackmann (3) e
distributions Py S L

ghould be selected. In view of the magnitude of side extremes of the directional
characteristic, compared with its main maximum, the Blackmann distribution
seems to be most useful for practical application. However, the considerable
~ width of the main maximum of the directional characteristic in this case re-
quires the use of sound sources with appropriately large size, compared with
the wavelength, much larger than are necessary in the case of the Hanning
distribution. In view of this, a rectangular sound source with the Hanning
distribution of the vibration velocity amplitude on its surface seems to be more
useful for application as a source with large directionality of vibration energy
radiation into the far field than one with uniform or Blackmann distributions.
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7. Rectangular systems of sound sources with large directionality of vibration energy radiation

Let us consider a rectangular sound source ¢, with the sides @ and b (Fig. 3)
showing large directionality of vibration energy radiation in the far field. Let
us assume that the vibration velocity amplitude distribution in the plane of
the baffle §,, containing this source, is defined by the function »(z, y).

Let us replace the sound source o, by a system consisting of a number of
point sound sources o,,, spaced respectively at intervals Az = a/M and
4y = b/N from one another on the surface of the rectangle occupied by the sound

» y 6, b ’
/ o X L
4 %
\ Q
b > e
a X g e
8 0 X
a
a=MAx

:Nlﬂy

b

Fig. 3. Rectangular sound source (a), rec- '.....".-.‘
tangular system of point sound sources (b), SSSEEH SRR

rectangular system of planar sound sources

source o, (Fig. 3). Let us assume that the efficiencies of individual sources in
the system are equal to the values x(mAdwx, ndy) of the distribution function
#(@, ¥). Aceordingly, the vibration velocity amplitude distribution in the plane
of the baffle §,, containing the system of point sound sources under study,
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defined by the expression (Fig. 4)

1
%, (2 Y) = x(a, Q)MIH(WMW; y[4y)

+ ]
— 2 2 d(@—mdw, y—ndy) (67) -
Mm=—00 N=—00
M2 N2
= Z Z x(mdx, nAy)é(x—mAdz, y—ndy).
Mm=— M2 n=—N]/2
Let us determine the spatial spectrum of the above distribution. The use
of the theorem on the Fourier transform of the Dirac distribution [1] gives

M2 Nj2
Ey(vpy v) = 3 Y w(mde, ndy)exp[ —j2r(mdav, +ndy»,)]. (58)
;. me=—M[2 n=—N/2
- Since

exp(—j2ny,mdx) = exp[ —j2n (v, +F,)mdx] (69)

exp( —j2ny,ndy) = exp[ —j2=n(v,+F,)ndy], (60)

there ¥, = 1/Az and F, = 1/4y, therefore, for any », and »,, the spatial
pectrum K, (v,, »,) of the distribution x,(, y) satisfies the condition

K, (vyy ») = Ky(v,+F,, v,+F,). (61)

- Hence, it follows that the spatial spectrum K, (»,, »,) of the distribution
»(®, y), which defines the vibration velocity amplitude distribution in the
ane of the baffle 8, containing the system of point sound sources under study,
& periodic function with the periods F, and F,, respectively in the direction
- the axes 0v, and 0»,. From the theorem on the Fourier transform of the
Stribution 1/dwdy IIL(x/Az, y|Ay) [1], the spatial spectrum K,(»,, »,) of
stribution (57) ean also be represented in the form

400 + 00
Ky(vs; %) = F,F, Y 3 K(v,—kF,, v,—IF,). (62)

k=—00 l=—00

b

- Hence, it follows that the spectrum K,(»,, »,) of the distribution x,(=, ¥),
fining the vibration velocity amplitude distribution in the plane of the baffle
Qontammg the system of point sound sources under study, is the sum of the
bectra K (v,, »,) of the distribution function »(w, y) of the vibration velocity
mplitude in the plane of the baffle §,, containing the rectangular sound source
(Fig. 4), multiplied by F,F, and displaced by F, and F, with respect to each

S e A,
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other, respectively in the direction of the axes 0», and O,. In view of this and
from (20), the relative acoustic pressure amplitude distribution on the surface
of the hemisphere 8, surrounding the system of point sources under study in
its far field, is defined by the expression

'Rp(vz’ vy) 5y Kp(”z! vy)Hv(vz! vy)' (63)
a
Ax =a/M
10 |
5
X o5}
ENQ
| L1
0 Ax/a 05 x/a 10
b E =1/Ax
0
ba IR, (av )l
:i -40 _ q p
=3
il
s NanN
2 N
-80 -
Fig. 4. Vibration velocity amplitude distri-
-100 0 ; = 3 &k bution (a) and its Fourier transform (b) f

a discrete Hanning distribution

It follows from dependencies (22) and (58) that

MJ2 Nj2
Ey(0,0)= D' D x(mdw, ndy) =V, (64
Mem—M/2 ne=—N/2

where 7, is the efficiency of the system of point sound sources under study
In view of this and from (23), the directional characteristic of this system
sound sources is given by the expression

Ep('zr v,) = RB,(vyy v)[Vyp. (65)

It follows from dependencies (62), (63) and (65) that when F,, F, > 2
i.e. when Az, Ay < A/2, where A = 1/[», then

R, (v;y ) =R(v,, ). (66;‘.
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~ Hence, it follows that when the intervals among the individual sources
[ a system of point sound sources are sufficiently small compared with half
e length of the sound wave radiated, the directional characteristic of this
stem has a shape close to that of the directional characteristic of the rectan-
ilar sound source o, (Fig. 4).
- Let us now replace the rectangular sound source o, by a practically realizable
gtem of planar sound sources o,,,, spaced at the respective intervals 4o = a/M
id 4y = b/N, on the surface of the rectangle occupied by the sound source g,
fig. 3). Let us assume that the vibration velocity amplitude distribution in the
lane of the baffle 8,, containing the central source o), 0f the system, set apart
om the other sources, is defined by the function x,%,(z, ¥). Let us assume
at the coefficients x,, for the individual sources o,,, in the system are equal
o the values x(m Az, nAy) of the distribution function % (z, y). Accordingly, the
ibration velocity amplitude distribution in the plane of the baffle §,, conta-
ling the system of planar sound sources now under study, can be defined
| the following way:

%y(2y Y) = %,(@, Y) * 2,(2, ¥), (67)

M2 N/2
w@, 9)= D D ximde, ndy)d(@—mdz, y—ndy). (68)
m=—M[2 n=—N|2

-Let us now determine the spatial spectrum of distribution (67). The use of
the theorem on the Fourier transform of the convolution of the function and
the distribution [1] gives

Ku("x! "v) i Kz(”z? vy)Kp(”z? vy)l (69)
M2 N2
Ky(v, v) = D D »(mdw, ndy)exp[—j2n(mdav,+ndy»,)]. (70)
m=—M/2 n=—N|/2

~ In view of this and from (20), the relative acoustic pressure distribution
m the surface of the hemisphere 8, surrounding the system of planar sound
sources under study in its far field, is defined by the expression

Ru("z! vy) s ol [K‘(V_,” vu)Kp(vz’ ”v) ]Hr(”zr vy) e Rl("z’ vv)Rp(va:! "')' (71)
~ In view of this and from (22),
R,(0, 0) = R,(0, 0)R,(0, 0) = V,V, = V,, (12)

' :.i- ere ¥, is the bulk efficiency of the system of sources under study. From



32 A. PUCH

dependencies (64) and (72), it can be written that
M/2 NJ2

Chadls St (73)

m=—M2 n=—N/2

where
Vn = V.x(mAz, ndy) (74)

is the bulk efficiency of the source o, of the system. Hence, it follows that
the series of the values x(mAz, nAy) of the distribution function x(@, y) is
defined by a discrete distribution of the relative bulk efficiencies of the sources
Oun i the system, referred to the efficiency V, of its central source g,,. From
(23), (75) and (72), the directional characteristic of the rectangular system of
planar sound sources is defined by the expression

Eu("'z! "vy) il Ru(vmi yy)/Vu (57 Rs(vzs vy)Rp("x! "Vy)' (75)

It follows from the above dependence that the directional characteristic of
the system of planar sound sources is the product of the directional characteristic
of the central source o, of this system and the directional characteristic of a 8ys-
tem of point sources derived by replacing each of the sources o,,, by a point
source. In a case when the dimensions of each of the sources g,,, in the system
are small compared with the length A = 1/» of the wave radiated, it can be as-
sumed that

B, (v, v)~1. (76)
In this case, expression (75) can be represented as
Eu(”a:! ry) ~ Rp(yx! vﬂ)' (77’

In view of this, in a case when the dimensions of each of the sources O D
the system of planar sound sources under study are sufficiently small compared
with the length of the wave radiated, the directional characteristic of this
system has a shape close to that of the directional characteristic of a rectangular
system of point sources derived by replacing each source d,,, in the system of
planar sound sources by a point source. '

In summary, it follows from the considerations made that the directionality
of vibration energy radiation in the far field, close to that showed by a rectan-
gular sound source o, with the vibration velocity amplitude distribution on its
surface defined by the function »(, y), will occur for a mosaic system of sound
sources, composed of planar sound sources with sufficiently sinall dimensions
compared with the length of the wave radiated, spaced on the surface of the
rectangle occupied by the source d,, at intervals which are also sufficiently short
compared with half the wavelength. In addition, the relative bulk efficiencies
of the sources in this system must be equal to the values of the distribution
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efion »(2, y) at the intervals at which its individual sources are spaced.
b shows the directional characteristic of a rectangular mosaie system of sound
y determined for a discrete Hanning distribution of the relative bulk
iciencies of the sources in this system. It was assumed that ¢ = b = 44,

’ P . e i
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g ' 6. Directional characteristic of a rectangular mosaic system of planar sound sources
with a discrete Hanning distribution of their relative bulk efficiencies

p = Ay = 0.42, a, = b, = 0.34 (Fig. 3). This characteristic does not differ
ietically from that of a rectangular sound source with the same dimensions

d Hanning distribution of the vibration velocity amplitude on its surface
ig. 2).

8. Conclusions

It follows from these considerations that a rectangular sound source with
rge directionality of vibration energy radiation into the far field can be reali-
d in practice in the form of a rectangular mosaic system of planar sound sour-
vibrating in phase, with a discrete Hanning distribution of their bulk ef-

~ Archives of Acoustics 1/83
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ficiencies. To achieve this, for a given frequency of vibration of the surfaces of
the sound sources, it is necessary to select sufficiently large dimensions of the
system of sources, compared with the length of the sound wave in the medium
in which this system will radiate vibration energy. In addition, as small as pos-
sible dimensions of the individual sources in the system and intervals among
those sources, compared with the wavelength, should be selected. In practice,
it is enough to assume the dimensions of the individual sources and the intervals
among them to be less than half the length of the wave radiated by this system,
whereas the sufficient dimensions of the system should be several times larger
than the wavelength. The directional characteristic of such a system of sound
sources ean have side extremes decreasing as the spatial frequencies |»,| and |»,|
increase, at a rate of 60 dB/decade, in the region of the spatial frequencies

Vm < v, where » is the spatial frequency of the sound wave radiated
by the system. The highest of the side extremes of the directional characteris-
tic of the system, occurring in the region of spatial frequencies, is lower by 32 dB
than its main maximum. On the basis of the results obtained in the present in
vestigations, it is in particular possible to construct ultrasonic transducers
showing large directionality of vibration emergy radiation in liquid media, as
_mosaic systems of piezoelectric transducers. In this case, the required discrete
distribution of the bulk efficiencies of individual transducers can be achieved
by selecting appropriately their initial polarisation or the supply conditions
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This paper presents an analysis of phase dependencies occurring in investi-
gations of sound intensity, in particular those of the effect of the phase error
of measurement equipment on the value and direction of the intensity vector
measured at some point. Two methods of intensity measurement, based on mea-
surement of the particle velocity from the pressure gradient, were taken into
consideration: the direct method (formulae (5), (10), (12), (13)) and the one
based on the cross-spectrum of acoustic pressure signals (formulae (6), (23)).

The phase error Ap causes changes in the directional characteristic of the
system (formula (28), Fig. 7), changes in the values of intensity, measured with
changed order of the measurement channels (formula (30), Fig. 6), the ratio of
the values of the real part of the cross-spectrum of the pressure processes from
the two microphones to that of its imaginary part (Figs. 9-10), and also in the
existence of the imaginary part of their cross-spectrum when the two miecropho-
nes are affected by the same acoustic field (formula (42), Fig. 8).

This paper presents theoretical considerations and specific examples of
phase error evaluation in equipment used in investigations (Fig. 1) on the basis of
the changes in question, which cause it.

The phase error of equipment causes considerable distortion of results,
involving changes in the measured values, direction and also the sign of the in-
tensity vector in some cases (see Fig. 11), therefore it is important to interpret
it correctly.

Notation

expected value of the function of f

unity vector in the direction Az

Fourier transform of the function of =

conjugate value of F,

measured auto (i = k) or cross spectral density function
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gix(jo) — real spectral density function undistorted by measurement error

H;(jo) — transmittance of the channel ¢

|H;| — amplification factor of the channel 4

Ir) — intensity vector at the point r

I(t) — intensity as a function of time

I(w) — intensity spectrum

I(dw) ~— intensity component measured in the band Aw

k — wave number

3 — analysis time

a — angle between the straight line connecting the fronts of the microphones and the
wave incidence direction

Az — spacing of the microphones in the probe

F — effective error of the measured quantity

T — pulse response of the channel ¢

@ — phase shift between the pressure signals from the two microphones

Agp — phase error of equipment

Dy — phase shift of pressure behaviour caused by spacing the microphones at the
distance Az

v(r) — phase difference between the pressure and velocity gignals at the point r

1. Introduction

The value of the sound intensity vector at some point 7 of the field can
given by the formula

I(r) = E[p(r, )o,(r, 1) ], 1

where p is the acoustic pressure of the wave and v, is the particle velocity of th
medium in the direction n.
Assuming in general that the phase shift in sinusoidal waves with frequenc
o, between the wave pressure and the particle velocity, as expressed by th
formulae .
p = |p|cos(wt—y), (2
v = |v]cosw}

is y, the sound intensity can be given by the dependence

plol [1 ref

= b ool 2wt —y)dt|.

I(r) o [2 of coswdt—i-z uf cos (2wt rp)d] (3,
The first term of the formula denotes energy propagation and is independen

of time. The mean value of the second integral tends to zero when T'—co.
The value of the phase shift y depends on the structure of the field at a give

point and determines the impedance of the medinm at this point. It is diffie

even for simple sources, to estimate theoretically the value of the angle at an

point of the field. In the far field, where all waves can approximately be cons

dered plane, the angle y = =/2.
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- The practical evaluation of the acoustic intensity is based on the measure-
ent of the particle velocity as the pressure gradient by the two-microphone
ethod : :

g t
1(r) =% E[p(r. 1) f grad p(r, t)dt]- (4)

The direct method requires the measurement of the sum and difference
tween the pressure signals p, and p, from the two microphones and that the
erations should be carried out according to the dependence [6], [7]

L il
I(r,t) = e, lim{1 /20407 [ [(pstp) [ (pa—pdtlat), ~ (5)

here T is the measurement time, g is the density of the medium, Az-the spacing
. the microphones, the direction of the vector I is defined by Az.

In turn, the method of intensity calculation by means of the funetion of the
pss-spectrum is based on the formula [2], [3] [5]

I(w) = (e4,) (1/edww)Im@y,(jo). (6)

The error involved in the velocity evaluation based on the pressure gradient
sasurement according to the following dependence, which is basic for the
0 methods,

i
v(r, 1) = —(1/edw) [ [ps(t)—ps(t)1dt, (7)
0 !

ffected by the phase error of equipment Ap(w), which is the phase difference
bween two channels, summing up with the physical phase difference between
 pressure signals, resulting from the value of the spacing of the microphones,

b

in the microphone probe, @,,,
B(a) = D,,(0) £ Ap(0). @

The behaviour of the acoustic pressure processes registered by the two mic-
hones is thus deseribed by the dependencies

P = Acoswt,.

P32 = Beos[wt+P 4, (0) - Ap(w)]. (9)

+ Effect of the phase error of equipment on the results of the intensity measurement

In spite of all technical operations, there is usually a slight phase diif-erence
ween channels. Below is presented the effect of the phase error on the re-
8 obtained by the direct method of intensity measurement and that of cross-
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spectrum. Fig. 1 shows a schematic diagram of the equipment used in th
investigations to confirm the considerations.

2. 1. Effect of the phase error in the direct method

When between measurement channels there is the phase difference Ap an
also that in amplification, then, instead of the acoustic pressures p,(t) and
py(t+A4w/c), the measurement system registers the pressures (Fig. 2) Py =

a) 8 )p(t)

o= Vi

a

D) [5 x H®)uw

2 3 af

py(t)
7

8 yu(t)

—«—— measurement system—= ——— data processing system ————————m=

b)
p(t)

e 5 S ey S
9 10
P (t)

71—

—«——— measurement system— —— data processing system

Fig. 1. A general diagram of the equipment used in the intengity investigations. The meas
rements system is the same for the direct and cross-spectral methods, with different meas
rement data processing system for each (a) for the direct method, (b) for the cross-spectr
method. 1 — MV201 1/2’ microphones, 2 — 00017 RFT amplifiers, 3 — system of 0001
RFT 1/3 octave filters, 4 — 88 4100 Iwatsu two-stream oscilloscope, 5 — BK 2971 ph
meter, 6 — author’s own signal summation and differentiation-integration system, 7
DISA 55 D 75, 52B25 multiplication and integration system, 8 — V 541 digital voltme
9 — magnetic recorder (with different types used (see the text)), 10 — energy spectrum an
lyser, Universal Digital Analyser Plurimat 8, or 3720 and 3721 Hewlett-Packard correlat

and integration system

P.(t) [ty and P, = p,(t+Ax[c)/ry. Thus, the system measures some intensi
value I(r, t), which is different from the real intensity I(r) (formula (5)):

T t

~ A ~
itr, ) = ess12240) [ {[m.0m a1+ 1] |
0 5 0

=

|
[192 (t‘l‘ Tm) [T —D4 (t)l"fl] dt}dt, (

where 7, is the pulse response of the channel i.
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~ When using this method the two channels should show as high phase and
amplitude agreement as possible, since it is impossible to compensate for the
fferences in a simple way at the stage of intensity calculations. It is easy to
liminate differences in amplification, but some inevitable left-over phase dif-
erence causes error to arise in evaluation, which can be represented for the

pylt) T, ‘ g(t)
plt) B (t)
tz -

fig. 2. A schematic diagram of the time transformation of the channels of the measure-
ment system. 7; denotes the pulse response of the channel 4

~ The pressures registered by the two microphones can be given by the har-
monic series

pi(t) = 3 Acos[wgt+ (k; Ao £ Ap(0))[2],
i

(11)
pa(t) = Y Bycos[ogt— (kAo + Ap(w;) 2.

_ The phase error causes a shift in the pressure phase, and thus at the same
ime, it affects the value of intensity measured by method represented by for-
qula (5). This is expressed by the following formula, obtained as a result of the
ubstitution of (11) in (5),

I(r, 1) = (1/2¢42) D) [(4;B;[oy)sin(k; Az £ Ap(w) 1. (12)
i

. A more accurate result of the intensity measurement can be obtained by
determining the arithmetic mean from two measurements carried out with
hanged order of microphones with respect to the wave incidence direction. In
ne of the measurements, the phase difference between the channels sums up
with the phase difference caused by the spacing of the microphones, and it de-
racts in the other, and thus the mean value calculated for any bands Aw from
iwo measurements can be expressed by the following dependence:

I, (r, dw) = (M (r, Aw)(a) |+ H(r, Aw)mi)l@
= I(r, Aw) [sin(kdx —A @) +sin(kdz -+ Ap) ][2k Az
= I(r, Aw)cos AgsinkAx[kAx. (13)
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The values of k and A4¢ are caleulated for the centre frequency of the band
do.

In the case when the amplification factors of channels, H,(w) and H,(w),
are different from unity, they also have to be considered in the intensity mea-
surement:

I(r, 1) = e,,(1/2H,H,04z) ) (4;B;sink; Aa(k; A). (14)

2.2 Effect of the phase error on the results of measurements by the method of eross-
-spectral density

Formula (6) would be strict only in the case of equipment with ideal trans-
mission, undistorted by amplitude and phase error. In practice, instead of the
signals p; and p,, at the output of the measurement equipment there are the
signals P, and P,, resulting from the passage through channels with definite
pulse responses 7, and 7,, or, in the frequency domain, with the respective

R (w)

Py (w) H, ( jw) 7 -
(w) B (w)
U b Hy (jw) SRR

Fig. 3. A schematic diagram of the transfer function of the channels of the measurement
system. H (jw) denotes the transmittance of the measurement system

transmittances H,(jo) and H,(jw) ( Fig. 3). The transmittances H,(jo) and
H,(jw) are the complex functions of frequency

H,(jo) = |H,|exp[—jp,(w) ],

5 g (15)
Hy(jw) = |H,|exp [ —jgs(w) ],

and thus the real cross-spectrum of the signals, g,,(jo), of the pressures present
at points 1 and 2 will in a general case be different from the cross-spectrum of
the signals registered by the equipment, G,(jw). The real cross-spectrum of the
signals p, and p, is given by the formula

12(jo) = B{Fy,(jo) Fp(jo)}, (16)

where E is the mean value.
Since the measured signals P, and P, are rclated to the real pressure values
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the dependencies between their transforms:

Fpl(jw)H](jw) = Fp,(jo), (17)
Fyy(jo)Hy(jo) = Fpy(jo),

hence,
Fpl(jw) = Fp(jo) [H,(jo),
Fpy(jo) = Fpy(jo) [H(jew),

refore, the real cross-spectrum of the pressure processes is related to the
easured one by the dependence

:‘gxx(jm) = H[Fp,(jw) Fp;(jo) [H,(jo)Hy(jo) ] = Gr(jo) [H(jo)Hy(jw), (19)
here, from the definition of the cross-speetrum [1],

Gs(jo) = B[Fp(jo) Fps(jo)]. (20)
" The intensity value caleulated from measurements is given by the formula
I(jo) = €,,Tm [G,(jo)exp (—j(ps—py)} 2nf Aze | H, | |H,|

= €, Im {G1,(jo) [cos dp(w) £ jsin dp(w) 1} /27 fodw |H, | |H,|, (21)

here Ap(w) = @, —¢@, is the phase difference between channels for the fre-
uency o.

- Calculation of the value of the imaginary part of formula (21) gives the
pendence
&

- Im {Ghs(jo) [cos Ap(w) £jsin dp(w) 1} = ImGyy(w)cos Ap(w)
' + R,6,(0)sin dp(w).  (22)

- Substitution of formula (22) into (6) gives the following formula for the
jensity value, accounting for the phase error of the equipment,

I(jo) = [ImG,(w)cos Ap(w) + ReGqy(w)sin dp(w)]/wede |H, | |H,|. (23)

On the assumption of low phase error, formula (23) becomes the same
().

.;?i‘wo measurements, involving changed order of microphones, permits total
imination of the phase error [4], [9] in calculating intensity as the geometric
gan of the two imaginary parts of the cross-spectrum.

(18)

3. Phase calibration of the measurement system

‘-.Irrespective of the further means of signal processing, an intensity measu-
_,_--.u t system consists of a probe (Fig. 4) — a system of two microphones spaced
4w, preamplifiers, amplifiers and possibly a magnetic recorder. Despite
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careful selection of the elements, it is inevitable for some phase differences to
occur between channels; particularly significant sources of phase shift are
multi-head tape recorders with different recording and reproducing heads.

In most of the investigations, the author used a two-channel tape recorder
which was modified in the laboratory to serve measurement purposes. This

— E I‘“"
— E 18

TP 7 PELPELAL L PPL AL A LS POV EEEL

Fig. 4. The microphone probe used in the investigations. 1/2" microphones spaced at Az
at the distance r from the source

tape recorder with one recording and reproducing head does not cause any phase
shift within the resolution capacity of the equipment, 0.5°, in contrast to high-
class multi-channel tape recorders with separate recording and reproducing
heads, e.g. in the 8—channel Schlumberger tape recorder (where the heads are
two four-channel units) only one pair of channels was found to involve low
phase shift. Very small inaccuracies in the setting of heads (different for recor-
ding and reproducing ones) cause high phase differences. An error of a few
thousandths of a millimetre can cause phase error of 90° and 180°, depending
on the tape velocity (the error decreases as the velocity increases) and on the
frequency (the phase error is lower at higher frequencies), e.g. for 5 kHz at the
tape velocity of 190 mm/s the 0.01 mm displacement of the heads causes the
phase error Ap = 45°. In a high-class tape recorder like Schlumberger, under

these conditions, error close to 90° was observed, and for a tape velocity of
95 mm /s it was almost 180°. In a Nagra IV 8J tape recorder, which was used

in some measurements, the phase difference-small at low frequencies: 100 Hz
—1°, 200 Hz —2° — increases to 40° at 4000 Hz.

The system can be calibrated electrically or acoustically in the plane wave
field, e.g. in a tube of standing waves or in the far field.

Measurements of the phase shift between channels for electrical signals
supplied from the generator to the inputs of the amplifiers permit; when the
first element of system, i.e. the microphone, is neglected; the selection of ap-
propriate elements of the system (e.g. tape recorder tracks) and, in some cases,
compensation for the phase differences fcund.
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- The microphones themselves are only a slight source of phase error, whereas
then they are part of the probe system, they cause some mutual field pertur-
ations [6], [11].

The phase differences between channels can be measured by a phasemeter
by a two-stream oscilloscope), when the probe is in the plane wave field with
varying frequency. Theresult depends to some extent on the order and the slope
rising or falling) of the release signal, which indicates the purposiveness of
iveraging of result series. Microphones, together with channels, are changed in
position in the course of measurements (positions @ and b), which changes their
position with respect to the wave front. When the phase measurement process
8 released by a signal from channel 1 and the measured value of the phase
lifference between the channels is ®D,,, the equipment error can be determined
rom the dependence

Ap(0) = P} (@) = Dyg(@),
Ap(w) = Bff)(w) +P4,(®).

_- When the processes are released by a signal from channel 2, the measured
phase difference is @, and the equipment error Ag results from the equations

(24)

Ap(0) = =P (0) — Py, (w),

25
Ap(@) = =B (1) + B (). o

_‘ It is purposeful to carry out a large number of various phase error measuref
nents, since phase fluctuations can be observed in the measurement system
problem signalled in the literature).

_. Evaluation of the phase difference between channels on the basis of the directional responses
¢ of the microphone system

The directional responses of the microphone system were made in the far
ield of a loudspeaker fed from a generator. The microphone system was fixed
0 the axis of a Drehtisch 02012 RFT turntable with remote control program-
ned for measurements every 15°. The fronts of the microphones described
circle with a radius of 2 em, which in the far field ensured in this region gignals
h close values for the two microphones. A few measurements of the responses
ere carried out, giving good repeatability of the basic structure of the response
the measurements were densified at the characteristic points).

The microphone system shows large directionality at medium and high
" equencles (an example for the probe investigated is shown in Fig. b), permit-
Ing the maximum values, and even more distinctly the minimum values, as
4 function of the angle of the rotation of the probe with respect to the wave -
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incidence direction, to be found. The maximum values are dozen-odd times as
large as the minimum ones, and the difference in their levels is dozen-odd dB.

It is interesting to observe changes in the phase angle between the beha-
viours p and v for the rotation of the axes of the microphone with respect to
the source (Fig. 6) in a free field. When the axes of the microphones are set

” e
o

Y N T S ¢ @
angle of microphone
rotation with respect to axis

Fig. 5. A change in the angle y between the pressure behaviour and the particle velocity
as a result of the rotation of the microphones with respect to the axis, relative to the incident
wave, obgerved on the display of a twostream oscilloscope, for the system shown in Fig. 1a

parallel to the direction of the wave (a = 90°) it is possible to observe the phase
shift y = 90. and, as a consequence, Zero value of intensity. In turn the angle
w = 0° and the related intensity maximum can be observed close to the angle
a = 180°, whereas the value ¢ = 180° and the maximum intensity value with
the opposite sign occur close to the angle a = 360°. A change in the wave inci-
dence angle a with respect to the axes of the microphones is reflected in a change
in the value and sign of the intensity vector, according to the cosine funetion

I =e,,|I|cosa. (26)

The behaviour of directional responses obtained for the microphone system
used in papers [7-9] (see Fig. 1a) requires interpretation based on theoretical
considerations. An ideal directional response would be symmetrical, minimum
intensity values would occur for the incidence angles of 90° and 270°. The real
responses are not symmetrical and the minima are shifted. This effect, when
neglecting some measurement error, results from the existence of the phase
error Ap in equipment and permits this error to be calculated.

1t is seen from formula (12) that the intensity takes a zero value when the
argument of the sine function is zero, i.e. T

kAzcosa = Ap(w),
or (27)
kAxcosa = dp(w)+n
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thus for the following values of the incidence angles a

o cos™ (dg(w) [kAz), (28)
cos ™! [(m+ dg(w) [kdx].

| When the angle ay,, corresponding to I, is found from the directional respon-
8e, it is possible to calculate the phase error for a given frequency from the
ormula

Ap(w) = kAvcos ay,y,. (29)

- The following values were calculated for the 0.5 kHz directional response
shown in Fig. 4:

Omin = 115°, ie, dp = 2°%; ay, = 285° i.e. dp =2°.

~ The phase error of equipment is also reflected in the nonsymmetry of the
sensitivity of the system, i.e. the different maximum intensity values for a = 0°
and a = 180°. A decrease in the sensitivity in one direction is accompanied by
its increase in another. The ratio of the maximum amplitudes registered in
those cases can be represented by the formula

sin (kA +¢ (o)) /sin (kAx —¢(w)) = K, (30)

Which permits the phase error of equipment to be calculated. The value of the
phase error of the example shown in Fig. 5, which was calculated by this method
sonly dp =0.5° for K =1.2. When kAz takes the value of A®, the di-
rectional response changes radically, a double increase in the value measured
in one direction is accompanied by a decrease in the intensity value to zero in
another, which results from the following dependencies:

I, = [I|[sin(kdz+ Ag)1/kAx = |I|(sin2kAx) kA,

I, = |I|[sin(kdx—Ag)]/kdz = 0. (31)
. The intensity change towards the intensity maximum is
. e =1, =2coskdr~2, (32)

orresponding to an increase of AL =3 dB in the measured intensities for
low kAwx. It can be seen in the example of the directional response of the probe
liscussed, shown in Fig. 6, for the frequency f = 0.2 Hz, how strongly the effect
f the phase error on the form of the directional response depends on frequency.
for one minimum with the angle a,,, = 150°, the error calculated from for-
nula (29) is only 1.5° which almost causes one of the branches of the response
0 vanish (a similar effect is cited in ([10]).
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180*

270

Fig. 6. An example of changes in the value and sign of intensity as a function of the angle

a of rotation of the system of 1/2° microphones for the frequency f= 0.5 kHz, with

Az =0.014 m. The intensity values on the left branch of the response show a minus sign ; those
on the right, a plus sign

5. Evaluation of the phase error of a measurement system from the ratio of the real and
imaginary parts of the cross-spectral density of the pressure behaviours fro m the two
microphones of the probe |

The test of the lack or presence of phase shifts between channels over the
whole frequency range is the behaviour of the values of the function Im@,,(jw)
when the input signals are equal for the two channels in terms of amplitude
and phase, which results from the following calculations.

When the microphone system is in the sinusoidal wave field, the micropho-
nes register processes which can be expressed by formula (9). The auto spectral
density functions of the processes are represented by the following definitions
[1]: ,

Ju(w) =2 Em B[Fy,(jo)Fy(jo)], (33)

gaa(w) =2 ;im E[sz(jw)F;z(jw)L




SOUND INTENSITY MEASUREMENT 49

ile the cross-spectral density of the two behaviours is given as

Jra(jo) =2 lim B[Fy (jo) Fp, (jo) ], (34)

here F'), and F, are Fourier transforms of the pressure behaviours p, and p,.
| turn, the values of the transforms ¥, and F,, are, from the definitions,
ven by the formulae

ajo) = (412) [ {[exp (joqt)+ exp(—jwst)]exp( —iot) }dt = jAw| (] —w?),(35)

Bujo) = (B12) [ {fexp(joot +9)+exp[ —j(wot-+9) | expjot)

= [B/(w; —o?) ] (wpsing —jweosgp). (36)

; Substitution of the expressions of the pressure transforms (35) and (36) in
ormulae (33) and (34) gives the following dependencies:

gu(w) = Azl(wﬁ _"1’2)2:
gas(@) = [B*[(w} —")*] (wjsin’p + o’ cos’p) (37)

913(jo) = [ABo|(w; —»") ] (wcos g —ja,sing). (38)
- The modulus of the cross energy density is thus expressed by the formula
913(@)| = [4 Bw/(w; — )] (0’ cos® ¢ +wjsin® p)'*; (39)
i8 real part is ‘

| Regys(0) = [4Bo*[(0}—o®) Jcosg (40)
nd the imaginary part

| Imgya(w) = [jABow,/ (0} —a?) Jsing. (81)

There follows the following relationship of the phase difference between
ignals from the two microphones

tang(w) = tan[p,(0) £ 4¢(0)] = ImG,(w) ReGy(w). : (42)

- With zero phase shift between the process p, and p,, the imaginary part of
le cross-spectrum is zero, whereas the real part reaches a maximum value.
ig. 8 shows successively the spectrum of the imaginary part, of the real part
id the modulus of the cross-spectrum between the pressure behaviours regis-
ered by the measurement system (Fig. 1a) when the microphones in the tube
e affected by a signal which is the same in terms of amplitude and phase.

= Archives of Acoustics 1/85
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In the case shown in Fig. 8, the value of the phase error Ag, calculated from the
ratio of the real and imaginary parts of the cross-spectrum, is 2° for f = 0,6 kHz.

An example of the difficulties occurring in the interpretation of results when
the phase error of equipment is large with respect to kA, drawn from the
author’s own investigations, is given below. In some case of excitation of a plate
by a tone, with signals being recorded by a Nagra tape recorder, a series of

9Ge

I 4
110
(W/m?l

270°

Fig. 7. An example of changes in the directional response of the system of 1/2’ microphones
for the frequency f = 0.2 kHz as a result of the existence of phase error with the value 4
= 1.5° in the system shown in Fig. la. The microphones spaced at Az = 0.014 m

results was obtained, where the sign of Im@G,,(w) varied depending on the
frequency emitted by the plate, irrespective of the measurement point on the
plate (Fig. 8). The measurement for one of the positions of the probe gave pro-
bable results and that for the opposite localisation yielded results which it was
difficult to interpret. The mean value of the phase error of equipment, A¢(0.5)
= 4° (with phasemeter measurements indicating 5°), was calculated from the
ratio Re@y,(w)/ImG ,(w) for all the measurement points. In this case (the
frequency of the excitation signal f = 0.5 kHz, with the resonance frequency
of the plate f = 21 Hz, the microphone spacing Az = 0.014 m, the distance
between the probe and the source r = 0.4 m) the value of @, was 7.5° and
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thus the results of the intensity measurements can be represented, in keeping with
formula (41), for known values of dp and @4, in the following way:

g Im@®(0.5) ~const. 0.21, TIm6Y(0.5) ~const. 0.03.

It can be seen from Fig. 9 that in this case it is difficult to compare the
caleulated and measured values, although, considering the signs of the compo-
lents, the mean value of intensity in the band is close to zero. (Because of the

ifficulties in interpretation this method was abandoned in practical applica-
fions).

. .
907 ImG,,fw)

A~ - =

ar 05 10 {kHz]

ReG,y(w)

MG, (w) ¢)

ar 05 1.0 (kHzl

lig. 8. An example of the hehaviour of the cross-gpectral density @, (jw) of signals from
he microphone system placed in the same acoustic field in a tube of standing waves. a) the
maginary part of the spectrum, b) the real part, ¢) the modulus. The results permit the
hase error of equipment to be calculated from formula (42) for any frequency. The signal
ras white noise, the microphones were spaced at 4z = 0.014 m. The calculations were car-
ed out on a Hewlett-Packard system (Fig. 1b), with a Nagra tape recorder. The conditions
f the calculations: the width of the frequency band analysed B = 15 Hz, the number of
F countings N = 128 x 1024, summation averaging
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The sine function in formula (41) changes its sign for the emitted frequency,
there is a phase jump by =. The resultant phase difference, in the case of using
a Nagra tape recorder, is too small for correct results to be obtained. The change
of the sign of Im@y,(w) from + to — , or conversely (Fig. 9), depends, it was
found, on the arbitrarily assumed order of signal processing.

It was found that the ratio of the real parts for two positions of the probe
ReG? (w)[ReGY (w) = 1, which results from calculations (formula (40)) and mea-
surements (Figs. 9-11). However, it was established that when the tone exciting

2

Vv
a)
550+ ImG,,(w)
pt 1
a2
f.m =500 Hz
L A\l
o1 e ks, [-kazJ
VZ
=3
.o ReGyylw) b)
2 b
,' -
ol g
10 [kHz]
¢
c)
I
i
1
1.0 [kHz]

Fig. 9. The cross-spectrum of pressures from the microphone system (Fig. 4), placed o

a vibrating plate excited by a tone with the frequency f = 0.5 kHz. a) theimaginary part

the spectrum, b) the real part, ¢) phase. The conditions of the measurements: the micropho;

spaced at Az = 0.014 m, the distance between the probe and the plate » = 0.04 m.
conditions of the calculations are the same as in Fig. 8
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the plate was replaced by an octave noise band with same centre frequency,
without changing the other conditions of measurements, with approximation
the above ratios of the intensities investigated (see Fig. 10) were obtained. For
one of the five measurement points, even a negative intensity value was obtained
(Fig. 11). Calculations of the phase error from the power density spectra for
noise bands permitted the determination that the meanva lue of dg remained
equal to 4°.

It can be seen from the examples given above that a considerable value of
the error Ap, with respect to the value of k4, can change not only the value
of intensity, but also its sign; where it is easier to interpret the results of
investigations of noise than those of tones.

It follows from formula (23) that when there is a phase error the value of
intensity is constituted by both the imaginary and real parts of the cross-
spectrum of the pressure signals from the two microphones. In the evaluation
of intensity, the contribution of the real part increases with increasing the
phase error of equipment. Thus, the error of approximating the measurement
result only by the imaginary part can be represented as

& = 1/{cos dp(w) + [ReGyy(w) [ImGyy(w) Jsin Ap(w)}. (43

The value of the ratio of the real and imaginary parts of the cross-spectrum
can be caleulated from formulae (40) and (41), considering that the phase shift
® = kAw+Ag. The values calculated for a specific measurement system are
given in Table 1. CHUNG [1] found that ”the ratio of the real and imaginary

Table 1. The value of the ratio Re@,,(w)/ImG ,(w) depending on the phase error of equip-
ment for individual frequencies. An example is given for an analog imtensity meter with 1/2’
microphones, for the value dx = 0.14m

Frequency [Hz] | | 250 | 500 1000 3000
Physical phase
difference @4, 0 3.7 7.5 15 45
Equipment phase
error AP 1.5 1.5 2 3 6 X
. 15 7.6 3.7 1
1 ti =&
TASS giiall £ O 12 dB 0dB | 6dB 0
® = 38.2 11 4.3 3 0.8
ReGy(@) | Bap+4P 16 dB 10 dB 6.3dB 5 dB —1dB
TGy () O =0 a9 25 10.4 4.7 1.2
— 4D : 14 dB 10 4B 7 dB 0.8 dB

parts of the cross-spectrum is usually about 15 dB?”. As can be seen from Table 1,
this value varies, depending on the phase difference between behaviours of @,
taking into account the equipment errer, and it is not so large, even when no
phase error occurs (see Table 1, case a).
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6. Conclusion

The phage differences between channels of the measurement system, causing
error in the intensity measurement, can be evaluated by means by the direct
measurement with a phasemeter in a plane wave field. It follows from practice
that the measurement is difficult, since phase fluctuations can be observed.
Additional information about the phase error of the system can be obtained
from the directional responses of the microphone system and the ratio of the
real and imaginary parts of the cross-spectral density of the pressure behaviours
from the two microphones, calculated for any position of the probe. |

The effect of the phase error of equipment on the results of the intensity
measurement depends on the ratio of the value of the phase error equipment,
Ap(w), and the value of the phase difference caused by the microphone spaecing,
@, (w) = kAv = (2=f|c) A, i.e. on the frequency and the assumed value of Az,
Fig. 11 shows the permissible error value AP as a function of k4dx, on the as-
sumption of 1 dB measurement tolerance, and as a function of frequency for
the values of Az (0.04 m and 0.014 m) employed in the investigations of the
author of papers [7-9]. l

Some methods are used to compensate for the phase error by calculating
the arithmetic mean, in the direct method, or the geometric one, in the cross-

L]

piloy ;
|
for E=1dB j‘

1 1 1 1 1 L 1
0 0 20 30 40 50 60 0. K,

1 1 1 1 1 1
67 675 1350 2025 2700 3375 4050 f([Hzl for Ax=0.014
L 1 1 1

1 1 1
24 230472 708 944 8o 116 fl[Hz] for Ax=0.04

Fig. 12. The permissible values of the phase error of the gystem for intensity measurements,
oorr esponding to the measurement error £ = 1 dB as a function of frequency, calculated
for the values 4z = 0.014 m and 0.04 m used by the author in the investigations
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spectral method, of two measurements with changed order of circuits [4], or
by phase calibration of the system. In the analog direct method phase shifters
can also be used to compensate for large phase error (resulting e.g. from the
magnetic recorder used), but it is troublesome and inaccurate, since the phase
error is a function of frequency and with wider frequency bands analysed there
is a difference in the value of the error among the centre and cut-off frequencies.

It is very important to interpret strictly the effect of the phase error on the
intensity measurement, since it causes large distortion of the results, changing
not only the value and direction of the intensity vector, but also its sign.
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A FUNDAMENTAL STUDY FOR PREDICTING THE URBAN STREET NOISE BY USE OF
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This paper describes a unified statistical method of structural prediction
of an arbitrarily fluctuating street noise in the general urban noise environment,
especially from a fundamental viewpoint. That is, an analytical expression of
the noise propagation characteristics for several cases of typically idealized
road traffic models is first derived, in order to express an actual noise environ-
ment in the city area, based on the image method approach. Then, by using
the newly derived expression of the noise propagation characteristics, two re-
presentative evaluation indices of street noise, closely related to the well-known
Legq and Lyp evaluation indices, can be given in an explicit functional form with
several internal mechanismg of the road traffic environments in the city area.
Finally the validity of the present theoretical prediction method is experimen-
tally confirmed, especially by use of digital simulation technique for severa]
cases of typically idealized actual road traffic noise environment in the city area,

1. Introduction

In recent years, problems of environmental noise generated by passing tran-
sportation vehicles in the city area have become more critical, owing to the
hasty popularization of the traffic means in our daily life.

Especially in the city area with complex geometrical structures, such as
asingle-level intersection, a grade-separated intersection or a multi-lane road ete.,
the question of analysis of the actual noise environment has not yet been the-
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oretically solved in principle because of the arbitrariness of the movement of
noise sources and the complicated situation of actual noise propagation paths.
Nevertheless, based on the consideration that the environmental random noise
phenomena are dominantly caused by the transportation vehicles passing in the
city area, a realistic approach to structural evaluation of the effect of the noise
generated by these passing vehicles on the resultant environmental noise level,
in a functional form with the noise propagation characteristics, is fundamentally
important. Before the establishment of new buildings and roads, prediction
of this noise effect should be investigated, from the viewpoint of noise control
for town planning.

From the above circumstances, in this paper, a fundamental theory of sta-
tistical prediction of the general street noise level over a complicated actual
city traffic environment is derived, based on the well-known image method
approach [1]. More concretely, after expressing the noise propagation charae-
teristic between the noise sources and the observation point over the city area
in an explicit functional form by use of the image method approach, a unified
statistical method of structural prediction of the arbitrarily fluctuating street
noise in several typical cases of the urban noise environment is first derived.
Among various evaluation indices of the actual urban noise environment, espe-
cially two evaluation indices, closely related to the well-known L, and Lyp [2],
can be given in an analytical form with the internal mechanisms of. traffie
environment. -

In view of the complexity of the statistical prediction and the variety of
forms of level distribution of urban road traffic noise, the technique of digital
simulation seems to be the most powerful and effective way of experimental
confirmation. The validity of the prediction method proposed was prineipally
confirmed especially by use of the digital simulation technique for several cases
of typically idealized actual road traffic noise environment in the city area,
since this kind of study is in an early stage. '

2. Explicit expressions of the noise propagation characteristic in the city area

By considering a well-known fact that the urban noise problem is originally
caused by a rapid increase in the number of noise sources, such as transporta-
tion vehicles, motoreycles ete., and the swift gravitation of the population to
the city area, it is necessary to describe first several fundamental models of
typical noise environment in the city area, such as a straight road and other
different intersections. Then, the actual circumstances in the city area can be
analyzed as a complicated composition of these models of typical noise envi-
ronment.
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2. 1. Noise propagation characteristic in the city area with a straight road (Case 1)

Let us consider a straight road with the arbitrary segment [ —L, L] and the
arbitrary width L,. It is assumed that an arbitrarily passing vehicle 8§ moves
in the middle of the road and an observation point O is placed on the sidewalk
by the road, at a distance X from the passing vehicle along the road, as shown
in Fig. 1a.

Fig. 1. Analysis of noise propagation characteristics for the straight road model. a) Noise
propagation for the straight road, b) Analysis of noise propagation to image observers based
on the image method approach

The noise intensity I at the observation point 0, generated by the passing
vehicle 8, is generally expressed by the sum of the direct noise intensity I, and
the reflected noise intensity I,:

I - I] +In . (1)

Hereupon, by use of the inverse-square law of noise propagation, the direct
noise intensity I, can be expressed as:

® QW
 An(X24h2+a?)’

(2)

1,
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where % denotes the difference of height between the observation point and the '
noise source. Moreover, @ is a directivity factor and W is the acoustic power
generated by the passing vehicle. ,
The reflected noise intensity due to the surrounding buildings lined along
each side of the road can be evaluated by regularly assuming image observers .
at a place perpendicular to the road, as shown in Fig. 1b, on the basis of the
image method approach. In the case when the noise wave reflects n times from
the surrounding buildings, the distance X; between the ith reflection point
and the noise is easily expressed from the geometrical analysis (1 <4 <m):

4

X, = g P S (E—1)+y, = (2i—-1)lL--”— &

n—1 2 nl,—(—1)"a i )

where ¥, and y, are the first and the last points of reflection from the noise
source, given as:

% XI,
Y1 = Sl —(—1)"a) '

.6 (% —( -—-1)"'a)

nl,—(—1)"a

(4)

Yo =

Let R(&) and R’'(&') be the reflection coefficients of the building surfaces
along each side of the road at the points & and &'. Then, by considering these
acoustical and geometrical parameters of noise environment, the received noise
intensity L, can be expressed, based on the additivity of energy quantity:

n—1 n n n g
o [H R [[ B Xo) ] BOE) [[ B (i)

=1 i=1 i=1
L8 ;_; X +h + {(2n—1)L,—a}* + T xiimt@nL,tap |

i=1

+ + =
X240+ {(2n—1) L, +a}* X2 +h+ (2nL, —a)

n—1 n n n
[ 2@ [[ B [[BE]] R(xﬁ,l)]
=t = . (8)

Substituting equations (2) and (5) into equation. (1), one can easily obtain
the following expression of the noise propagation characteristics between the
observation point O and the arbitrarily passing vehicle e

& I
i
|
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e e 4 4
= It
L S () T

Lo [NE@[[Rx)  [[r@)[]R &
il i=1

i=1

- s +
dm L X' +1*+{(2n—1) L, —a}® X*+0*+ (2nL, +a)’

e

] =1 i=1
: o

1 X*+0*+ {(2n—1) L, +a} Tt ¢ +h 4 (2an;a)2

where « means the direct distance between the observation point and the vehicle:

; Mer@i[[ex.y []rE]] R(xﬁ-;)]
; i=1 i=1 : (6)

& =VX*+hi+a®. (1)

\ It should be noted that in a special case when both of the reflection coef-

- ficients R(£) and R'(£') become zero, equation (6) reduces to the well-known

- expression of noise propagation characteristics in a free field of sound. In ad-

~ dition, when both of the reflection coefficients can be approximated in the
- following same functional form:

R(§) = R'(§) ~exp(—s), (8)

- one can obtain more useful expressions of noise propagation characteristics for
- practical use. That is, in this case, the following approximation is derived:

n R(X,) = exp(—ne). (9)

Therefore, substituting the above relation into equation (6), one can obtain
- the following explicit expression of the noise propagation characteristics:

37 1 o - exp( —mne)
= 47 (X2 +1* +a?) i - g[X’+h2+{an+(-—-1)"a}2 :

exp( —ne) 4
X*+10* + {nL, H(—l)"a}”] el UE
- From the practical point of view, equation (10) can be more simplified in
“the following two actual cases, in a compact form of expression.

+

a) Approzimate expression of the noise propagation characteristics with a high
reflection coefficient of the building surfaces

~ In a case when the surrounding buildings have high reflection coefficients

of sound (i.e., their reflection coefficients become nearly equal to one), an ap-

proximate explicit expression of the noise propagation characteristics in the
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city area with a straight road can be expressed as:

1—exp(—e)
1) ity
: T Syz e
exp( 9 i i
SLI 2 2 k o e A
VX% +h {cosh (-E-z— VX +h ) — €08 (—1:)
sinh (i VX i
L 4
+ = fi(®). (11)

VX i {coshLl VX1 —cos ("—@iﬂ))}

T

b) Approxvimale expression of the noise propagation characteristics with a low
reflection coefficient of the building surfaces
In the case when the surrounding buildings have low relection coefficients
of sound (i.e., they have highly absorptive surfaces, so that their reflection
coefficients become nearly equal to zero), an approximate explicit expression
for this case can be expressed as:

D) exp(—ne) .
n=1
J(@) = 47 (X2 +1h*+a®) ¥ i [X” +h* + (L, +a)* +
3 L 195 1 .. exp
> X’+h’+(Lz—a)’] T 4n(XP 4R +ad) o - I—exp ©

1 1
% [X’+k”+(1}m+a)’ & X*4+1+(L,—a

e ] 2 fu(@). (12)

2.2. Noise propagation characteristics in the city area with a T-type intersection
(Case 2)

Now, let us consider the noise propagation characteristics in a case when the
passing vehicle is located within the intersection, as shown in Fig. 2. In this case,
the geometrical condition for noise reflections is given under the restriction
that the sound wave should be reflected first at the corner of the intersection, i.e.;

¥,> X-X,, (13)

where X, is the distance between the observation point and the corner. Further-
more, ¥, is the distance between the passing vehicle S and the first reflection
point, as shown in Fig. 2.
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: Therefore, the noise propagation characteristics of the T-type intersection
~ can be expressed as follows:

1 exp ( —ne)
L= dn(X* 41 +a°) A < 2 X2+h* + {nL,+(—1)"a} ¥

€xp (—ne)
Eg X414+ (nL, —( —1)"a)® ’ (14)

Ly

X
=3

i
s R TR

Fig. 2. Analysis of noise propagation characteristics for the T-type intersection

~ In equation (14), the maximum numbers, n, and n,, of the repeated reflec-
tlons are limited, due to the finite length of the building rows along the street.
- That is, the two numbers, n, and n,, in equation (14) ecan be evaluated as:

4 ¥ X a 1 X a
el W P iy | ) e B e B LR

(15
m mxlz|oleT o+ ) 2[5 e - 1) -2+

with Gauss’ symbol [.]. In the case when the passing vehicle is located along
the building rows, it is needless to say that the explicit expression of the noise
propagation characteristics is given by equation (6).

2.3. Noise propagation characteristics in the city area with a crossroads (Case 3)

In a case when a passing vehicle is located within the intersection as shown
n Fig. 3, one can consequently obtain the explicit expression of the noise propa-
gation characteristics, based on the same analysis method as that described in
the previous section.

) = Archives of Acoustics 1/85
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a) ' A

Xo

b)

Fig. 3. Analysis of noise propagation characteristics for the crossroads. a) Source inside the
crossroads, b) Source outside the ecrossroads

a) The case when the passing vehicle is located within the intersection (see Fig. 3a)
In view of the fact that this case corresponds to the case when the passing

vehicle is located within a T-type intersection, the explicit expression of the
noise propagation characteristics is expressed as follows:

: exp( -—-m)
f(@) (X2 +Z+1%) 47: 2 X+ (nL, —-Z) +h? +

il exp( —ne)
+I~Eg; X (Ll +Z2)+W (16)
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TR I T )
| 2 \2(X —X,) i 2(X — Xo)
: and (a7)

4 [ 1 X o :
Ny = max:z _.E(m +E;)]’ 2[ (2(X*-xo) ) ]+1}

' where Z is the distance between the centre of the intersection and the vehicle
~ position.

- b) The case when the passing vehicle is located along the road outside the inter-
- section (see Hig. 3b)

In this case, by considering the geometrical conditions for the noise reflec-
* tions due to each vehicle position, 8;, 8,, 8, and 8, shown in Fig. 3b, the objec-
tive noise propagation characteristics can be obtained, as follows:

"SI
R . LT e exp( ~io
_(w) =D(Z;~2) Tz P\E-4) ‘_,f?_.l AENTIAS ¢

exp(hje)

exp[— (n+t)e]
._ZWB)Z{ k;(; (I—i—t.l},)” (ﬂLm-l-Z)z-l-hz +

n=1
WA
. 1 exp[—(n+1)e]
F2tha ) n—Zl {Z;tr-?%‘ +2 (X -HL,)* + (nL, +Z) +h* ' o

where each symbol is given by:

(19)
3 L L L, ( L

e 21 T, 8 BRI R e ARl e SR TR L
¢ ( +2Xn Sy (2(1; +xo) “)’ o (21" 1)’

F___i(3(2n—-1)L, 1 (2n+1)L, 1
72 X, 2 =3 \amaiz) S

L) N X,(2Z2-L) 2% 1
= —— Lo 3 . BTl (R 8 T, Mg

N

L1, 2 L,L, Ty

Rl ok _[Ee2z4L) 1
s L, Lz 9 ’ ﬂ'hL _[ Lz Lz = 'é_]’ ﬂ’W-‘.
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_[ X,(2Z +L,) 1] = _[(X0+Lz)(2Z—Lx) +1]
i BT IY R A g (2n +1)L, L,

[ X,(2Z2-L,) 1
"[(2n+1)LxLz *?]'

In the above expression, D(.) denotes the truncation function defined as

0 (5)<0),
D(§) = 20
9 [1 (£) > 0). gl

3. Establishment of the model of the road traffic noise in the city area

As a noise environment model, a main road in the city area having a complex
structure with building rows on the both sides is generally considered in this
section.

From the additivity of noise energy, the noise intensity I at an observation
point along the road is generally expressed as follows:

y
I= 2 D QW,f(X,) +v, (21)
j=1 4=1
where J denotes the number of different vehicle-types and n; is the number
of the jth vehicle-type. Also, X; is the distance between the ith vehicle and
the observation point, W, is the acoustic power generated by the ith vehicle
and @ is a directivity factor. Moreover, v denotes the intensity of the backgro-
und noige.
Let us introduce the following assumptions based on the actual situation
of traffic flow:
1) The total number of vehicles passing through the road segment under
consideration is governed by the following well-known Poisson distribution [3]:

3
P(n) =7 exp(—No) Ny, (22)

Hereupon, N, denotes the mean value of the total vehicle number.
2) The probability distribution funetion of the number of each vehlcle-type |
is given by the following multi-nomial distribution [4]:
1 |
P(n,y Ngy...y 0z|0n) = —————'.B}‘lﬂg‘z e 0. (23)
1

ny! myle.. ny!

In the above expression, 0,(j =1, 2,..., J) denotes the intermixture ratio
of the jth vehicle-type.
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- 3) The position of each vehicle occupies independently, X,;, and its proba-
bility distribution function is a well-known uniform distribution.

~ Based on these assumptios made with respect to the traffic flow and the
viously derived explicit expressions of the noise propagation characteristics
the city area, let us consider two important representative evaluation
ices L, and L,, related to L,, and Ly, among several evaluation indices of
environmental noise. Since it is well-known that L, is closely related to
the averaged noise intensity 2,, the first evaluation index is adopted as follows:

A L, =10log,o(4,/W,), (24)
where W, is equal to 10~'2W /m.

~ On the other hand, in relation to the fact that the widely used evaluation
index Ly, is defined as Lyp = Loq+2.56 0(0? being the variance of the noise
level fluctuation), the second evaluation index is adopted as follows:

Ly = 1010gy,(2,/W5), (25)

where 1, is the variance of the noise intensity fluctuation.

- Hereupon, it must be noticed that there is no redundancy of information
between 1, and 1;, in constant to the relation between Ly, and ¢ in the defini-
tion of L.

- Accordingly, in order to derive the unified expressions of the above two
indices L, and L,, the nth order cumulant of noise intensity fluctuation should
first be found in an analytical form. Thus, the moment generating function
g(s) of the noise intensity fluctuation I can be derived under the above three as-
sumptions made on the traffic flow and the concrete information on the noise
) opagation characteristics, as follows-

90 2 explep; = ({expls 3 zq RO S Jas e

i=1 i=

(26)
‘ere {-)* denotes an expectation operation with respect to the random varia-
le . Hereupon, paying one’s attention to the property of statistical indepen-
lency between the background noise and the road traffic noise, and a multi-
omial distribution on the number of each vehicle-type, equation (26) can
)¢ rewritten, as follows:

g(8)=< Z n,”n' H{Q}"jx

ny gt tng=n i=1

X Cexp [, @ W (X)), ]>m,,xl-j>n<exp(sv)>u

== <{2J: ﬂj <exp [SQ Wijf(Xﬁ) ]>Wq,x,-j}n>n <ex.p (3”)>u » (27)
i=1
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Furthermore, from the property of Poisson distribution on the total number
of vehicle, the moment generating function can be finally expressed as follows:

o0 J
1 n
9(6) = X' exp(~N) (g 370, Cexp[sQW,f (X,) 1 <0, x,} Cexp (oo,

n=0 j=1

0 J
3“
= exp[No DT = 37 0KQWy)" i, (N (X)) Xy] X exD(s0)3,.  (28)
n=1 j=1
Thus, the nth order cumulant 4, of the noise intensity fluctuation I can be
generally derived as follows:

J
Ry = No D 0LQW ) S, Ky 490y (29)

i=1
where y, denotes the nth order cumulant of only the background noise intensity
and K,, denotes the following nth order moment related to the noise propaga-
tion characteristics f(X;):

L
B 2 (M Xyhyx, = [ M(XyP(X,)dX,. (30)
-L

Substituting equation (29) into the definition of the two adopted evalua-
tion indices .I, and L,, one can as a result obtain the explicit expressions of

the two objective indices, as follows:

J
1
L, = 10108'10(W0‘ {N 0 Z 91<QW¢'1> W‘j<f (Xﬂ»xu +’P1}) ’ (31)

J
T
Ly = 1010g10(ﬁ'— {No E ﬂj<Qz ?1>W~:j<f2(xﬁ)>xij +V’2})' ) (32)
0 o

From the analytical expressions shown in equations (31) and (32), and the
explicit expressions of noise propagation characteristics, one can evaluate ai
actual noise environment in the city area by using information on the traffi
flow and the geometrical and acoustical parameters of the circumstances.

4. Experimental considerations

In this section, paying special attention to the urban noise environment wit
a straight road, the validity of the proposed theoretical results was confirme
experimentally by use of the digital simulation technique, in view of the arbi-
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riness of the fluctuating patterns and the complicated situation of the noise
henomena. Let us consider a straight road with building rows along each side
the road, as shown in Fig. 4. The observation point is placed on the sidewalk
it the distance a(0 < a < L,/2). The passing vehicles in the segment [ —L, L]
the road are considered, under the following assumptions:

L L

o}
-
|
|

o=
|
5
|

Fig. 4. Straight road model

1) Vehicles passing in the road are composed of two vehicle-types, a light
hicle-type and a heavy vehicle-type, with J = 2. The number n; of passing
ehicles of the jth vehicle-type is generated by use of random numbers of a multi-
fu: ial distribution with the intermixture ratios of the jth vehicle-type:
h = 0.8 and 6, = 0.2. .

- 2) Each vehicle in the same vehicle-type generates a constant acoustic
ower. As is well-known, the ratio of two acoustic powers generated by a heavy
ehicle-type and a light vehicle-type is ten to one, according to an empirical

i ]

alue recommended by the Acoustical Society of Japan.
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lig. 5. A comparison between theoretical curves and simulation experiments with respect
0 L,, in the case of E(§) = 0.61. The experimentally sampled points are marked by -, and
he theoretically predicted curves are respectively shown as —— (result by use of Sfol®));
————— (result by use of f, (#)); (result by use of f;())
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In order to show the difference between an urban noise environment and
a rural noise one, the difference between the characteristic indices in these two
typical environments was considered. Also, for the purpose of unifying the ex-
perimental situation between the road width L, and the distance e, the ratio
L,la was employed for the horizontal axis in each figure.

&~
T

W

£ "'a ""r (I

L

N

20 25 J0ullida

0

Fig. 6. A comparison between theoretical curves and simulation experiments with respect
to L, in the case of B(&) = 0.37. The experimentally sampled points are marked by -, and
the theoretically predicted curves are respectively shown as (result by use of f,(z));
————— (result by use of f; (#)); — — —— (result by use of f,(x))

&

10 log, (M, / N, lp. !
W

N

L

L,

~

20 25 30 L./a

Tig. 7. A comparison between theoretical curves and simulation experiments with respect

to Ly, in the case of R(&) = 0.61. The experimentally sampled points are marked by -, and

the theoretically predicted curves are respectively shown as —— (result by use of f(z));
————— (result by use of f, (x)); (result by use of f,(x))
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Fig. 5 shows a comparison between the experimental points sampled by the
digital simulation technique and three different theoretical curves for L,
calculated by using the most precise expression of the propagation chamcte-
ristics, equation (10), and other approximate expressions of them, equations (11)
and (12). In Fig. 5, since the averaged value of reflection coefficients in the
urban area is considered as about 0.6-0.7, supported by its empirical value,
a value of ¢ = 0.5 was chosen, corresponding to this reflection coetficient,
E(§) = 0.61. In the case when the surrounding buildings have relatively high
absorptive surfaces of R(£) = 0.37, corresponding to ¢ = 1.0 in equation (8),
the predicted results are shown in Fig. 6. Moreover, the predicted results for
the evaluation index I, are shown in Figs. 7 and 8 with respect to I(€) = 0,61
and R(£) = 0.37, respectively. From these figures, it is reasonable to say that
the values predicted by use of the most precise expression fo(z) of the noise

~
T

L, 210log,, (N, /Ny 1,. )
v 15
—

o

25 30 Ly/a

Fig. 8. A comparison between theoretical curves and simulation experiments with respect;

to Ly, in the case of K (£) = 0.37. The experimentally sampled points are marked by -, and

the theorefically predicted curves are respectively shown as (result by use of f,(x));
————— (result by use of f, ()); (result by use of f,(x))
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propagation characteristics were always in good agreement with the experimen-
tally sampled points. Furthermore, if the approximate expressions f,(#) and
fa(@) for practical use are suitably used, according to the actual situation of
building surfaces, these expressions show good performance in evaluating the
noise propagation characteristics in the city area.

5. Conclusion

In this paper, a fundamental prediction theory of the environmental noise
in the city area was derived by use of the image method approach. That is, by
using two factors of the spatial attenuation of noise waves and the acoustical
absorption property of building surfaces, analytical expressions of the noise
propagation characteristics for the typical urban noise environment were deri-
ved Next, giving consideration to the additive property of noise energy, unified
expressions of two actual noise evaluation indices, L, and L,, closely related
to L., and Lyp, were found as the representative statistics of the street noise
environment. Finally, the validity of the proposed theory was experimentally
confirmed by use of the digital simulation technique, since this kind of research
is at an early stage of theoretical study.

As this present trial was intented to show only the fundamental treatment
of the road traffic noise problem, especially from the methodological viewpoint,
then our experimental confirmation was restricted to digital simulation only
for several idealized cases. There remain other further problems of how to apply
this theoretical method to various kinds of actual situations of environmental
noise in the city area.
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To date, many theoretical methods for predicting the statistics of road traffic
noise have been proposed involving the introduction of vehicle distribution
models, such as an equally spaced model, an exponentially distributed model,
or an Erlang distribution type model. In such cases, very often, the sound pro-
pagation characteristic was first restricted to an idealized case like a free sound
field, and then sometimes extended to an arbitrary sound propagation environ-
ment. Needless to say, however, it was too difficult to predict systematically
the probability distribution of road traffic noise fluctuation at an observation
point under the actual sound propagation environment with the complex dif-
fraction and/or attenuation effects.

Thus, this paper is devoted above all to consideration of a practical proba-
bilistic method of prediction of the statisties of road traffic noise by use of a fil-
tered Poisson process model with a simplified elementary time pattern.

The effectiveness of the proposed simple method is experimentally verified
too, by applying it to the actual road traffic noise data observed in a large city.
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1. Introduction

When the problem of statistical prediction of road traffic noise is theoretically
considered, it is essentially important to pay our attention to the actual situ-
ation of road traffic flow and its surrounding sound propagation characteristic.
The former characteristic can be grasped rather easily as several types of statis-
tical traffic flow models, such as an exponentially distributed vehicle model,
an Erlang or a gamma headway distribution type model, ete. [2, 4, 6, 7, 11].
On the other hand, it is very difficult to identify the actual system characte-
ristic of the surrounding sound propagation environment with the gound dif-
fraction and for attenuation effects. In fact, in most of the previous papers, the
sound propagation characteristic was restricted to an idealized case like a free
sound field.

For purpose of generalizing these theoretical studies, several kinds of predic-
tion approaches, applicable to an arbitrary sound propagation environment,
have been proposed by introducing the well-known filtered Poisson process
model and the Stratonovich’s random point system model, based on the energy
composition of component elementary time patterns [8, 9, 12]. Tt is essentially
too difficult to predict the probability distribution of the road traffic noise
fluctuation under an actual sound field, owing to the difficulty of identifying
the surrounding sound propagation environment.

From the above practical points of view, in this paper, a practical method
of prediction of the level probability distribution form of the road traffic noise
is theoretically proposed by use of the filtered Poisson process model with a sim-
plified elementary time pattern. The effectiveness of the present prediction
theory is experimentally confirmed too, by applying it to the actual data of
road traffic noise level fluctuation observed in a large city. The experimental
results show fair agreement with the theory, in spite the of introduction of an
extremely practical approximation of the elementary time pattern.

2. Theoretical considerations

2.1. Cumulant statistics of sound intensity fluctuation

In the problems of evaluation and /or regulation of road traffic noise, the
statistics such as L, sound levels (like median, Lyand Ly,), defined as a (100 —X)
percentage point of the level probability distribution, as well as the lower order
statistics like L,,, are very often used. Accordingly, it is first fundamental to
find an explicit expression for the noise level distribution function. In this
section, let us consider the relationship between the elementary time pattern
due to one vehicle passing and the various eumulant statistics of the total
sound intensity fluctuation due to many vchicles passing.
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Now, let us consider the road traffic noise shown in Fig. 1, and introduce
the following assumptions [7]:

1) the road considered here has J lanes of an arbitrary length of straight or
curved lines;

2) the traffic on the jth lane flows with a constant speed ;3

J th lane

L i ~~ j th lane

2 nd lane
1 st lane

//f//

[
///

e observation point

Fig. 1. Traffic flow of random point sources on a multi-lane road 0, e, [1, A — vehicle
types

3) the traffic flowing on the jth lane is formed by A; different types of
vehicles;

4) the average number of vehicles flowing on the jth lane is N;
per unit time interval, where the number of the ith type of vehicles is
le(l =1,2,..., Aj);

B) my;is a random variable expressing the number of vehicles in the arbitrary
line segment [ —1I;, I;] of the jth lane, and its probability function is of the
usually used Poisson distribution type, i.e.

1 4 2L
P(ny) AT exp( _NOj)NOZ"‘f! (No = j); (1)
! ;
6) the probability that n; vehicles of the ith type appear in the above n
vehicles is governed by the following multi-nomial distribution:
"y

P(”jl’ %12, ey njAj]nj) =

(o Mia 4 A
;O L. 0k

=] !
Ny ! Myl !

e
(é n; = n; for all j),

i
where 6; = N, /N, ,(Zﬂﬂ =1 for all j) denotes the mixture ratio of the Ath type
=1

(2)

of vehicles in the jth lane of road;
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7) the sound intensity fluctuation emitted from each source is statistically
uncorrelated with that from every other source.

Now, let us introduce the filtered Poisson process as one of the stochastic
time series models for the sound intensity wave, B;(t), at an observation point,
due to the traffic flowing only on the jth lane, as follows:

4 el
E;(1) =2 Y, Z wja (t—1), (3)
i=1 i=1

where the sound intensity, F;(t), is assumed to be affected only by the ele-
mentary time pattern appearing in the time interval [t—T;, t+T;] (T 2 L [v;,
where L; is an arbitrary constant value; see Fig. 1). Each non-negative indepen-
dent random variable {¥;;} (A =1, 2,..., 4;57 =1, 2,..., J), reflects the ran-
dom peak value of the sound intensity waveform in the case when the ith type
vehicle flows on the jth lane, which can have an arbitrary type probability
distribution form, and each w,(t—t;) denotes, respectively, an elementary time
pattern of sound intensity occurring at time ¢; at an observation point, which
is standardized so that the maximum value of the elementary time pattern is
equal to one. Furthermore, {t;} are mutually independent random time points
with the uniform distribution function P(t;) = 1/21} (for all ¢).
The moment generating function of E;(t) is given as follows:

: ; A4 3
my(®) 2 (expl0B, ()] = ({{exp{® Z ¥, g,‘ D=1} Futingang) iy

A4
= << 2 {exp {(p Yﬁ Wy (t "'ti)}>,;;;J.-fﬂﬂﬂ.ﬂj>ﬂﬁlﬂj>nj’ (4)

A=l

where {-), denotes an averaging operation with respect to its subindex, u, and
{*Dup @ conditional averaging operation with respect to « when v is set at a con-
stant value,

By using equation (2), the following expression can be easily derived:

|
Y n.
<<2‘1 exp {@ le wjﬂ. (t e tt') }> Yj;ktflnjx,ﬂj>ﬂj1|nj

A=l

njl
5 Z My iggd e gy ! [6;: <exp {P Yy 0;(t —1) ) v, ty1m, I X
ﬂjl'ﬂ'jz"“'"’jij ¢

X [0;4, <exp {® YjAj @;4,(t —1;) Pr; Al,-.iilni]"i 4

4
= [2 0;, {exp {@ Y05 (t —ﬁ)})rjm{]nj- (8)

A=l
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Thus, using equation (1), the moment generating function can be explicitly
derived as follows:

i § n
my(®) = D' exp(—N,)[¥ U,Z RCETC ATMCEA) N

j=0 Ch A=1

= ex.P[Non 1<exp {@Yj}'mjl(t-' t‘.)}>Yjﬂ.’t'i '_-NDJ]

A=1

= exP[Z—”‘ o {Z Ny; 0, <le>Y 1(“’5;(‘ A }] (6)

m=1

Using the well-known relationship between the moment generating function
m(P), and the cumulant statistics, g, (m =1, 2...) [L];lnm(®) = 3 &™y,, /m!,
m=1

the mth order cumulant of the sound intensity fluctuation E;(t) can be directly
derived as follows:

%]
iy = D, oD TyCaih(t—~)y,
A=1
/l 1 Tj 4
= Z Ny T T f o (dr. (7
A=1 Tj

J
Thus, the mth cumulant of the total sound intensity E(f) = Z‘E,(t), due to

i=
the traffic flowing on a road having J lanes of infinite length (Lj—e-oo for all j),
can be easily obtained as:

J 4
it = Z ymBy = 3 2 Ny (XD f i (7)dr, (8)
P77 =1 i=
where
VY 1
le == llm e .N{,jﬁﬂ = Nj BjA (9)
Tj—boo 21‘_{

is the average number of the Ath type vehicles tlowing on the jth lane per unit
time interval (see assumption (4) and equation (1)).

2.2 Cumulant statistics of sound level fluctuation

The moment generating function of the sound level fluctuation defined by

L = MiIn(E/E,) (M - % y By = 10—“W1m'), (10)
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can be obtained as follows:

3 B oM

mz(P) = {exp(PL))y, =<(1,—) > v (11)
0 B

Using the previous relationship between the moment generating function

and the cumulant statistics, and letting ® M = m in equation (11), the following

equality can be obtained:

[}

1 [(m\
Z?F(Tif) 2 = In(E™ —mInE, (m =1, 2...), (12)

i=1
here, y;; denotes the ith order cumulant of the sound level L.
Equation (12) can be concretely written as

(13)

% 30 122 X~k A" - B9 Y
In(E)—~InE, =EX1L+2—!‘E mﬁ-aﬂ xu.+ﬁ I Tty

g \3 1 /{2 ¥ PRt
TH. ZzL"‘ﬁm Z3L+"1TE 7% A uE TR

1 3

In{E*) —2In K, o fs —2—‘—( —

R St A L P BT JolB Y

n{E") n u—MhL o\ X2 st \r XsL o\ XaL T ey
4

2
3

In(E* —4InE AV —I—ul———2 +—}—— —4—3 +i- i—‘ +

iy = Mle o1 \ar Xor 31\ XsL v\ or Xap T oo
By solving these linear simultaneous equations, the cumulant statistics

yop(n =1, 2,...) of sound level can be obtained from the statistical informa-

tion ¢Z"» on the moment statistics of sound intensity. Furthermore, as is well-

known, these moment statistics (E™) of sound intensity can be easily calculated

from the eumulant statistics y,z f sound intensity as follows:

By = gy T = pp+<E, (B = tap+3<H) B —2(E),

14
(B = gum HACE) (B +3C) —19CH} (B +6CBS, ccve

2.9. A simplified expression of sound level distribution for practical use

Tn this section, in view of the establishment of a practical evaluation method,
a simplified expression of the probability distribution is first introduced, as
follows (its theoretical background is shown in [10]):

(L ""7511!:)2

P(L) = >
2L

exp { — } (Gaussian distribution). (15)

27Xy,




ROAD TRAFFIC NOISE 81

Accordmgly, it is sufficient to solve only two lower order cumulants y,,
‘and %2z, in equation (13).

2.4. A simplification of the elementary time pattern

In the practical evaluation procedure, the following points must be noticed:
- 1) In order to calculate conecretely y,z(m =1, 2,...) by use of equation
(8), it is first necessary to obtain the statistical or deterministic information
on Ny, ¥, and o (A =1, 2,..., 4;;§ =1, 2,..., J). As is mentioned in the
introduction, the statistical properties of N;, and ¥ can be grasped rather
easily from the usual theoretical and/or experimental considerations. On the
contrary, it is not so easy to systematically evaluate wj;(v) under an actual
sound propagation environment.

2) It is not necessary to estimate wj;(7) itself accurately, but it is quite

‘enough to obtain only the whole value of the definite integral f wj;(t)dr, for

the purpose of determlmng Ami(m = 17 2;...). Moreover, only the total sum
for each cumulant statistics in each lane and vehicle type case is useful for the
‘above probabilistic evaluation. That is, the values of the cumulant statistics
of sound intensity, y,z, are not influenced sensitively by the instantaneous
‘waveform itself of w;(z), owing to the above smoothing operation effect.

- Thus, the probabilistic evaluation index like L, for the sound level fluctua-
tion, is not influenced sensitively by the instantaneous waveform of the indivi-
dual time pattern wj;(7). Based on this fundamental viewpoint, it is possible
to find the reason why the elementary time pattern can be extremely simplified.
First, let us consider the standard case when the same type vehicles flow on
a single lane road (J = A = 1) under a free sound field. At this time, ,,; can
be exactly expressed as follows (see equation (8)):

1
o = Nor TR f (o) = NuC¥D) [ o e

ki3

u(yfi "'/_E‘Anu (16)
(2m —3)!! 17
W (e =B &)

vhere f is a certain constant value and ()!! is defined as

C(@2m)!! =2m(2m—2)... 4-2

(2m—1)!! = (2m—1) (2m—3)...5-3°1,

ol =(—-1)l! =1, (18)

~— Archives of Acoustics 1/85
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Hereupon, let us consider an extremely simplified case when this original
elementary waveform on dB scale is approximated by a triangular wave-
form, as shown in Fig. 2, under the condition of equivalence of the average
sound intensity. That is, the mth order cuamulant x,,z(4) of a triangular wave-

ary waveform and its simplified triangular

Fig. 2. Relationship between an original element
, simplified triangular time pat-

time pattern for sound level. Original waveform: —— ——
tern: ——

form corresponding to z,z, can be easily derived under the condition x,z(4)

= ymy a8 follows:
- . e
s = Nu¥> [ exp[ -m 2y ae

e . ‘
= NI B = 3= s (19)
with

g (20)
m

“If the original elementary waveform is approximated in trial by a square

waveform, the corresponding z,z( 1) can be directly derived as follows:
BT a
Tox( D) = NuC¥D [ e = NI~ Oy Cm =1 (O
—a/2VE .

Table 1 shows a comparison between 4,, and B, for several values of #
(of course, fmz(4) g if B,~4,,). It is very interesting to note that the value
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Table 1. A comparison between 4,, and B,, for several
values of m

m l B 1‘\ B ‘ Om
1 1.000 1.000 1.0
2 | 0.500 (= 1/2) 0.500 (= 1/2) 1.0
3 | 0375 (= 3/8) 0.333 (= 3/9) 1.0
4| 0313 (= 5/16) 0.250 (= 4/16) 1.0
5| 0.273 (= 35/128) | 0.200 (= 25/125) | 1.0

0f 7,5z (i.. the variance of sound intensity) is equal to that of %2z(4). From this
le, it is obvious that y,,,(m = 1-5) for an original waveform can be succes-
y approximated by x,,;(4) for a simplified triangular waveform and that
it cannot be approximated by y,.([J) for a simplified square waveform.

3. Experimental considerations

3.1 Outline of experiment

~ The actual location of the road, bank and two observation points is shown
in Fig. 3. The road considered here has two lanes. The received random noise
luctuation waves at the two observation points 0, and 0, were coincidently put
on record by use of a data recorder. Table 2 gives the observed values of road
raffic flow in every observation time interval.

22.0m 13.3m

70m
0,

]

Fig. 3. Actual location of the road with a bank and the two observation points

Table 2. Observed values of road traffic flow (vehicles/10.5 min.)

! Uplane(j=1) Down lane (j = 2)
Starting time :
point of have light heavy light
observation vehicle vehicle vehicle vehicle
(4= 1) (A= 2) (A=1) (1= 2)
13.10 PM 16 21 12 9
13.30 13 13 13 11
14.00 7 13 12 8
14.30 8 16 12 £
15.00 12 8 8 12
Average 11.2 14.2 11.4 9.4
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3.2. Results of experiments

a) Noise level probability distribution at the observation point Oy

The sound propagation environment between an individual vehicle on the
road and the observation point 0, can be regarded as a free sound field. At this
time, the time pattern of sound intensity, w;;(7), in equation (8) can be given
as follows (A =1, 2; j =1, 2; see Table 2):

1
; +ﬁﬂ- i

Table 3 shows conerete values of §;; estimated experimentally by use of the
actual time pattern observed on a level recorder. The relationship between the

B (22)

Table 3. Estimated value of fu(j =1, 2;

i=1,2)
heavy vehicle
Up lane (A=1) By = 1.55
Ge=1) light vehicle
(A= 2) Brg = 1.23
heavy vehicle
Down lane (A=1) Boy = 18.40
(=2 light vehicle
(A= 2) Psp = 17.68

original waveform of sound level under a free sound field and its simplified
triangular time pattern is given in Fig. 2.

Fig. 4 gives a comparison between theory and experiment for the cumulative
distribution function (abbr. c.d.f.) of the noise level fluctuation. Hereupoxn
dour lower order cumulants (y.z, Xams sz 0d Z4z) Were first calculated by intro-
fucing simplified time patterns for every lane and vehicle type case, and then
only two parameters zz, and xr, in equation (15) were determined by solvin
the simultaneous equations (cf. equations (13)). Since the theoretical ¢.d.f. curve
predicted from an original elementary waveform under a free sound field (cf
equation (22)) agrees with that from a simplified triangular waveform, this
curve was omitted here. As is directly found in this figure, the effect of the back
ground noise on the resultant traffic noise level distribution form cannot
neglected in a specific case with a light traffic flow (cf. Table 2). In order o
increase the accuracy of prediction of the noise level probability distribution
the above background noise generated independently by the other differen
noise sources should be taken into consideration for the above noise evaluatio

method.
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10

L

2 fpPrL)dL)
o
(8, ]

QrL) (

0 1 | 1
530 655 78.0 L{dBI 905

Fig. 4. A comparison between the theoretically predicted curve and the experimentally

sampled points for the cumulative noise level distribution at the observation point 0, (ef.

Fig. 3). The experimentally sampled points are marked by - and the theoretically predicted
curve is shown by ——

The following two approaches can be especially introduced as an attempt
to improve the above evaluation procedure:

1) the first approach is an orthodox method based on the convolution of the
ntegral of the probability density funetion (abbr. p.d.f):

10 (L—120)/10

Pp(B) = [ PR(E—§)Py(§dé, Qn(I)= [ Pn(B)aB. (23)
0

-0

Here, Pp(%), Pg(*) and P, (*) are, respectively, the p.d.f. of the road traffic
‘noise intensity, that of the background noise intensity and that of the total
noise intensity. The above equation is derived by using the additive property
of two statistically independent sound intensities.

Fig. 5 shows a comparison between theory and experiment in the form of
‘the sound level distribution. The theoretically predicted curve was calculated
by using equation (23) (the lognormal distribution was employed as Py(*) in
‘equation (23); see equation (15)). It is fairly troublesome to obtain the finite
Jintegral of equation (23), even if this method is quite orthodox.

2) the second approach is a practical method to avoid the above trouble of
caleulating the finite integral.

If the noise level probability distribution restricted only in the level range
‘ [Ly, oo] (L, — an arbitrary constant value) is considered, the following expres-
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T I !
10 1
I.'.
QfL)
..
..
..
L]
L]
.
L]
05t Ss i
.
L]
L]
L)
0 & 1 1 1
53.0 65.5 780 L[dB] 905

Fig. 5. A comparison between the theoretically predicted curve and the experimentally

sampled points for the cumulative noise level distribution at the observation point 0,. The

experimentally sampled points are marked by - and the theoretical curve predicted by use
of equation (23) is shown by —

gion derived on the basis of the fundamental property of a conditional proba-

bility must be employed:

Qr (L) —Qx(Lo)
1—Q7 (L)

Here, Qrx (L,) denotes the experimental e.d.f at a level point L, and @r (%)
is defined as

Qr2(L) = Qux (L) + [1 —Qux(Lo) ] (L= Ly).  (24)

Qr(x) = [P(I)AL (+ =L or Ly). (25)

The e¢.d.f. curve predicted theoretically by use of equations (24), (15) and (25)
and the experimentally sampled points are compared in Fig. 6.

From Figs. 5 and 6, it is obvious that the above two evaluation methods
show a fairly good agreement with the experimental results.

b) Noise level probability distribution at the observation point O,
The elementary time pattern of sound intensity, w;(r), at the observation
point 0, can be approximated as follows:

1 aj + (v;7)’

10444t 26
1+ﬁ,172 b?"’"(‘vj'r)z 4 ( )

w;;(7) =
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10

Q,,(L)

05

1 1 1

0
57.0 69.5 82.0 L{dB1 945

Fig. 6. A comparison between the theoretically predicted curve and the experimentally

sampled points for the cumulative noise level distribution at the observation point O,. The

experimentally sampled points are marked by - and the theoretical curve predicted by use
of equations (24) and (15) is shown by ——

where the values of f;(j =1, 2; A = 1, 2) are given in Table 3. Furthermore,
a; and b; are the shortest distances between the jth lane in the road and the
observation points 0, and 0, respectively (see Fig. 7), and AL(v; f,) denotes
the sound attenuation which can be easily calculated by use of an acoustical
evaluation chart of the barrier, based on a value of the Fresnel number N (T35 fo)
[8;6]:

NJ(TF fo) = 20;(7)fq/e. (27)
Here, f, denotes the representative frequency in the power spectrum of an

‘actual road traffic noise and ¢ is the speed of sound. Furthermore, §;(7) is the

difference ((ISTP +ﬁ2) —SE) of the sound propagation path length which can
be determined by using the location of a vehicle on the jth lane at the time =
and the observation point 0,. Fig. 8 shows the normalized elementary time

SIS & 90

Fig. 7. Location of the jth lane and the two observation points 0, and 0,
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w,, (T)

05

0

Fig. 8. Normalized time patterns wy (z) (j = 1, 2) at the representative frequency point

Jo = 500, 700 and 1000 Hz. The respective time patterns are shown by: — — — — f, =

500, Jom= 005 . fo = 1000, and a typical elementary time pattern in the

idealized case with a free sound field is simultaneously shown by . @) wu(r) (=1,
A=1);b) oy (=2 i=1)

.

patterns w;,(7) (j = 1, 2; i.e. heavy vehicle) at f, = 500, 700 and 1000 Hz, cal-
culated from equation (26). The normalized elementary time pattern in an idea-
lized case with free sound field (cf. equation (22)) is simultaneously shown in
this figure. |

Let us predict theoretically the traffic noise level probability distribution
form by using these elementary time patterns. It is not so easy, however, to
determine the above elementary time pattern by use of equation (26). Accor-
dingly, it is an effective way to introduce an extremely simplified type of ele-
mentary time pattern. That is, a triangular type elementary waveform was
introduced as a simplified time pattern for the sound level fluctuation at the
observation point 0,, which was determined especially by using two values;
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10 log,o[w;(0)/E,] and 10 logyo[ws(te) [By] (j=1,2; A =1,2). Hereupon,
@;,(0) and w;,(f,) can be calculated from equation (26), and an appropriate value
of ¢, is chosen, as shown in Fig. 2. y

A comparison between the experimentally sampled points and the curve
predicted theoretically for the c.d.f. of road traffic noise by use of this simplified
elementary time pattern is shown in Fig. 9. Hereupon, the theoretical curve

10

QL)

05

0 1 ! 1
43.0 555 68.0 L [dB] 805

Fig. 9. A comparison between the theoretically predicted curve and the experimentally

sampled points for the cumulative noise level distribution at the observation point O, (ef.

Fig. 3). The experimentally sampled points are marked by -. The theoretical curve predicted

by use of a simplified triangular type of elementary time pattern is shown by —— . —

and that predicted by use of an accurate elementary time pattern (see equation (26)) is
shown by ——

was calculated from equations (15) and (24) (L, = 43 dB). The theoretical curve
calculated by using equation (26) is simultaneously shown in this figure. From
this figure, it is obvious that its prediction accuracy can be hopefully increased
by improving the degree of the approximation of the elementary time pattern.
But the prediction method based on a simplified triangular type elementary time
pattern, considered here, is still an effective way for the practical usage.

4. Conclusion

In this paper, especially from the practical point of view of evaluation of the
actual sound propagation environment, a method of prediction of the level
p.d.f. for the actualroad trafficno ise fluctuation was first proposed in a hybrid form
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of theory and experiment by use of a filtered Poisson process model with
a simplified elementary time pattern of triangular type. Then, the effectiveness
of the proposed evaluation method was experimentally confirmed by applying
it to the actual road traffic noise data observed in a large city. Such a practical
prediction method based on a simplified triangular type elementary time pat-
tern is still at an early stage of study. Therefore, the present study was mainly
focussed on its methodological viewpoint. There stillremain many types of future
problems, such as experimental confirmation of the effectiveness of the method
proposed, by applying it to many other actual situations of road traffic noise
data under a more complicated sound propagation environment, the optimum
determination of the simplified elementary time pattern in a systematic rela-
tion to the actual noise evaluation and then the specific study of the relation-
ship between the resultant prediction accuracy for the noise evaluation index
and the internal error caused by the practical use of a slmphﬁed elementary
time pattern.
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IX CONFERENCE ON THE UTILIZATION OF ULTRASONIC METHODS FOR STUDYING
THE PROPERTIES OF CONDENSED M ATTER
Zilina (Czechoslovakia), 23-25 August, 1984

The Ninth Conference on the Utilization of Ultrasonic Methods for Studying ‘the Pro-
perties of Condensed Matter was held on 23-25 August, 1984 in Zilina (Czechoslovakia). The
Conference was sponsored by the Physics Section of the Slovak Mathematicians and Physi-
cists Association, the Acoustic Committee (Ultrasonics Subcommision) of the Gzechoslovak
Academy of Sciences, and organized by the Physics Department of the Technical University
of Advanced Transport and Communication Engineering in Zilina, and the Physics Institute
of the Slovak Academy of Sciences in Bratislava. RNDr. 8. Korwfx, (Sc. was the chairman
of the Organizing Committee of the Conference.

Three general lectures were delivered:

W. ArNoLp, The generation of ultrasound by short laser pulses and its applications in physics
and NDT.

H. J. Fréuvicn, Surface acoustic waves in lithiwm niobate-physical properties and technical
applications.

G. BoreE, U. STRAUBE, Ultrasonic investigation of structural phase transitions.

The following communications were delivered:

P. SLADKY, Acousiooptic and oploacoustic effects in solids.

W. ArNorp, P. DoussiNgaUu, A. LEVELUT, S. Zroukiewicz, Hlastic low-energy excilations
in LiTa0,.

P. Ko#riaL, Study of the stability of electrographic layers by using of SAW.

J. LEwaNDOWSKI, Determination of metal texture from acoustic wave measurements.

J. Lewanpowskl, Velocity of propagation and attenuation of acoustic waves in heterogeneous
viscoelastic bodies.

P. KodriaL, J. DurSEE, Ulirasonio investigation of Se-Te alloys.

H. Gawpa, Determination of fibres crystalline of plants Jfrom ultrasonic measurements.

V. N. HuDAIRERDYEY, P. K. HABIBULLAEY, S. A. Buruowov, E. K, RezNIK, I, I. SHINDER,
Investigation of particularities found out in intermolecular interaction for glycerine ethers
and esters by acoustic methods.

8. Ernst, K. BEBEK, E. Zorpsskr, E. SoczKIEWICZ, Rheological and volume effects in highly
viscous polyhydrozyalcohols.

J. DomiNEc, Ulirasonic attenuation in semiconductive Bi-Sb alloys.

J. SLaBEYCIUS, P. K0STIAL, The investigation of the relawation spectrum of amorphous layers
by ultrasonic methods.

M. KoiEx, J. ZELENEA, DC electric field influence on SAW propagation at piezoelectric media.

H. J. FréuricH, SAW propagation in LiNbOg in biasing electric field.

K. Cirovi, I. CAe, The optical investigation of the 50-MHe SAW field.
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D. CrerLys, A. DoMarkAS, I. KRAUJALINEE, R. RIMEIKA, Acoustic investigation of Ti-diffused
LiNbOg surface.

M. KoSux, The interdigital SAW transducers analysis with use of a computer.

M. WEiNacHT, R. WoBst, SAW properties of layered systems.

G. SorGE, J. JanicH, Ulirasonic and elastic resonance methods for investigation of phase
transitions in NaHg(SeOs),.

D. Vaipa, J. Kovir, J. Kujst, B. Bezina, Attenuation of elasite waves in TGS crystals
dopped by a-alanine near the Curie point.

V. PerNikov, The possibilities of active nonlinear spectroscopy of inhomogeneous condensed
media.

P. HeEDiE, C. Musi, 8. Kounixk, I. CAp, Velocity of ultrasonic waves in alkaline earth floride
and rare earth floride mixture crystal system.

Ya. M. Sorrer, The photodamping of dislocations in KOl single crystals.

V. I. MirGORODSKI, Propagation of acoustic solitari impulses at acoustoeleciric interaction.

8. E. Estrov, Nonlinear hysteresiable characteristics of hot electron system due to electron-optical
phonon and electron-eleciron interactions in semiconductors.

J. StELINA, J. BRACINE, Blectric field in the sample with the amplified acoustic fluz.
These papers will be published in Acta Physica Slovaca.
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