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THE ACOUSTIC FIELD ON THE AXIS OF A CIRCULAR CONE
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It was assumed in this paper that the sound source was placed on the
surface of an ideal rigid circular cone. The vibration velocity amplitude at the
gsource was constant. Solution of the wave equation in a system of spherical
coordinates, by using the Kontorovich-Lebedev transformation, gave the
acoustic potential. Expressions for the acoustic pressure on the axis of a circular
cone were derived, and these calculations were represented graphically.

Notation

a, b — radial coordinates of the sound source

¢ — sound velocity

Hff) — cylindrical Hankel function of the uth order, of the second kind

J, — cylindrical Bessel function of the uth order

k — wave number

p  — acoustic pressure

P, — Legendre function

T — coordinate in a spherical system

t — time

2 — coordinate in a Cartesian system

7, — normal component of the vibration velocity amplitude on the surface of the source
conical angle (measured from the axis 2 to the surface of the cone)
— angular coordinate in a spherical system

i — variable occurring in the Kontorovich-Lebedev transformation

— nth root of equation (20)

— density of the medium

acoustic potential

— angular frequency
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1. Introduction

Vibrating planar, eylindrical or spherical surfaces are among the most
frequent practical surface acoustic sources and the deeply investigated fields
radiated by these sources.
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There is less knowledge on the acoustic field distribution radiated by
sources with more complex geometry, e.g. vibrating spheroidal or conical
surfaces.

In paper [1] CARLISE considered a vibrating source element on a cone
as a system of pairs of point sources. On the basis of the results obtained, he
analysed the radiation conditions of a conical loudspeaker and gave experi-
mental results.

The problems of the acoustic field of a source placed on a cone, the lat-
ter being in an ideal rigid and planar baffle, were considered in the papers of
SLUSARENKO and DOBRUCKI [4, 14]. These authors, using the Rayleigh-Huygens
integral, derived an expression for the acoustic pressure distribution. However,
these results were approximate and can only be used in calculating pressures
at a large distance from the source for some conical angles.

In his paper [15] TYGIELSKI considered the problem of the acoustic field
of a source situated on the surface of an infinitely long, ideal rigid cone with
circular termination. He solved the inhomogeneous equation for a Green func-
tion in a system of spherical coordinates. Integrating the Green function over
the surface of the source, he obtained the acoustic potential. He also consi-
dered the case of the acoustic field at a large distance from the top of the cone.

The acoustic field of a point source close to an ideal rigid or an ideal com-
pliant cone was analysed in the papers by CARsLAW [3], FELSEN [5, 6] and
VAyYsLEYB [16].

The present paper considered the problem of the acoustic field of a source
gituated on the surface of an ideal rigid, infinitely long circular cone. It was
assumed that the normal component of the vibration velocity at the source
was constant. Solution of the wave equation in a system of spherical coordina-
tes, using the Kontorovich-Lebedev transformation, gave the acoustic poten-
tial. An expression was given for the acoustic pressure on the axis of the cone.
Assumption that the conical angle was =/2 led to formulae representing the
pressure on the axis of a source situated in an ideal rigid, planar baffle, which
are known from the literature. These calculations were represented graphically.

The expressions derived in this paper can be used to ealculate the acoustie
pressure at any distance from the source, with conical angles from 0 to .

2. Acoustic potential of the cone

On an ideal rigid, infinitely long conical baffle with a divergence angle #
there is a surface sound source (a<r <b, 0 < ¢ < 2x) with a uniform vibra-
tion velocity amplitude distribution (Fig.1). The top of the cone is at the
origin of the coordinate system. The radiation area is defined as follows:
0<7r<o0,0<i<f<rm 0<p<2n
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The acoustic potential for the time dependence of the exp (iwt) type satis-
fies the wave equation

B(r)+ 12D (r) =0, (1)

where r — the tracing vector of the observation point, ¥ = w/¢ — the wave
number. This equation is solved with the Neumann boundary condition. In

z

Fig. 1. The sound source on the surface of a revolution cone

view of the axial symmetry of the sound source, equatmn (1) can be written
in a system of spherical coordinates

ii(,,z ob(r, e)) L= ( g 220, 0)

r2 or ar r28inf 66, a0
It is considered in the above equation that the acoustic potential does
not depend on the angle variable . The Neumann boundary condition becomes
1 éd(r, 6)

r a0

In order to eliminate the variable r from equation (2), the following sub-
stitution can be used:

) +k2D(r, 6) =0. (2)

(3)

{fvn for the source,
0=p |0 beyond the source.

Dy (r, 0)
Vr
This substitution gives an equation in which the radial part of the Laplace

operator occurs in a cylindrical coordinate system. Use of the Kontorovich-
Lebedev transformation [9]

D(r, 0) = (4)

k
(0, ) = f%rm 00y )
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and consideration that the Hankel funection HE)(kr) satisfies the Bessel equation
[8,12] lead to the equation with one independent wvariable 6

1 2 (. 0¥(@,p), 1 1
Eﬂ'nﬂ%(sm6 20 ')+(P‘_§)(F+—2‘)'ﬂp(9:#)=0. (6)

The boundary condition (3), when considering transformation (5), be-
comes
¥ (0, u)

b
- s af Vi H (kry) dr,. (7

9=p
The solution of the Legendre equation (6), with the boundary condition

(7), is the function [7,12].

P,_y;(cosB)

dP‘, 12(C08 )

g

where P, _,, represents the Legendre function.
Using the inverse Kontorovich-Lebedev transformation [9]

¥(0, ) = f Vi (kro)dry, ®)

b
1 : .
Oo(r, 0) == [ mexp(—ipum)sin um? (0, ) HE (k) dp (9)

and from formula (4),
+io0o

P (cos 0)

D(r, 0) = —— f exp ( —ium)sin urH (kr Pura(0086)

: 4iVy ol il 2 E ( )dP#_,(z (cosf)

ap

b
X f VioH® (k) drodp.  (10)

In order to calculate the integral over the variable g, formula (10), represent-
ing the acoustic potential, can be changed to another form. From the expression
[8, 12]

exp (dum)d , (kry) —J _,(kry)

HD (kry) = = y (11)
18in pm
+ioo b
¥ P, ,(cosf) —
D(r,0) = ——— f H(z)kr—i————(fl/'rJ kr dr)d+
. 4‘/‘7" SR § = ( )E;a—lfz(COSﬁ) - . ,u( 0) Y 3
dap -
v i P, (cos 0)
+—= f exp(—i nH(z)—L(er _u(kr dr)d (12)
4[/?' i .Iu p( .Iu ) I dP'u e COSﬁ) 0 ,u ) 0 ﬂ!

dp
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where J, is a Bessel function of the nth order. A new variable, u = —, i8
introduced to the other of these integrals. From the relations for the Hankel
function [12] ,

H® (kr) = exp (ivr) H) (kr) (13)
and the Legendre function [7, 12]
P,_,;(cosl) = P_,_(cosb), ; (14)

+1ic0

[ mwexp(—ipm) B i)

—i0a

P,_,;(cosb)

b
aP, s (cosp) (af l/?"uJ_,,(kro)dro) du ;

ag
ook HO (Jor) =208 9) bl/_J k )-di’)d (15)
B -——:5[0 g ( Ir) dPy—][g(CDSﬁ) (! "o '( To) ATy | GV .

ap

The integral derived here has the same form as the first integral in formula
(12). Hence the acoustic potential of the source situated on the cone becomes

4100 b
P13 (08 0) —
( ) 1/2
f pHY (kr) d——h_ﬂg B ( af l/roJ#(kro)dﬂro) ds. .. (16)

% -

The integral from —ioco to +ioco can be calculated by using the method
for calculating contour integrals. To this end, the integration contour is comple-
mented with a semicircle with an infinitely long radius, situated to the right
of the imaginary axis. The integral over the semicircle is zero for r > b. This
can be shown by using the asymptotic representations for the Bessel [9] and
Legendre functions [3, 7]. For high values of u

b
2 1 [kr\" exp(2 kb \* ka \"
J, (kr) f Ve (ko) dr, ”E;("‘z_) —;}:T&f{l[bm(?) - am(?) ], (17)

Do

2Vr

D(r, 0) = —

r

b
s i bh\* W
J_, (kr) f Vol (kro)dr, NST;“ [bm (—) — (%) ], (18)

P, ,(cos0)
dP,_,;(cosp)
ag
where the sign (+) refers to this part of the right half-plane where Im(u) > 0;
the sign (—), to that with Im(u) < 0.

~%exp[iiau(ﬁ—9)], (19)



310 H. TYGIELSKI, W. RDZANEK

The subintegral function oceurring in formula (16) has its poles at points
where
fi‘}jy—l,’z(cosﬁ) 33
ag
The poles are single and oceur on the real axis [2, 3, 17]. Application of

residua theory to the integral over a closed contour [10] gives the acoustic
potential of the source situated on a cone, in the form of an infinite series,

(20)

o]

Wy T P, (cos O
D(r, 6) = ;} 2”’n+1)H»n+1;2(k7') m
ovof r—vy

b
Xf’/"_qun+1[2(k"o)d7’o (21)

for » > b. In this formula summation is carried out over all the positive roots
v, = ,—1/2 of equation (20).

' In order to obtain the potential for the region a > r, it is possible to use
formula (10), in which the Hankel function Hff’(kr) can be represented by
formula (11). Proceeding in an analogous way to the previous case, we obtain

+ioc0
Tty P, _ip(cosf) o)
@(r, 0) '"- oVr “;1; wd , (kr) dP-_—‘,,_m(GOBﬂ" (f Vr ol kro)d'-"o) du
ag
b
w P, (cosl e
0™ 2(21’ +1)Jn,§,”2( )mﬁ))— f I/Toﬂ,n_l_”z(ki"o)dro. (22)
n=0 e i b a
o |,

From formulae (21) and (22), the acoustic potential can be obtained for
the region a <r<b, :

Py, (cos0)
B(r, 6) = '/T 2(2""“) T
: vop

V:-ﬂn

x[ ®,a(r) f Vi, xn(kro)dro+d, 4ya(kr) f Vr HE H,z(kro)drﬂ]. (23)

In formulae (22) and (23) summation is also carried out over all the posi-
tive roots », = u,—1/2 of equation (20).
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3. Acoustic field on the axis of a cone

There is the following relationship between the pressure and the acoustic
potential @ for harmonic-vibrations [11, 17],

P = iwe?, (24)
where w — angular frequency, ¢ — density of the medium. In order to derive
expressions for the acoustic pressure of a source gituated on the cone, formulae
(21)—(23) should be multiplied by iwoe.

One of the quantities characterizing the acoustic field is the distribution
of the field on the main axis of the source. It is convenient to calculate the
acoustic field of a source situated on the cone on the axis z. Assuming that
0 =0 and considering that

P, (1) =1, (25)

the following expressions are derived for the acoustic pressure on the axis
of the cone,

(=]
WPV, 2v,+1

b
H!’i’+1]2(kz) f '/roJ”n-FIIZ(kTO) d?‘o (26)

2) = — =
PO = =V Lt P, (cosh)
vop —
for z> b,
WOV, T - 2y ==
p(2) = — 2&:/2 P, cosﬂ) [Hv 1p2(k2) f ‘/"onﬂ+1/2(k"o)d""o+
"o |, ‘

b
+irs) [ VRED br)an].  (27)

for a <z < b,
WOV, & 29741
ple) = — = :
9z & *P(cosp)
ovap

I, (2) f Vi () dr,  (28)

for a = 2.

Assumption in the above. formulae that f = 90° permits the acoustic
pressure on the axis of a circular ring situated in a planar, rigid baffle to be
obtained. For f = 90° the roots of equation (20) are [2,7,12]:

v, =20, n=20,1,2,... (29)
and
92n (n))?

*P (cos f) e
ovop ;:293._( ) (2n)! s
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Hence
) b
wov o An+1)@2n) ., —
p@) =08 3 B () [ Vs (brodr, (31
s n=0 i a
for z> b,

DU\ An+1)(2n)! o
LOBE N i (HW;J!()QI_)[Hgﬂﬂlz(kz)f}/roJZnH,z(kru)dr‘,-}-

b
i) [ Vil plhrgan] (62
for a <z <},

-] b
WOEV,T (4n+1)(2n)! —
pe) =220 M1y R S (k) [ VroBE i (bro)r,  (33)
2Vz ot 27" (nl) :

for a > 2.

In order to calculate the sums of series occurring in formulae (31)—(33),
it is possible to use an expansion of the function exp(—ikR)/R into a series
of Legendre polynomials and eylindrical functions [12],

o0

exp(—ikR) i
5 2Vrr, £

for r > r,, where R = V7*+r2—2rr,cosf. Assuming in the above formula
that = =/2 and taking into account the value of Legendre polynomials at
this point [7,12],

(20 +1) g2 (krg) HSLy (k) Py (cos 6)  (34)

o0

exp(—ikR) in (2n)! @
s 2 —_—_— k ) k 35
R 2I/EH Sl 2% (n!)* Sonsap(kro) Hanyypp(k1),  (35)

where B = Vr241rL.
Considering formula (35), expressions (31)—(33) can be written in the
form

=0

b

—ikR
p(2) = iwoev, f m{p(ﬂ#rodro. (36)
After integration we obtain
e e
P(2) = 2igonysin = (r,—r, exp[—%k(rﬁra)], (37)

where o = ke, r, = Va*+22, r, = Vb2+z2.
Expression (37) represents the acoustic pressure on the axis of a circular
ring with radii @ and b. Assumption that a = 0 gives a formula which defines
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the pressure distribution on the axis of the circular piston situated in a planar,
rigid baffle. An analogous formula was obtained in papers [11,13,17] by
using other methods.
When the observation point is at a large distance from the top of the cone
(kz » 1), for very low values of ka and kb (ka < kb < 1), from formula (26),
1000, exp( —ikz)

p(2) = 3 cotg- [(kb)2—(ka)2]ﬂ7_. (38)

It follows therefrom that as the divergence angle of a cone, f, increases
and as the distance of the observation point from the source increases, the
pressure amplitude decreases. With the above assumptions formula (38) is
valid for the whole variability interval of the angle 6. This source thus lacks
directionality.

Assumption that z = 0 in formula (28) gives the expression
kb —Fka ( : ka—l-kb')

ex —_—,

p{2) = 2¢chvocot§sin pl—1 2 (39)

which represents the acoustic pressure on the top of the cone.

4. Conclusion

The expressions derived in the present paper for the acoustic potential
and pressure are given in the form of infinite series. The series are divergent
the faster, the greater the difference is between the observation point and

el o

14 \
a=0
' \ kb=2
b X
- ls]
0.3\ b

0.6
\ p=i20°
G b \\ e ]
\ '6 MOD\ \“'—--___
e O [
0 1 2 3 4 5 6 7 8 kz

Fig. 2. The acoustic field on the axis of a circular cone. It is assumed that @ = 0, kb = 2



314 H. TYGIELSKI, W. RDZANEK

the radial coordinates of the source (a, b). In a case when the cone divergence
angle is 90° the expression is obtained for the acoustic pressure on the axis
of the circular ring, characterized by simple notation form.

On the basis of the results presented, numerical calculations were carried
out of the absolute value of the relative pressure (the ratio of the absolute
value of the pressure |p| and the self resistance of the medium, ge¢, and the
vibration velocity amplitude at the source, v,) on the axis of the cone, depending
on the parameter kz. It was assumed that a = 0, kb = 2, f = 90°, 120° and
140°. The tables of roots of equation (20), given in paper [2] were used
in the calculations. The behaviour of relative pressure changes is shown
in Fig. 2.

The expressions derived for the acoustic potential and pressure can be
used for calculations of the acoustic far field and acoustic impedance. These prob-
lems will be considered in another paper.
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SOUND TRANSMISSION THROUGH SLITS AND CIRCULAR APERTURES
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In this paper the sound transmission through slits and circular apertures
is examined. Approximate theoretical expressions for the transmission loss
are derived using simple energy balance considerations. Both resonant and
nonresonant transmissions are taken into account. Theoretical values of the
transmission loss are compared with measurements.

1. Introduction

The transmission of sound:through small.apertures (circular or narrow
glit-shaped) is of interest in many noise control problems and in particular
in architectural acoustics. Slits and apertures are found in most typical parti-
tions decreasing their sound insulation.

Theories for the transmission of sound through slits and circular aper-
tures have been advanced by several authors [1,2,3,4]. All these theories
in spite of their exact mathematical formulation are rather complicated to be
used in cases of practical interest.

The aim of this paper is to show that using simple energy balance equations
well known from S.E.A. (statistical energy analysis) approximate expressions
for the transmission loss of gmall apertures can be obtained. Comparison between
measurements and theoretical predictions by means of the obtained formulae
is found to be in good agreement for all partical cases.
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2. Theoretical transmission loss

We consider the transmission suite shown in Fig. 1. The coupling element
between the two rooms is a small aperture (slit or circular opening). The whole
system may be considered to consist of three coupled subsystems as shown
schematically in Fig. 2. Subsystems 1, 2 and 3 represent source room, aper-
ture and receiving room respectively.

/resmant transmission

‘ &
1 2 3

P
L = /T l

/_._ ‘r / 'f? pﬂi 5SS
&‘ nonrésonant 2
transmission

k=1l

-y

&
£o

Fig. 1. Transmission suite Fig. 2. Block diagram of power flow between
the three coupled systems

In case of acoustical excitation of the source room, the power transmitted
to the receiving room is made up of the contribution of nonresonant and reso-
nant transmission. The nonresonant transmission, represented by the power
flow P,; directly from system 1 to 3, is due to modes that are resonant outside
of the frequency band under consideration. In this situation, system 2 acts
only as a coupling element for the sound transmission between systems 1 and 3.
This forced power flow is responsible for the “mass law” transmission at low
frequencies. The resonant transmission, represented by the power flow P,,,
i.e. Py, is due to resonant modes and is dominant in higher frequencies as the
wavelength of sound becomes comparable to the-depth of the aperture.

a) Nonresonant transmission

Referring to Fig. 1 and considering that the dimensions of the opening
are small compared to the wavelength, there will be a sound pressure doubling
at the face §, of the opening due to sound reflection. If Z, = Ry+joM, is
the acoustic impedance of the opening and M the radiation mass loading due
to its finite depth, the sound power transmitted through the opening can be
expressed as

452.83

be =m ) (1)

where p? is the mean square pressure in the source room. For low frequencies
the radiation resistance R, in the denominator can be reglected so that equa-
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tion (1) simplifies into:
417°8;
Pyp=—F——R,. '
P i (2)
In case of a circular aperture of a radius ¢ the radiation resistance at low
frequencies is [5]:

a’k2 8, '
B, = ge——, (3)
where k = w/e the corresponding wave number.
The total effective mass 2M 4 M can be expressed as [6]:
B
M+ =2, (4)
8, _. 3 : :
where G, = T with I = I+ 1, Ta [5], is the effective length of the opening.
eff
Using equations (3) and (4), the transmitted sound power can be written

as:

2gp28 ( ) (5)
Lot

Thus, the nonresonant transmission loss of a cireular aperture, referring
to the total wall area, will be:

n ( : )
- Pi i 90 I £ 3 S ) (left)
e e 0lo —{—201“ 6
1010g = 1010g (2 BSG) ( ) 101 g Sa . | ? ( )

ey

. P8
where Py, =%the incident sound power on the wall area §,,.

In case of a long narrow slit the sound power transmitted can be similarly
expressed as:

P’ 8;

tr =W s (7)

where R, is the radiation resistance, Z;, the impedance and 8, the surface of
the slit.
The radiation resistance of a long narrow slit at low frequencies is [6]:
ockS,
4 H

where b is the breadth of the slit and 8§, its eross section.

R, =

(8)
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The effective mass can be expressed as [6]:

oS;

8

~ oMM =

/

2e
with 1/G, = (1/b)+0. 7-}——177( ) per unit length, where [ is the depth

(9)

and b the breadth of the slit. Substituting the values of R, and effective mass
in equation (7) we obtain for the transmitted power

p°L 1

Py, = 29

2 20

ot [z/b+0.7+—1n-£-]
™

(10)

where L is the length of the slit. The corresponding nonresonant transmission
loss of the slit can be written in the form:

7 ol wl 2 c?
ST ¥ &2 =101 e op) I/b Al el
TL, P log = @; =10log—= + og [(}b) +0.7+ —In—o (11)

b. Resonant transmission

At higher frequencies, as the wavelength becomes comparable to the
depth of the opening (1 ~1), system 2 becomes resonant and modes are ex-
cited and the sound power is transmitted to the receiving room.

In this case, the power balance equation expressing the principle of energy
conservation for the opening as a system (neglecting the power flow from the
receiving room back to the source room) can be written as

pi2n = Pg“|‘-P23‘|‘P21: (12)

where pi® denotes the power supplied to the opening, p? the power dissipation
in the opening and P,,, P;, the power flow from the opening (system 2) to
the rooms (systems 1 and 3).

The dissipation of stored energy in system 2 can be expressed as:

Pz = on, H,, (13)

where #, is the loss factor of the opening and FE, the stored energy. The power
flow Py, P, to the rooms following 8.E.A. [7] can be respectively expressed
as:

Py =Py = b{”’*zaEz: (14)
where 7, is the parameter called coupling loss factor, representing the losses

of system 2 due to its coupling to the rooms. The input power supplied to the
opening is:

??n = wn,, B, (15)
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with n,, the coupling loss factor between source room and opening and F,
the energy stored in source room.

Substituting equations (13), (14) and (15) in (12) we obtain the following
equation: '

oty By = wngBy+2wny, By. (16)

The energy stored in the source room can be written as
]7 — ]
B =13, (17)
Ly

where 7 is the mean square pressure and V, the volume of the source room,
while the energy stored in the opening

B, = m,7;, (18)

where m, — the air mass and 7 — the mean square velocity of the opening.
Combining equations (16), (17) and (18) as follows:

’”’12&%?% = NyMyT; + 209, My T; (19)
and solving for the mean square velocity of the opening we obtain:

R=P e ———. (20)

The power radiated from the opening to the receiving room P, i.e. Py,
can be expressed as:

Py =Py = 0—’”21’”3253 = 908202-’53: (21)

where o, is the radiation efficiency of the opening.
It follows for the coupling loss factor m,,:

oy ;

=—, 22

Mgy %l (22)

Furthermore, from the statistical energy analysis it is well known [7]

that the ratio of the coupling loss factor in two opposite directions is inversely
proportional to the corresponding model densities, i.e.

My N,

e )
Mgy N,

(23)

where N,, N, are the model densities of the source room and the opening respec-
tively.



3929 A. TROCHIDIS, G. PAPANTKOLAOU

Using equations (22) and (23) we obtain for the mean square velocity of
the opening:

=15 I
=2 =2 1 2
Uy = P — - (24)
Pty ot N 2(1_‘_?1316&)’
02
and for the power transmitted through the opening:
V, oy Ng :
P, = 0083039 = P— 8y ——— ————r, (25)
N kl
2 gc N, 2(1+ Ny )
0y
In case of a circular aperture [8]
1 V, w?
s R (26)
So that (25) can be written in the form:
c it
;R e A e o e | 27
tr pl QO Ga( ngkz) ( )
14—
In case of a long narrow slit [8]:
IS,
N,=—2_ 28
7 4metd’ (28)

go that from equation (25) it can be obtained for the transmitted power:

S.o 1]
e R
Ptr e 'pl 4wa (1+ 'nakl) .

8

(29)

WirsoN and SorokA [9] have shown that the change from a circular
piston to a square one produces only a slight change in radiation resistance
and hence, it is quite appropriate to apply impedance functions for circular
pistons to the case of a square piston by substituting the value of the radius
a with the equivalent “radius” (§,/=)"®. Exact expressions for the radiation
resistance of a circular or an equivalent rectangular piston have been given
earlier [9, 10] in the form:

S 1/292n+2
S 1/2 9 £0 an I:k (;) ] . i
R[%(w) ] =*—£§ @3t -~ i

where B,, are coefficients depending on the geometry of the opening.
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Using the values of the radiation resistance given by equation (30) the
resonant power transmission can be obtained.

¢. Overall transmission

The sound power transmitted to the receiving room through the opening
is made up of the contribution of nonresonant and resonant transmission.
Combining equations (5), (10), (27) and (29) a composite transmission loss for
all frequencies can be obtained.

In case of a circular aperture we easily obtain:

1(8 . 31
TL=1010gl4 X [2 (i)2+ czaa], (31)
leﬂ Saw2 : :

and in case of a narrow slit respectively:

8, 1
S, del : S TCO, (32)
: .
s [1/b+0.7+iln£] % ]
T wb :

In both cases we have assumed undamped conditions, so that the energy dis-
gipation can be neglected.

At low frequencies the first term in the denominator dominates, so that
the transmission loss follows practically the “mass law” transmission of equa-
tion (6) or (11). At higher frequencies the second term becomes predominant
determining the sound transmission.

TL =10log

3. Comparison with experiment

The measurements were made between two small rooms. The aperture
was made in the middle of a thick gypsum partition wall, while the micro-
phone was mounted in the measuring room as near as possible to the orifice
of the aperture.

Fig. 3 shows a comparison between the measured transmission loss of
circular apertures of various cross section and that calculated using equation
(31). The depth of the aperture, i.e. the thickness of the separation wall between
the two rooms, was b ecm.

Fig. 4 shows a similar comparison between experimental results and theo-
retical predictions using equation (32) for slits of various breadth. The depth
of the slits, i.e. the thickness of the separation wall, was 7 cm and its length
60 cm.
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Fig. 3. Transmission loss of a 5 em gypsum
wall with a ecircular aperture of radius
a in the middle
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Fig. 4. Transmission loss of a 7 em gypsum
wall with a slit of length 0.60 m and variable
breadth b

0 0 experiment; from equation (31) 0 0 experiment; from equation (32

4. Discussion of results

The measured and theoretical transmission loss values for slits and cireular
apertures appear to be in good agreement at low frequencies. In this frequency
range the sound transmission is not resonant following equations (6) and (11).
Within the resonance domain, where the aperture resonates as a tube open

at both ends at the frequency fp = the agreement between measure-

¢
2L’
ments and theoretical predictions is not so good, even though the main trends
are predicted. ,
It seems that due to the statistical nature of our derivation we get a mean
value of the transmission loss Tor the higher frequencies, which can be consi-
dered as satisfactory for practical use.
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DISTRIBUTION OF SOUND INTENSITY LEVEL OF FREQUENCY RESPONSES OF A ROOM
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In a number of investigations on the quantitative evaluation of the beha-
viour of the frequency response of a room, it has been assumed that above
some boundary frequency this behaviour can be regarded as the result of a
random process of summing up of reflected waves with an intensity level distri-
bution close to a normal one. In the literature there is however lack of papers.
which confirm experimentally the correctness of this assumption or indicate
its possible deviations from practical conditions. In view of this, investigations
were undertaken to determine the form of the function of distribution of sound
intensity level changes for a number of frequency responses registered in a few
gelected rooms (models) with varying acoustic properties. The investigation
results obtained show that the functions of distribution of intensity level chang-
es for these responses do sometimes differ a great deal from the normal one.
This testifies that over the range of model investigations for which all the requir-
ed conditions are satisfied, the assumption of a normal (Gaussian) distri-
bution of the energy of reflected waves is not fulfilled.

?;

1. Introduction

The purpose of the first papers [14, 1] on analysis of the behaviour of
the frequency response of a room was mainly to determine for it such para-
meters as would describe quantitatively the irregularity of its behaviour. In
these papers the frequency irregularity ¥ of this response and the mean dis-
tance of its intensity level maxima were recognized to be the most essential
parameters. A particularly detailed analysis of the behaviour of the frequency
response was carried out in papers [9, 12], where new parameters were proposed
for describing the behaviour of its irregularity and, as a result of theoretical
considerations, some relationships between the mean distance of maxima of
this response and the reverberation time of the room were derived. The pro-
perties of the frequency response were also considered from the point of view
of correlation analysis [10]. The behaviour of the so-called frequency correla-
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tion functions obtained in this range for these responses permitted the deter-
mination, with given reverberation conditions in the room, of the frequency
range beyond which values of the frequency response are not correlated with
each other. Interesting results of investigations on the behaviour of the frequen-
¢y response were given by the most recent papers on the subject [6, 5, 3], in
which a funetional relationship was shown to exist between the standard devia-
tion, determined for this response, and the value of the critical distance of
the room. As a result, it was possible to develop a new method for determin-
ing this distance.

It is interesting to note that in a number of the papers mentioned above
it is assumed a priori that over some boundary frequency, the behaviour of
the frequency response of the room can be regarded as the result of a random
process of summing up of reflected waves with an intensity level distribution
close to a normal one. This approach to the frequency response permitted the
authors of these papers to carry out an analytical description of its definite
parameters using statistical methods [9, 11]. It should be noted, however,
that in the literature there is lack of papers confirming experimentally the
correctness of this assumption or indicating its possible deviations from prac-
tical conditions. The strictness of this assumption thus requires experimental
verification, the more so when it is considered that the room itself is a complex
physiecal system whose character is to a varying degree determinate and in
which the random nature of phenomena, in strictly probabilistic terms, requires
deeper justification and analysis. This point of view warrants a supposition
that probability distribution functions characterizing the random nature of
these phenomena, will depend in a specific manner on some physical and geo-
metrical quantities, such as: the reverberation time of the room, the distance
between the source and the receiver, the directionality of the source ete. Keep-
ing this in mind, research was undertaken with the essential aim of determin-
ing the form of sound intensity level distribution functions for a number of
frequency responses recorded in some chosen rooms and defining some of its
statistical parameters for these functions.

2. Irregularity of the behaviour of the frequency response of the room

The frequency response of a room is expressed in general by the irregu-
larity of the transmission by the room of the intensity of a sinusoidal signal
with its frequency changing with given rate. This irregularity is most
often represented by the parameter F [1], which defines the difference between
the extreme sums (i.e. the maximum sums L,,. and the minimum ones Ly,;,)
of sound intensity levels of this response, measured in the consecutive frequency

bands Af: I I
= 4f : (1)

F =
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It should be noted that the value of the parameter F, defined by formula
(1), depends only on the resultant (summary) dynamies of extrema which
fall in the range Af and does not take into account their number, which often
causes some ambiguities. For example, when considering two behaviours of
the frequency response which differ considerably from each other, with one
characterized by a small number of maxima but their high dynamics, the
other in turn having a large number of maxima but their low dynamics, it
is possible to obtain for these behaviours in some cases similar values of F.

The results of investigations carried out by ScHROEDER [9, 11, 12] indicate
that there exists a relationship between the parameter F of the frequency
response and the reverberation time T of a room. This relationship, as expressed
by formula (2), is valid for frequencies f lying over some boundary frequency
[y, defined by expression (3),

F, ~14T, (2)
where F, — irregularity of the frequency response (acc. to SCHROEDER),
£=f, = 4000V TV, (3)

where V — the volume of the room.

It follows from formula (2) that irregularity of the frequency response
of a room is proportional to its reverberation time. Apart from studies of the
irregularity of the frequency response of a room, research work was also car-
ried out on the irregularity of the distribution of its maxima on the frequency
scale. In their experimental papers, KUTTRUFF and THIELE [7] showed that
the average spacing df between adjacent maxima of the frequency response
was inversely proportional to the reverberation time of the room.

However, according to the later theoretical and experimental research
[12], the average spacing between adjacent maxima of this response is less
than that given by formula (4), being

P ()

It should be added that the experimentally determined value of éf depends

to a large extent on the parameters of the measuring system. E.g. according

to paper [12], in determining the quantity éf sometimes results are obtained,

which differ from each other by as much as about 50°/;,, depending on the

quantization properties of the recorder used for reglstermg the frequency
response.
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The behaviour of the frequency response of a room is usually considered,
for frequencies above some boundary value, as a result of statistical pheno-
mena, based on the assumption of a random character of summing up of a di-
rect wave and a large number of reflected waves, with different amplitudes
and phases. This signifies that in describing the irregularity of the behaviour
of this response, also other, more strictly defined mathematically than the
quantity F, statistical parameters can be introduced, such as the mean square
fluctuation of the frequency response and probability moments of higher order.
Statistical treatment of this response as some random process with distribu-
tion close to a normal one provided the basis for investigations of its so-called
frequency correlation function [10], according to which an analytical expre-
ssion of this function has the form

=2 hesadtl ] L

where df' — frequency interval (analogous to the time interval &t of the auto-
correlation function ¢(6t)), z = [1+(2nvdf")]""*, 7 = T[13.8, f(...) — hyper-
geometrical function.

Analysis of the behaviour of the frequency autocorrelation function indi-
cates that it shows a distinet tendency to decrease with increasing df’, reaching
a value of the order of 0.1 for the frequency interval §f" = 6.6/T. On this basis,
it can be assumed that at frequency intervals, of 6/T approximately [Hz],
values of the maxima of the frequency response of a room are independent
of each other.

The assumption of a random sound pressure amplitude distribution in
the room encouraged us to seek an analytical form of the probability density
function of this distribution.

According to papers [12, 4], when a room is excited by signals with frequen-
cies above some boundary value f,, the probability density function of the
sound pressure amplitude distribution at some distance from the source has
the form

2p »°+p; (21011& )
Pr(p) = = Tod: 7
"e) = exp( @5 ) 75 £

where p — the resultant sound pressure, composed of the sound pressure of
the direct wave p;, which is a deterministic component, and the sound pre-
ssure of the reflected waves ¢(p,>, which is a random component; J, — a Bessel
function of the first kind of the zeroth order; {) — averaging over the set
of reflected waves. '

Using the dependence I ~ p? the density function of the sound pressure
amplitude distribution, Pr(p), can be expressed as a function of the density
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distribution of its intensity Pr(I),

1 __I+I,,) (2Vﬁ;
€ exp( AN AT B )

where I = I;+ I, — the resultant sound intensity at a given measurement
point.

Designating as D the ratio of the direct sound intensity I; to the reflected
(reverberant) sound intensity I,, i.e.

Pr(l) = (8)

I,
Ty

and replacing intensity by its logarithmic measure, i.e. the intensity level L,

(9)

L= 1010g—<—i>f [dB], (10)

we obtain the expression of the probability density function of the sound inten-
sity level distribution, depending on the parameter D, in the form

Pr(L) = k(1+D)exp{—[(1 +D)exp(kL)—{—D]+kL}Jo{2}/[(1 +D)Dexp(kL)]},
(11)
where £ =1In10/10 = 0.23.

On the assumption that D — 0, i.e. with I; —~ 0 (at a large distance from
the source), the density function represented by expression (11) becomes (12):

Pr(L) = kexp (kL —exp (kL)) = 0.23exp (0.23L — exp(0.23L)). (12)

It is interesting to add that for a definite distance in a source-microphone
system the behaviour of frequency responses, recorded for changing the posi-
tion of the system in a room, will be different from each other, sometimes
quite considerably so; however, the statistical properties of these responses
will be independent of this position (under the condition that the source-micro-
phone system is not sitnated close to the surfaces enclosing the room). In turn,
a change in the distance between the source and the microphone causes a change
both in the behaviour of the frequency response and the value of the parame-
ter D. This fact does not undermine, however, the validity of expression (11),
which still deseribes the form of the probability density function of the distri-
bution of these responses.

Knowledge of the probability density function of the intensity level,
Pr(L), of the frequency response of a room can permit the moments M of
appropriate orders to be determined for it, according to formula (13),

LMy = j LMpr(L)dL. (13)

o



332 E. OZIMEE

For M =1 the mean value of this function can be obtained,
(LS = fm LPr(L)dL, (14)
whereas for M = 2 the mean square value
KL% = me"‘Pr(L)dL. (15)
can be determined. i

From this, the value of the standard deviation ¢ of the function Pr(L)
can be found, from formula (16),

o(D) = V<L) —<L)* = fL"Pr(L)dL—[ }oLPr(L)d.L]Z. (16)

Fig. 1. shows a curve of the dependence of the standard deviation ¢ on
the logarithmic value of the ratio of the direct sound intensity to the rever-
berant sound intensity [5]. It is seen in this picture that the measurement
of the standard deviation of the frequency response permits the critical dis-

6

{8l
ﬁ

i

A A
e

1g. 1. € dependence o e standard deviation
0/ Fig. 1. The depend f the standard deviati
24 12 Q =12 2L o of the frequency response of a room on the va-
10 log D [dB] lue 101logD = 101logIy/I, [s]

tance of the room to be determined, i.e. the distance at which the quantity
D = I,/{I,>is 1. This problem was considered in greater detail in papers [6, 5, 3].
It is also seen in this figure that in the reverberant field the standard devia-
tion of the frequency response has a constant value of-about 5.6 dB. It should
be noted that the method proposed above for determining the critical distance
from the measurement of the standard deviation of the frequency response
assumes lack of directionality of the source and receiver. In practice, however,
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these transducers always involve some directional effect, and accordingly,
in determining exact values of this distance, the value of their directionality
coefficients should be taken into account.

It can be seen from the above considerations that the behaviour of the
frequency response of a room is usually regarded as a result of random processes
of a type for which the form of the probability density function is assumed
to be close to the density function of a normal distribution. This assumption
had not been verified experimentally in previous investigations, neither for
actual rooms, nor in model studies. Moreover, the possible deviations of the
form of this function for practical distributions from those assumed in theore-
tical considerations are also unknown. This fact encouraged us to undertake
investigations with the main aim of experimental verification of this assumption.
This verification was carried out on the basis of analysis of the form of histo-
grams of sound intensity level distribution, as determined for a number of
frequency responses recorded in a few acoustically different model rooms which
satisfied the condition I > A. In addition, within the framework of the present
investigations, the values of basic statistical parameters were also determined
for these histograms.

3. Measurement object, investigation apparatus and method

The investigations were carried out in a special (model) room, in which
four forms of interior with different acoustical properties could be shaped,
designated below as rooms: B (damped), C (undamped), and D and E, which
were acoustically coupled rooms, with different values of the coupling coef-
ficient Q [8]. In rooms B and ¢ measurement points were chosen; their situ-
ation is shown in Fig. 2. In addition this figure also shows the distribution

sound-absorbing material
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Fig. 2. The position of the measurement points Py(x =5,y = 0,2 = 0), P, (z = 100, y =
=0,z2=0), Py (x =112y =20, ¢ = 32), Py (# =135, y = 30, 2 = 60) and the distri-
bution of absorbing materials in room B
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of the absorbing material, with a mean absorption coefficient a ~ 0.6 over
the frequency range 630-4000 Hz, with which room B was damped.

A schematie diagram of the measurement apparatus system, in which an
essential role was played by a statistical distribution analyser, connected to
a unit of digital signal processing, is shown in Fig. 3.

o- 7 t~ 8 I 9 |~ n
6

: T

Fig. 3. A schematic diagram of the apparatus used for measuring the frequency Tesponse
of a room

1 — generator, 2 — power amplifier, 3 — loudspeaker type 400 G, diameter 2 cm, 4 — compensation microphone
(qondiractional, B-K), § — room investigated, 6 — measurement microphone nondirectional, B-K), 7 — micro-
phone amplifier, 8 — plotter voltmeter, 9 — statistical distribution analyser, 10 — computer

Fig. 4 illustrates the essence of analysis of the behaviour of the frequency
response. The intensity level L(f), variable as a function of frequency, is divided

L
@8]

L +AL

m

Fig. 4. An interpretation of the quantity Pr,, (see (17)) for a section of the curve of the fre-
quency response

into adequate intervals (classes), contained within the limits from L, to L,,+
+A4L, where AL is a constant level increase, and m = 1, 2, ..., r. The probabi-
lity that the level L(f) falls in some interval (L,,, L,,+ AL) can be represented
in the following way:

1

2 A

ProlLy < L(f) < L,+ AL = "'=‘Af : (17)
This magnitude of the probability Pr,, for successive intervals of the inten-
sity level can be determined from indications of the statistical distribution
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analyser. The values of Pr,, falling in particular intervals can be represented
graphically by a histogram (see Fig. 5), which illustrates the probability distri-
bution of sound intensity level changes over agiven bandwidth Af of the frequen-
cy response. Passing within the limits from AL to zero, we can obtain the

Pr
L
N\
/ y
L \
/ \u—p(L)
v Lf
¥ \
7 \
/ \
/ )
L \
/, \\
o =5
ke L (dB]

Fig. 5. An example of the histogram of the probability distribution of sound intensity level
changes for the frequency response of a room

form of the probability density function p (L), marked by dashed line in Fig. 5,

< L(f)<L,+4L
AL-+0 AL
With this boundary condition, the probability that the function L(f)

~ takes a value from any interval (L, L, ;) can be expressed by an integral
of the probability density function within the limits of this interval, i.e.

(18)

L1
PrL, < L(f) < L] = f P(L)AL = P(Lyy) —P(Ly), (19)
I‘m
where P(L) is a distribution function (cumulated probability distribution
function).

The statistical distribution analyser used in the investigations permitted
values of Pr,, to be determined in successive intervals of sound intensity level,
each 5 dB wide (which resulted from the dynamics range of the potentiometer
used). These values permitted in turn histograms of the probability distri-
bution of intensity level changes (see Figs. 9 and 12) to be plotted for a large
number of different frequency responses recorded at chosen measurement

points of the room under study.
In addition, from indications of the statistical distribution analyser, the

mean values of the intensity level L,; and the standard deviation o, from
L,, were also calculated from formulae (20) and (21) [2].
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The symbols used in these formulae are defined, as an example, in the
histogram given in Fig. 6.
Lﬁ Ld!

3
I
I
|
I
I
|
|
|
I
I
|
]

]
: Fig. 6. An example of the distribution
| e histogram with the marked quantities
1 i i

6

7 8 9 10 7 2 Lags Lgy s ooy ma2

1k
K = v [(ny —n5) + 2 (ng —ny) + 3(0g — n3) + 4 (09— 1p) 4+ 5 (ny; —m,) +6n5];

R =

1,
]/F[(n7+n5)+4(na+n4)+9(”'9+”3)+16(”10+n12)+25(n11+n1)+36”12]_‘K25
¢y =RJ =R5 [dB], (21)

where N = n,+ny+ ... +n,, — the summary number of countings of the statis-
tical analyser over a given frequency band Af (the particular bands Af, into
which the frequency response of the room was divided, corresponded to 1/3
octave bandwiths); #n,, %, ..., 7y, — the number of countings in successive
channels of the statistical analyser for a given band Af; L, — the value of
intensity level corresponding to channel 6 of the statistical analyser, J — chan-
nel unit equal to 1/10 of the value of the dynamics of the potentiometer used
(in the present case J =5 dB), L,; — the mean value of sound intensity
level of the frequency response, determined in the band Af; o,, — the standard
deviation of the frequency response from its mean value L,;, determined in
the band A4f.

In order to evaluate qualitatively the degree of deviation of histograms
obtained from a histogram corresponding to a normal distribution, values
of the asymmetry coefficient 4, defined by formula (22), were determined
for them,

3
4 FlE-L) _p i

o? oy
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where E[] — the symbol of the mathematical expectation, y, — the moment
of the third order with respect to the mean value L.

For a symmetrical. histogram form (i.e. for a normal distribution), this
coefficient takes a zero value.

Values of the parameters L,;, o,, and A were determined by numerical
calculations using for this purpose a specially constructed Fortran IV programme
[8]. In addition the quantities ¥, defined by formula (1), and F,, defined by
formula (2), were also determined for all the cases under study.

4. Analysis of the measurement results

Fig. 7 shows as an example chosen sections of the behaviour of frequency
responses recorded in the rooms under study and the corresponding histograms
of sound intensity level change distribution.
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Fig. 7. Sections of frequency response curves and the corresponding distribution histograms,
recorded in rooms with various acoustic properties
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It is seen in Fig, 7 that these histograms are related in an interesting way
to the character of the behaviour of the frequency response of the room. Thus,
in a case when the behaviour of this response is close to the random behaviour
(Fig. 7.1), the corresponding histogram takes a form corresponding in approxi-
mation to a normal distribution (Fig. 7.1a). The histogram shown in Fig. 7.2a
corresponds to the behaviour of the response with maxima distinet on the
amplitude scale (Fig. 7.2), while the histogram in the form shown in Fig.
7.3a is related to the response with clearly distinet minima (Bige7:3).

In addition it should be noted that the form of a distribution histogram
also gives interesting information on the magnitude of dispersion of the frequen-
cy response of a room, whose measure is the value of the mean standard devia-
tion, graphically illustrated in Fig. 8.

: 4 e r‘\é":S'dB
[dB] , E
40F 1
85t - |
Q HMQ Q ﬂ 0 Q Eﬂ A fﬂ!f 30- }
5 -5 a0 :
65 . }
§ |
|
55 0 ' i;l-ﬂ 1
45 1 1 i_ 1 1 50 70 90[:)‘8]
56 57 58 59 60  [kHz]
(st %1
L0F
75
2o 30-
= N |
DLWVl
55 A 4 i 6=9d8
[ o Ji
{5 i 1
0 n T | 1
2% ) - : = A 30 50 70 (dB]
11 12 13 14 15 (kHzl

Fig. 8. Comparison of sections of frequency responses recorded in two rooms with much
different acoustic properties from the point of view of the value of the standard deviation

This figure shows that a histogram for which ‘the value o,, =3 dB is
related to a response contained in a relatively narrow dynamies interval, while
considerable “fuzziness” of a histogram, expressed by the value of the standard
deviation o4, =9 dB corresponds to a response with large dispersion.
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In order to analyse the form of the probability density function for the
frequency responses under study, recorded in the rooms mentioned above,
histograms of intensity level change probability distribution in successive
1/3 octave bands (Af), within the range 630-8000 Hz, were plotted for these
responses and the mean values of these levels (L,,) and the standard devia-
tion (o4,) calculated. The relatively high range of the frequencies considered
resulted from the fact that the model investigations carried out required that
a suitable ratio of the wavelength to the model size should be maintained.
Some of these histograms, obtained for the considered measurement points
of the damped room B (—) and the undamped room € (- —-), are shown as an
example in Fig. 9.

From analysis of the form of the histograms shown in Fig. 9, it can be
stated in general that the probability distribution of sound intensity level
. changes in the frequency response of a room indicates considerably asymmetry
towards lower intensity levels and deviates distinetly from a normal distri-
bution. This histogram asymmetry resembles in form the asymmetry of the
histogram shown in Fig. 7.3a, to which the behaviour of the frequency res-
ponse shownin Fig. 7.3 corresponds. The values of the asymmetry coefficient 4
determined for the histograms obtained, which are the measure of their devia-
tion from a normal distribution, fall within the limits of about 40-70°/, and
depend to a large degree on the frequency range, the reverberation conditions
of a room and the position of the measurement point. The above results war-
rant the statement that over the range of the model investigations ecarried
out, for which suitable ratios of the model size (I) to the wavelength (1) were
maintained, the assumption of a normal (Gaussian) distribution of the energy
of reflected waves is not satisfied.

A detailed analysis of the data obtained, from the point of view of the
structure of the acoustic field in the rooms under study, shows that over some
frequency ranges the difference of the form of the histograms obtained from
a histogram corresponding to a normal distribution is distinetly less in room
C than in B. This fact indicates a more uniform energy distribution in room
C compared to that in B, pointing out at the same time the possible use of
statistical theory in describing the acoustie field in this room.

However, the considerable deviation of the form of these histograms from
a normal distribution indicates the need for using wave theory in describing
acoustic phenomena in rooms.

In addition the data given in Fig. 9 indicate that the distribution histo-
grams corresponding to the measurement points P,, P, and P, of room O are
shifted on the intensity level scale with respect to the histograms obtained
for those points in room B. This is clearly seen above all for higher frequency
bands.

This effect results from the existence of different reverberation conditions
7
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in these rooms, on which the resultant value of sound intensity level is known
to depend.

Comparison of the histograms obtained in the rooms under study, from
the point of view of their “fuzziness”, whose measure is the value of the stan-
dard deviation, indicates that the histograms for room € are more “fuzzy”
than those for room B. In addition the change in the outline of these histo-
grams, which is interesting with changes in the acoustical properties of the
room, for some frequency bands and some measurement points represents
a definite change in the distribution of maxima and minima of the frequency
responses of the room, as was already mentioned in discussing Fig. 7.

Comparison of the mean values of the level L, of the frequency responses
of rooms B and C in successive 1/3 octave bands is shown jointly in Fig. 10,
line 1, whereas the values of the standard deviation o, corresponding to these
responses and determined in these bands are given in line 2. In addition the
so-called irregularity density #?, whose behaviour is shown in Fig. 10, line 3,
was also calculated for these responses.

The mean values of the reverberation time T and the parameters Ly,
o4y F and Fy, measured in rooms B and € at the measurement points Py, Py,
P, and P,, are given jointly in Table L

In addition to investigations carried out in parallel-piped rooms B and C,
analogous measurements were also carried out in two coupled rooms D and F,
which differ from each other with the value of the coupling coefficients Qr
and @, defined as

8,
= 3 2
QI alSI+SO ’ ( 3)
S,
R T 24
sl (24)

where Q; — the coefficient of coupling the volume V; with the volume Viy;
Q; — the coefficient of coupling the volume Vyy with the volume Vy; ap, a5y —
the absorption coefficients of the volumes Vi and Vig; Sy, 8;; — the surface
areas of the walls of the volumes V; and Vi;: 8, — the surface area of the
coupling opening.

In the case of the coupled room D, part of the surface enclosing the volume
V; was covered with absorbing material (see Fig. 11), thus achieving, despite
the different volumes V; and Vi, close values of the acoustic coupling coef-
ficients Q; and Qy, respectively: Q; = 0.22; @y = 0.24. In turn, in the case
of room F the surfaces encloging the volumes V; and Vy; were made of the

1 The author distinguishes between the so-called irregularity density of the frequency
response, expressed by formula (1) and designated as I [dB/Hz], and the notion of disper-
gion of this response, whose measure is the quantity o4s [dB], expressed by formula (21).
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same material with the mean absorption coefficient a ~ 0.05, effecting as
aresult a double increase in the coupling coefficient of the volume V1(Qr = 0.47)
compared with the coupling coefficient of the volume Vi (@ = 0.24).

The distribution of the absorbing materials and the position of measurement
points in the coupled rooms are shown in Fig. 11. Fig. 12 shows as an example
a comparison of sound intensity level distribution histograms for sucessive
1/3 octave bands of frequency responses obtained at the points P,; and P, iy,
which fall in the volumes V; and Vy; of the coupled rooms D and FE. These
data show that the distribution histograms for the coupled room D are dis-
placed on the level scale with respect to the histograms obtained for room E.
This displacement clearly depends on the frequency band considered, with,
both for the measurement point P,; and P, ;, above 2000 Hz, histograms
for room E being displaced towards higher levels.

On the basis of the asymmetry coefficients determined for these histo-
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Fig. 11. The distribution of absorbing materials and the position of the measurement points
Pyy (x =38, y =20, 2 =232) and P; 15(» = 100, y = 0, 2 = 0) in the coupled room D
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grams, it can be stated in general that, similarly to rooms B and C, in the coupled
rooms the sound intensity level change distribution of the frequency responses
analysed deviates from a normal one. Interesting information on the magni-
tude of dispersion of the frequency responses of rooms D and F is contained
in the “fuzziness”, various in form, of particular histograms. Comparison of
the mean values of intensity level, L,,, for the frequency responses of the
coupled rooms D and E the values of the standard deviation corresponding
to these levels, and also values of the parameter F for successive 1/3 octave
bands of these responses, are given in Fig. 13. In turn the mean values of the
parameters Ly, o, and F, measured at the points P, and P, of the coupled
rooms D and E, are given jointly in Table II.

It is seen in Fig. 13 that in the volume V; (measurement point P,y of
the coupled rooms D and E) there is a quite large differentiation in the beha-
viour of the values of the parameters I, and F, In turn, in the volume Vy;
(measurement point P, ;;), which is the same in terms of size and interior deco-
ration for rooms D and FE, the difference between the behaviour of the value
of the coefficient L ,, for these rooms is still quite large, whereas the behaviours
of the coefficient 7 in these rooms are quite close. The values of the standard
deviation o, for rooms D and ¥ do not show unambiguous differences either
in the volume V; or in Vy;, but they are different for these volumes in the
character of the behaviour as a function of frequency.

In conclusion, it should be stressed that apart from the model investi-
gations carried out, it is essential to wverify experimentally the assumption
of a random distribution of the energy of reflected waves in real rooms with
large volume.

5. Conclusions

1. A detailed analysis of ample experimental material shows that histo-
grams of sound intensity level change distribution of the analysed frequency
responses obtained for the rooms under study are different from a normal
distribution within the limits of the asymmetry coefficient up to as much as
70°/,. This difference depends to a large extent on the reverberation conditions
of the room, the frequency band and the position of the measurement point.
The results of the present experimental investigations thus permit the sta-
tement that in the range of model investigations the assumption of a normal
(Gaussian) distribution of the energy of reflected waves is not satisfied.

2. The forms of histograms describing the sound intensity level distri-
bution of frequency responses recorded at chosen measurement points and
the corresponding values of the asymmetry coefficients A permit the establish-
ment of a criterion for selecting an adequate (statistical or wave) theory
for description of acoustic phenomena in a room. It can be assumed that the
distribution histograms which are close to a normal distribution within the
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limits of a small value of A represent well a uniform distribution of the energy
of the acoustic field in a room, suggesting at the same time the possibility
of describing the field by statistical theory. In turn the large deviation of the
forms of these histograms from a normal distribution, which is expressed by
a high value.of 4, suggests the need for analysis of acoustic phenomena in
a room by means of wave theory.

3. The mean value of the standard deviation from the value L, for fre-
quency responses, determined in the reverberant field of the rooms considered,
falls within the limits 5.6-6 dB and is in good agreement with an analogous
quantity defining the irregularity of the distribution of acoustic energy in
a room, of about 5.6 dB, as obtained in paper [9]. It should be added that
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this value corresponds to the mean change in the intensity level of the spectral
components of the sound spectrum analysed in paper [8].

4. The results of measurements of the parameter I of frequency responses
recorded in rooms B and C are in good agreement with those of calculations
of the parameter F,, determined from formula (2). However, in the coupled
rooms D and F measurements of the parameter F give in all cases values
much lower than those of F,.

The investigation results given above and their analysis indicate that
interesting information on the behaviour of the frequency response of a room
can be gained by analysing its statistical parameters. It can be expected that,
apart from the distribution histograms and the corresponding mean values,
standard deviations and asymmetry coefficients, determined above for fre-
quency responses under study, determination for these responses of other
additional parameters, based on statistical moments of higher orders, would
permit an even more accurate description of the behaviour of the frequency
response, and thus a fuller evaluation of the structure of the acoustie field
in a room.
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ANALYSIS OF BROAD-BAND PIEZOELECTRIC SANDWICH TRANSDUCER WITH
PERFORATED STRUCTURE

LIN CHONG-MAO, HOU LI-QI, YING CHUNG-FU

Institute of Acoustics*, Academia Sinica, Peking

1. Introduction

Pre-stressed piezoelectric sandwich transducers are used widely as sonic
source for many low frequency ultrasonic applications, notably in the fields
of macrosonics sand sonar. For certain applications a broader bandwidth is
necessary. The sandwich transducer with perforated structure developed by
us is formed by drilling holes longitudinally in the radiating head, and has
been shown experimentally to possess a bandwidth approximately double
that of a conventional nonperforated transducer, while its electroacoustic
efficiency remains almost undeteriorated [1].

In this paper a theoretical model for the broadband structure is proposed.
The frequency characteristics of the input electrical admittance of the trans-
ducer and the input mechanical impedance of the radiating head loaded by
water, are calculated both as functions of the relative cross-section o of the
bored part and the relative depth of the holes § of the radiating head. Some
theoretical results are compared with measured ones, the two fairly well agree.

2. Theoretical consideration

A sandwich transducer with perforated structure is shown in Fig. la.
It is composed of a backing block (1); two piezoelectric ceramics (2), (4); an’
electrode (3); a radiating head with perforated structure (5), (6) and a thin
cover plate (7). These sections are connected mechanically in geries. A bolt
for pre-stressing is ignored. Parts (5), (6) and (7) are considered to form a mecha-
nical “transformer section”. The backing block and the radiating head are
electrically connected, and a constant voltage E is applied between the elec-
trode and the backing block, so that the two ceramic dises are connected electri-
cally in parallel. The transducer is loaded to the right. By making the usual

* Work done while at Institute of Physics.
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one-dimensional approximation and neglecting the mechanical and dielectric
losses, the equivalent electromechanical network of the transducer is given
in Fig. 1b. In this model of analysis, the radiating section with perforated struc-
ture is treated as two cascade acoustic transmission lines of different cross-
section A and 44, A, being A minus the total area bored out. It is represented
in Fig. 1b by two cascade T — networks in the dash line block IV.
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Fig. 2. Theoretical admittance loci of transducers for various a and g
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3. Results and discussion

A computer program was effected to calculate from the network in Fig.
1b the electrical admittance at the electrical terminal of the transducer and
the mechanical impedance looking into the “transformer section”. These two
quantities are related to the acoustical bandwidth of the transducer. The radia-
ting face is supposed to be rigid and set in an infinite rigid baffle in water;
experimentally a large rigid baffle was provided. The computed quantities are
given for several values of a and f, where a = Ag/4, f = Ls/L, L = L;+ L
(see Fig. 1a). The theoretical admittance loci are plotted in Fig. 2a and 2b,
in which ¥ = G+jB. It can be seen that the diameters of the “admittance
circles” decreage with decreasing a (Fig. 2a) and with increasing f (Fig. 2b),
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Fig. 4. Theoretical normalized characteristics of input mechanical impedance of transformer
sections as a function of frequency for various a and f.
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that is, a decrease in the effective cross-section of the bored part or an increase
in the depths of holes leads to an increase in the bandwidth of transducer.

Figs. 3a and 3b show the measured as well as the theoretical normalized
characteristics of the conductance of the transducer. In the figures, the theo-
retical values are given by the dashed lines. The theoretical results seem to
agree well with the experimental ones. However, there are discrepancies in
the absolute values of theoretical and experimental @¢’'s. Again the 3 dB-ban-
widths increase with decreasing ¢ and increasing f.

We next examine the transformer section only. Its input mechanical
impedance when loaded by Z; can be expressed by the relation

(Zin)s _ ¥ [(Zin):/Z7][(1 +a) cosg— (1 — a)cos (¢ —2fg)] +jal(1+a)
Zs a[(1+ a)cosp+(1—a)cos (¢ —2p9) ]+ jy [(Zin):/Z:]1[(1 + @)
sing + (1 — a)sin(p — 28g)

y E 8ing — (1 —a)sin (¢ —26¢)]
in which,

(Zin)'r
Z

where Z; = Ap,C;, Z; = A0,C;, v = Z;|Z;, ¢ = K+ L; 0,C; — specific aco-
ustic impedance, K; — wave number, ¢, — phase length of the cover plate,
Z;, — the acoustic load at the cover plate [2]. The expression (Z,); = R+
+jX is evaluated for different values of o and f and their normalized values
are shown in Figs. 4a and 4b. Also, the 3dB-bandwidth increases with decreas-
ing a and increasing f.

= [(Z,|Z;) cosgp, + jsing,]/[cosg, +j(Z,, |Z;)sing,],
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COMPRESSIBILITY OF BINARY MIXTURES OF ASSOCIATING LIQUIDS

MAREK WACINSKI, KRZYSZTOF BEBEK, EDWARD ZOREBSKI

Institute of Chemistry, Silezian University
(40-006 Katowice, ul. Szkolna 9)

This paper presents the application of ultrasonic methods to investigate
the structure of liquid mixtures of polyhydroxyalcohols (glycerol-butanediol-
-1.3 and glycerol-2-methylpentanediol-2.4).

Measurements were carried out on the propagation of ultrasonic waves
at a frequeney f = 2.5 MHz over the temperature range 283-303 K and on
density over the temperature range 273-303 K for the alcohols and mixtures.

Excess compressibilities were calculated for the systems of interest. It
was shown that the compressibility of mixtures of associating liquids was deter-
mined not only by specific intermolecular interactions, but also a major role
is played by steric factors (the degree of filling the space).

1. Introduction

From measurements of ultrasonic velocity and density, it is possible
to determine for binary mixtures the magnitude of deviation from the
properties resulting from thermodynamic ideality on the basis of the depen-
dence of the excess adiabatic compressibility »5 = —[8V¥/ép], on the mole
fraction.

From the general thermodynamic criterion of the ideality of a mixture
[1], G = Sapu; = Yag, 4t + RT S, Inz;, there results (for an ideal mixture)
additivity of molar volumes and enthalpies with respect to the mole fraction:
V4 = 3o, VY, H® = a,H?, where z;, 4%, V? and H® are respectively mole
fractions, chemical potentials, molar volumes and enthalpies of pure compo-
nent; whereas G, V' and H® are the corresponding mean molar quanti-
ties for an ideal mixture. Hence, taking, after RoTHHARDT’S proposal [2],
enthalpy as the basic thermodynamic potential, for an ideal binary mixture

HY = o, H)+2,H],

; ot H1 > H? & H? o ov?
—'ld= — 1 ._2 ] . “2 »> 1.1
. -(aw ) “’( op? )ﬁ‘”*(apz )g “’( ép );”“(ap); 2
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Assuming that

FH o
( op® ) %( 3@”‘)8‘* e N

the adiabatic compressibility of an ideal binary mixtures can be regarded as
a quantity approximately additive with respect to the mole fraction

2 = 00 @, %0, (1.3)

The approximate character of this additivity results from the fact that
§ = Dw;si—RYw;Inw; # s; and that despite the constant entropy of the whole
mixture s = const in the process of compression and decompression, the
constancy of the component entropies s; = const is not ensured [3, 4].

It seems, however, that the approximation on which equation (1.3) is
based, is satisfied sufficiently well for the deviation of binary mixture from
thermodynamic ideality to be evaluated from excess adiabatic compressi-
bility, defined as

7 =, -7 =i — (0,0 42, %3). (1.4)

2, Experimental part

Both glyecerol (P.O.Ch. Gliwice, pure for analysis), 2-methylpentanediol-
-2.4 (BDH Chemicals Ltd., pure), and butanediol-1.3 (Koch-Light Labora-
tories Litd, pure) were dehydrated by boiling under reduced pressure at a tempera-
ture of about 373 K.

The densities of mixtures and pure components were determined pycnome-
trically over the femperature range 273-303 K, at temperature stability of
4-0.05 K. To reduce the weight in air, the relation ¢ = ¢’ +0.0012 (1 - ¢'/g?)
was used, where p — absolute density of water, o’ — measured density.
The dependence of density on temperature can be represented by the linear
equation o = AT+ B, where 4 and B are constants determined by the least
squares method. The density equations are listed in Table 1, where r — the
correlation coefficient of the linear dependence of ¢ on T'; #, — mole fraction
of the diol.

The ultrasonic wave propagation at a frequency of 2.5 MHz in the solu-
tions under study and its changes over the temperature range 283-303 K were
measured by an ultrasonic pulse-phase interferometer (produced by Insti-
tute of Fundamental Technological Research, Polish Academy of Sciences)
with accuracy of +40.05 per cent (Table 2, where @, — mole fraction of the
.diol).
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Table 1

Glycerol-butanediol-1.3

e [kg/m?]

r

0.1020
0.2035
0.3046
0.5054
0.7045

—6.2410 x 10-1T +1.4430 x 103
—6.0437 % 10-1T 4-1.4061 x 103
—6.0471 x 10T 4-1.3684 x 10°
—6.2025 x 10-1T +1.3501 x 103
—6.2278 x 10-1T +1.2979 x 10®
—6.2214 x 10T +1.2510 x 103
—6.9167 x 10-1T 4+1.2037 x 103

—0.9995
—0.9992
—0.9993
—0.9991
—0.9996
—0.9989
—0.9994

Glycerol-2-methylpentanediol-2.4

0.0314
0.0879
0.1716
0.2956
0.4478
0.6452
0.8153

—6.5545 x 10°1T 41,4273 x 103
—7.0780 x 10 1T +1.4173 x 103
—6.9645 x 10T +1.3791 x 103
—6.9524 x 10-1T 4-1.3282 x 108
—6.2032 x10-1T +1.2531 x 108
—6.5025 x 10T +1.1981 x 103
—6.6247 x 10T +1.1616 x 103
—6.1967 x 10T +1.1051 x 103

Table 2
w[m/s]

—0.9989
—0.9996
—0.9954
—0.9960
—0.9948
—0.9317
—0.9960
—0.9996

283.15 K | 203.15 K

303.15 K

0.0314
0.0879
0.1716
0.2956
0.4478
0.6452
0.8153
1

Glycerol-butanediol-1.3

1944.5 1920.1
1894.0 1869.6
1840.0 1819.3
1797.5 17739
1722.0 1696.2
1653.0 1626.4
1573.0 1547.0
Glycerol-2-methylpentanediol-2.4
- 1906.4 1882.2
1850.8 1826.0
1781.0 1754.2
1667.8 1638.4
1568.5 1539.4
1470.0 1440.0
1411.2 1380.3
1344.0 1311.0

3. Discussion of the results and conclusions

1895.8
1844.8
1798.1
1751.7
1672.0
1600.6
1519.0

1858.2
1801.3
1728.4
1610.0
1510.5
1410.0
1350.0
1280.0

The excess “‘compressibilities calculated from equation (1.4) for the two
systems under study: I — glycerol-butanediol-1.3 and II — glycerol-2-methyl-
pentanediol-2.4, are shown in Figs. 1 and 2. Over the whole concentration
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.2 -
Fik glycerol - butanediol - 13
_4 1 1 1 L 1 1 1 - 1
0] 02 04 06 08 X,

Fig. 1. Excess compressibility as a function of the mole fraction (calculated from equation
(1.4)) for the glycerol-butanediol-1.3 system

XE
mS
G
10"

=] glycerol - 2- methylpentanediol - 24

=2

_8 1 1 1 1 L

0 02 04 06 08 x,

Fig. 2. Excess compressibility as a function of the mole fraction (caleulated from equation
(1.4)) for the glycerol-2-methylpentanediol-2.4 system

range the excess adiabatic compressibilities are negative. The components of
the mixtures of interest are liquids of a high degree of assotiation. Specifie
intermolecular interactions in the form of hydrogen bonds lead to the formation
of incessantly disintegrating and reintegrating disturbed fragments of the
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erystal structure (subjeet to translation and not separated by discontinuity
boundaries), and also determine the respense to mechanical stress [6-9]. The
formation of intra- and intermolecular hydrogen bonds should in the case
of mixtures of polyhydric liquids lead to the formation of relatively extensive
clusters (increased degree of association).

On the basis of JACOBSON’s model of intermolecular free path [14], the
formation of complexes between the components of a mixture was repeatedly
related in the literature [10, 11] to an increase in compressibility (positive
excess compressibility), with complexes (associates) considered incompressible.

However, this assumption seems to be unwarranted, particularly in the
case of multimers formed by hydrogen bonds. According to KUDRYAVTSEV
[12] and KuozerA [13], the acoustic wave propagation is not only an inter-
molecular effect. Particularly in the case of an extensive cluster, the transmi-
ssion of an acoustic pulse within the cluster must occur at finite velocity. On
the assumption that the pulse transmission along a hydrogen bond is faster
than on a free path, it can be shown that association should eause an increase
in the phase velocity and decreased compresgibility (“stiffening” of the system).
It can thus be concluded that negative excess compressibilities indicate
stronger association in mixtures than in pure components.

Since in the case of the two mixtures one of the components is common
to both (glycerol), whereas the two diols differ only in the number of methyl

groups:

OoH OH

OH | OH |
E> o CH,—CH —CHj; gﬂa\ o7 — OB, -OH-OR,,

3

similar abilities to form hydrogen bonds (association) ean be expected in the
two systems. However, mixture II shows much greater negative compressibi-
lity, suggesting the possibility of the free space in the openwork structure of
the cluster having been “blocked” by two additional methyl groups of 2-methyl-
pentanediol-2.4. Thus, it can be stated that the compressibility of a liquid
gystem is determined not only by specific intermolecular interactions, but
also that a major role is played by steric factors.

In the case of the two mixtures, the excess compressibilities become more and
more negative with increasing temperature (Figs. 1 and 2). This indicates
the formation of increasingly firm clusters (more immune to the disturbing
effect of thermal motion) in the mixtures compared to the clusters which form
in the pure components. Fig. 3 shows the properties of mixture IT at tempera-
tures of 283 K and 303 K, based on the dependence of the coefficients of adia-
batic compressibility of a real mixture, §,,and an ideal one, fi%, on the concentra-
tion represented in volume fractions x, of glycerol. An increase in the di-
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fference between §, and % (the latter defined usually as fi¢ = Sz, [4])
with increasing temperature, indicates more negative excess compressibili-
ties while for two different temperatures 7, > T, the “absolute” compre-

AL

Fig. 3. The glycerol-2-methylpentanediol-2.4 system. The dependence of the coefficients

of adibatic compressibility of a real mixture, fi;, and an ideal one, .53 , on the concentration,
expressed in volume fractions z,, for temperatures given in the figure

gsibility of the system at the temperature T, is obviously greater than that
at the temperature 7', (Fig. 3).
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MAREK WACINSKI, EDWARD ZOREBSKI, KRZYSZTOF BEBEK

Institute of Chemistry, Silesian University
(40-006 Katowice, ul. Szkolna 9)

This paper presents the results of measurements of viscosity and mecha-
nical shear impedance, for frequencies of 0.5, 500 and 600 MHz, of liquid mix-
tures of glycerol-2-methylpentanediol-2.4 and glycerol-butanediol-1.3.. The
components of mechanical shear impedance, dynamic viscosities, relaxation
times and limiting shear moduli were calculated.

This permitied the determination of the reaction of the liquids under
study to shear deformation over a wide frequency range, including viscous,
viscoelastic and pure elastic reactions.

1. Introduction

A large number of interesting papers have been published recently on
the viscoelasticity and structural relaxation of non-polymerised liquids, both
associated and non-associated [1, 2, 3].

In the case of associated liquids both the bulk and shear viscosities relax
over roughly the same frequency range, i.e. the respective relaxation times are
very close [4, 5], in contrast to Knesser liquids, where thermal relaxation
occurs. In addition the relaxation times show approximately the same tempera-
ture dependence. It can thus be expected that the molecular mechanisms of
the two processes are similar.

Since such a close relationship between the bulk and shear viscosities is
characteristic of water, where the bulk viscosity must be related to the struc-
tural one, i.e. the relaxation of tensions which occur as a result of bulk and
stuctural deformations, but not to temperature functions (close to 277 K the
water compression is practically isothermal), it ean be assumed that also in
other associated liquids the bulk viscosity is related to struetural changes,
where hydrogen bonds break and reproduce again in the acoustic field. Ob-
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viously, the viscous relaxation (where viscosity decreases as frequency increa-
ses), observed in shear impedance measurements, must be related to both
the structure of the liquid and intermolecular reactions, where hydrogen bonds
play the main role. Therefore the phenomena observed for bulk and structu-
ral deformations of the medium, effected by longitudinal or transverse acoustic
waves, are strictly related to the structure of the liquid. Thus, any change
in the thermodynamic parameters (e.g. pressure, or temperature), or change
in the composition of the liquid, should be reflected not only in the viscosity,
but also in the elasticity moduli and relaxation times, determined from acoustic
wave propagation, and in the impedance of transverse waves.

In the present paper, the limiting shear elasticity moduli, dynamic and
static viscosities, and relaxation times, were determined from shear impedance
measurements in mixtures of polyhydroxyalecohols (glycerol-2-methylpentane-
diol-2.4 and glycerol-butanediol-1.3).

It is shown on the basis of the investigations carried out that the shear
elasticity and dynamic viscosity of polyhydroxyaleohols are affected not
only by intermolecular hydrogen bonds, but also by an additional factor,
related to the spatial structure (the so-called steric factor).

This would suggest the usefulness of acoustical investigation methods,
based on simple shear, for structural studies of liquids and liquid mixtures.

2, Measurement quantitiea

The investigations have shown that the viscosity of a liquid depends on
the deformation frequency and is lower under the conditions of rapidly chan-
ging shear deformations than for very slow deformation. The decrease in the
viscosity is accompanied by an increase in the shear elasticity of the liquid,
and thus an increase in the shear modulus G. In the ease of high-frequency
shear strain the shear elasticity reaches a limiting value G . @ is a quantity
related to the molecular structure of a given liquid. The reaction of the liquid
to shear stress is determined acoustically by measuring the so-called characteris-
tic shear impedance Z, which is the ratio of shear stress to acoustic velocity.

For a solid, it is a real quantity, and is

Z = gcp = (0G)'"?, (1)
where ¢ — density of the medium, ¢, — propagation velocity of transverse
waves in the medium, ¢ — shear elasticity modulus.

In the case of a viscoelastic liquid the characteristic shear impedance
Zy is a eomplex quantity, similarly to the shear elasticity modulus G*:

Z: = R, FlL'chil G = G’+jG”;
thus, it follows that
Z; = (eG*)". (2)
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With sufficiently high measurement frequency the imaginary component
of the impedance X, is much lower than the real component E,, and thus can
be practically neglected over this range. Hence, the high-frequency shear
elasticity modulus is

Gy = —, (3)
while its inverse is the shear compliance J, defined as

1 e
J _ e = e 4
The viscosity isotherms, calculated from the Arrhenius equation of ideal
binary mixtures, can be represented in the following way:

logy(wy, T) = @,logn, (T)+@,logn,(T), (5)

where 5,(T) and ; are respectively the viscosity and the mole fraction of a pure
component.

In order to explain deviations from the additivity of viscosity as &
funetion of composition, GRUNBERG and NIssAN’s [6] modification of equa-
tion (/) was used in the form

logn(zy, T) = @, logny (T) + @z logns (T) + 22y, I, (6)

where I' is considered the measure of deviation from the ideal behaviour of
binary liquid mixtures (for I' = 0 — ideal mixture — equation (6) becomes
(5)). For I > 0 (positive deviation from additivity) negative deviation from
the Raoult law occurs, and for I'> 0 (negative deviation from additivity)
we have positive deviation from the Raoult law [7], which involves a linear
dependence of the partial pressure and total pressure as a function of the mole
fraction.

The value of the mean Maxwell relaxation time 7, is calculated in the
following way:

L]
e 7
Lo daes G:o ’ (7)
where 7, — static viscosity (measured by the stationary method).
In turn, the dynamic viscosity is defined in the following way:

G”

i 5=y (8)
w

where ® — angular frequency (o = 2=xf), f — frequency.
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3. Experimental part

The investigations used pure butanediol-1.3 (manufactured by Koch —
Light Laboratories, U.K.), pure 2-methylpentanediol-2.4 (B.D.H. Ltd., U.K.)
and glycerol, pure for analysis (P.0.Ch., Gliwice; Poland). The alcohols investi-
gated were dehydrated by boiling under reduced pressure for about 8 hours. The
water content, measured by the Fischer method, did not exceed 0.35 per cent
of water by weight. The alcohol solutions were prepared by the weighing method.

3.1. Static viscosity measurement

Viscosity was measured as a function of temperature with error less than
2 per cent by using the Hoppler BH 2 (GDR) viscosimeter over the tempera-
ture range 263-303 K, at temperature stability of 0.05 deg.

Since both alcohols and their mixtures, AB-1 to AB-7 and AC-1 to AC-5,
satisfy the dependence proposed by MEISTER [8], logn = a-+bT~* (where a
and b are constants determined by the least squares method), it was used to
extrapolate viscosity over the whole measurement range. The results are listed
in Table 1, which also shows the correlation coefficient r, defined as

Zm—x Yi— y)

¥ = ;‘ :
l/g (2, —z)" 3 (y;— §)’

= logn,;; # and 7 are the corresponding mean values.

(9)

M=

I

where v, = T;3 o,

Table 1. The temperature dependence of viscosity (I' expressed in K)

ids = Correlation
Liquid " b 101 coefficient
Glycerol 4 —3.6995 9.6632 0.9998
Glycerol — Diol B (2-methylpentanediol-2.4)
AB 12 =0.185 —4.4389 8.4821 0.9999
AB 2. = 0.355 —4.2686 8.7614 0.9999
AB 3. = 0.5562 —4.1479 9.2125 0.9999
AB4. =0.704 —4.0477 9.4041 [T 0.9998
AB 5¢ = 0.828 —3.9490 9.3014 0.9999
AB 6. = 0.912 —3.9034 9.5047 0.9999
A8 7. = 0.968 —3.8433 9.1510 0.9999
Glycerol — Diol ¢ (Butanediol-1.3)
A0 1.z 4 = 0.295 —3.8489 7.9549 0.9998
AC 2. = 0.495 —3.8162 8.2019 1.0000
A0 3. = 0.695 —3.8205 8.5026 0.9999
AC 4. = 0.796 —3.8822 8.8223 1.0000
AC 5. = 0.898 —3.79356 9.5152 0.9998
Diol'B —3.9021 7.0763 0.9989
Diol 0 —3.9602 7.3287 0.9995
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3.2. Mechanical shear impedance measurements

The measurements of mechanical shear impedance were carried out:

a) at a frequency of 0.520 MHz using the devices UWE-1 and UWE-2
(built at the Institute of Fundamental Technological Research, Polish Academy
of Sciences, Warsaw, Poland), over the temperature range 245-293 K. The
measurement principles were described in many papers [9], the measurement
error, given by the producer, is 45 per cent. The measured dynamic viscosity,
as caleulated from formula (8), was given in Table 2. This table alse shows
the ratio of the dynamic to the static viscosity.

b) at frequencies of 500 and 650 MHz using a prototype measurement
device UWE-700, built at the Department of Physical Acoustics, Institute
of Fundamental Technological Research, Polish Academy of Seciences, by means
of the coefficient of shear wave reflection (k) at the liquid-solid interface. The
measurement error did not exceed 10 per cent.

The measurements were carried out over the temperature range 218-
253 K, determined with accuraey up to 0.1 deg. The results were calculitcd
from the relation

1-k

&y = qu’

(10)
where Z, — shear impedance of a LiNbO, crystal.

After calculating the value of R,, the limiting moduli G, were determined
from relation (3) and the behaviour of its change defined as a function of tempera-
ture. The results are shown in Figs. 1 and 2.

Since the temperature dependence of G, was found to be linear over the
elastic range, a G, = m-+n7T type equation, where m and n are constants
determined by the least squares method, was used for interpolation. The results
and the correlation coefficient # are listed in Table 3.

The results are also shown graphically in the form of the dependence
of G, on the mole fraction of glycerol (Figs. 3 and 4). Figures also show depen-
dencies of the relaxation times 7, on the mole fraction of glycerol for three
temperatures of 233, 253 and 273 K. The mean Maxwell relaxation time was
caleulated from formula (7), while its values are listed in Table 2 and shown

in Figs. 7 and 8.

4. Discussion of results and conclusions

The measurements carried out on the high-frequency shear moduli and
viscosity permit the following conclusions to be drawn:

1. The limiting shear modulus &, of glycerol is over the whole tempe-
rature range higher than that of the mixtures of 2-methylpentanediol-2.4 and bu-
tanediol-1.3 with glycerol, despite the longer and more branched (particularly
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Fig. 1. The temperature dependence of the value RZo—! and its high-frequency limiting
value, G, for mixtures of 2-methylpentanediol-2.4 with glycerol
I — glycerol, 2 — AB7, 3 — AB6, 4 — AB5, 5§ — AB4, 6 — AB3, 7 — AB2, 8§ — AB1, 9 — diol

in 2-methylpentanediol-2.4) carbon chain of the diol. This indicates a decisive
effect of intermolecular reactions (intermolecular hydrogen bonds) on the
structural elasticity of alcohol in a super-cooled state. :

The limiting shear modulus of the mixtures varies within the limits of
the measurement error monotonously, depending on the composition of the
mixture, but these changes are not a linear function of the mole fraction of
the component (Figs. 3 and 4).

Over the range of low diol concentration (up to @y, = 0.2 for 2-methyl-
pentanediol-2.4 and up to w4, = 0.1 for butanediol-1.3), its presence hardly
affeets the limiting shear modulus. The smooth, although not linear, behaviour
of G, as a function of the mole fraction of glycerol indicates that the elastic
reaction to shear stress decreases as the cross-linking increases (i.e. with increa-
sing density of hydroxyl groups forming hydrogen bonds).
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Fig. 2. The temperature dependence of the value R2p—?!, and its high-frequency limiting
value, Gy, for mixtures of butanediol-1.3 with glycerol
1 — glycerol, 2 — AC5, 3 — AC4, 4 — AC3, 5 — AQ2, 6 — AC1, 7 — diol

Table 2
Dynamic Ratio of dynamic Relaxation
Temp. viscosity to static visco- time
[K] Md gities Ty
[Nsm—2] na/ns [s=1]
1 2 ] 3 4
Glycerol
233 0.2441 % 10-5
238 0.8476 x 10—
243 0.2083 x 103 0.1978 0.3213 x 106
248 0.1244 x 103 0.2954 0.1318 x 10—6
253 0.7341 x 102 0.4063 0.5811 x10—7
258 0.4128 x 102 0.4991 0.2734 x 10—7
263 0.2359 x 102 0.58805 0.1364 x 107




370 M. WACINSKI, E. ZOREBSKI, K. BEBEK
Table 2 cd.
1 9 | 3 \ 4

268 0.1309 x 102 0.6380 0.7186:x 108
273 0.7662 x 10 0.6955 0.3976 x 108
278 0.4386 x 10 0.7099 0.2299 x 10—8
283 0.2445 x 10 0.6778 0.1386 x 108
288 0.1522 x 10 0.6965 0.8676 x 102
293 0.97056 0.7091 0.5623 x 10—?

Glycerol-2-methylpenatanediol-2.4, x4 = 0.185
233 0.7410 x 102 0.41315 0.1176 x 106
238 0.4573 x 10® 0.6595 0.4844 % 107
243 0:2235 x 107 0.7723 0.2164 x 107
248 0.1030 % 102 0.7961 0.1041 x 107
253 0.4478 x 10 0.7271 0.5361 x 108
258 0.2042 x 10 0.65835 0.2941 x 10~8
263 0.9205 0.56005 0.1712 %108
268 0.4674 0.5122 0.1054 x 108
273 0.2619 0.4956 0.6848 x 10~
278 0.17845 0.5609 0.4696 % 107
283 0.1182 0.5958 0.3401 x 10—
288 0.1051 0.8225 0.2612 x 10—?
293 0.09303 0.098 0.2146 x 107

Glycerol-2-methylpentanediol-2.4, z, = 0.355
233 0.2194 x10-6
238 0.7049 x 10% 0.4267 0.8630 x 107
243 0.4043 x 102 0.6034 0.3683 x 107
248 0.2101 x 102 0.7201 0.1692 x 107
253 0.1046 x 10% 0.7717 0.8319 x 108
258 0.4809 x 10 0.7209 0.4350 x 10—8
263 0.2374 x 10 0.6657 0.2407 x 108
268 0.1183 x 10 0.6276 0.1401 x 108
2173 0.6690 0.6237 0.8594 x 10—?
278 0.3505 0.5520 0.5508 x 10—?
283 0.21665 0.5557 0.3686 x 10—°
288 0.1566 0.6331 - 0.2571 x10-?
293 0.12785 0.7898 0.1867 x10—°

Glycerol-2-methylpentanediol-2.4, #4 = 0.552
233 0.4858 x 10—¢
238 0.1352 x 10® 0.2872 0.1802 x 106
243 0.8392 x 102 0.4606 0.7276 x 107
248 0.4748 x 102 0.6246 0.3172 x10-7
253 0.2536 x 102 0.7472 0.1483 x 107
258 0.1294 x 102 0.8030 0.7387 x 108
263 0.6648 x 10 0.8224 0.3900 x 10—8
268 0.3435 x 10 0.8051 0.2171 x 108
273 0.3435 x 10 0.71715 0.1269 x 108
278 0.1691 x 10 0.6470 0.7764 x10-*
283 0.8790 0.6843 0.4954 x 10-9
288 0.5565 0.6756 0.3287 x10-°
293 0.3407 0.8766 0.2264 x 109
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Table 2 cd.
1 | 2 1 3 | 4
Glycerol-2-methylpentanediol-2.4, x4 = 0.704
233 ; : 0.7557 x 10—¢
238 0.2728 % 10~°
243 0.1113 x 103 0.3567 0.1074 x 10—
248 0.6528 x 102 0.5108 : 0.4568 x 10~7
253 0.3639 x 102 0.6485 0.2085 x 10~7
258 0.1920 % 102 0.7322 0.1015 x 107
263 0.9831 % 10 , 0.7618 0.5239 x 108
268 0.5232 %10 - _ 0.7745 0.2852 x 108
273 0.2747 x 10 0.7450 0.1630 x 108
278 0.1394 % 10 0.6635 ! 0.9749 x 10—°
283 0.7863 0.6320 0.6077 x 10—?
288 0.5248 0.6872 0.3937 x10—?
293 0.4042 0.8344 0.2643 x 10—*
Glycerol-2-methylpentanediol-2.4, x4 = 0.828
233 0.7294 x 10—6
238 0.2640 % 10—
243 0.1161 x 103 0.3496 0.1040 x 106
248 0.6911 x 102 0.5029 . 0.4421 x 10-7
253 0.3851 x 102 0.6327 | 0.2014 x 107
258 0.2070 x 102 0.7216 ‘ 0.9772 x 108
263 0.1083 x 102 0.7572 0.5018 x 10—8
268 0.5726 % 10 0.7634 0.2714 x 108
273 0.3157 x 10 0.7662 0.1539 x 108
278 0.1747 x 10 0.7396 0.9114 x10-°
283 0.9994 0.7103 0.5616 % 10—?
288 0.6578 0.7575 0.3589 % 102
293 0.44975 ? 0.8125 0.2373 x 10—9
Glycerol-2-methylpentanediol-2.4, x4 = 0.912
233 | 0.1141 x 105
238 0.4035 x 106
243 0.1490 % 103 0.2917 0.1556 x 10—
248 0.8765 x 102 0.42275 0.6490 x 107
253 0.4917 % 102 0.5450 0.2905 x 107
258 0.2503 x 102 0.5983 0.1386 x 107
263 0.1384 % 102 0.6742 0.7007 x 108
268 0.7551 x 10 0.7111 0.3736 x 108
273 0.4231 x 10 - 0.7346 0.2091 x 108
278 0.2451 x 10 0.7518 0.1223 x 109
283 0.1405 x 10 . 0.7315 0.7449 x 10?
288 0.8753 ‘ 0.7462 0.4710 x 10—?
203 0.6012 3 0.8120 0.3082 x 102
Glycerol-2-methylpentanediol-2.4, x4 = 0.968
233 0.6996 x 10-6
238 0.2576 x 10—6
243 0.1247 x 108 0.3746 0.1031 x 10—%
248 0.7422 x 102 0.5312 0.4447 x 10-7

253 0.4254 x 102 0.6782 0.2053 x 10-7
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Table 2 ed.
1 2 [ 3 4
258 0.2174 % 102 0.7265 0.1009 x 10—7
263 0.1209 x 102 0.8015 0.5239 x 108
268 0.6495 x 10 0.8125 0.2864 x 10—8
273 0.3558 x 10 0.8024 0.1641 x 108
278 0.2066 x 10 0.8054 0.9808 x 10—?
283 0.1205 x 10 0.7823 0.6097 x10~°
288 0.7817 0.8157 0.3929 x 102
293 0.5231 0.8501 0.2617 x 10—?
2-methylpentanediol-2.4
233 0.3359 x 102" 0.6996 0.4794 x 107
238 0.1770 x 102 0.8146 0.2323 x 107
243 0.6731 x 10 0.6423 0.1206 x 107
248 0.2845 x 10 0.5313 0.6673 x 108
253 0.1306 x 10 0.4529 0.3916 x 108
258 0.5069 0.3117 0.2428 x 108
263 0.1937 0.2023 0.1587 x 10—8
268 0.09713 0.1657 0.1091 x 10—8
273 0.06843 0.1841 0.7894 % 10—*
278 0.6017 x 10—°
283 0.4817 x10~?
Butanediol-1.3
233 0.3781 x 102 0.5692 0.4130 x 10~7
238 0.2434 x 102 0.8328 0.1870 x10~7
243 0.1271 x 102 0.9253 0.9052 x 10—8
248 0.6996 x 10 1.020 0.4656 x 108
253 0.3700 x 10 1.030 0.2529 %108
258 0.2199 x 10 1.100 0.1444 x 108
263 0.1478 x 10 1.290 0.8629 x 10~°
268 0.9387 1.350 0.5373 x 10—?
273 0.56544 1.280 0.3474 x 10—?
278 0.2999 1.070 0.2326 x 109
283 0.1745 0.9410 0.1608 x 10—?
288 0.1144 x 102
293 0.8368 x 10—10
Glycerol-butanediol-1.3, x4 = 0.295
233 0.9736 x 102 0.3636 0.1215x 106
238 0.5761 x 102 0.5246 0.5181 x 107
243 0.3193 x 102 0.6599 0.2378 x10—7
248 0.1702 x 102 0.7484 0.1166 x 107
253 0.9108 x 10 0.8033 0.6073 x 108
258 0.4935 x 10 0.8283 0.3342 x 108
263 0.2722 x 10 0.8286 0.1934 x 108
268 0.1704 x 10 0.9011 0.1172 x 10-8
273 0.9157 0.8079 0.7408 x 10—?
278 0.4916 0.6981 0.4870x10—?
283 0.3033 0.6708 0.3320x10—?
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Table 2 cd.
1 | 2 | 3 | 4
Glycerol-butadienol-1.3, x4 = 0,495
288 0.2156 0.7205 0.2342 x 10~?
293 0.1717 0.8433 0.1700 x 10~?
233 0.1458 % 103 0.3423 0.1717 x 108
238 0.9154 % 102 0.5075 0.7104 x 107
243 0.5078 x 102 0.6552 0.3170 x 107
248 0.2704 x 102 0.7598 0.1514 x 107
253 0.1388 x 102 0.7998 0.7695 x 10—8
258 0.7321 x 10 0.8188 0.4137 x 108
263 0.3972 x 10 0.8209 0.2342 x 108
268 0.2242 % 10 0.8184 0.1398 x 108
273 0.1260 x 10 0.7799 0.8605 x 10~?
278 0.7315 0.7398 0.5547 x 10—?
283 0.4710 0.7521 0.3710 x 10—*
288 0.2881 0.7040 0.2568 x 10—?
293 . 0.2276 0.8273 0.1835 x10—?
Glycerol-butanediol-1.3, x4 = 0.695
233 0.2350 x 10—¢
238 0.1255 x 103 0.4207 0.1008 x 106
243 0.7218 x 102 0.5811 0.4338 x 107
248 0.4186 % 102 0.7551 0.2003 x 10~7
253 0.2347 x 102 0.8912 0.9861 x 108
258 0.1193 x 102 0.9011 0.5143 x 108
263 0.6258 % 10 0.8932 0.2827 x 108
268 0.3217 %10 0.8283 0.1631 x 108
273 0.1734 % 10 0.7719 0.9831 % 10—°
278 0.1034 x 10 0.7659 0.6171 x 10—°
283 0.6931 0.8239 0.4020 x 10~?
288 0.4199 0.7760 0.2711 x 102
293 0.2982 0.8317 0.1887 x 102
Glycerol-butanediol-1.3, z4 = 0.796
233 0.3697 x 10-6
238 0.1558 x 103 0.3486 0.1411 x 106
243 0.9163 x 102 0.5095 0.5836 x 10~7
248 0.5127 % 102 0.6585 0.2595 x 10~7
253 0.2831 % 102 0.7870 0.1232 x 10~7
258 0.1497 % 102 0.8496 0.6209 x 108
263 0.7766 % 10 0.8530 0.3302 x 108
268 0.4000 x 10 0.8104 0.1845 x 10—8
273 0.2165 x 10 0.7759 0.1078 x 10—8
278 0.1335 x 10 0.8903 0.5663 x 10—9
283 0.8179 0.8103 0.4149 % 10—?
288 0.5047 0.7856 0.2715 x 10—?
293 0.3800 0.9119 0.1835 x 102
Glycerol-butanediol-1.3, x4 = 0.898
233 0.1525 x 103
238 0.5383 x 106
243 0.1790 x 103 0.2674 0.2072 x 10—
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Table 2 ed.
1 \ 2 | 3 | 4
248 0.1096 x 103 0.4040 0.8623 x 10-7
253 0.6400 > 10* 0.5391 0.3851 x 10-7
258 0.3724 x 102 0.6817 0.1834 < 10-7
263 0.1998 x 102 0.7453 0.925510-#
268 0.1102 x 102 0.7954 0.4925 < 10-*
273 0.6034 x 10 0.8039 0.2750 % 10-#
278 0.3427 x 10 0.8070 0.1605 » 102
283 0.2066 < 10 0.8263 0.9759 x10-*
288 0.1237 X 10 0.8104 0.6157 x 10-°
293 0.7663 0.7959 0.4019 x 10-°

Table 3. The temperature dependence of the limiting shear elasticity
modulus G = m +nT [Nm-2]. Temperature in K

Liquid m X 10-9 n X 1077 Correlation
| coefficient
¢ . 2 USRS ot i
Glycerol A 7.3831 —1.6883 —0.9833
Glycerol-Diol B (2-methylpentanediol-2.4)

AB .y = 0.185 5.9202 —1.8848 —0.9986
AB 2, x4 = 0.355 6.4504 —1.9046 —0.9975
AB 3. = 0.5562 7.7481 —2.15656 —0.9991
AB 4. = 0.704 8.1202 —2.1449 —0.9991
AB 5. = 0.828 7.3807 —1.7218 —0.9987
ARB 6. = 0.912 7.5626 —1.7603 —0.9965
AB 7. = 0.968 7.5043 —1.75678 —0.9980

Glycerol-Diol ¢ (Butanediol-1.3)

AC 1iwy; = 0.295 6.1291 —1.6837 | —0.9989
AC 2. x4 = 0.495 7.0447 —1.8918 | —0.9972
AU 8. = 0.695 7.5498 —1.9274 —0.9867

AC 4. = 0.796 7.0216 —1.6209 —0.9746

AC 5. = 0.898 7.2868 —1.6686 —0.9988

Diol B | 4.0951 —1.3269 —0.9992°
Diol O | 3.7300 —0.9100 —1.000

The deviations of ¢ from additivity with respect to the mole fraction
vary for the two mixtures, depending on the temperature.

For 2-methylpentanediol-2.4 the deviation is positive over the whole
concentration range with temperatures below 273 K. It reaches its maximum
value for diol concentration x4, = 0.25, i.e. for the mole ratio glycerol: diol =
3:1, suggesting particularly strong cross-linking of the mixture close to this
concentration. In the case of butanediol-1.3 mixtures the deviation becomes
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positive over the whole concentration only at a temperature of 223 K. At
higher temperatures the sign of deviation from additivity changes.

2. Figs. b and 6 show the dependence of logn on the mole fraction of gly-
cerol for three temperatures-of 253, 273 and 283 K. The dashed line represents
the behaviour of the dependence of viscosity isotherms for ideal binary mixtures.

G,
x10°
INAF)

glycerol - 2 - methylpentanediol - 24

Fig. 3. The limiting shear modulus G as a function of the mole fraction x; of glycerol in
mixtures with 2-methylpentanediol-2.4 for temperatures given in the figure

With both mixtures logn deviates negatively from additivity. In the case
of the 2-methylpentanediol-2.4-glycerol system the deviation is particularly
distinet over the diol concentration range 0.03-0.3. In this range there are
also large irregularities, possibly indicating some structural peculiarities.

In contrast to 2-methylpentanediol-2.4-glycerol mixtures, in the glycerol-
-butanediol-1.3 system the deviation from additivity shows smooth (monoto-
nous) behaviour, occurring over the diol concentration range 0.1-0.7, and
when little more diol is added, no sharp viscosity drop results. Thus, there
emerges a distinet effect of the density of OH™ groups, participating in the
gpecific intermolecular interactions.

3. Similar deviations from additivity are characteristic of the mean rela-
xation time; where it is interesting to note a sharp drop in relaxation time,
caused by a small addition of 2-methylpentanediol-2.4 to glycerol. This effect
is not observed for mixtures of butanediol-1.3 and glycerol (Figs. 7 and 8).

-
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INm]
glycerol - butanediol - 1.3

Fig. 4. The limiting shear modulus G as a function of the mole fraction x; of glycerol
in mixtures with butanediol-1.3 for temperatures given in the figure

Since the two diols differ only in the number of methyl groups, one could
expect similar abilities to form hydrogen bonds in the emerging associates,
and thus similar specific intermolecular interactions leading to the forma-
tion of clusters, and determining the reaction to mechanical stress. However,
2-methylpentanediol mixtures show much greater deviation from 1deallty
than those of butanediol-1.3 and glycerol.

It can thus be concluded that the free spaces in the openwork structure
of a cluster are “blocked” by two methyl groups of 2-methylpentanediol-2.4,
and that, in addition to cross-linking by hydrogen bonds, another steric factor
oceurs.

The results obtained indicate that peculiarities in the structure of the
golutions under study are reflected in their behaviour under dynamic load.
This seems to suggest the usefulness of rheological investigations based on
pure stress (and thus not related to density and temperature changes)
for studying the structure of liquid solutions, although it is so far impossible,
in view of the necessary measurement frequency range of the order of 10%-
10'* Hz and in view of the impossibility of super-cooling over a sufficiently
wide temperature range, to extend the studies to the most interesting range
of aqueous solutions.
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Fig. 5. The logarithm of viscosity as a funetion of the mole fraction x, of glycerol in mixtures
with 2-methylpentanediol-2.4 !
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Fig. 6. The logarithm of viscosity as a function of the mole fraction x, of glycerol in mixtures
with butanediol-1.3
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Fig. 7. The logarithm of the mean relaxation time as a function of the mole fraction », of
glycerol in mixtures with 2-methylpentanediol-2.4
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Fig. 8. The logarithm of the mean relaxation time as a function of the mole fraction in mix-
tures with butanediol-1.3
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2ND SPRING SCHOOL ON ACOUSTOOPTICS AND ITS APPLICATIONS
Gdansk-Wiezyca, 24-29 May, 1983

Three years after the 1st Spring School on Acoustooptics and its Applications (Archi-
ves of Acoustics, 16, 3 (1981)), which had been held at Wiezyca near Gdansk, another meeting
in this field took place, organized by the Institute of Experimental Physics, Gdansk Universi-
ty, in cooperation with the Section of Quantum and Molecular Acoustics and Sonochemistry
of the Polish Acoustical Society and with support by the Institute of Fundamental Technolo-
gical Research, Polish Academy of Sciences.

The Honorary Committee included Prof. Dr. Z. Jacopzi¥skr, Chairman of the Polish
Acoustical Society; Prof. Dr. A. Kawskr, Deputy Rector of Gdansk University; Prof. Dr.
I. MALECKT, Institute of Fundamental Technological Research; Prof. Dr. A. OpiLskl, Chairman
of the Section of Quantum and Molecular Acoustics and Sonochemistry of the Polish Acou-
stical Society; Prof. Dr. J. RAnacmowsKl, Institute of Fundamental Technological Research,
Polish Academy of Sciences.

The Organizing Committee included Prof. Dr. A. Srrwrgskr, Chairman; Dr. A, MR-
KIEWICZ, Secretary; Dr. I. WoscrecHowsEA, Deputy Secretary; and Drs. M. BORYSEWICZ,
M. Kosmorn, P. Kwiek, B. LINDE as members.

The Programme of the School eonsisted of physical, technical and technological prob-
lems related to interaction between light and ultrasound in fluids and solids. The points
of interest were bulk, transverse and surface elastic waves interacting with a light beam,
particularly a laser light beam.

Although the School took place a year later than originally planned, it lost nothing
of its topical value, enjoying a large interest on the part of the experts, not only those who
had participated in the 1st School in 1980, but also those who came to this working meeting
for the time.

The School provided an opportunity for mutual exchange of knowledge about a
large number of gpecific problems with which this rather narrow field of science is concerned.

70 persons took part in the School 28 lectures and original papers by invited inter-
nationally famous experts were delivered. 12 papers were presented in poster form.

The programme of the School included:

General papers

1. R. MartENs, W. HerEMAN (Instytuut voor Theoretische Mechanica, Gent, Belgium),
Diffraction of light by ulivrasonic waves in the case of oblique incidence of the light, general
theory and approximations.
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2,

10.

¥1.

13.
14.
15.
16.
17.
18.
19.

20.
21.

22,

23.

24.

25.

I. GaBrIELLI, P. Crurr, 8. ZveyA (Universite degli Studi di Trieste, Triest, Italy), Spa-
tial and temporal modulation of a light beam obliquelly incident on an ultrasonics beam of
rectangular or circular cross-section.

. 1. Gasrizrrr, P. Crurt (Universite degli Studi di Trieste, Triest, Italy), Light diffraction

by ultrasound: analysis of special temporally modulating arrangements.

. K. Parorskr (Warsaw Technical University, Poland), Optical harmonic analysis of

ultrasonic phase gratings — selected topics.

. R. Remsorp (Physikalisch-Technische Bundestald, Braunschweig, FG-R), Ultrasound

investigation by laser inlerferometry using quadrature fringe detection.

. F. MicaarD (Universite Pierre et Marie Curie, Paris, France), Local elastic properties

investigated through acousto-oplical techniques.

. J. Raxacmowskr, J. MoryrLewskr (Institute of Fundamental Technological Research,

Warsaw, Poland), Photoacoustic spectroscopy: physical bases and preliminary research
in Poland.

. M. Baszux (Warsaw Technical University, Poland), 4 method of analysis of SAW in

inhomogeneous media.

. P. Kwiek (Gdansk University, Poland), Diffraction of light by two spatially separated

wltrasonic -waves.

A. DereBveRE (Faculté Libre des Sciences, Lille, France), Comparison between some
theories of Debye-Sears phenomena.

W. HereMAN (Instytuut voor Technische Mechanica, Gent, Belgium), Acousto-opiic
diffraction of intense laser light in an isotropic medium (including third harmonic genera-
tion).

. A. MiEwskr (Warsaw Technieal University, Poland), Optic electric and magnetic of

SAW wvelocity.

J. Kozrowskr, 8. Szapier (Warsaw Technical University, Poland), The acoustic self-
-stroboscopy by using an optical cyclic inlerferometer.

A. Surwrkskr (Institute of Experimental Physics, Gdansk University, Poland), Acousto-
opites in anisotropic media.

A. Avrepr (Instituto di Acustiea “0. M. Corbino”, Italy), Polarization state changes
in light interaction with uwltrasound. ;

W. Pasewskr (Institute of Fundamental Technological Research, Warsaw, Poland),
The influence of substrate anisotropy on diffraction focusing and reflection of a surface wave.
J. SaprivL (Centre National d’Etudes de Telecommunications, France), Lattice dynamics
of acoustic modes in-III-V semiconductor alloys and superlattices.

A. Opmskr (Silesian Technical University, Gliwice, Poland), Technology of waveguide
formation and methods of investigating waveguides applied to planar acoustooptics.

A. Cuyrna, W. KamISskI (Aviation Institute, Warsaw, Poland), Acoustic aspecls of
flow visualisation near tip of propellers and helicopter rolors.

M. SzusTakowsKI (WAT, Warsaw, Poland), Acoustic fiber sensors.

E. Danickr (PIT, Warsaw, Poland), General theory of reflection of surface acoustic wave
from periodic metal strips.

. Louts, P. PERETTI (Université Pierre et Marie Curie, Paris, France), Photoacoustic
spectroscopy of organic molecules in gas phase: study in the ullraviolet and infra-red spectra.
A. Komorowskr, W. ZieLENKIEWICZ (IChF, Warsaw, Poland), Nonradiative relaza-
tion processes in electronically exciled molecule in liquid solution by photoacoustic calo-
rimetry.

L. Kovacs, Yu. V. Pisarevskir, I. M. SiLvesTrRovA (Research Laboratory for Crystals
Physics, Hungarian Academy of Sciences, Budapest, Hungary), Characterization of
TeO, single crystals by the acousto-optical method. \

E. Kozaczea, A. Cwanina (WSM, Gdynia, Poland), Detection and observation of propel-
ler cavitation. >
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26. 8. A1r AMER, A. BENCHAALA, A. DameLn (City University, London, U.K.), Visualiza-
tion and metrology of ultrasonic field.

27. J. P. WrigHT, A. F. BRowN, 8. Arr AMeRr (City University, London, U.K.), High reso-
lution ultrasonic transducer.

28. 1. WoJCIECHOWSKA, A. MARKIEWICZ (Institute of Experimental Physics, Gdansk Univer-
sity, Poland), Caleulation of ultrasowic field using data obtained in holographic investi-
gation of amplitude distribution throughout an wulirasonic transducer.

Poster form papers

1. M. BorysEwicz, A. StiwiNski (Institute of Experimental Physics, Gdarisk University,
Poland), Acoustooptic interaction in nematic liquid erystals.
2. M. Kosmor, B. LinpE, A. Surwifskr (Institute of Experimental Physics, Gdarsk,
University, Poland), Invesligalions of molecular processes by acoustooptical methods.
3. A. Markiewroz (Institute of Experimental Physics, Gdanisk University, Poland), Calou-
lation of wultrasowic fields.
4. J. Lirniewskr (Institute of Fundameéntal Technological Research, Warsaw, Poland),
The influence of aberration on a SAM image.
5. I. MerTA, J. RavA (WAT, Warsaw, Poland), Distribution of acoustic wave field in stan-
ding wave acoustooptic modulator.
6. A. CremisiNi, M. Dozio (Facolta di Ingegneria, Istituto di Matematiche Applicate
U. Dinice, Pisa, Italy), On a new algorithm describing the acoustic wave propagation.
7. V. F. NozprEv, 8. G. Ezaov, V. A. BALANDING, E. V. GEVORKIFAN (VZMI, Moscow,
USSR), The acoustooptical effect in nematic liquid erystals in the presence of electrie field.
8. 8. PATELA, J. KADZIELA, J. Raporewskr (WAT, Warsaw, Poland), Acoustooptic interac-
tion in ZnO waveguides on oxidized silicon substrates deposited in modified DO sputtering
system.
® 9. E. Soczkiewicz, Altenuation of the mean acoustic field in random media and the form
of correlation function of irreqularities.
10. O. Leroy, E. BroMmE (Kortrijk, Belgium), Double Bragg — and Bragq/Normal dif-
fraction of two laser beams by ultrasound.
11. O. Leroy, J. M. Craeys (Kortrijk, Belgium), Light d@ffmcmon by one ultrasonic wave
Laplace-transform method.
12. 0. Leroy, E. Broume (Kortrijk, Belgium), Amplitude-time-modulation of a diffracted
laser beam by two ultrasonic waves with opposite directions and frequency ratio: 1 :n.

The sessions involved numerous debates, in addition a programmatic round table
discussion was held on the existing criteria permitting distinction between the Raman-
Nath and Bragg ranges in the phenomenon of light diffraction by ultrasonic wave. The
discussion indicated that these criteria are not sufficient and particularly unreliable in the
intermediate case, i.e. in the region between those ranges, where known theories do not
ensure agreement with experimental resulfs.

The Proceedings of the 2nd School were published by Publishing Section of Gdansk
University in January 1984, as a separate collection.

The next, 3rd, School on Acoustooptics is expected take place in 1986.

Antoni Sliwiriski (Gdasisk)
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INFORMATION ON WINTER SCHOOLS ON MOLECULAR AND QUANTUM ACOUSTICS
AND SONOCHEMISTRY AND ON VIBROACOUSTIC HAZARD CONTROL IN INDUSTRY

On 1-6 March, 1984, at Ustron-Jaszowiee, XIIth Winter School on Molecular
and Quantum Acoustics and Sonochemistry and XIth Winter School on Vibroacoustic
Hazard Control in Industry were held at Ustroii-Jaszowiec, both organized by High-Silesian
Division of the Polish Acoustical Society in cooperation with the Institute of Physies of
Silesian Technical University.

The Organizing Committee included Dr. Joachim GMYREK (general management,
programme of the School on Molecular and Quantum Acoustics and Sonochemistry), Dr.
Bogustaw Nosowicz (programme and scientific supervision of the School on Vibroacoustic
Hazard Control in Industry), Zdzistaw JAKUBCZYK, M.Se. (finances), Dr. Ryszard HNATROW
(organization), Dr. Zygmunt Niczyporuk and Dr. Tadeusz PUSTELNY.

In the XITth Winter School on Molecular and Quantum Acoustics and Sonochemistry,
70 participants took part. Most scientists came from the Institute of Fundamental Techno-
logical Research, Polish Academy of Science, Warsaw, Poland; WAT; and Institute of
Physics of the Silesian Technical University. There were also representatives of all the
scientific centres which work in this field. .

In the School 47 papers and communications were delivered. Each of the 6 sesgions
began with a leading paper on the problems considered in a given session (acoustoelectro-
nics, surface waves, molecular acoustics, grantum acoustics, acoustooptics, sonochemistry
and ultrasonic technology). The abstracts of the papers delivered will be published in the
5th volume of the periodical “Molecular and quantum acoustics”.

74 participants took part in the XIth Winter School on Vibraocoustic Hazard Control
in Industry, including both employees of research and development centres, design offices
and industrial plants from all over Poland. The leading problems were those related to the,
occurrence, measurement, analysis and evaluation of pulsed noises. A review lecture was
delivered by Dr. Adam LipowczaN. Another dozen-odd papers on these subjects were pre-
sented by representatives of various research institutions and industry. The other group
of lectures or communications was devoted to acoustic diagnostics of industrial machinery
and facilities and the broadly conceived problems related to noise control. In the Sehool
a total of 36 lectures and communications were delivered.

Joachim Gmyrel (Gliwice)

SEMINAR ON ULTRASONIC NONDESTRUCTIVE TESTING
New Delhi 5-6 December, 1983

The Seminar on Ultrasonic Nondestructive Testing was held at New Delhi on 5-6,
December, 1983.

The Seminar was organized by the Ultrasonie Society of India in collaboration with
the National Physical Laboratory, New Delhi. It was inaugurated by Prof. Rais AHMED,
Vice-Chairman, University Grants Commission, New Delhi.

80 delegates, mostly from industries, participated. Besides 12 papers and 4 films,
5 invited lectures were arranged in the seminar over five sessions. Dr. D. SRINIVASAN, Direc-
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tor, Naval Physical and Oceanographic Laboratory, Cochin, delivered his lecture on A4coustic
techniques in underwaler imspection, Dr. V. N. BINDAL, Pregident, Ultrasonic Society of
India, and Head, Material Division, NPL Delhi, talked on Ulirasonic inspection of under-
water offshore structures, Dr. A. K. MuLLICK, Joint Director, Cement Research Institute,
Ballabgarh, talked on Ulirasonic testing of conerete, Dr. T. K. Sarsena, Scientist, NPL,
New Delhi, spoke on The problem of calibration of probes for nondestructive testing and Mr.
J.Prasap, Head; NDT Centre, Hindustan Aeronautics Litd, Bangalore, talked about Training
and education programme in NDT.

Prof. A. K. Rao, Head, Department of Aerospace Engineering, Indian Institute of
Science, Bangalore, gave the key note address in the inaugural session of the Seminar and
talked on Acoustic emission.

~ In this Seminar, for the first time attention was drawn to the future needs and the
magnitude of the problem of underwater NDT inspection in the country. The ultrasonic
nondestructive testing technique appears to be one of the most effective methods for such
jobs.

In the panel discussion, various problems of utmost need were identified. These included
detection and sizing of hairline erack, corrosion testing of steel embedded in concrete, indue-
tion of predetermined size cracks ete.

The panel also realized the need of developement of various types of probes for éhf-
ferent materials such as aluminium alloys and austenitic steel welds. The panel recommended
that the NPL should have all types of calibration blocks, reference standards and ultra-
sonic probes. It made special reference to the report of Electronics Commission, Govt. of
India, published in Electronics Information and Planning, vol. 7, 1980, pp. 567-599. This

‘report recommended augmentation of testing, calibration and measurement facilities
for characterization and standardization of ultrasonic equipment. The panel discussion
desired an early implementation of this recommendation.

V. N. Bindal (New Delhi)



