IN MEMORY OF WILHELM JORDAN

Dr. Wilhelm Lassen Jordan, an out-
standing Danish acoustician, a worldren-
owned expert in the field of interior acous-
tics, died, aged 72, on 3 February, 1982.

After graduation in 1933 from the
Royal Technical Institute in Kopenhagen
and obtaining the doctor’s degreein 1941,
over the nearly 40 successive years he has
been outstandingly active as designer and
consultant in interior acoustics, particularly
in the domain of concert, theatre, and
conference halls and studios of radio and
television stations. Of the many of this
designs in a large number of countries,
most recognition was given to the buil-
dings of the Danish radio in Kopenhagen
(1940-1953), New York State Theater
(1961-1965), Metropolitan Opera in New
York (1962-1967), Sydney House (1957-
1974), and many concert halls, including those in Oslo (1966-1977), Stockholm
(1973-1979), Dublin (1976-1981), and Odense (1977-1981). He has been active
until the final end. He died in Sydney while working on a new acoustical
design of the opera hall in Sydney with 1550 seats in order that in addition
to operas also theatrical plays could be staged there.

In his investigations he concentrated on the determination of simple,
objective criteria of evaluation of the quality of concert and theatre halls.
His experience of many years in acoustfical designing of halls he contained in
the recently published book Acoustical Design of Concert Halls and Theatres
whose scientific and practical significance cannot be overestimated.

Wilhelm L. Jordan has been also hightly evaluated by Polish acousticians.
They and he have always been in direct contact and he has often expressed his
interest in our country.
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This paper discusses the possibility of signal distortions occurring in
closed space for the rise and decay of signals. A theoretical analysis is conducted
for a simplified case in which the character of phenomena is analyzed in relation
to the value of the ratio of the time delay between successive signals and their
period.

The later part of this paper gives experimental results which confirm the
possibility of distortions oceurring in real conditions. It also discusses the
possibility of the occurrence of phase, frequency and amplitude modulation and
gives examples of signal shape distortion in its rising, obtained in two concert
halls in the Academy of Music, Warsaw.

A subjective analysis was performed of the audibility of distortions in
simulated signals which were programmed with a regular kind of distor-
tion. The results of distortion audibility in 9% and the subjective ana-
Iysis of the audibility of distortions in real conditions have shown that these
distortions can be perceived with their short duration of the order of several
or a dozen or so milliseconds.

1. Introduction

Among the variety of criteria for evaluating the acoustic quality of concert
halls, theatres and auditoria, which will here be called auditoria, some refer
to the initial time of sound rise and decay in enclosures.
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Both in evaluating the masking effect of the first reflection with respect
to the direct wave [6, 16] and in energy analysis of the first reflection with
respect to all reflected waves [11, 13], these criteria involve a value of 50 ms
calculated from the arrival or decay time of the direct wave as an essential
value from the point of view of subjective analysis. The arbitrarily assumed
notions of the rise time TR and the early decay time EDT of signals contain,
according to JORDAN [7], essential data characterizing the properties of inte-
riors.

These criteria can in general be called macroscopie, since they involve pri-
marily energy relations without investigating the structure of signals [12].

It is well known that reflected waves affect the structure of a signal in an
enclosure for an unsteady state. However, investigations in this field, which
could be called microscopic approach investigations, have not been performed
extensively so far. This approach was suggested in the 19508 and partly devel-
oped in the following years [2, 4, 14]; however, the lack of subjective evaluation
methods for a ,microscopic distinguishing” of the structure of the acoustic
field failed to provide conditions to show the necessity for these investigations
to be carried on.

The recently developed methods for subjective evaluation of acoustic
signals and the use of FFT analysis of signals have encouraged the present
authors to continue the microscopic approach investigations mentioned above.

The starting point in the present paper is the treatment of the delays with
which particular reflected waves reach the observation point at the rise time
of a signal as nonlinear, step-like time functions [2, 3]. For particular reflected
waves these functions take a value of zero in the period in which the wave of
a given reflection has not yet reached the observation point and a value of
one when the wave of a given reflection has reached the observation point.

Assuming the linearity of phenomena in the amplitude domain, it is possible
to superpose particular reflected waves, each of which contains a relevant
step-like, i.e., nonlinear, time function resulting from the delay in its arrival
at the observation point. As a result of the nonlinearity mentioned above, when
the sound rises or decays at the observation point, the resultant signal shows
the properties of a distorted signal.

Since the nonlinear properties of the resultant signal result from time
characteristics and not from amplitude ones, the distortions thus caused will
be called quasi-nonlinear distortions.

It is much more difficult to define nonlinear distortions resulting from non-
linear amplitude dependencies for unsteady-state than those for steady-state
conditions. It is still more difficult to define quasi-nonlinear distortions.

In view of the above, the present paper does not attempt to define precisely
the notion of transient signal distortions in an enclosure and their quantitative
‘evaluation and is limited to a comparative analysis of the instantaneous spec-
trum of a distorted signal caused by the effect of the delays of particular re-
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flected waves with respect to a reference signal in which the effect of reflected
waves is absent.
_ reference is in this case a signal obtained in anechoie¢ conditions, or

(in practice) a signal in which the direct wave dominates. Thus, each signal for
an unsteady state of sound in the enclosure in which reflected waves occur is
a distorted signal. This paper attempts to grasp the character of these distor-
tions and to evaluate their subjective audibility.

The aim of this paper is to analyze the effect of quasi-nonlinear distortions
in the three aspects:

— theoretically, for a simplified case which can be described analytically;

— experimentally, in order to determine whether the phenomena de-
scribed in the theoretical part occur in real conditions;

— subjectively, in order to define the audibility of differences between
a distorted signal and an undistorted one for different durations of distortion.

The present investigations are preliminary and are limited to an examina-
tion of sinusoidal signals. In the future, these investigations will include real
speech and music signals in a larger number of halls, and also other methods
of psychoacoustic evaluation.

2. Theoretical analysis

It is known that Sabine’s statistical theory is good for description of the
acoustic field of enclosures in the case when the condition of a regular distribu-
tion of sound energy density in reflected waves, i.e. for a good diffusion of
sound energy, is satisfied [1].

In unsteady-state of sound in an interior, i.e. when the sound rises or
decays in an interior, this condition leads to an exponential increase or an expo-
nential decrease in the SPL of waves reflected in an arbitrarily chosen observa-
tion point. In practice the curves of the rise or decay of sound in‘an interior
deviate greatly from theoretical curves (most so for sinusoidal signals), in parti-
cular in the beginning of the rise or decay of sound. This is caused by an insuf-
ficient, from the point of view of the laws of statistics, number of the waves
of the first reflections and by the effect of phase displacements between par-
ticular reflected waves whose sound pressure amplitudes are much higher than
the amplitudes of the waves of the later reflections. This effect is one of the
basic reasons why sinusoidal signals are not used in measurements of the re-
verberation time and why the first time section corresponding to a drop in SPL
of 5 dB with respect to the steady-state level is eliminated from the decay
curve.

This approach is fully justified in terms of measurement technique; it leads,
however, to the loss of some data about the properties of a hall in the early
rise or decay period. These data could be valuable in the future development
of new criteria for evaluating halls.
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- In an unsteady state of sound in an enclosure the method of image sources
[10,15] is useful in analysis of the acoustic field, particularly for the first reflec-
tions. This method consists in replacing the surfaces limiting the interior with
an array of image sources with such properties and spatial arrangement that
the sound distribution of the acoustic field in the interior represented by means
of image sources corresponds to the sound distribution of this field in real
conditions.

Of the major properties of the above representation used in the present
paper, it is necessary to mention the following;

— the surfaces limiting the interior are planes;

— the sound power of the image source of the nth order is equal to the
sound power of the real source multiplied by the factor ", where § is the coeffi-
cient of reflections from the planes limiting the interior;

— all image sources are started at the same time as the real source with
the same phase;

— the distance of a given image source from the observation point is
equal to the passage path of the wave emitted by the source Z and reaching
the observation point X after a given number of reflections;

— in terms of amplitude acoustic signals fall within the limits of linear
acoustics, which permits the use of a superposition of signals.

These assumptions make it possible to write the following formula for
the instantaneous value of sound pressure in an unsteady state when the gignal
rises in the interior, from the time when the direct wave reaches the observation
point till the time when the nth reflected wave does so,

P(t) = 1(I—70)PosSiD o (t—70)+ ...+ 1(E—7,) 0,510 04 (E—7,,), (1)
where p, and p, are the sound pressure amplitudes of the direct wave and
of the nth wave reflected at the observation point X, respectively. The functions
1(t—7,) and 1 ({—7,) are unit step-functions representing, respectively, the
delays 7, and 7, with which the direct and the nth reflected waves reach the
observation point X with respect to the time ¢ = 0 when the source is started:

1(t—1) =0 for t<< 7y,
1(t_To) =1 fOI‘ t; To,
.............. (2)
1¢—z,)=0 fori<n,
-z, =1 <fori= 1.,
Considering relation (2), equation (1) can be represented in the form of the
following sum

n

p(1) = Y 1(t—7)pisine(i—7), (3)

i=0

where # is the number of reflected waves under observation.
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For successive values of the number n with known values of the sound
pressure amplitudes p; and the delays z;, it is possible to plot changes in the
resultant signal as a function of time in the process of sound rise in the interior
for some arbitrarily chosen observation point X. For arbitrary values of the
amplitudes p, and the delays 7, it is, however, impossible to present the sum
expressed in formula (3) in simple analytical form. This is possible only in a sim-
plified case under the following assumptions:

— the sound level amplitudes of particular reflected waves are the same
and equal to the amplitude p, of the direct wave,

Pi = Poj (4)

— successive reflected waves reach the observation point X at the same
time intervals 7, which leads to the conditions

L = ir. (5)

T

This case does not occur in real enclosures and can exist only in the condi-
tions of the plane wave field limited by two parallel planes with the reflection
coefficient g = 1, in the Kundt tube, for example. Consideration of the above
simplified case aims, however, at investigating the character of sound pressure
variations in an unsteady state, while experimental investigations in halls
should verify whether the phenomena occurring in the simplified case occur in
real conditions.

Assuming, for simplification, as the initial moment of the sound rise in
the interior the moment when the direct wave reaches the observation point,
i.e. T =0, it is possible to write the expression of the instantaneous value of
the sound pressure after n reflected waves have reached the observation point
in the form

p(t) = Y 1(1—i7)posinw,(t—iv). (6)

i=1

The expression of the sum of sinusoidal signals with the same amplitude
and argument which changes by a constant value as a step-function can be
represented in analytical form, according to the general relation (5),

n—1

Pua(t) = > pesin(z+1iy) = pesin —gg cosec % sin [w—i— (m—1) %] (7)

i=0

Changing the number of the terms in the series in formula (7) to » and
substituting ‘

Y = w7, ' (8)
Y = w7, (9)
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it is possible to write expression (6) of the sum of sinusoidal signals delayed
in time and shifted in phase after n reflected waves have reached the observation

point X in the form
w,T| . W, T
; ]sm(wot—'n ; )

Pu(t) = 1(t, —n7) Do : (10)

W, T

2

After the time ¢, in which the nth reflected wave reaches the observation
point, i.e. for ¢, > nr, the function

1(t, —nr) =1, (11)

while the step-like changes in a signal caused by the arrival of successive re-
flected waves at the observation point are expressed in expression (10) by
varying the number », which can be written in the form

n = ent (%) = f(8t). (12)

This notation signifies that as successive reflected waves reach the observa-
tion point, the value of the number » is changed in a step-like manner, taking
the least value of the integer in the quotient ¢, /7. The above step-like changes
in the number » form a nonlinear time function which has been written in the
general form as f(8%).

In further considerations it is convenient to use the ratio of the delay =
between successive reflections and the period T of the signal,

;) WeT

?ZT: o2n

(13)

Substitution of relations (12) and (13) into expression (10) makes it possible
to write

sin [f(8t) vy

Pa(t) = Do indy in[w,t — f(8t) wy]. (14)

In the above expression the step time function f(8t) occurs twice: once as
@ change in amplitude and once as change in phase. It follows therefore that
in an unsteady state of sound in an enclosure, i.e. in the time range 0 < < 7,
an effect corresponding to simultaneous amplitude and phase modulation of the
signal occurs at the observation point X.

It is known that signal modulation can only occur under the condltlons
in which nonlinear effects occur. In the present case nonlinearity does not apply
to the amplitude relations of the system but to the time relations resulting from
delays introduced by the system. Therefore, in order to distinguish them from




QUASI-NONLINEAR DISTORTION OF SIGNALS 89

the commonly used notion of nonlinearity, signal distortions considered here
were called quasi-nonlinear distortions at the beginning of the paper. In con-
gidering the hall as a delaying system which is nonlinear as a function of time,
it should be expected that the quasi-nonlinear distortions introduced should
influence the character of the frequency spectrum in the unsteady-state of the
signal.

The effect of amplitude and phase modulation resulting from formula (14)
depends essentially on the coefficient y expressed in relation (13), representing
the ratio of the delay 7= between two successive waves reaching the observation
point X and the period T of the signal.

Tt is possible to distinguish here four characteristic ranges of the coeffi-
cient y, leading to qualitatively different effects.

I y<0.5, ie. wy7< .

In this case the delay = between successive waves reaching the observation
point X is lower than half the period T of the signal, causing distortions in the
shape of the curve of the signal to occur in the first phase of the sound rise in
an interior, analogous to nonlinear distortions. This shape can be determined
easily from formula (14) by calculating successive values of p, () for successive
numbers n. The shape of a distorted signal can repeat at regular time intervals,
if the condition

27

WeT = T, (15)
where % is an arbitrary positive number, is satisfied.
For example, when y = 0.5, i.e. @y = =, from formula (12)

) T

Pa(t) = 1o sin(cu.,t —4 —) 5 (16)
- 2
smg

It can be easily seen that in the present case for odd values of n the instan-
taneous value of the signal amplitude is equal to 0, while for even values of n
the instantaneous value of the signal amplitude takes the values of p, (Fig. 1a).

The instantaneous changes in the values of the amplitude within one period
which occur in the present case cannot be called amplitude modulation. The
distortions in the shape of the curve of the signal can be regarded as the effect
of phase modulation.

II. 0.5<y< 1.5, i.e. #< wy7 < 3m.

In this case the phase shift occurring for each period T of the signal causes,
in addition to change in the signal shape, an effect corresponding to frequency
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modulation (Fig. 1b)whose deviation is

Aw _2m—oyr  T—1 17
o 2 o a7)

Consideration of the variation limits of the angle w,~ assumed for the above
case shows that the frequency deviation can fall in the limits
: | Aw ; B

S Je (18)

As in the previous case, the duration of frequency modulation is longest
when the phenomenon recurs periodically, i.e. when condition (15) is satisfied.

IO y > 1.5, i.e. wy7 > 3m.

It can be seen from formula (14) that the summing of signals as they reach
the observation point is accompanied by amplitude variations which can be
treated as amplitude modulation (Fig. 1¢).

The greatest amplitude modulation occurs when its instantaneous values
ake a value of zero. The condition for this effect to occur is satisfying the fol-
lowing relation

. S W NS
=nT e — = 9
Jt =nl, Le T - (7 >mn), (19)
where j is the number of periods of the signal necessary for one modulation per-
iod, n is the number of signals whose superposition gives one modulation cyele.
The frequency of amplitude modulation is then

Wy fo
= =, 20
IV. y =1,2,8,...,n, i.e. w,7 = 27n, where # is an integer. Substitution of
the above value into formula (14) gives
sin[(n+1)=] .
(1) = po T amm T n[mebsinhi)E], (21)
Since » is an integer, the above relation is indeterminate. Using de 1"Hospi-
tal’s rule
cos[(n+1)= 1 "
2() = (14020 NV ot 41)m) = (n-41) posin(ant).  (22)
This case corresponds to the conditions of a wave resonance in which the
maximum value of the signal amplitude is obtained at the observation point X.
This is the only case in which none of modulation kinds occurs.
The above division of the effects of the dominating modulation kinds de-
pending on the coefficient » is not exact.



QUASI-NONLINEAR DISTORTION OF SIGNALS 93

It can be easily seen that in group I the distortions in signal shape caused
by a change in phase are after a short time replaced with amplitude modulation,
unless condition (15) is satisfied. Similarly, in group IT in which frequency change
dominates there are distortions in signal shape caused by a change in phase,
particularly when the values of the angle w,7 are close to the limiting values of
the range assumed. Frequency modulation is also accompanied by amplitude
modulation (case III) or by distortion in signal shape (case I). As in the previous
case, amplitude modulation begins to dominate after some time in case IT when
the ratio j/n in expression (19) is an irrational number.

In case ITI, when amplitude modulation dominates, an instantaneous
frequency change and distortions in signal shape may also occur, particularly
when the instantaneous values of the amplitude of the resultant signal take
values close to zero.

The distortions described above can also occur for decay of the signal but
then the signals of particular reflected waves subtract from the resultant signal
in a steady state, which decreases the influence of the effects mentioned above.
The greatest decrease of quasi-nonlinear distortion should occur in the effect
of distorted signal shape; the greatest effect should occur in amplitude modu-
iation, which is, in reverberation time measurements, sometimes called the
Irregularity of decay [10].

The effect of frequency change and also partial phase changes for sound
decay should be greatest when at a given frequency the resultant values of
a steady-state signal take minimum values at a given observation point, i.e.
when the observation point is in the node of standing waves for a steady-state
condition.

3. Psychoacoustic investigations of simulated signals

The joint occurrence of the phenomena of amplitude, phase and frequency
modulation for the rise of an acoustic signal in an enclosure poses a great diffi-
culty in their subjective discrimination. Preliminary subjective investigations
of the evaluation of the audibility of the effects mentioned above have shown that
it is easiest to perceive amplitude modulation, the audibility of which was the
object of the investigations in [19]. A considerably less well investigated effect
is the distortion in the shape of the curve caused by phase modulation in the
first period of the rise of sound in an enclosure. Therefore the investigation
concentrated on subjective evaluation of the audibiliby of the distortion in the
curve shape mentioned above. Since in real conditions this effect usually occurs
at the same time as amplitude and frequency modulation, the first stage of
subjective investigations was performed on a simulated signal which did not con-
tain amplitude and frequency modulation but only distortions in the shape
of the signal.
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The simulated signal was a sinusoid with a continuously controlled
number of half-sinusoids cut-off by the digital system (Fig. 2) [17].

When % denotes the number of distorted periods, the signal under investi-
gation is described by relation (16) for numbers less than =; or it is an undis-
torted sinusoidal signal for numbers greater than . The investigations were per-
formed on signals for the numbers n equal to 1, 2, 4, 8, 16, which when reco-
rded on magnetic tape alternating with undistorted signals in a random
order were reproduced through headphones. The investigations were performed
for frequencies of 250 Hz, 800 Hz and 2.5 kHz. Several measurement series,
10 signals each, were performed for each of the above frequencies.

ANAAAAN N
F RVR S

nl T

Fig. 2. An example of distorted simulated signal for subjective investigations of the evaluation
of the audibility of changes in the signal shape (n is the number of periods of the distorted
signal)

15 listeners participated in the investigations. Their task was to evaluate
which of successive signals was regarded as distorted one. The audibility 8,
in °/o, was achieved from the ratio of the number of correct answers to the total
number of signals offered for each frequency. The results, after ordering with
respect to the number » of distorted periods, are shown in Fig. 3a.

Before the investigations the listeners underwent preliminary training in
order to become generally accustomed to the kind of signals emitted.

It follows from Fig. 3a that the best audibility of distortions was obtained
for low frequencies. For medium and, particularly, high frequencies high values
of the audibility S occurred as the number of distorted periods increased. This
results from the fact that the period of a signal decreases proportionally for
higher frequencies, which signifies a decrease in the duration of distortions.

In order to verify in what way the audibility of distortions depends on their
duration at different frequencies, the results in Fig. 3a were recalculated as
a function of time and shown in Fig. 3b. These results show that the audibility
of distortions involves different times necessary to recognize distortions of
different frequency. This result differs from those of other psychoacoustic
investigations, for example, in the case of perceiving echo, where the time
needed for perceiving the phenomenon does not depend on frequency. It is
interesting to note that recognition of distortions at a frequency of 2.5 kHz
takes their duration of the order of 1-2 ms.

The method of subjective evaluation used in the present paper ean provoke
a number of objections, both to the principle of evaluation and the criteria of
perceptibility used. An additional method which consisted in offering the lis-
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tener pairs of signals was therefore used in the investigations. These pairs consisted
either of a distorted signal and an undistorted one of different duration of
distortions or of two undistorted signals, or of two signals distorted in the same
way. The listeners’ task was to evaluate which of the pairs of signals they regard
ag different.

The results obtained are shown in Fig. 3a, b in the form of x, A and o.
They show a character close to that of the results obtained using the previous
method, which to a certain extent increases the reliability of evaluations made.

Y a)
s |
(%] 800 Hz A
100
80+
60 |
X
o o - 250 Hz
40
& - 800 Hz
X - 2500 Hz
20 +
| L 1 1 S-S
0 ' : l ; 16
0o 2 4 § .\ & | AR n
a) as a function of the number n of distorted periods
sS4 b)
[%1 2500 Hz
100
Xy
80
60
X o A - 800 Hz
il 8 X - 2500 Hz
20
0 1 1 ! 1 1 1 1 1 >
0 4 8 12 16 20 24 28 32 tlmsl

b) as a function of the duration of distortion

Fig. 3. The evaluation, in %/, of the audibility S of distortions in a case of the simulated
signal

2 — Archives of Acoustics 2/82
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4. Distortions in the shape of transient signals in real conditions

Condition (5) accepted in section 2 and regarding the same values of the
delays 7 of the signal and condition (4) assuming the equality of amplitudes
are not satisfied in real conditions.

It is practically impossible to describe mathematically the distortions which
occur then and it is only possible to make graphic analysis. It follows from this
analysis that the effects of phase, frequency and amplitude modulation de-
scribed for a simplified case also occur in real conditions although ther char-
acter is more irregular.

It follows from Fig. 4 that the distribution of axial sources lying on a straight
line perpendicular to the walls of the interior causes the delays to be regular
only on this axis. For observation points at a long distance from this axis dif-
ferences between the successive delays z;,, —; are different and considerably
lower than those on the axis of the image sources. For a given distance of the
observation point from the axis of the image sources, however, differences be-
tween delays are the smaller the shorter the distance between the walls.

Fig. 4. Interpretation of the discrimination of the delays of successive reflected waves using
the method of image sources in the case of a reflection from two parallel reflecting walls

It thus follows that distortions in curve shape caused by the delays of re-
flected waves, satisfying condition I(y < 0.5, i.e. ,7 < =), occur for the lower
frequencies the greater the distance between the walls.

The foregoing argument is not fully exact, since in a perpendicular-walled
hall there are 3 axes of axial sources and also tangent and skew sources caused,
respectively, by waves reflected from two or three planes out-of-parallel to one
another.

Moreover, in real conditions waves diffracted on all sorts of edges occur.
Nevertheless, it can be stated in general that the greater is the size of halls,
the lower the frequency range in which the effect of distortions in the shape
of the curve of the signal may occur when sound rises in the interior.

It follows from the analysis of the distribution of image sources that the
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mean delay between successive signals can increase as the number of real sources
increases or when soud-diffusing elements are introduced, which should cause
an increase in the frequeney at which distortions in the shape of the curve of the
signal appear in a given hall. The above problem is the object of further investi-
gations.

5. Experimental results

The aim of the present investigations in real conditions was to verify
whether it was possible to observe the effects of modulation described above.
Under the assumption made here the investigations concentrated on the distor-
tion in curve shape caused by phase modulation, according to case I con-
sidered for simplified conditions. Frequency modulation was considered in the
papers of OziMEK [14] and JUGOWAR [8, 9]. The effect of amplitude modulation
was regarded here as an effect magking the impact of phase modulation and
such conditions were chosen at the present stage of the investigations, in which
this effect was as small as possible.

The investigations were performed in two concert halls of Chopin Academy
of Music, Warsaw:

I. Szymanowski Hall 17 x9x6m,

II. Concert Hall 32 %18 x13 m.

The investigations were performed for sinusoidal signals generated by
a loudspeaker placed on stage. This signal was received by two microphones.
The measurement microphone A was placed in the hall at a distance of 10 m from
the loudspeaker.

In order to verify whether the loudspeaker did not introduce transient
distortions, the reference microphone B was set opposite, at a distance of 0.5 m.
At this distance the direct wave dominated and accordingly the signal from the
microphone B was regarded as the reference signal received in conditions close
to anechoic. The more interesting cases of distorted signals received from the
microphone A underwent spectral analysis in parallel with reference signals
from the microphone B. The respective pairs of signals from the two microphones
were used for psychoacoustic investigations of the audibility of distortions.

Spectral analysis was made by Mr. RosENHECK at EMPA, Switzerland,
on an FFT analyzer manufactured by Nicolett. This analysis was made at time
intervals of 40 ms for windows of different shape. After preliminary investiga-
fions analysis was using the Hanning window.

Using the results from EMPA as a reference spectrum, an analysis was made
at Chopin Academy of Music on analogue apparatus with a BK 7502 digital reg-
ister and a BK 2109 frequency analyzer. The block diagram of the measure-
ment system for the signal A received from a long distance from the loudspeaker
and for the signal B regarded as the reference signal is shown in Fig. 5 [18].
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The changes in the signals A and B as a function of time obtained in Szy-
manowski Hall at a frequency of 180 Hz are shown in Fig. 6 for a time range
0f 160 ms calculated from the time of the arrival of the direct wave at the observa-
tion point. It follows from these curves that the duration of the distorted signal
is relatively large, i.e. about 80 ms.

Fig. 5. A schematic diagram of the measurement system in the concert halls

A — the measuring microphone, B — the reference microphone, @ — the generator of sinusoidal signals, M —
a Nagra IV SJ tape recorder, P — digital memory, BK 7502, 4H — heterodyne analyser, BK 2109, R — register,
BK 2305

The results of the measurements of the frequency spectrum in the time
ranges 0-40 ms, 40-80 ms and 80-120 ms for the signals A and B taken at
EMPA are shown in Fig.7. The changes in the frequency spectrum of the same
signals measured in the same ranges but obtained in the Academy of Music are
shown in Fig. 8.

Comparison of changes in the frequency speetrum obtained using the two
methods shows some differences which indicate the effect of measuring appar-
atus on the results. However, the general character of differences between the
curves obtained from the measurement microphone A and the reference micro-
phone B is similar. The differences between the spectra indicate a distinctly
fuzzy frequency spectrum and the occurrence of an additional frequency in the
time range 0-40 ms in the signal 4, which are absent from the signal B. In the
next time range 40-80 m the differences are smaller and disappear in the time
range 80-120 ms.

This result indicates a distinct change in the frequency spectrum caused
by quasi-nonlinear distortions in the first stage of the rise of the signal, which
agrees with the behaviour of the signal observed in the time domain (Fig. 6).

Similar investigations were performed in the Concert Hall. In view of the
larger size of the hall it was easier to obtain distortions in eurve shape under
consideration here for low frequencies of the order of 100-130 Hz. This fre-
quency range has little practical significance, therefore the effect of distortion
in curve shape was examined for slightly higher frequencies. In agreement with
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predictions resulting from theoretical considerations, amplitude modulation
dominated increasingly as the frequency of the signal increased. Nevertheless
the effect of distortion in curve shape was very distinet for selected microphone
positions in the frequency range up to 350 Hz.

Examples of signals obtained from the microphones A and B for a frequency
of 340 Hz are shown in Fig. 9; their frequency spectra obtained in the Academy
of Music, Warsaw, in Fig. 10.

As in the case of the measurements in Szymanowski Hall, the duration of
the distorted signal was about 80 ms. The changes in the frequency spectrum
measured in 40 ms time ranges show, as previously, greatest differences between
the signals A and B in the first stage of sound rise in the interior.

4
dB a-)

| £=180 Hz
5dB microphone A

——]
et
—

q_..----—-"
r'-._-.

Ao N At A
VRl \UIU\!"\UIUV

i i 1 =
o i 160 t[ms]

a) the measilring microphone A
dB“
b) .
I £=180 Hz
5dB microphone B'
1
n [
[ \ \
[ \ \
(A [ |RIA L
vV v
! »
0 160 tlms]

b) the reference microphone B

Fig. 6. An example of the rise of a sinusoidal signal of the frequency f = 180 Hz in Szyma-
nowski Hall in Chopin Academy of Music, Warsaw
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Observations of the signals A in the time domain (Figs. 7 and 9) have shown
an irregularity in the time ranges of zero crossings of the signal, indicating
instantaneous frequency changes, similar to frequency modulations, in the re-
sultant signal in the first stage of its rise. It is also possible to observe instan-
taneous amplitude changes in the signal which, as measurements have shown,
are much more distinet at high frequencies.

The measurements taken in real conditions have confirmed theoretical
considerations for the simplified case which indicate the joint oceurrence of the
effects of phase, frequency and amplitude modulation in the first stage of signal
rise in the interior.

[aan &
l f=340 Hz microphone A
5dB
i nn
A aa ]
A

———
P ———
—

| -
0 160 t{ms]

a) the measuring microphone A4

st
b)
l £=340 Hz
5dB microphone B
! -
0 160 tlms]

b) the reference microphone B

Fig. 9. An example of the rise of a sinusoidal signal at a frequency of 340 Mz in the Concert
Hall of Chopin Academy of Music, Warsaw
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The qualitative evaluation of the phenomena in real conditions performed
in section 4 showed that the distortions are irregular and disappear after some
time.

In practice, auditoria involve more complex signals, such as signals of
speech and music. Naturally their character changes in time and accordingly
one should not expect decay of the present distortions after some time in the
process of sound rise in the interior.

The pilot results obtained have confirmed this hypothesis, although they
have indicated smaller changes in the signal compared to those in sinusoidal

signals.

6. Psychoacoustic evaluation of the audibility of distortions in signal shape in real conditions

Psychoacoustic evaluation of the audibility of distortions in signal shape
was performed on pairs of the signals 4 and B obtained in the two halls which
are shown in Figs. 6 and 9. The duration of all pairs of signals used in the evalua-
tion was constant, i.e. 160 ms. Only the time ranges used in the evaluation of the
pairs of signals were changed, from the time ¢, till ¢, + 160 ms, where £, is the
delay of the onset of the signal chosen for analysis with respect to the time of
the arrival of the direct wave at the observation point. Considering that most
distinet distortions in the signal from the channel 4 occurred in the two halls in
the time range of about 0-80 m, a change in the time {, involved a change

'}
(%71
100

Fig. 11. The evaluation, in °/,, of the audibility 40|
8 of distortions in a sinusoidal signal for signals { PSR S T LN =
shown in Figs. 6 and 9 20 40 60 80 t[ms]

in the duration of the distorted signal in the signal A. This signifies that as the
time #, increases the differences between the durations of 4 and B should de-
crease; and thus their distinguishing should also decrease.

In the present psychoacoustic investigations the gaps between the signals
within one pair compared were 1 s, while the pauses between pairs were about
5 8. The test consisted of 10 pairs for each hall and was estimated by 20 listeners,
The order of selection of each pair was random.

The results of the evaluation are shown in Fig. 11. They indicate a very
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high audibility close to 100 °/, of the differences between particular pairs of
signals when the time ¢, = 0, i.e. in the time ranges chosen for evaluation the
whole distorted fragments were within the signal 4. As the time #, increased,
i.e. as the distorted fragment became shorter, the distinguishing of signals fell
but only after the time , of the order of 40 ms, reaching a value of 70°/, for the
times t, of the order of 60 ms, which signifies that relatively short durations of
distortion are easily audible.

At the present stage some doubt may arise from the excessive values of the
audibility, in °/,, for large values of the time ¢, after which differences between the
signals A and B and their spectra become much less distinet.

The above test was only of preliminary character and quantitative con-
clusions require several repetitions.

7. Conclusions

1. Theoretical analysis of the summing of sinusoidal signals with different
phases which are shifted in time with respect to each other permits simple inter-
pretation of distortions in unsteady state of sound in an enclosure. These distor-
tions were called here quasi-nonlinear distortions.

2. On the basis of the theoretical considerations it is possible to determine
in the simplified case which predetermines a constant value of the delay between
successive signals the ranges in which distortions in signal shape caused by
phase, frequency and amplitude modulations, respectively, dominate.
© 3. The experimental investigations performed in auditoria confirmed the
results of theoretical considerations of the possibility of distortions in curve
shape occurring in real conditions in the low frequency range. In agreement with
the considerations these distortions are then very irregular.

4. The durations of the distortions in auditoria can reach several scores
of ms. The distortions cause changes in the spectrum for unsteady state of
signals in an enclosure.

5. The preliminary psychoacoustic investigations showed a distinet audi-
bility of periodically distorted (simulated) signals. This audibility depends
more on the number of distorted periods (at different frequencies) than on the
duration of the distortions.

6. The audibility of distortion in the shape of signals generated in real
conditions occurs for sinusoidal signals of very short duration, of the order of
several to a dozen or so ms.

7. At the present stage it is difficult to evaluate the influence of distortions
considered on the evaluation of the signals of speech and music quality in enclos-
ures. Therefore the further investigations will follow in the three directions:

— analysis of factors increasing the effect of the distortions considered
in this paper,
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— investigation of the effect of the interior and its parameters on the
distortions,

— psychoacoustic investigations of the effect of the distortions on the
audibility of changes in the sound of speech and music signals.
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PROPAGATION OF NOISE GENERATED BY SINGLE MOVING SOURCES
IN OPEN AREA

J. JARZECKI, R. MAKAREWICZ

Institute of Acoustics, Mickiewicz University
(60-769 Poznan, ul. Matejki 48/49)

The sound level (L) of noise generated by a single moving source (e.g. vehic-
le) is a starting point for the determination of the resultant level of noise emitted
by sets of moving sources (e.g. streams of vehicles). The aim of the investigations
was to find the relations among I, the motion velocity and the distance of
the observation point from the source for different weather conditions. The
investigations were performed in a flat area covered with concrete and grass,
taking into consideration two basic vehicle types : light and heavy. Logarithmic-
and-linear relations between these quantities haye been obtained.

|
1. Introduction I

The major sources of urban noise are moving sources, i.e. means of trans-
port, and, in particular, vehicles. Noise (assessed by means of so-called noise
indexes) affects the quality of the environment of man from the acoustic view-
point. The shaping of the environment so that the indexes of noise do not exceed
some predetermined values is the object of environmental acoustics. This aim
can be achieved when the acoustic field generated by single sources is known
(since it is then possible to predict the values of the indexes of noise emitted by
sets of these sources, i.e. streams of vehicles ete.).

The aim of the investigations was to find the dependence of the sound
level L of noise on the distance and on the velocity of a single noise source. Two
kinds of noise sources were considered: light vehicles (passenger cars) and heavy
vehicles (lorries and buses). The measurements were made in a flat area covered
with grass and concrete, typical for modern urban area. The present problem

This paper was written under the programme “Model investigations of acoustic para-
meters of urban systems” PR-5 coordinated by the Institute of Building Technology, Warsaw.
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has been the object of investigations of many authors [1 - 4, 6-9]. The source
of urban noise, traffic, is, however, different in each country. This fact was the
reason why this problem was raised anew, the more so that the effect of weather
conditions has not always been considered in other authors’ papers.

This paper is a contribution to the development of methodology for pre-
dicting the acoustic climate in the vicinity of highways.

2. The dependence of the sound level on the distance

In a flat area of homogeneous cover and for the distance of the source from
the observation point of the order of a dozen or so metres the pressure
of noise generated by a single source is a monotonously decreasing function of
the distance d (Figs. 1 and 2). In the literature the following two functions
approximating this relation can be met most frequently,

Wexp(—ad)
P= ™
85 T T T T LI L
L
[dB(A)] )
80 .
60 1 §
55 1 1 1 I o ¢ |2.) d[m_] 55 1 1 1 Popaay §' g d[m]
10 20 30 40 60 680100 10 20 30 40 60 80100

Fig. 1. The dependence of the sound level of noise generated by a single light (a) and heavy
(b) vehicle on the distance d

the surface was covered with concrete, the number of measurement series corresponding to the weather conditions
described in Fig. 5 is given in brackets
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2 a)
[dB(A)]

80+ 4
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Fig. 2. The dependence of the sound level of noise generated by a single light (a) and heavy
(b) vehicle on the distance d

the suﬂaoe was covered with grass, the number of measurement series corresponding to the weather conditions
described in Fig. 6 is given in brackets

where a is the coefficient of attenuation in air, and

w

= (2)

=
where W and p are parameters describing the source and processes accompanying
propagation. Function (1) involves the attenuation quantity expressed in dB
per unit length, e.g. dB/m. According to relation (2), the attenuation is ex-
pressed as “level decrease per double distance”. Paper [5] showed that if attenu-
ation (for double distance) exceeds 8 dB, both functions approximate equally
well the curves in Figs. 1 and 2. In the case of less attenuation (e.g. when noise
propagates over a concrete-covered surface) much better approximation can be
achieved using function (2). The further part of the present paper uses this
relation.
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In order to determine the numerical values of the parameters W and p
measurements were taken of the sound level L of noise in dB (A) for the distances
d =10, 20,..., 80 m from the centre of a two-lane road. The measurements
were made using a T-01 type sound level meter (at a height of 1.2m) and the
“Fast” dynamic response. The value of the level L was read when the observa-
tion point (corresponding to the distance d) was passed by a single vehicle
while there was no other noise source, e.g. another approaching vehicle.

For each distance the level L was recorded for 30 light and heavy vehicles
(Figs. 3 and 4 show the mean values of L for each distance). The measurements
were made under different weather conditions. Figs. 5 and 6 show the tempera-
ture, the velocity and direction of the wind for each measurement series.

85 T T T T T 17 85

L ' a) L
[dB(A)] [dB(A)]

T £ s 8 T LT

80 Il h aa

651 7 65 7
60 7 60 7
55 1 1 1 Ll dfm] 1 1 1 |
0 20 30 40 60 60100 5510 20 30 40 ; 60 80 ;ood m

Fig. 3. The mean values of the sound level of noise measured for the passage of a single light
(a) and heavy (b) vehicle

the surface was covered with concrete

It follows from the measurement results shown here that weather conditions
do not clearly affect the values of the sound level. It is, for example, difficult
to say whether a decrease on the sound level with increasing distance is slower
or faster as the temperature decreases. This probably results from a too small
number of measurements or from neglecting other parameters, essential in
acoustic wave propagation, describing the weather conditions (e.g. the tempera-
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L @ L
[dB(A)] [dB(A)]

[
801 - 80

5F e 75
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Fig. 4. The mean values of the sound level of noise measured for the passage of a single light
(a) and heavy (b) vehicle

the surface was covered with grass

1
i i i i it b Pl e s

(1)(13°C)

(22°C)(2)
(15°C)(3) (5)(18°C)
0
o
(4)(1°C)

Fig. 5. The direction and velocity of the wind during the measurements taken over the con-
crete-covered surface

the number of measurement series and the temperature are given in brackets; 1 em of the arrow length corresponds
to 1 m/s d

3 — Archives of Acoustics 2/82
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AT
____________________ l
|
| (1)(25°C)
; (10°€)(2) (5)(18°C)
{
(12°C)(3) # ™4 )13°c)  Jem,

Fig. 6. The dlrectlon and velocity oi the wind during the measurements taken over the grass-
: covered surface

the num‘ber of me'asurement series and the temperature are given in brackets; 1 cm of the arrow length corresponds
i : to 1 m/s /

ture lapse rate). An important factor is also the distance of the measurement
point from the source, which in this case did not exceed 80 m. Possibly for such
short distances the effect of the velocity and direction of the wind is com-
parable with the magnitude of measurement error, i.e. 41 dB(4).

At the present stage of the development of environmental acousties it is
sufficient to know the dependence of the level L on the distance d, “averaged”
with respect to the weather conditions. As was mentioned above, Figs. 3 and
4 show the mean values of L obtained from Figs. 1 and 2, describing the relation
L = f(d) for different weather conditions.

From the definition of the level L

L = 10log(p*/p;)

(po being the reference pressure) and from formula (2) the following linear equa-
tion can be derived,

L =a—bax, (3)
where

a =10log (W/p}), b =100, a =logd. (4)

Applying further, for the results given in Figs. 3 and 4, the linear regres-
sion analysis, the numerical values of the parameters a and ¢ were obtained
(Table 1). (Each series consisted of 240 measurements.)

Thus, under the assumption that the distance of the measurement point
from the source changes in time, formula (3) permits the determination of the
instantaneous value of the sound level L generated by a single source, under the
condition, however, that the source is at the distance d < 80 m from the obser-
vation point. Problems related to town planning require knowledge of L for
longer distances. (It is necessary to explain that it was impossible to take
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Table 1. The values of a; and g; determined from the re-

gults of measurements taken at the distances d =

10. 20...., 80 m from the source path and the value of
the mean velocity C; [m/s] of the vehicle

Concrete Grass
i=1 | i=2 i=1 | i=2
light heavy light heavy
vehicles vehicles vehicles vehicles '
: i ' )
a; 94.02 101.66 96.49 104.17
oi 1.89 1.83 2.24 2.18
C; 13.69 11.11 15.72 13.92

sound level measurements at the distances d > 80 m, since signals generated
by single sources were comparable then with the background noise of tne envi-
ronment.) o o

In order to obtain the values of the parameters a and o for d > 80 m extra-
polation was made. It can be seen in Figs. 3a and 4a, b that the values of L for

Table 2. The values of a; and g; determined from the

results of measurements taken at the distances d = 60,

70, 80 m from the source path and the value of the mean
velocity C; [m/s] of the vehicle

Concrete Grass
i=1 | i=2 i=1 i = 2
light heavy light heavy
vehicles vehicles vehicles vehicles
a; 92.08 116.72 115.24 110.60
0i 1.78 2.68 828> 2.56
C; 13.69 11.11 15.72 13.92

Table 3. The values of a; and g; determined from the

results of measurements taken at the distances d =

= 10. 20 m from the source path and the value of the
mean velocity C;[m/s] of the vehicle

Concrete Grass
i=1 | i=2 i=1 | i=2
light heavy light heavy
vehicles ‘vehicles vehicles vehicles
a; " 91.22 93.77 91.69 94.18
0i 1.64 1.17 1.86 1.32

13.69 11.11 15.72 13.92
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d = 60,70 and 80 m decrease faster than those for shorter distances. The results
of other authors, e.g. CoOK and VAN HAVERBECKE [1] show that this tendency
should also sustain for d > 80 m. The linear regression analysis performed for
the last three points leads to other values of a and p (Table 2). Table 3 gives
the parameters ¢ and ¢ for the distances d = 10, 20 m. (These are useful, for
example, in determining the level of noise near the edge of the road.)

In the course of measurements in an area covered with concrete (Fig. 3) and
grass (Fig. 4) the mean velocities of light and heavy vehicles were, respectively,
C, =13.69m/s, C; = 11.11 m/s and C, = 15.72 m/s, C, = 13.92 m/s.

3. The dependence of the sound level on the traffic velocity

Each highway is characterized among other things, by the traffic velocity
V. In order to obtain quantitative information on the dependence of the sound
level L dB (A) on the velocity of the source V, measurements were made at the
distance d, = 7.5 m from the centre of the lane. As in the case of investigations
aimed at determining I as a function of d (section 2), also in this case the sound
level L was registered when a single source was “passing” the observation point.
Each time its velocity ¥ [m/s] wasregistered. The results are given in Figs. 7 and 8.
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Fig. 7. The dependence of the sound level L, in dB (4), on the velocity V for light vehicles;
L = 34.0log V+32.0; r = 0.93 is the correlation coefficient

It was assumed for analytical description of the dependence of the level
L on V that the parameter W (2) is the following function of the velocity

W =W, V™. (5)

Since the measurements were made at the distance d, = 7.5 m from the
centre of the traffic lane, at the moment of “passing”, the microphone was in
the near field of the noise source (vehicle). In this case the simple dependence
of the pressure on the distance, which is valid for the far field, p* ~ d~¢ (formula
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Fig. 8. The dependence of the sound level L, in dB(4), on the velocity V for heavy vehicles;
L = 29.0logV +44.4; r = 0.84 is the correlation coefficient

(2)) should be replaced with a more general one, f(d). Finally, for d = d, this
formula can be rewritten in the form
Pt = W, V"f(d,). (6)

(The explicit form of the function f(d) is not important now.)
Using the definition of the level L = 10log (p2/p;),

L= A+Be, )
where
A = 10log W,f(d,)/pi, B =10m, x=IlogV. (8)

From the regression analysis for the results in Figs. 7 and 8, m, = 3.4 was
obtained for light vehicles and m, = 2.9 for heavy ones. There is disagreement
among the results obtained by other authors. This is caused by the differences
in the set of vehicles (noise sources).

4. Conclusions
It follows from formulae (2) and (5) that if the observation point is at a dis-
tance of at least a dozen or so metres from the centre of the traffic lane,

Wek™
a@ .

2

(9)

As was mentioned in section 2, the values of g; and a; = 10 log (W;/p;) were
obtained for the mean velocity C; (Tables 1 and 2). It ean be derived further
from formula (5) that

a; = 10 log (W, C7i/p;)-
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It can be seen thus that

P

Woi T CZ’“

10%1a: (10)

Substitution of this relation into formula (9) gives the following relation
between the pressure of noise generated by a single light (i = 1) or heavy
(i = 2) vehicle and the distance d [m] and the velocity ¥V [m/s]:

. pg_loﬁ.lai V‘m.;
ST om

(11)

The numerical values of the parameters a,, p;, C; are given in Tables
1-3, while m; = 3.4, m, = 2.9. From the definition L = 10 log(p?/p}),

L;(t) = a;—10g;logd(t) +10 m/log(V/C;), i =1,2. (12)

This formula makes it possible to determine the value of the sound level
in dB (A4) of noise generated by a single source (vehicle) moving at the velocity
V constant in time, when its distance from the observation point is d at the time
t. In view of the dependence of a; and ¢; on wind velocity, its direetion,
air temperature, etc., equation (12) gives the relation L;(t) = f{d(t), V} for
different weather conditions. The set of the values of a; and p; given in this
paper is at present complemented with the measurements of noise generated
by single vehicles for the different weather conditions.
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INVESTIGATION OF THE WAVEGUIDE PROPERTIES OF A BOREHOLE
AND THEIR USE FOR ACOUSTIC MEASUREMENTS IN SITU

ANNA JAROSZEWSKA

Institute of Fundamental Technological Research, Polish Academy of Sciences
(00-049 Warszawa, ul. Swietokrzyska 21)

A method of measurement of the velocity of a shear wave travelling in the
vicinity of a borehole, using its waveguide properties, is both analyzed and ver-
ified. In particular, by this method, the shear wave velocity is determined from
the velocity of the so-called tube wave which corresponds to the zero frequency
limit of the lowest radial mode of propagation in the fluid filling the borehole.
Investigations of the necessary conditions to obtain a tube wave and of its pro-
pagation were performed on a laboratory model of a borehole and in boreholes
in situ. The results obtained show the possibility of a practical use of the method
investigated for the determination of the mean velocities of shear waves in the
rock mass surrounding the borehole.

1. Introduction

Geoacoustical investigations of boreholes in situ are performed in order
to obtain the fullest possible information concerning the physical properties
of the rock mass surrounding a borehole. One of the commonly used methods is
sonic logging [17], which essentially provides data from the continuous measur-
ement of the compressional wave propagation parameters along a borehole
wall, i.e. as a function of depth (Fig. 1). Usually only one transmitter-receiver
probe is used in sonic logging. The borehole is filled with a fluid, which couples
acoustically the transducers of the logging tool with the formation. However,
at present, the possible interpretation of the data obtained from sonic logging
does not, in general, deliver all the information required about the formations.
Analysis of the acoustical pulse travelling in the fluid-filled borehole and in
its walls indicates that various elastic waves occur, depending on the
geometry of the borehole and the physical properties of the two media involved.
Detailed knowledge of the conditions necessary to excite the different specific
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waves and of the rules governing their propagation is potentially useful in the
attempts to gain additional information on the properties of rock formation.
This applies particularly to the shear waves propagating in the vicinity of
a borehole. Shear wave velocities are used for the determination of the dynamie
elastic constants of the rock formation. Propagation parameters of these waves
are also particularly important as indicators of fracture and rock porosity. Read-
out of the shear wave propagation data from the recorded response obtained
from sonic logging is not accurate and may be ambiguous, as a result of the
masking of their first times of arrival by refracted compressional waves and
their multiple reflections. Direct measurement of the shear wave propagation
data in the vicinity of a borehole, on the other hand, is very difficult, since
access to a given location in a borehole is difficult.
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In this paper, an analysis is presented of a method of determination of the
velocities of shear wave travelling in the walls of a borehole, from the velocity
of the so-called tube wave [10, 12, 14, 15, 20]. This wave corresponds to the
zero-frequency limit of the lowest radial mode and travels in the borehole fluid.
The tube wave velocity is a function of the elastic properties of this fluid and of the
rock formation and in particular depends on the shear wave velocity in the forma-
tion surrounding the borehole. Investigations of the conditions of excitation and
propagation of tube waves were carried out on a laboratory model of a borehole
and in the field. The method for the determination of the tube wave velocities
was developed from theoretical results describing elastic wave propagation in
a fluid-filled cylindrical borehole in an infinite elastic solid. Such a model can
be regarded as an approximation of a real borehole.

2. Propagation of acoustic waves in fluid-filled cylindrical boreholes surrounded by an infinite
elastic selid

The propagation of acoustic waves in a fluid-filled eylindrical borehole
surrounded by an infinite elastic solid was investigated both theoretically and ex-
perimentally and described in numerous papers (Bror [1], GRATSINSKLY [3 -6],
PETERSON [10], R16Gs [13], SOMERS [16 ], WHITE et al. [18, 20 - 22]). However, the
formal representation of the propagation of acoustic waves excited in a borehole
by an impulsive pressure point source was given by ROEVER ef al. [14]. In this re-
port, ordinary asymptotic results are also obtained on the basis of an expansion in
terms of rays and on the basis of an analysis in terms of propagation modes. Sol-
ution of the wave equation in terms of the characteristic modes of propagation of
the fluid-filled borehole is particularly representative for describing dispersive
wavetrains at large axial distances from the source or long-time oscillations in the
vieinity of the source. Ray theory, in contrast, has remarkable practical value in
the analysis of the refracted compressional and shear waves, known also
as head waves [7, 8, 14, 15], travelling in the solid medium surrounding
a borehole.

The propagation of acoustic waves excited in a fluid-filled cylindrical
borehole by an impulsive pressure point source was described by ROEVER
et al. [14] for a homogeneous and isotropic solid medium, with idealized borehole
geometry and neglecting the influence of the logging instrument on the con-
figuration of the acoustic field.

2.1. Results of mode theory. According to mode theory, two types of modes
of propagation can be excited in the borehole discussed, i.e. circumferential
modes and radial modes differing with regard to the pressure distribution along
the circumference and along the diameter of a borehole. Characteristic modes
are labelled with the indexes ! and n, where [ refers to the number of nodal
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planes through a borehole axis and n — to the number of pressure nodes along
a borehole radius. Fig. 2 shows some of the first circumferential modes and the
nodal diameters. For I even, the cirecumferential oscillations are symmetric with
respect to the plane through the borehole axis, for I odd, the oscillations are
antisymmetric with respect to this plane. The fundamental symmetric circum-

08 &
ol

Fig. 2. Circumferential modes in the fluid filling a cylindrical borehole surrounded by an
elastic solid

ferential oscillations I = 0 propagate as a bulging and constriction of the bore-
hole, whereas the fundamental antisymmetric I = 1 propagates as a bending
of the borehole. Fig. 3 presents the first few radial modes in the borehole for
l = 0. The concentric circles correspond to the pressure nodes in the borehole

n={ n=2 n=3
=0 =0 1=0

Fig. 3. Radial modes in the fluid filling a cylindrical borehole surrounded by an elastic solid

fluid. The lengths of successive radii of the nodal circles are proportional to the
n zeros j,, of the Bessel functions of the first kind, ;. The fundamental radial
mode n = 0 can exist for the two lowest circumferential modes, i.e. for I = 0
and I = 1. Forl > 0, the pressure on the borehole axis is zero for all radial
modes, i.e. for all values of n. For I = 0, in turn, the pressure is maximum
on the borehole axis for all radial modes. i.e. all values of n. Hence, in the case
of a source located on the borehole axis, only radial modes n associated with
the fundamental symmetric circumferential mode I = 0 will be excited.
Propagation of sinusoidal, axially symmetric, radial waves in an infinitely
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long fluid-filled borehole in an infinite homogeneous elagtic medium has been
described in detail by Bror [1]. PETERSON [10] extended this theory for the
case of a point source located on the borehole axis and also for the case of an
impulsive source. These works [1, 10] present a detailed theory of dispersive
wavetrains propagating in the borehole fluid, whereas the report by ROEVER
[14] is devoted mainly to the description of refracted arrivals. Fig. 4 shows,
after Bror [1], the group velocity ¢, dispersion curves for the radial modes, and
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Fig. 4. Dependence of the group velocities of the first few radial modes in a fluid-filled eylin-
drical borehole surrounded by an elastic solid on the ratio of borehole diameter to wavelength

their dependence on the ratio of the borehole diameter D to the wavelength
2, for ¢, > ¢,> ¢, where ¢, and ¢, are the compressional and shear wave velocities,
respectively, in the infinite solid surrounding the borehole, » — Poisson’s ratio
for the solid medium, o, — the density of the fluid in the borehole and g, —
the density of the solid. The group velocities are related here to the velocity of
the dilatational wave ¢ in the borehole fluid. It is easily seen from Fig. 4 that
there is only one mode of the lowest order, i.e. for I = 0 and » = 0, which may
propagate in the borehole over the whole range of frequencies, thus having
no cutoff frequency. Both group and phase velocities of propagation for this
mode are smaller than the dilatational wave velocity in the borehole fluid.

Group and phase velocities of the higher radial modes n =1 reach, at the
cutoff frequency, their maximum value which is equal to the shear wave velocity
¢, in the solid surrounding the borehole. In the high frequency range, that is
for A< D, these velocities approach asymptotically the velocity ¢ of dilata-
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tional waves in the borehole fluid. For each of these modes a very pronounced
minimum in the group velocity, or the so-called Airy phase, is observed.

Plots of the group velocity dispersion curves for the lowest mode n — 0,
I = 0 as a function of the ratio of the borehole diameter to the dilatational
wave wavelength 2, in the fluid, for two solids characterized by different elastic
constants, and for ¢, > ¢, > ¢ are presented after PETERSON [10] in Fig. 5.
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Fig. 5. Dependence of the group velocities of the fundamental mode in a fluid-filled cylin-
drical borehole surrounded by an elastic solid on the ratio of borehole diameter to wavelength

Both the group and the phase velocities for the lowest mode tend, for 1 € D,
to the velocity of STONELEY wave with increasing frequency, whilst for the
sufficiently low frequencies (1> 5D) they tend to the velocity of tube wave
[10, 14, 15, 20], which coresponds to the so-called “waterhammer” phenomenon
in a pipe. Minima of the group and phase velocity, in the case of fundamental
radial mode, exist in the zero-frequency limit and thus correspond to the veloeity
of the tube wave ¢;. The asymptotic value of this velocity is expressed by the
following formula [1, 14, 207], which is valid for 2 > 5D and for vty

c
Cp = 172 7
c2

0265
where ¢, — the tube wave velocity, o, and p, — the densities of the fluid and
solid, respectively, ¢ — the dilatational wave velocity in the fluid, ¢, — the shear
waves velocity in the solid.

Equation (1) shows that the tube wave velocity depends only on the elastic
properties of the borehole fluid (g;, ¢) and on the elastic properties of the sur-
rounding solid ; namely, on its shear modulus (g, ¢?).

According to PETERSON and ROEVER et al. [10, 14], the pressure ampli-

(1)
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tudes for each of the radial modes, attenuation in both media being neglected,
decay with the distance z from the impulsive point source, as 1/2* along the
borehole axis. The pressure amplitudes which correspond to the minima of the
group velocities (the Airy phase) decay as 1/z'*[10, 14], whilst the tube wave
propagates, according to PETERSON [10], without decaying along the borehole
axis. It should be noted that in general the actual decay rates of the pressure
amplitudes for all the normal radial modes depend on: the mode number, the
frequency, the group velocity, the distance to the source and the source signal
characteristics. However, in the waveguide considered here, from theoretical
results [10], the decay rates for these radial modes were found to range from
1/2° to 1/2'*. The results reported by B1oT [1], ROEVER et al. [13, 14] and others
[2, 20] provide evidence that a dispersive surface wave or the so-called pseudo-
Rayleigh wave may also propagate along the walls of a borehole. At the cutoff
frequency the group and phase velocities of the surface waves are the same a8
the shear wave velocities ¢, in the infinite solid surrounding a borehole. With
increasing frequency, the group and phase velocities of the surface waves ap-
proach asymptotically the velocity of the Rayleigh wave. The pressure ampli-
tudes of the pseudo-Rayleigh waves decay exponentially with the distance from
the walls of the borehole along its radii.

2.2. The results of ray theory. Ray theory applied to the analysis of the pro-
pagation of acoustic waves in a cylindrical fluid-filled borehole surrounded by
an infinite elastic solid [14] gives, in effect, the refracted compressional and
shear waves [2, 4, 7-15]. In geoacoustics these waves are usually designated
as P, P, P, and P, 8 P,. They are excited when the spherical waves are incident
on the boundary of two media at an angle larger or equal to the angle of total
internal reflection.

Refracted waves propagate along the paths characterized by the minimum
travel time relative to the other waves, i.e. along the walls of a borehole. In
the case of the propagation of acoustic pulses, the refracted waves thus arrive
first at the points of observation in the borehole. The geometry of the borehole
causes the rays of the acoustic waves propagating in it to be focused on the bore-
hole axis, which leads to a caustic phenomenon and in effect they are totally
reflected from the axis with a 90° phase shift. In the case of the propagation
of acoustic pulses, the reflected pulse changes 1ts shape according to a Hilbert
transformation [14].

The results from the asymptotic ray theory reported by RoOEVER [14] for
a source on the borehole axis, and with attenuation in the medium being ne-
glected, indicate that the amplitude of the first refracted compressional
arrival decays with the distance z from the source as 1/zlog?z (i.e. approxi-
mately as 1/z), whilst the amplitude of the first shear arrival decays as 1/22.
These results are also supported by empirical data [14] and by the analysis
of the complex-valued sections of dispersion curves.
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As shown by PETERsSON [10], the decrease of the peak amplitude of the
first refracted compressional arrival, with distance, 2z, from the source along
the borehole axis, follows the formula 1 /22 logz, which is not in agreement with
the formula given by ROEVER [14]. On the other hand, TsANG [18], in his work
pertaining to the propagation of compressional refracted waves in a borehole,
obtained the same results as those of ROEVER [14], i.e. the decay rate of the
amplitude for the first arrival is proportional to 1/zlog%z. TSANG [18] has also
shown that the expression for the decay rate of the first amplitude for these
wave components along the borehole axis given by PETERSON [10] i erroneous.
With reference to the decay rate of the amplitude for the first arrival of shear
waves, however, the results obtained by these three authors are in complete
agreement (1/z2%).

If the source is located in the borehole off its axis, the refracted waves
travel in borehole walls along spiral pathways [2, 4, 5, 14]. The decay rate of
the amplitude for the first arrival of these “spiral” refracted waves changes,
according to ROEVER, with the distance between the source and the borehole
walls as well as that between the receiver and the borehole walls and with their
spacing along the borehole axis within the limits from 1/z to 1 /22, when attenua-
tion is not taken into account.

The results by BULATOVA et al. [2] and by GRATSINSKIF [6], obtained on
the grounds of an approximate analysis using ray theory and empirical data,
seem to indicate that the amplitudes of the first reflected arrivals of both com-
pressional and shear waves travelling along the borechole walls fall off as 1/2*2
for the case of a point source located on the axis. For a source off the axis they
found that the first amplitudes of both compressional and shear arrivals fall
off as 1/z%. These results were obtained for the conditions analogous to those
agsumed by ROEVER [14]. It seems, however, that in these two cases a significant
difference should be pointed out, namely that ROEVER [14] measured the ampli-
tude on the borehole axis and not close to its walls [2, 6]. If the attenuation in
the surrounding rock-formation is taken into account, the total decrease of
the amplitudes for an axial location of the source in the borehole follows the
formula [2, 6]

4,exp(—az)

4 =ty

(2)

and for an off-axis location of the source

A,exp(—az) (3)

’
z2

Rt

where 2 — the cylindrical axial coordinate of the borehole, 4, — the wave ampli-
tude for z = 0, A — the wave amplitude at the distance z from the source, a —
the attenuation coefficient in the rock formation.
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In summary, the results presented in the reports cited indicate, in spite
of differences, that the amplitudes of the refracted waves decrease more rapidly
a8 a function of the distance from the source of acoustic waves in the borehole
than the amplitudes of the dispersive wavetrains travelling in the borehole
fluid. These conclusions hold, however, for the case where energy losses in
both media are neglected.

2.3. Acoustic response oblained from the borehole. On the basis of the above
description of acoustic wave propagation in a fluid-filled borehole surrounded
by an elastic solid, the theoretical acoustic response from a borehole for the case
of a short pulsed disturbance [9, 11] can be predicted. Fig. 6 illustrates schemati-
cally the acoustic waves propagating in a borehole from an impulsive source
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Fig. 6. Theoretical acoustic response in a borehole

P P,P; — refracted compressional wave, P; § P; — refracted shear wave, B — pseudo-Rayleigh wave, Py —

direct wave, St — Stoneley wave, T' — tube wave, ¢ — velocity of dilatational waves in the fluid filling the bore-

hole, ¢y and cg — velocity of compressional and shear waves in rock formation, ¢p — tube wave velocity, 0 —
acoustic source

0, situated in the figure on its left-hand side. For simplification, only one bound-
ary of the borehole is shown. In the case of a pulse-like disturbance, at the point
of observation located some distance from the source, refracted waves: com-
pressional, P; P, P,, and shear, P; 8§ P;, arrive first, being characterized by
minimum travel times, and propagating along the borehole walls with veloc-
ities ¢, and ¢,, respectively, and with velocity ¢ in the borehole fluid. Next, with
a short delay relative to the shear wave, a dispersive surface wave R and disper-
sive wavetrains in the borehole fluid arrive. Among the latter waves, the so-
called direct wave P,, characterized by high frequency components and trawvel-
ling with velocity of a dilatational wave ¢ in the fluid and the STONELEY wave
can be distinguished. The tube wave T characterized by a relatively low
frequency and travelling with velocity ¢y < ¢ arrives last. In the tail of the
pulse, oscillations, corresponding to the frequencies of the Airy phase of the
first few modes, may also be observed.

It is obvious that the wider the spectrum of the pulse emitted in the borehole
the more complex the received response will be, i.e. more of the various waves
will be excited in the borehole. At large distances of the observation point from
the source, relative to the wavelength, along the borehole axis, the waveform
differs significantly from that for small distances, i.e. the vicinity of the source.

4 — Archives of Acoustics 2/82
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This results from the significantly different decay rates of the amplitude for
various types of acoustic waves with the distance to the source discussed above,
a8 well as their different attenuation in the medium. The present experimental
data and the results of theoretical works thus indicate that, at sufficiently large
distances from the transmitter, only dispersive wavetrains in' which the ampli-
tudes fall off relatively slowly with distance arrive at the point of observation.
In particular, this pertains to the tube wave which is least attenuated, since its
frequency is the lowest.

3. Propagation of acoustic waves investigated on the model of a borehole

3.1. Technique. The conditions necessary to excite a tube wave and its
propagation data were investigated on a model of the borehole. The propagation
velocity of these waves in a given fluid in a borehole is only a function of the
shear modulus (g, ¢}) of the medium surrounding the borehole (1). Thus the
velocity ¢, of the shear waves travelling in the walls of the borehole can be
found from the velocity of the tube waves ¢;, using formula (4) obtained from
transformation of formula (1),

¢

o= (&) T

(4

(4)

The present idea of recording and measuring the velocity of the tube waves
originated from the theoretical and experimental works discussed which indi-
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Fig. 7. Block diagram of the laboratory set-up for investigation of the propagation of acoustic
waves in a model borehole
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cate that the amplitudes of these waves fall off comparatively less relative to
the amplitudes of the other waves as a function of distance from the source. To
check the truth of this statement, the amplitudes of the first arrivals of the
tube waves were measured on a laboratory model along the borehole axis as
a function of distance from the source. To the present writer’s knowledge such
measurements have never previously been carried out.

A borehole model 12 mm in diameter was made along the axis of symmetry
of a concrete block of 116 x30 x30 cm. The compressional and shear elastic
wave velocities in the block determined using conventional techniques were
¢ = 4562 m/s and ¢, = 2660 m/s, respectively. The compressional wave
velocity was measured using a transmission technique and the shear wave
velocity using piezoelectric transducers with suitable electrical polarization.

Investigations of the tube waves were carried out on the model borehole
with the block immersed in a special water-filled vessel. A block diagram of
the laboratory set-up is presented in Fig. 7. The generator delivering electrie
pulses excited the acoustic transmitter (sparker) located in the water-filled model
borehole. The acoustic wave travelling along a given part of the borehole length
was received by a cylindrically shaped piezoelectric hydrophone 2 mm in diameter,
having a flat frequency response in the range from 0.5 to 200 kHz. Electrical
signals corresponding to the received acoustic pulses were amplified using
a suitable preamplifier and fed to the synchroscope input. The generator de-
livering pulses to the transmitter and the synchro-
scope were triggered by a quartz-stabilized clock. To 15
excite the wave in the model borehole, the sparker
used emitted acoustic waves of a sufficiently low
frequency spectrum, i.e. 1> 5D. The construction
of the sparker used is presented in Fig. 8. It con-
gists of a teflon-insulated copper wire 0.7 m min dia-
meter and of a copper tube 1.5 mm in diameter
pressed tight over the wire insulator. The inner
wire is one, and the outer tube the other electrode
of the sparker, which, due to its dimensions, was
regarded as a point source. The frequency spec-
trum emitted by such a transmitter depends on
its geometry and on the duration of the electric
pulse leading to the spark discharge. In the present
experiments, 4.5 kV rectangular de¢ pulses were
used. Their duration was adjustable in the range
from 5 to 100 us and the repetition frequency in
the range from 1 to 50 pulses per second.

copper wire

teflon insulator

copper tube
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Wig. 8. Sparker cross-section
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The wave forms were photographed from a synchroscope screen as a funec-
etion of the transmitter-receiver distance along the borehole axis. This distance
was changed from 10 to 90 em in 10 em steps. Both transducers used in the
‘measurement of the tube wave amplitudes were constrained to be on the
‘borehole model axis by mechanical centralizers.

3.2. Results of the laboratory measurements. Fig. 9 shows the oscillograms
of the acoustic signals obtained on the borehole model at eonstant amplification
‘and sweep frequency for various transmitter-receiver spacings. As can be easily
observed from these oseillograms, the most pronounced frequeney component
in the received pulses amounts to about 25 kHz.

At front of the received pulses, a very weak wave component is observed.
‘The travel-times of this wave indicate that it is a refracted shear arrival. The
subsequent segment of the received pulses contains a large amplitude wave
‘'of approximately the same frequency (25 kHz) travelling at a veloeity of about
1390 m/s, i.e. lower than the velocity of dilatational waves in water. This indi-
eates the dispersive character of this wave. For this wave and the borehole
diameter D = 12 mm, the relation 1 > 5D is valid. In the range of wavelengths
thus determined, only the fundamental radial mode, at the tube wave velocity
may propagate according to the mode theory. As can be readily seen from Fig.
9, a very substantial part of the pulse energy travels at the tube wave velocity.
With large transmitter-receiver spacings other waves than tube waves are
not observed, and thus it is possible to achieve a very accurate determination
of a tube wave velocity from its travel time. i

Using the tube wave velocity ¢;= 1390 m /s as measured on the model bore-
hole, the shear wave velocity ¢,, = 2640 m/s in the conecrete block itself was
-computed from formula (4) for the following parameters: ¢ = 1482 m/s, o, =
.= 1 gfem3, g, = 2.3 g/em3. The obtained velocity ¢,, = 2640 m/s is approxima-
tely 0.75 °/, lower than the velocity ¢,; = 2660 m/s obtained using the classical
technique.

The amplitudes of the first arrivals of the tube wave as a function of distance
from the source along the borehole axis normalized relative to the amplitude at
a 10 em distance are presented in Fig. 10. The data points in the graph are means
from 10 amplitude measurements. Standard deviation never exceeded 0.3 dB.
The straight lines in Fig. 10 have slopes of 1 /2" 1/2*® and 1/z.

The results obtained show that the decay rate for the tube wave amplitude
along the borehole axis lies between 1/2*° and 1/z. These results are not in full
agreement with theoretical results which determine the maximum slopes of the
tube wave amplitude decay rate, due to the geometrical factors and without
taking attenuation into account, as not exceeding 1/z'2. The attenuation of the
tube waves travelling in the water medium in the borehole is negligible in the
frequency range and in the borehole segments examined [8]. The discrepancy
obtained relative to the theoretical works may thus have resulted from the
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60cm
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80cm
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Fig. 9. Oscillograms of acoustic model responses for various transmitter-receiver spacings

time base — 100 us/em; ¥ — shear wave, ¥ — tube wave
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assumptions which simplify and idealize the actual conditions of measurement
and mainly from the assumption that the energy losses in the solid medium sur-
rounding the borehole have no influence on the amplitude of the tube wave.

= ) /z ¢ N

ol

=12

= ¢ N
L. ! Fig. 10. Dependence of the relative
15 \ amplitudes of the tube wave frist arri-
10 20 30 40 50 60 680 100 vals on the distance from transmitter
z[eml along a borehole axis

3.3. Concluding remarks on the laboratory investigation

(a) In agreement with the theoretical results, the tube wave travels in
a fluid-filled borehole surrounded by a solid elastic medium at a velocity lower
than the velocity of dilatational waves in the fluid. The tube wave velocity may
be used for computation of the shear wave velocity in the medium surrounding
the borehole, using formula (4).

(b) The amplitude of the tube wave decreases more slowly as a function
of axial transmitter-receiver spacing than the amplitudes of the refracted waves.

(e) At sufficiently large distances from the transmitter only dispersive
wavetrains are observed in the model response recorded. If the acoustic pulses
emitted have a frequency spectrum of sufficient density at frequencies which are
low enough (1 = 5D), then the tube wave is observed.

(d) The decay rate of the tube wave amplitude observed actually as a func-
tion of transmitter-receiver spacing is larger than that predicted theoretically.
This discrepancy probably results from theoretical assumptions which idealize
and simplify the actual conditions of the measurement.

4. Field measurements

4.1. Method. Investigations in boreholes in situ pertaining to the condi-
tions of excitation and propagation data of tube waves were aimed chiefly at
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the determination of their velocities. The present concept of measurement of
the tube wave velocity results, as it was already discussed, from the theoretical
and experimental works which point out that it is only possible to obtain the
tube wave if the transmitter-receiver spacing is large enough. In the present
project the pulses of acoustic waves travelling in the borehole were photo-
graphed as a function of the transmitter-receiver distance over the range from
0.5 m to 10.0 m, each 1 m step. This technique differs significantly from the
technique of sonic logging in which, as a rule, a constant transmitter-receiver
spacing (usually between 0.5 m and 1.8 m) is used.

A typical impulsive geoacoustic Petroscope PT-13 equipment with a ring-
shaped magnetostrictive transmitter probe (radial resonant frequency 13.9 or
25.4 or 31.5 kHz) and with a piezoelectric ring-shaped transducer receiver probe
was used in the experiment. A schematic block diagram and the principle of
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Fig. 11. Frequency spectrum of the ring-shaped magnetostrictive transducer with a resonant
frequency of 13.9 kHz
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Fig. 12. Frequency spectrum of the ring-shaped magnetostrictive transducer with a resonant
frequency of 31.56 kHz
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operation of the equipment are given in Fig. 1. Transmitting transducers were
set into vibration using de pulses at a repetition frequency of 20 Hz.

The frequency spectrum of the transmitter transducers used was measured
using a sphere-shaped piezoelectric hydrophone 10 mm in diameter and
with a frequency response flat over the range from 2 Hz to 40 kHz. Acoustic
waves were also received using the probe of a typical Petroscope PT-13 equipment.
The frequency spectra of magnetostrictive transducers operating at resonant
frequencxes of 13.9 and 31.5 kHz, obtained from a 1/3 octave spectral analyzer
(corrected for the frequency response of the PT-13 receiver channel) as being
most representative are presented in Figs. 11 and 12. The measurements of these
f_requency spectra were carried out in a large water basin (lake) and with a trans-
mitter- -receiver. gpacing of 1 m. The spectra obtained provide evidence that the
.transducers used emitted Wlde band signals, Except for the maximum at 13.9
or 31.5 kHz, which corresponds to the radial regsonance, a maximum between
1.5 and 2.0 kHz, corresponding to axial vibration, and a maximum at 20 Hz, cor-
responding to the repetition frequeney, are observed. Needless to say, the use of
transducers emitting the wide-band spectrum shown and particularly a spectrum
with a sufficiently large density in the frequency range below 2.3 kHz is essential
to excite the tube waves in the boreholes tested. This condition results from the
fact that the measurements in the field were made in boreholes from 100 mm to
130 mm in diameter, in which the tube wave can be obtained for f< 2.3 kHz.

In all the boreholes tested sonie logging was first carried out to obtain
data on the velocity of the compressional waves and in some cases on the vel-
ocity of the shear waves in the medium surrounding the borehole.

4.2. Results from field measurements. As an example, oscillograms of the
acoustic field records obtained from borehole No. 15 located on a water dam
in ‘Swinna Poreba for various transmitter-receiver spacings are presented in
Fig. 13. The formations surrounding the borehole are chalk shale-layered sand-
stones in which the mean velocity of acoustic compressional waves is e, =
= 3700 m [s.

The photographs (Fig. 13) were all made at the same sweep frequency and
at constant amplification. At transmitter-receiver spacings of 2 m and 3 m,
the refracted compressional arrivals are observed, as is evident from their
travel times. At a distance of 4 m, the compressional amplitudes are already
very small. A wave of large amplitude travelling at a velocity smaller than the
velocity of the dilatational waves in water is observed, however, which indicates
that this component corresponds to the dispersive wavetrain. No waves with
velocities corresponding to the velocity of refracted shear arrivals are observed
in the oscillograms. At a spacing of 5 m in the field record, only the wave for which 1
= bD is valid is observed which is readily evident from its frequency, travelling
at a velocity of 1380 m /s and thus identified as the tube wave. The results pre-
sented of acoustic signals travelling in the borehole illustrate the ¢haracter of
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2m

4m

5m

Fig. 13. Oscillograms of acoustic waves in the borehole located on the water dam in Swinna
Poreba for various transmitter-receiver spacings

time base 10 ms, time markers 500 ps; Vv — compressional wave, ¥ — tube wave
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the amplitude decay rate for some waves as a function of transmitter-receiver
distance.

The other examples of oscillograms of acoustic waves in boreholes were
taken on water dams in Wiéry (No. 1) and Brzegi-Zerniki (Nos. 2 and 3). The
characteristic rock formations on the water dam in Wiéry are chiefly medium
grained sandstones of lower Trias. The mean velocity of compressional waves
in these geological formations was ¢, = 2700 m/s. The rock formations at the
water dam in Brzegi-Zerniki are Jurassic fractured calcites. The mean veloc-
ity of compressional waves in the medium surrounding the borehole tested
was ¢, = 3150 m s,

Photograph No. 1 (Fig. 14) was made for a transmitter-receiver spacing
of 4 m, photographs Nos. 2 and 3 for a transmitter-receiver spacing of 5 m but
with various borehole depths. For these transmitter-receiver spacings it is poss-

g.cd &

a bed

- 3

Fig. 14. Oscillograms of acoustic waves in the borehole located on the water dam in Brzegi-
-Zerniki and Wiéry

time base 10 ms, time markers 500 us; @ — compressional wave, b — shear wave, ¢ — direct wave, d — tube wave



WAVEGUIDE PROPERTIES OF A BOREHOLE 137

ible to distinguish between various waves on the basis of their travel time. At the
fronts of the signals the compressional waves of comparatively high frequency
are observed; in some waveforms, i.e. photographs Nos. 2 and 3 shear waves
of lower frequency are also present. Direct waves travelling at the velocity of
the dilatational wave in the water filling the borehole, characterized by the com-
ponents of highest frequencies contained in the spectrum emitted, in agreement
with the right-hand side of the group velocity curves in Fig. 4, can be easily
found in all the oscillograms. Pulse tails correspond to tube waves having large
amplitudes and low frequencies for which the condition 4> 5D is valid. At
distances from 4 to 5 m, an accurate estimation of the tube wave velocity is,
in the oscillograms shown, rather difficult, due to the presence of the other
waves. The experimental results for acoustic waves travelling in boreholes in
situ are in good agreement with theoretical predictions.

Oscillograms from boreholes in the rock foundation (shale) of a water dam
in Mloty obtained at 8 m, i.e. for a relatively large transmitter-receiver spacing,
are presented by an example in Fig. 15. Only the tube waves for which the
wavelengths lie within the limit 2 > 5D are observed in these oscillograms. The
photographs were made in borehole No. 82 at various depths but otherwise
under the same experimental conditions throughout.

e

Fig. 15. Oscillograms of acoustic waves from various depths of the borehole located on the
water basin in Mloty for 8 m distance to the transmitter. Time base 10 ms, time markers
500 ps
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The mean values of the compressional wave velocity in the rock formation
surrounding borehole No. 82 in Mloty, computed from the tube wave velocity
using relation (4), as a function of depth, are presented in Fig. 16 together with
the compressional wave velocities for comparison.

Borehole nr 82 locaiion MEOTY

acoustic wave veocity [m/s]

10005 . 2000 3000 4000 5000!

ez 1] <,

rock
depth
Ty

__._

shale

Fig. 16. Mean shear wave velocities
computed from the tube wave veloc-
29 ities and compressional wave veloe-
ities in the vicinity of the borehole
at Mloty as a function of its depth

4.3. Concluding remarks on field measurements

1. The records presented here illustrate the multitude of wave types which
are excited in boreholes wusing ring-shaped magnetostrictive transducers, and
also the decay rates of their amplitudes along the borehole axis in field conditions.
In complete agreement with the recent data from both theoretical and experi-
mental works, the present data also provide evidence that the decay rates for
refracted waves travelling in the borehole walls as a function of distance are the
largest. ‘ o rediel ;

2. For large transmitter-receiver spacing only dispersive wavetrains propa-
gating in the borehole fluid were observed in the field records.
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3. Using the tube wave velocity, the mean shear wave velocity in the rock
mass surrounding the borehole can be computed using relation (4). The use
of equation (4) for computation of the shear wave velocity, ¢,, from the
measured tube wave velocity, ¢,, introduces an additional error oy determi-
ned by the general formula [19]

3W
= )
Oy = U:B a 2 ( )
where o; — the standard deviation of the mean of the measured quantity z,

W — a funection of the measured quantity, # — the measured quantlty
Using function (4), the following dependence is obtained

oW B deg & 1 (6)
o dep \ea) [1 (cT)Tz’
and hence
1/2
- [ €1 1 gl
O = 0, = “ET('E;) [].—__'(E‘_WH (7)
¢

As can be seen from (7), the error o; resulting from the use of function (4),
for the computation of the shear wave veloclty, becomes much larger as the
tube wave velocity approaches the velocity of the dilatational wave in the bore-
hole fluid. These values are, in practice, of the same order and thus the error, g, ,
in determining the velocity of the shear wave may be significantly larger than
the standard deviation ,o;,, of the mean value of the measured tube wave veloe-
ity ep. The greatly increased transfer of tube wave velocity measurement errors
to the errors of their function (4) indicates some deficiency of the method investi-
gated. This deficiency can be well illustrated by the following examples.
The tube wave velocities determined for borehole No. 82 located on the hydro-
-electric power station Mioty were the means of 10 measurements with a stan-
dard deviation not exceeding +0.1 dB. The error o,, of the shear wave determi-
nation according to formula (7) for the tube wave velocity. ¢, = 1333 m/s
was in this case g, = 7.4 0z, i.e. 4+ 0.74 dB, for ¢;= 1351 m /s, correspondingly,
Oy = 9.0 05, i.e. +0.9 dB.

4. The shear wave velocity computed from the mean tube velocity for
gections of the borehole some meters long can be used for the determination
of the mean dynamic elastic constants of the rock mass. These constants are
particularly useful and significant for engineering geology..

5. The use of two receivers that are relatively close to each other with'
a spacing of 0.5 m for example, at some meters’ distance from the transmltter
should improve, as far as can be predicted, the resolution of the method dis-
cussed.
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6. Identification of the tube wave and the very accurate determination
of its propagation velocity using the described method is not possible in all
specific borehole conditions and is particularly difficult if the attenuation in the
rock formation is small.

7. Further research in the field using the described method in lithologi-
cally different geological formation seems promising.
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ON THE DIFFRACTION OF SOUND WAVE BY A WEDGE

ROMAN WYRZYKOWSKI, JAN K. SNAKOWSKI

Institute of Physics, WSP Rzeszéw (35-311 Rzeszow, ul. Rejtana 16a)

This paper presents calculations for plane wave diffraction by a right-
-angled wedge. Using the UFIMTSEV and OBERHETTINGER'S theoretical approach,
formulae are obtained for the diffracted field potential on the shaded wall of
the wedge in the form of a series of cylindrical functions and a real integral.
Some results of numerical caleulations are also presented.

1. Introduction

More and more attention has been paid recently to the problems in the
field of the applications of the theory of acoustic wave diffraction in the pro-
tection of the environment and of working posts. This field includes research
related to all kinds of acoustic protecting devices, investigation of intensity
decrease in rooms ete.

The present paper aims to discuss the following problem: to what extent
one wall of a wedge (e.g. the corner of a building) is affected by a sound wave
which propagates along the other wall (Fig. 1). The evident theoretical basis
is here the theory of wave diffraction by a wedge of which the present problem
is a special case.

Sinee it is impossible to find a compact solution of the problem of diffrac-
tion by a wedge, three theoretical approaches have been formulated to date:

diffracted
wave field

!

wave propagation
3 v . directi
Fig. 1. A schematic diagram of the right-angled wedge of b
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1) of SOMMERFELD [8, 9] which can be briefly summarized by saying that
it uses the image source method and such a conformal transformation that
straightens the wedge to a plane. This leads to an integralin a complex plane,
which can be subsequently expanded into a series or calculated directly in a nu-
merical way;

2) of OBERHETTINGER [4] which consists in relevant integral transforma-
tions of the function representing the incident wave and the diffracted wave,
and subsequently in summing up of the two waves so that the boundary condi-
tions on the wedge are satisfied. In turn, there follows an expansion into a series
whose coefficients are found from these Boundary conditions. An advantage
of the OBERHETTINGER method is the interesting proposal of this author that
an imaginary frequency should be formally intrcduced, thus simplifying the
necessary mathematical operations and permitting a transition to pulses;

3) of UrmMTsEV [1] which proceeds in a direction different from those of
the other two in that it assumes the acoustic potential in the form of a series
and shows subsequently that it can be summed into a SOMMERFELD integral.

The initial part of the present paper is based on the UrmMrsEv theory,
or rather part of it, which is adapted here to the present purposes and the
mathematical part of which is developed later on.

2. Formulation ef the problem and its analytical solution

The starting point are general formulae for the acoustic field of a wave
diffracted by a wedge. The geometry of the wedge is shown in Fig. 2. It is possible
to take a system of the eylindrical coordinates (r, ¢, 2) in which the axis 2 is
perpendicular to the plane of the figure, the pole is placed at a point which is
the trace of the point of the wedge on the plane of the figure and the angle ¢ is
measured in a positive direction from the “upper” edge of the wedge. The source
of the wave is a “thread” that is a straight line with densely set points radiating
a cylindrical wave. Fig. 1 shows the trace of this straight line in the form of
the point @ with the coordinates 7, and ¢,. The desired field is sought at the
point P with the cocrdinates » and ¢. It is possible to begin with a formulation

Fig. 2.{Geometry of the problem of diffraction by a wedge
in general case
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of the general formulae and preceed subsequently to the limit r, —oco. This
transition does not have to give, as UFIMTSEV proposed in [1], an exact value
of the acoustic field potential for a plane wave, which can be certain only when'
diffraction by an object of finite dimensions is considered. In the case of an
infinite edge it is possible to obtain a solution which can be used at relatively
long distances from the edge of the wedge. It is interesting to add here that
other works of the present authors in progress show that the point source ficld
in space gives, in the case of the wedge, different expressions for the transition
#4—>oc0 but both expressions agree for r—0.

Bearing in mind the fact that a cylindrical model of plane wave is used here,
it is possible to proceed in the later part to the value a = ¢ = 3/2. It is also
possible to assume simultaneously the harmonic time dependence in the form
exp( — wt). In the present case the boundary condition is the assumption that
the walls of the wedge are perfectly rigid and therefore the acoustic pontentml
must satisfy the boundary conditions

oD ‘
-6——0 for ¢ =0 and ¢ = a. (2.1)
P

It is known [2, 5, 6] that a solution of the Helmholtz equation for the acous-
tic potential in a eylindrical system of coordinates can have the form of a sum
of terms, i.e. of the product of c¢ylindrical and trigonometric functions, where
the order of the cylindrical function must be equal to the coeficient for the
angle ¢ in the argument of the trigonometric function. The basic solution of the
Helmholtz equation should be the sum of components containing Hankel fune-
tions of the first kind (which is related to the assumption of the dependence
exp( —iwt)) and cosines. For r = 0, however, the Hankel function has a discon-
tinuity of the type of — oo and therefore only the real part, i.e. the Bessel func-
tion, can be assumed. It is convenient to break the solution into two intervals:
the Bessel function must occur for r < 7, and the Hankel function for r > r,.
In order to make the solution continuous for » = 7,, the first solution must be
multiplied by the Hankel function of r, and the other, by the Bessel function
of 7,. This gives the solution in the form of the following series

2 0y, (k) HY (k 7o) cosr,@pC087,0, 1< 7y,

D(r,9) = { " (2.2)
2 caJ,S(kr.,)H,(.;’(k T)COST,PoCO8T, @, 7> 7y,
8§=0
where
e T
fy o, (2.3)

and J, and HY) denote, respectively, Bessel and Hankel functions of the first
kind, of the order 7,. The choice of H‘" is, a8 was mentioned above, related to
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the choice of the time factor in the form exp ( —iwt) [2, 6]. It can be seen from
(2.2) and (2.3) that for ¢ = 0 and ¢ = a all the terms of the derivative é®/dp
become zero, thus satisfying the boundary condition (2.1).

The coefficients ¢, can now be calculated. This can be done applying the

identity
ff—ds_u' AGAV (2.4)

to a solid with its base limited by the contour L (Fig. 3) and the thickness dz. For
D=9 (r,9)
bl

B = faqsda (2.5)

Fig. 3. Integration contour in formula (2.5)

Transition to the limit r,—r, and r,—r, gives

0P oD
— rodp = | Addo. (2.6)
f( ar ruﬁﬂ) ! f

rg+0 6’)’ 8—0
In the case of a linear source in space, and in the present case, of the point
source @, the acoustic potential must satisfy the inhomogeneous Helmholtz
equation in the form [1, 5]

AD+12D — A '5("""“;"’—"’“’ , (2.7)

where A is a constant which can be normalized subsequently to the effective-
ness of the source; d( ) is a Dirae distribution which when multiplied by r pro-
vides the integration properties of this distribution in a cylindrical coordinate
system. In calculating 4 @ from equation (2.7), in order to substitute it on the
right side of (2.6), it should be borne in mind that for s—0 integration of the term
containing @ gives a result tending to zero and that an integral containing the
Dirac distribution é only remains. Thus, from equation (2.6)

f ( oo P
or

ro+0 or

B(rit,) d(p
)'rodep::Alim r=70 9P =9 s, (2.8)
ro=0 WA r
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Integration with respect to the variable r gives

Flgppie5

ro+0 = W
Since the size of the contour L is fully arbitrary, the identity of the inte-
grals in formula (2.9) involves the equality of the integrands and thus

oD oD A 5( ) (2.10)
— _— = — (g —@,)- d
o |p40 O A

-0 To
It is possible to substitute on the left side of formula (2.10) the correspon-
ding formula for @ with r < r, and r > r,, i.e. the first and second formulae
of (2.2). Because of their complex form it is best to consider a single component
of the sum first. Marking with a dash the integration with respect to the whole
parameter under a cylindrical function, this gives

A
) e == [ a(—gurdn. (29)
0

ro—0

MaJrs(kro)Hi?’(krﬂ) e kch;s(k "0)31(-2(""9) des

2%
= ke |, (), B ko) = ke, —— |, (212
s 8 nkr,
where W is a wronskian which for the functions J, (kr,) and H}.?(kro) has the
form.of (2.11) (ef. [7], p. 68). Formula (2.10) takes now the form

2 1 A
—— D €,008(7 o) co8(r,0) = — 6(p —@p). (2.12)
™y e To

Both sides of (2.12) can be divided by r,cos(r,¢) and integrated with respect
to ¢ in the interval from 0 to a. Since this interval must contain the value ¢,,
the right side becomes Ar;"'cos(r,¢,). On the left side, however, because of the
orthogonality of the system of the function cos(r,¢), integration of the particular
terms leads to their value of zero, except the term containing s = t % 0. Thus

2 -
% ¢, COB(7 @) f cos?(r,p)dp = Acos(rp,), (2.13)
0
i.e.
A=
¢ =—-. (2.14)
ia

Tt can be seen that the coefficient ¢, is constant for all ¢ # 0. For s = 0,
however, cos(r,p) = 1, i.e. it can be noted easily that integration of the left
side of (2.13) gives a result greater by a factor of two than before. It can thus be
written jointly,

Am

1a

Cs

=g, —, (2.16)
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where the symbol ¢, takes the values

1
s il
Y froe il (2.16)

1, &#0.

The formula for the potential becomes

Ax mﬂ
ZZ N o, () B (o) cos (rygo)cos (1, ), 7 < 7oy
8§=0
D(r,p) = (2.17)

An o
ZT N 6y, () B (k) cos (ry i) cos(r,7), 7> 7o,

§=0 .

Proceeding to the problem of a plane wave propagating along one of the
walls of the wedge (with the qualification given above), the transition r,—o0
must first be considered. The following asymptotic formula can then be used for

HD (kr,)[2, 7],

2 A o
Hﬁ?(k’ro) ‘= ]/ == eXP[ (k’ro e )] = H{V (kr,)exp ( —ts r,). (2.18)

‘What remains is only the acoustic field for r < r, and thus

o

; Ax LT

B(r,9) = 5 HO(kry) e, exp ( —z;rs)J,s(kr) [c087, (¢ o) 0087, (9 -+ o).
§=0

(2.19)
In the case of a cylindrical wave source in a free space, the potential at
a given point must be proportional to the function H{) (kr,) where r, is the dis-
tance of this point from the source. In the case when kr, > | and kr, > kr it
can be assumed that for an arbitrary value of r the distance PQ (Fig. 2), which
in reality is
{ PQ = (r*+r2 —2rr,cos gqy ----cp,,))”2 (2.20)
can be taken for r,. It can certainly be so assumed for a plane wave which cor-
responds to an infinitely great v&lue of r,. In general, the acoustic potential
can be given by

(r, 9) =F[u(h¢—%}+u(1’,¢+%)], (2.21)

where I is the amplitude of the free wave and the function « represents the
diffraction phenomena.
Approximately, for large values of kry, > kr, for a cylindrical wave

4 '
F = TH{,"(R 7o), (2.22)
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while for a plane wave from the direction of ¢,
D, = Aexp[ —ikrecos(p —qo) ] ~ (2.23)

and the acoustic potential of a diffracted wave can be represented in the form
of the product of the amplitude 4, and the function w, as in (2.21). In turn,
the function defining the diffraction phenomena is equal to (when y denotes
the value ¢ — @, OT @+ @)

= <]

T . T
u(r, p) = .z_a‘z';s,exp(—@?'rs) J, (K r)Ccos (7, 9p). (2.24)
8=
It should be stressed that for r—0 J, (kr) = 0, except for s = 0, since
J,4(0) = 1. Therefore in the limits (for an arbitrary value of ¢)

w(0, ) = —. ' (2.26)
4a

Formula (2.23) permits, if necessary, the constant 4, to be normalized
to the output of the source for a plane wave. This problem is not considered
here in view of the aim of the present paper, i.e. a calculation of a decrease in
the amplitude along the wall of the wedge. It is interesting to note, however,
that it is useless to check here whether the solution assumed satisfies the so-
-called edge condition since UFIMTSEV himself reduces the results of his theory
to 2 SOMMERFELD integral [8, 9] whose properties have been investigated in

this respect.

3. The case of a plane wave propagating along the wall of the edge — the potential in the form
of a series

Returning to the case of interest shown in Fig. 2 when the plane wave
propagates along one of the walls of the wedge, and the interest here is in the
acoustic field on the other wall, the following values occur in the formula.e in
section 2

@0 =0,
K A b
LE L

The index of the Bessel function under the sign of sum is now

T B ALk
=g— =—g. (3.2)

. Since for the values of the angles assumed

@ —Po = P+ Poy (3.3)
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the difference ¢ — g, or the sum ¢ -+ ¢,, symbolically represented by v, can in the
present case be reduced to one value
37

Ef’—“—?’:a:-ﬁ": (3.4)

i.e. the factor 2 occurs in the formula for @. Thus

24,
B(r) = —

(-—1)"saexp(—'igs) Tyers (). . (3.5)

8=0

This gives @(r) in the form of a rapidly convergent series of Bessel functions.

Before making numerical calculations and drawing conclusions from the
theory given here, it is useful to present a completely different approach to the
same problem, which leads to an integral form of the expression for the poten-
tial @.

4. Integral expression for the potential

In order to reduce equation (2.24) to an integral form, it is possible to use
the purely formal transition to an imaginary wave number, proposed by OBER-
HETTINGER [4], in the form

k =iy, (4.1)

and thus passing to the so-called modified Bessel functions. On the basis of the
known relation for these functions ([3], 6.406),

1,(2) = exp ( —v%'i) d, (zex:p (g i)), (4.2)
it is possible to rewrite formula (2.24) in the form
1
u(r, p) = ;az;sslra(w)cos(r,.w- (43)
g=

In accordance with the aim of the present paper, it is possible to assume the
boundary case kry— oo, i.e. formula (2.22) and that ¢, = 0, and retaining still
the arbitrary value of the amgle, it is possible to write

oo

D(r, g) = ; 2 6,1, (y)cos (87" ¢) . (4.4)

8=0

An integral representation of the modified Bessel function I,,(2) ([3], 6.443)
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can now be used,

oo

fexp{—zchw)exp(—pm)dm. (4.5)

0

I,(2) = -lgfexp(zcosm)cos (px)de — Sm(f: )

Inserting expression (4.5) into (4.4), two modifications of this formula
can be performed simultaneously : the order of summation and integration can
be changed and summation can be performed up to an arbitrary finite N and
then from N to infinity. This gives

kL N

a®(r, p) =lim | exp(yrcosa) {Z £,CO8 (—?— m) €08 (S% (p)} dw -+

oy 5=0

_f exp ( —yr ¢h x) {2 s,cos(%tq:) sin(%ra)exp(—s%w)}dm =
0 0

8=
oo

- Iimf exp(yreosx)s,(x, cp)dm—f exp( —yrchz)s,(z, p)dz.  (4.6)
0 0

The sums s, and s, in formula (4.6) can now be calculated. The first caleu-
lation, using elementary trigonometric formulae, gives the sum §, in the form

N
8 = Z & [cos o sl +cos Sﬂ(m_¢)]. (4.7)

a a

8=0

The two sums on the right side of formula (4.7) can be gathered by means
of a known formula ([3], 1.341.2), giving

T < T
sin(~—— (2N+1)(.’v+tp)) sm(— (2N+1)(m——(p))
1 2a 2a
8 =— . + = . (4.8)
sin (ﬁ (w-i-tp)) sin (Ea—(w——cp))

The components of the first expression tend in the limits for N—oo to
the Dirac distribution ¢ if the argument #+¢ and # —¢ [5]. It can be noted that
when ¢ > =, the first of the integrals in (4.6) disappears, since the two values
fall outside the integration interval.

In turn, the second sum in (4.6) can be transformed into the form

,, =Zs.exp(_s.;m)[smm+smw_—w a
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Using a relevant formula ([3], 1.461), it is possible to write that

; sin (% (n+<p)) sin (% (ww))
A + (4.10)
' T T ™
ch — x —cos (— (n-—i—qo)) ¢h — x —cos (— (w-q}))
a a a a

The form of the sum can now be determined for the case of interest when
@ =a= %‘r:. Substitution and calculation of the values of the relevant trigono-
metric functions give
G 1
2 2 -

R i
N33

82 = (4.11)

Substitution of this result into (4.6) and consideration that the first inte-
gral disappears lead to

o]

@(r,in)— = f SEL ) (4.12)
2 1/31':0 chi o1
R

. It is necessary to return now to the real value of the wave number k, as-
suming in formula (4.12) that y = — ik (ef. (4.1)). This gives the final formula
which expresses in integral form the acoustic potential along the wall of the
edge | i

=]

1 i oh
@(r,%w)= - femé”clw)dm. (4.13)
Y l/3ﬂ0 thm'—"'—'

The integral obtained on the real semi-axis is a rapidly converging one and,
in addition to (3.5), can be used to caleulate the diffracted field of a plane wave
on the wall of the wedge.

5. Conclusions

On the basis of the final formula (4.13), which gives in integral form the
expression for the acoustic potential of a plane wave diffracted by a right-angled
wedge, numerical calculations were made of the squared value of the modulus
of the sound pressure on the wall of the wedge. The following formula which
i8 valid in the case of a harmonic time dependence was used

[Pl = ew|?|. _ (5.1)
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The results of the numerical calculations are given in Figs. 4 and 5. Fig. 4
shows, in dB, a decrease in the sound pressure on the wedge as a function of
the relative distance kr = 2= r/A (lower curve) and, for comparison, for a spheri-
cal wave (dashed curve). Since the source of a spherical wave, placed on the
edge of the wedge, would have to show there an infinite value of the sound
pressure, therefore in this case its value at a point where kr =l was assumed

0 T T T =7 T T T T T

squared sound pressure [dB]

Fig. 4. Drop of the level of the squared modulus of sound pressure along the shaded wall of
the right-angled wedge as a function of the normalized distance from the edge (solid line),
compared with the curve characteristic of a spherical wave (daghed line)

S

o

[=;]

sound level drop per double distance [dB]

0 1 I L 1 1 1 L 1 1
0 20 40 60 80 100

k,

r

Fig. 5. Drop in the level of the squared modulus of sound pressure along the shaded wall of
the right-angled wedge per double distance (solid line), compared with the value characteris-
tic of a spherical wave (dashed line)
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as the reference point. Fig. 5 shows a drop in the sound pressure per double
distance as a function of a double distance.

It can be seen in the two diagrams that the sound Pbressure on the wedge
decreases initially at a much faster rate than that for a spherical wave and
subsequently stabilizes on the level characteristic for a spherical wave.

References

[1] P.Y. UriMTsEV, Metod kraevikh voln v fizicheskoy teorii difraktsii, Izd. Sovetskoe
Radio, Moskva 1962.

[2] E. SkuDRzYE, The foundations of acoustics, Springer Verlag, Wien —New York
1971.

[3] I.S. GrapstrIN, I. M. RYyzHIK, Tablitsy integralov, summ, riadov i proizvedenij,
Izd. Nauka, Moskva 1971.

[4] F. OBERHETTINGER, On the diffraction of waves and pulses by wedges and corners,
J. Res. Natl. Bureau of Standards, 61, 5 (1958).

[6] R. WYRzYKOWSKI, Linear theory of the acoustic field of gaseous media (in Polish),
RTPN — W8P, Rzeszéw 1972. :

[6] W. RpzaNEk, R. WYRZYKOWSKI, Acoustic field of eylinder (in Polish), WSP Rze-
széw 1972,

[7] W. MaeNuUs, F. OBERHETTINGER, R.P. Sox1, Formulas and theorems for the special
Junctions of mathematical physics, Springer Verlag, Berlin —Heidelberg — New York 1966

[8] H. HONL, A'W. Mavur, K. Wesrrnar, Theorie der Beugung, Springer Verlag
Berlin — Gottingen — Heidelberg 1961.

[9] A. SoMMERFELD, Optik, Akademische Verlagsgesellschaft, Leipzig 1964.

Received on June 25, 1980; revised version on September 28, 1981.



ARCHIVES OF ACOUSTICs
7, 2, 155-162 (1982)

THE ANALYSIS OF SURFACE WAVE PROPAGATION IN A CRYSTAL WITH
A MONOCLINIC STRUCTURE
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The present work analyzes surface wave propagation of the Rayleigh
type in a monoclinic system. The problem was considered for a TGS crystal.
Surface wave propagation was examined in the following planes: (010) in the
¢100>, <001)> directions and in some chosen directions forming angles 20°, 40°,
60°, 130°, 150°, 170°, 180° corresponding to the (100} direction, (100) in {010},
<001> directions, and (001) in {100} and <010> directions. The above analysis
was made using an electronic computation technique. As a result of our calcu-
lations we have found that surface waves cannot propagate along (100> and
<001> direetions in the planes (001) and (100) respectively. These directions are
perpendicular to the axes of symmetry and they do not lie in the (010) plane.

1. Introduction

Surface wave propagation of the Rayleigh type has been considered by
a number of authors. However, most of these authors considered surface wave
propagation only in crystals with regular, tetragonal, trygonal or hexagonal
symmetry. Very few papers deal with the monoclinic system. Numerous papers
consider the problem of the existence of forbidden directions for surface wave
propagation in the corresponding crystals. Thus, for example, STONLEY [1]
discovered several directions forbidden for the plane (001) in cubic erystals.
However, his considerations took into account only exponential terms of
damping. GAz1s [2] calculated the velocities of surface wave propagation for a free
surface in the (001) plane of many cubie erystals. Moreover, he proved that for
aluminium and copper, surface waves do not exist in the range of {110) direc-
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tions. BUCHWALD and DAvVIs [3] show that surface waves in anisotropiec media
are possible only if the free plane is a symmetry plane of the crystal. In a medium
with cubic symmetry surface wave propagation is possible only in the planes
(001) and (100). Their calculations show the ranges of a forbidden direction:
<100} in the (001) plane of aluminium, iron and lead. In their paper [4] other
authors prove that in all cubic crystals surface waves cannot propagate in the
(001) plane. The criterion given (necessary but not sufficient) for surface
wave propagation has the following form: ¢;; (63, —€44) > (€15 Cya)?.

Computations of a similar nature for LiF and Cu have been published by
TursoNoV [5], who showed that the direction <110} in the (001) plane is forbid-
den for surface wave propagation. The author presents the results of numerical
computations for LiF, for a propagation direction forming an angle of 15°
with the axis, #,, of the coordinate system. ; -

The problem of the existence of the forbidden directions for regular systems
has mainly been considered. Our aim was to investigate this problem in a erys-
tal with a monoclinic structure. It was performed for a TGS crystal.

2. Caleculation procedure

The general surface wave problem is formulated by assuming that the equa-
tion of motion is given by
Fuy > &y, "
d B s R (1)

where g is the density of the material, u, are the particle displacements and Cija 18
the the elastic stiffness tensor.
For example the solution of equation (1) for the (010) plane is as follows

3
w, = 2 O o exp [k (1, @, + Ly, + U0 2y — 1) ], 2)
nfl
where q; is the amplitude of the wave, depending on polarization, exp (ikl{"a,)
is the factor assuring the properties of a surface wave, I, is the parameter which
characterizes the wave decaying into the depth of the solid, and exp [ik (1, z, +
+ 1,2, —vt)]is the change of amplitude in time and space, a8 it is in case of bulk
wave.
Substituting equation (2) into (1) the relation between a and % is obtained.
Using the stress - free boundary conditions on «, = 0,

ou .
O3 = cajkl’a_mf =0 (j,%,71=1,2,3), (3)

the parameters a,, a,, ay, the velocity of surface wave, and also the vector com-
ponents of the particle displacements were obtained.
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In this work an analysis of surface wave propagation for the TGS crystal
in the three following planes has been made: (010), (100) and (001). In the plane
(010), the propagation of the surface wave was analyzed along the (100 and
{001) directions and in the directions which form angles of 20°, 40° 60°, 120°,150°,
170°, 180° with the ¢100) direction. In both remaining cases our calculations
were made in the (001) plane in the {100), <001 directions and in the (100) plane
along the (010>, {001) directions.

The coordinate system assumed for surface waves is presented in Fig. 1,
where a, b, ¢ are the crystallographic axes of the TGS monocrystal, @y, s, 23
are the axes of an orthogonal system with respect to which surface wave propa-
gation has been considered. The above calculations were made by applying
an electronic computation technique using an ODRA 1305 computer. The
values of the velocity as a parameter were changed with a step of +0.4m/s.

xlle

105940¢
y

x, |6

Fig. 1. Coordinate system for surface wave propaga- x,
tion in TGS crystal g

3. Calculation results

Table 1 presents the values obtained for the surface wave propagation
velocity, the roots of the characteristic equation, the normalized values of the
eigenvector, and the values of the boundary condition determinant for the
surface wave propagation directions considered in the present work. Fig. 2
presents, as example, the magnitude of the boundary condition determinant of
surface propagation velocity in the (010) plane along the (100} direction. Fig. 3
shows the dependence of the surface wave propagation velocity on the
direction in the (010) plane.

Moreover, the components of the particle displacement along the directions.
determined by the axes of the coordinate system have been calculated. These
components in the (010) plane in the {100) direction are as follows:

u, = 0;[0.0782 exp(0.127 kx,) —0.429 exp(1.0035 kax,) —
—0.0166 exp (0.0308 kx,)]sink(x, —ot),  (4a)
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Fig. 2. Magnitude of boundary - condition determinant vs surface wave velocity for propa-
' gation in the (010) plane along the <100> direction
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Fig. 3. Dependence surface wave velocity on the direction for the (010) plane
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u, = €,[1.003exp (0.127 kx,) —0.165 exp (1.003 ka,) —0.13 exp(0.0308 kx,)] %
' Xeosk(x,—uot), (4b)

uy = (0,[0.0308 exp(O 1276 kx,) +0.0234 exp(l 003 fwy) —0.123 exp (0.031 kay)] x
xXsink(z, —vt). (4¢)

Since there are three components of particle displacement not equal to
zero, and displaced in phase correspondingly, we may conclude that the motion
of the particles is elliptical. The ellipse lies in a plane perpendicular to a free
surface and forms an angle ¢ = 11.9° with the wave vector direction. The value
of this angle, determined by tan-! ug,/u,,, i equal to zero (43 = 0), at a depth
equal to 0.5 wavelengths. Then the ellipse lies in the plane containing the wave
vector. The ratio of the elliptical axes lengths is equal to 1.6 on a free surface.

' The change in the displacement eomponents as a function of depth is
presented in Fig. 4

A considerable penetration of the u, component 4 wavelengths beneath
the surface may be noted. For the direction <{001) in the plane (010) where,
except for one imaginary root, there are two complex roots, the amplitude
change with depth has the character of a sinusoid decaying exponentially. This
change is shown in Fig. 5. The amplitude of the particle displacement compo-
nents decays at a depth of 3 wavelengths beneath the surface. The displacement
components for these directions are the following:

Uy = C1{—1.005exp (1.049 kx,) + exp(0.203 ka,) [2.27 cos(0.6539 kz,) —
—1. 024511:1(0 659 kx,)]}cosk(ws —ot), (ba)

ty = Cy{—0. 212exp(1 049 Jey) -+ exp (0.203 Fay) [2.187 05 (0.659 Jeay) +
+4.535in(0.659 ka,)]} sink(z; —vt),  (5b)

ug = €,{0.1853 exp (1.049 Te,) + exp (0.203 kwy) [3.811 €08 (0.659 k) —
—2.68458in(0.659 kx,) ]} cos ki ( $3—'vt) (5e)

The movement of partwles in this case is elliptical, as for the <100> direction.
The plane of this ellipse forms an angle of 17° with the wave vector direction and
is perpendicular to the wave propagation plane. The value of this angle changes
with depth. For the remaining considered directions, surface wave propagation
in the (010) plane, and for the plane (001) in the {010) direction, and the {010)
direction in the (100) plane, the equations determining the displacement compo-
nents have the same character as for the above directions.

4. Conclusions

In the case of surface wave propagation along the {100) direction in the
(001) plane and <001) in the (100> plane the characteristic equation is divided
into two equations of the second order and of the fourth order. Analyzing the
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second order equation and assuming stress-free surface boundary conditions,
it has been proved that only a transverse bulk wave can propagate in the (100>
direction in the (001) plane. This wave propagates at an angle of tan™' 1} = 1.6°
to the free surface. The velocity which corresponds to the wave is equal to
V =1919.9 m/s. The calculated displacement components of the particles in
this wave are as follows

Uy = g =0, wy = Cexp[ik(0.027 x5+, —0t)]. (6)

While solving the equation of fourth order roots with the imaginary part
not equal to zero have not been found. It is known that only these roots cor-
respond to a surface wave which would simultaneously satisfy the boundary
conditions. The boundary conditions were satisfied only in the range of real roots.
Therefore, it may be assumed that only transverse bulk waves can propagate
in the direction considered. This wave propagates at an angle equal to 10.6° to
the free surface with a velocity ¥V = 2038 m/s.

Similar results for the {001 direction in the (100) plane have also been
obtained. Thus, in the case of the TGS ecrystal considered the {100} direction
in the (001) plane, and {001) in the plane (100) are forbidden for surface wave
propagation.

References

[1] R. StoNLEY, The propagation of surface elastic waves in a cubic crystal, Proc. Roy.
Soc., A 232, 44 (1955).

[2] A.C. Gazis, R. HErmAN, R. Varris, Surface elastic waves in cubic crystals, Phys.
Rev., 119, 533 (1960). ]

[3] T.C. Lix, G.W. FarNELL, Search for forbidden direclions of elastic surface-wave
propagation in anisotropic crystals, Journal of Applied Physics, 39, 9, 4319 (1968).

[4] L.F. ProToPoPOVA, A.M. FIEDORCHENKO, Volny Rayleigha v poluprovodnikach
i yannych kristalach 2 kubicheskoy symetrej, Nauch. trudy vysshich ucheb. zaved. Litevskoy
CCR, Ultrazvuk, 3, 61 (1971).

[6] A.D. Tursoxov, Obobshchennye poverchnosinye volny v Kubicheskich kristalach,
Acust. Journal, 13, 100 (1967).

Received on December 16, 1980 ; revised version on November 3, 1981.



ARCHIVES OF ACOUSTICS
7, 2, 163-170 (1982)

ACOUSTICAL RELAXATION IN HETEROCYCLIC LIQUIDS

BOGUMIL LINDE

Department of Physies, University of Gdaiisk
(80-952 Gdansk, ul. W. Stwosza 57)

Meagurements of ultrasonie velocity and ultrasonic absorption coefficient
have been earried out for several organic liguids in the frequency range from 10
to 1300 Mz at 293 K temperature.

The ultrasonic measurements and the infrared spectra of the liquids have
been used for determination of vibrational degrees of freedom which take part
in acoustical relaxation process.

1. Introduction

Based on the Kneser acoustical relaxation times measured by the authors
[1] and using published data of optical frequencies, the active vibrational degrees
of freedom were determined for thiazole [2] and pirimidine [3]. The lack of
complete IR spectra for a-picoline, tetrahydrofuran and piperidine [11, 12]
prevented a similar analysis for these substances.

Comparing these in complete IR data and the measured acoustical results,
it has been possible to show that not all the degrees of freedom are active within
the acoustical relaxation processes observed.

2. Experiment

The ultrasonic abgorption speetra a/f2(f) were measured by the ultrasonic
pulse method from 10 to 1300 MHz [4, 5] and ultrasonic velocities were obtained
using an ultrasound pulse-phase interferometer [4]. The temperature was
stabilized with an accuracy of 0.01 K.

The measuring errors ranged from 7 to 4 per cent for attenuation in the
frequency range 10-60 MHz, and from 3.5 to 5.5 per cent in the frequency range
400-1300 MHz.

The liquids used (made by Fluka AG, Bucks IG) were of analytical purity
and were used after distillation.
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3. Theory

In the case of acoustical relaxation the a/f*(f) and u(f) absorption curves
can be deseribed as follows

a A
T T .
p=al = (1+( )fc, (2)

when the process is characterized by a single relaxation time. (Where A is the
relaxational absorption, B the residual absorption after the process has relaxed,
and 7= = 1/2xnfe.)

The determination of the internal vibrational degrees of freedom involved
in the acoustical relaxation process is possible using the Herzfeld formula [6]

a, -0, de 0,0,

T‘ g Op TODt! TODt = 21_:2 (()p 2 Gp) Gi H (3)

(where ¢ is the velocity of ultrasound, C; is the vibrational specific heat, ¢, and
O, are the specific heats at constant pressure and volume); and the Planck-
-Einstein formula

by \?

ET

fyre RZ I, w \T’ @
= (i) [ == )]

using the frequencies of fundamental vibrations »; measured from the infrared
gpectra.

Comparing 7,, and z,,, one can determine the degrees of freedom active
in the process [T].

4. Results and discussion

Pirimidine

The variations of sound absorption a/f*(f) and u(f) for pirimidine are shown
in Figs. 1 and 2 and can be described by equations (1) and (2). In these figures
the solid lines represent curves of a single relaxation.

The relaxation time 7,, determined from the acoustical measurements is
1.2-107'% whereas the value of 7., calculated according to formula (3) is smaller
and is equal to 0.3:107'%. Hence it is possible to conclude that in the given
range of frequencies of ultrasound and hypersound waves not all of the inter-
nal degrees of freedom take part in the energy transfer between vibrational and
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Table 1. Fundamental frequencies of vibration for pirimidine with the corresponding con-
tributions of the specific heats

Vibration | Symmetry 1 " g-' no, | Symmetry 1 % ;ji

no. class [— . 1013] [ ] ' class —_ 1013] [

8 mol-K 8 mol-K
1 A, 9.249 0.00 13 B, 4.710 0.22
$ 4, 9.141 0.00 14 B, 4.206 0.41
3 4, 9.003 0.00 15 B, 3.912 0.57
4 A, 4.710 0.22 16 B, 3.681 0.73
5 4, 4.401 0.32 17 B, 3.483 0.91
6 A, 3.429 0.96 18 B, 3.213 1.21
7 A4, 3.165 1.27 19 By 2.001 3.65
8 A, 2.973 1.54 20 B, 2.940 1.59
9 x 1.872 4.01 21 B, 2.418 2.59
10 A, 2.610 2.18 22 B, 2.106 3.20
11 A, 1.182 6.14 23 By 2.037 3.55
12 B, 9.285 0.00 24 B, 1.032 6.59

translational degrees of freedom, or in other words, the relaxation times of diffe-
rent degrees of freedom are different.
The complete spectroscopic data of IR for pirimidine listed in Table 1 [3]

gives the possibility of determining, with a high probability, which of the vibra-
tional degrees of freedom take part in the observed acoustical relaxation process.

Table 1 lists the fundamental frequencies of vibrations related to the cor-
responding classes of symmetry, together with the corresponding contributions
of the specific heats.

The best relative agreement between the caleulated 7,,, and experimentally
determined 7., value is obtained when we assume that, in the processes mentioned
above, the vibrations belonging to the B, symmetric clags take part. The rela-
xation time which takes into account only those vibrations is 1.1-107'%s. Similar
calculations for other classes give values of the relaxation time of:

74, =0.9:107", 7, =09:10""s, 75 =0.4:107"s.

It is clear from the data presented that, in the relaxation process which was
observed, caused by the delay of deactivation of the vibrational degrees of
freedom, vibrations from »,, to », take part.

Thiazole

The results obtained for thiazole are presented in Figs. 3 and 4. The acous-
tical relaxation process observed in this liquid can be also described by equa-
tions (1) and (2). The experimental results are in good agreement with the
theoretical ones.

The relaxation time 7,, estimated on the basis of the experimental results
is equal to 2.7-10-1%s, Using the fundamental vibrational degrees of freedcm
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data (Table 2) one can determine 7,,, to be equal to 2.3-10-'%s, so that it is
smaller than the experimental one. We can conclude that not all degrees of
freedom are involved in the acoustical relaxation process in this compound.

The relaxation times are in the best agreement if we assume that only
vibrations from », to », take part in this phenomenon within the frequency

a) b
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Table 2. Fundamental frequencies of vibration for thiazole with
the corresponding contributions of the specific heats

= ¥; C",; i 0,:
5| [ o] ]| |1 ] e
" 8 mol-K 8 mol - K
1 1.810 4.17 10 3.717 0.71
2 2.178 3.17 11 3.954 0.54
3 2.406 2.62 12 4.110 0.44
4 2.592 2.22 13 4.437 0.31
5 2.643 2,12 14 4.848 (.19
6 2.799 1.83 15 5.316 0.11
7 3.120 1.33 16 8.235 0.00
8 3.216 1.21 17 8.511 0.00
9 3.363 1.04 18 0.249 0.00

range measured. In this case 7, is equal to 2.8-107""s and its value agrees with
T4, Within experimental error.

The relaxation time related to the excitation of vibration of frequency
v, is considerably shorter. This seems reasonable because the maximum proba-
bility of excitation occurs for the lowest encrgy vibration, it is therefore the
casiest to excite, and when an ultrasonic frequency of 1.3 GHz is used
the energy can be transferred to the other vibrational degrees of freedom and
equilibrium will be established.

a h I tetrohydrofuran

f? Q 2 piperdine
-2 15 N 3
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Fig. 5. Frequency dependence of the ultrasound absorption «/f? at 293K in a-picoline,
piperidine and tetrahydrofuran
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In these liquids the inflection points of the curves a/f*(f) occur outside the
measurement frequency range experimentally available, but they can be calcu-
lated from equation (1) [8].

It seems from the comparison of the values of 7,, obtained from the acousti-
cal measurements with the calculated 7., (Table 3) that the observed region
of dispersion results from a Kneser process, and the relaxations are caused by
the translational-vibrational transfer of the molecular energy.

Table 3
0 Topt T dexp
Com d J op ne —
il [ [s-10719] [s-10-10 Qclass
mol - K
tetrahydro-
furan - — 0.82 18.3
piperidine 170.7 0.13 0.86 5.0
a-picoline 52.7 0.15 0.61 7.5
thiazole 22.01 2.3 2.9 65.0
piperidine 41.9 0.3 1.2 14.7

5. Conclusions

1. From the above considerations it appears that in the compounds exam-
ined not all the vibrational degrees of freedom take part in the acoustical
relaxation process as observed.

The relaxation times resulting from the excitation of other degrees of free-
dom are much smaller, so that the relaxation may exist in a higher frequency
range and one may then observe a second region of dispersion. The values of
of @gyp/dgass Obtained for the examined liquids (Table 3) confirm the above
explanation.

On the other hand, the results of Kneser relaxation published by other
authors [7, 9] suggest that the single relaxation process in liguids does not in-
volve all the vibrational degrees of freedom.

2. The acoustical relaxation process ean be determined by equation (1) (for
a single relaxation process).

3. The experimental data obtained are in quite good agreement with the
suggestion of SHAKIHPARONOV and TuNIN [10] that in stiff molecules which have
mobile electrons the Kneser relaxation time is equal to or greater than 107" s
(s 2> 10" 5).
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