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ACOUSTIC IMPEDANCE OF AN ISOTROPIC MEDIUM FOR RAYLEIGH WAVES
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The acoustic impedance of an isotropiec non-piezoelectric medium has
been determined for Rayleigh waves. The numerical values of this impedance
are very different from the values of the impedance of the medium for a plane
bulk wave.

1. Introduction

Analytical solutions of the problems of elastic surface wave propagation
are known only for a limited number of half space configurations (Lamb, 1904),
and for the simple layered media (Ewing at al. 1957). The problems connected
with wave propagation on the surface of a bounded medium containing step
discontinuities are complex in so far as it is difficult to give analytical expres-
sions deseribing the behaviour of Rayleigh waves in these cases. Only the solu-
tions for a single discontinuity (Tuan, 1974) are known. Nevertheless the problem
is important in view of the wider application of systems with surface wave
containing wave-guide discontinuities in such electronic devices as resonators,
bandpass filters, code filters ete.

The properties of complex wave-guides can be easily examined with the
use of equivalent circuits. The quantity characterizing a wave-guide medium
is the acoustic impedance. The conditions of surface acoustic wave propagation
of the Rayleigh type differ from those of plane bulk waves. The characteristic
impedance of the medium for this type of wave differs from the analogous
quantity for bulk waves.

In this paper, the acoustic impedance of Rayleigh waves in an isotropie,
non-piezoelectric medium has been determined.

2. The acoustic impedance of Rayleigh waves in a plane surface layer (x; — 0)

Let us assume that the wave propagates in the @, direction, in the T10g
plane. The «, axis is directed towards the centre of the medium which is isotropic
and non-piezoelectric. The component displacements of particles in the medium
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from the state of equilibrium will take the form [1]:
u, = [Aike ™ —fBe 3] ¢fkx1— 0
4y =0, (1)
Uy = [ —ade™ "% —Bike P2a]¢m1—h)
where a, f are decay constants,
@ = —alal, B =F¥—old, 2)
a, and a, are the velocities of the bulk longitudinal and transverse waves respec-
tively, o is the angular frequency, and & is the Rayleigh wave number.
Using the condition of the stress vanishing on the free surface of the medium
(1],
g =0, (3)
we shall express amplitude B by amplitude 4 in formulae (1). The components
of stress acting in the medium will have the form:

T, =01u+0s, T;=05, T3=0;3+0s5. (4)
In the case of a thin layer (z; —0)
T, = oy, T, = 0y, T, =0. (5)

Denoting the stress tensor by the strain tensor for the isotropic medium
(2],
0y = 2peg;+ Adyep, (6)
where
5 _{1 for 1 =4,
= 0 _for i #j,

and A, p are the Lame coefficients, we obtain:

2 . oKt 1.
1'1:—(2;4+A)Ak2[1— af ]e""”1+1Aa2[1— ]e"“”l,

k2 + ﬁﬂ kz + ﬁz
2k 2 .
ﬂqufP_Eﬁﬁl_Wb‘vf%nﬂm (7)
Ta == 0 .
The components of the velocity vector for particles in the medium are:
d 2
v, = Uy erkiails [1__ zaﬁz]eika:l,
dt 2-'32-0 k + ﬁ
du 3 '
%S et (8)
at gm0
dug . 2K 0
o e = 1— i
Vg ¢ Aiwa [ e ] e
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Denoting the components of the acoustic impedance vector of the medium
in the @, direction as

I.
Zai=__la ?;:172:35 (9)
Uy
we obtain
2 A A1l — 2
Zal e Ju': _ v [ ('U/al) ] , (10)

@2 — (v]ay) —2 ]/1 = ('ZT) ']/1 B (%)2

Zay, - oo, Zaz =0,

where v is the Rayleigh wave velocity.
In the case of a bulk longitudinal wave (v = a,), the impedance Za, takes
the form

2u-+ 4
Za, = 275 = 7, (11a)

ay

whereas for a bulk transverse wave (v = a,) we have

2
P +—)“—[1~(i"’;)], (11b)

Ay ag a4

where Z,, is the acoustic impedance for a bulk wave in the unbounded medium.
Formula (10) shows that value of the impedance medium for a Rayleigh
wave is greater than the impedance of the same medium for a bulk wave.
Limiting the medium to a half-space has a bearing on the propagation
of the bulk transverse wave (Za, > Z,,), although it has no influence on the
behaviour of the longitudinal wave (Za, = Z,y;).

3. Acoustic impedance of Rayleigh waves in an elastic, isotropic half-space

Let us widen our reasoning, taking into account the fact that a surface
wave of the Rayleigh type propagates in a certain layer at the surface of the
elastic half-space. In this case the stress components have the form

Ty = A{A(& — &) —2p (& +ifs) e "7,
Ty = AA(E, —&y)e™ %, (12)

Ty = A{2u(& —i&) + (& — £y 870,
where

2k 2ap B +a
R v S == Lo (o] L
(13)
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while the components of the particle velocity vector in the medium will be
the following:

Aw =
R Ll — 3+1Mc1
v, T Eqe
v, =0, (14)
Aiw

5164 arg+ikey 3

@3:

Applying formulae (12) and (14) we obtain a medium impedance in the z,
direction:

A+2u A& —i2uk,

Za, = — —s

v vé;
Zay — 0, (15)
Zas = {9M§s+’&[(2#+1) 1 — 46T}

The components of the acoustic impedance vector of the medium become
complex when wave penetration inside the medium is considered. The imagi-
nary part of the acoustic impedance represents those modes which do not
propagate in the medium [3].

For the bulk longitudinal and transverse waves, the formulae denoting
the medium impedance in the x, direction (Za,) are identical to formulae (11)
arrived at in section 2, whereas in the z,, direction, the impedance for the
longitudinal waves is infinitely great, while for the transverse waves it has
a purely imaginary value.

In the case of CdS, the characteristic impedance for the bulk waves Zay,; =
= 56-10° Q, whereas for the surface waves formulae (15) give the fol]owmg
values of the impedance components:

|Za,| =97-10°Q, |Za,| = 12-10°Q.

4. Conclusions

Introducing a medium acoustic impedance for surface waves is essential,
since the numerical values of this impedance differ considerably from the
medium impedance values for the two-dimensional bulk waves. In addition,
the acoustic impedance determined for Rayleigh waves has an complex form,
which points to different propagating conditions for the Rayleigh modes com-
pared to the bulk modes in an unbounded medium.
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This paper presents a method for the caleulation of the shape and size
of pulses radiated and received by ultrasonic transmitting-receiving systems
used in medical diagnostics. Using an equivalent electrical eircuit for the trans-
ducer, the transfer functions for different working conditions of the trans-
ducer were calculated and, on the basis of these functions the acoustical and
electrical behaviour was calculated. Because of the complicated nature of the
mathematical relations, continuous Fourier transform (CFT) was used to
describe the systems. This was then replaced by a discrete Fourier transform
(DFT), thus preparing the relations for numerical calculations. The DFT
was in turn calculated using the fast Fourier transform (FFT). Caleculations
were made for a number of practically realized cases. The paper also gives
the results obtained from an analysis of the operation of a transmitting
transducer for different types of acoustic matching, for a wedged transducer,
and for a divided one.

Introduction

An intensively increasing interest in the ultrasonic methods used in medi-
cine can now be observed all over the world. Medical applications require |
increasingly better diagnostic apparatus. This involves the problem of construct-
ing ultrasonic transmitting-receiving systems which include an electrical
transmitter, broad-band transducers, and an electrical receiver. This problem

ducers.

Since a mathematical description of a transducer in a transient state is
quite complicated, papers devoted to this problem do not exhaust the possibi-

lities of definning the optimum design of acousto-electronic systems for the
generation and detection of short ultrasonic pulses.

is closely connected with the problems of transient states in piezoelectric trans- ’
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The transient state in a transducer, which results from its large Q@ — factor
and a simultaneous lack of matching to the medium, plays an important role
in the problems of signal resolution and the more exact measurement of distance,

The aim of the present work was the design of a method for caleulation
of the shape and size of the pulses in ultrasonic transmitting-receiving systems
used in medical diagnostic apparatus, and to apply this method to a number
of practically realized cases.

Analytical method

One of methods for the analysis of the performance of ultrasonic trans-
ducers is based on the use of the equivalent electrical circuits of the transducer,
and the investigation, on this basis, of the relations between the input and the
output [5, 8]. The transducer can then be represented as an electric four-pole
network. Irrespective of the inner structure of the system, the work of a linear
four-pole network in a steady state, can be characterized by two output
and two input quantities, interlinked by linear relations. On the basis of these
relations, the transfer function, H, of the four-pole network (which can be
used subsequently for the investigation of transient states), may be deter-
mined.

For any excitation Juwe(t), under zero initial conditions, the output signal
Juy(t) s defined by the relations [3, 15]: after Laplace transform, it has
the form

fwy(t) = a_l{H(S) 'Fwe(s)}’
where

Fwe('?) = a{fwe(t)}) (1)

or, after Fourier transform,

fwy(t) e ﬂ—l{H(f) .Fwe(f)}7

‘where
Fwe(f) = ‘a’r{fwe(t)}' (2)

In the present paper, the Laplace transform was used for the simpler
cases where the possibility of analytical calculation of the relations existed,
whereas Fourier’s transform, using the insertion s — jo =j-2nf, was used
for the more complicated cases.

In the determination of the inverse Fourier transforms, the confinuous
Fourier transform (CFT) was replaced by the discrete transform (DFT),
using the relations describing the continuous and discrete transform and
sampling theory [1,3] (see Appendix). The DFT was subsequently calcu-
lated numerically, using the FFT algorithm (Fast Fourier Transform).
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Assumptions

An electrical transmitter with an input impedance Z, is taken to excite
the transmitting transducer with the voltage F,. This transducer radiates
an acoustic force I, into a biological medium. It was assumed that.the biolo-
gical medium did not introduce damping and had an acoustic impedance of
1.5-10° kg/m® (soft tissue is the most frequently investigated biological me-
dium, for which this is the first approximation). The receiving transducer
was placed in the near field of the transmitting transducer. In consequence,
acoustic field problems were eliminated from the considerations. Diffraction
losses were also neglected. It was assumed that this transducer receives the
acoustic force F,; and converts it to a voltage E, which is the input signal
of the electric receiver which has an input impedance Bl -

The analysis of the electrical systems of the transmitter and the receiver
was performed using the theory of circuits, based on the designs of the ultra-
sonograph and ultrasonocardiograph developed in the Department of Ultrasonics
IPPT PAN, with subsequent linearization. The phenomena occurring in the
electrical receiver were not considered, its effect being limited to that of the
first degree input impedance on the behaviour analyzed. The parameters of
the tables connecting the transducers with the receiver and the transmitter
were also considered.

For comparison of the sizes of the pulses generated by individual transmit-
ting-receiving (I-R) systems, the criterion of the power of the signal received
should be used. Since the comparison was performed at a fixed value of electric
resistance loading the transducer, a voltage scale was used. This is particularly
appropriate since the shapes of the pulses are observed on the oscilloscope
screens of diagnostic devices in the forms corresponding to voltages. The time
interval, after which the instantaneous value of the signal falls to 10 %, of the
maximum value, was assumed as pulse duration, although this criterion can
be disputed in the case of very irregular pulse shapes.

Transmitting transducer

Fig. 1 shows an equivalent circuit for the transmitting transducer, vibrat-
ing in a thickness mode, with consideration of the exciting source and the
shunt coil L,. Transforms of the input quantities are connected with the
transforms of the output quantities by the relation

E, e £
[fn] _[4 ][Vn]’ (3)

where #, and I, are transforms of voltage and current, and ¥, and 7, those
of force and velocity. [A"] is a matrix describing the electric system.
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On the basis of equation (3), the transfer function of the transmitting
system can be determined [5],

Eﬂ, = A?lpn_i_-A?z?ns (4)
since F,/V, = zzd,, where zp is the impedance of the biological medinm,
¥ 1

Hys) == = (5)

E, Atzpdo+ AT

Knowing, in turn, the transfer function, the response of the system to
any excitation can be determined, using relation (1) or (2).

Two extreme cases, for which the input electric impedance of the gene-
rator is either very large or very small, were assumed as the first approxima-
tions to the operation of the transmitting transducer itself (without the compen-
sating inductance).

In the first case the compensation of clamped capacities €, and —0C, occurs

(when the electrical terminals are open), with the matrix [4"] assuming
the form

I
[A"] = o 0 {[ay, LT (6)
5. % gy Qs | :

where (Fig. 1)
N =nCy = ]/2foCoQoGoA0a

@ = [(m4+1)e* 0 —(m 4 —1)e "0/ M,
Ty = 2odo[(m 4 +1)e™™0 4 (m, —1)e™ "]/ M,
gy = (€70 —e™ ") (204 M),
Bgz = [(m4+2)e™ —(m —2)e "0 —4]/ M,
M = (m +1)e*™ —(m, —1)e*"0 -2,
My = 2,4/[%.

Inserting relations (6) and (7) into relation (5) we get the function

H,(s) = Vol(m,+1)e™ —(m 4 —1)e > —2] x
X [(my +1)(my+1)e™™0 —(m —1)(mgz—1)e~*0]';  (8)
Vo = Njzedy, mp =zgfz,.

If we consider the excitation 1(f) on the electrical side, then, after using
relation (1), we obtain relation (9), defining the wave of acoustic velocity:
2
1(#) —- 1(t—v)—
mp+1 (M4 +1)(mp+1)
2(m, —1
& o Bk PO 1(¢t—27,) + } (9)

¥ = VO{

(m 4 +1)*(my+1)

o i e n ) L

Dl an i AR an _alb bl < L
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Z, Ay
sinhst,

5T
Fs

Zn ~Cq 1N z, A, tanh

I

En Lo % Co

O

Fig. 1. An equivalent circuit for a piezoelectric transmitting transducer (after Mason) and
its electrie supply circuit

Zo = 0oCo» 24 = 0ACA, 2B = eBCR are the acoustic impedances of the transducer, backing load, and the biolo-

gical'medium, respectivelly; ¢, is the ultrasonic wave velocity in the transducer for an electric displacement equal

to zero, A, is the area of the transducer, N = h(Cy = V2fo Co0oCad o, Ta = 1/2f, is the passage time taken for an

ultrasonic ;wave to pass through the open-circuit transducer, f, is the frequency of the mechanical resonance,

h is o piezoelectric constant, €', is the clamped capacity, &, , I, are the voltage and current supplying the trans-

ducer, z,, is the output impedance of the electrical transmitter, and F',,, V', are the acoustic force and velocity
generated by the transducer

Fig. 2a is an illustration of the result. The response of the system depends
only on the purely mechanical properties of the transducer. On both faces:
transducer — backing and transducer — biological medium, reflections from
the mechanical impedances and partial radiation of the wave into the medium
[6] oceur every 7,, i.e. subsequent waves are radiated every z,, which have
the shape of the excitation. As a result of superposition of these waves an
acoustic signal oceurs. ‘

In the second case, when the transducer is excited from a generator with
very small output impedance, the matrix [4"] has the form:

it

1

LN i

[A"] = sCy || [“11 “12], (10)
oy 0 o) {0 -NIEW T

with the transfer function for such a transducer being thus given by rela-
tion (11),

H,(8) = Vol(m, 1) €570 —(m 4 —1)e~*"0 —3] X

x

" {(ﬂfu +1)(mp+1)e™™ —(m—1)(mpg—1)e™>0 — (11)

A 2
L matmyt D — (g =)
where
N N
A=—— Vo :
2,440, ) 2ol
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For the excitation 1(t) the response of the system has the form

V,(t) = mB+1 E‘b,,ﬁ for ¢ e (i —1)7y,07e) (6 =1,2,3...);  (12)
in particular
Vo A(my+mp+2)
= t]  for te <o, z,). 13
Vl(t) mB‘I‘l [(W"’A +1)(m3+1) ] or E< 770) ( )

Since relation (12) has an insufficiently clear form, the calculation of
formula (12) for a specific transducer will illustrate better the nature of the
variation, which is shown in Fig. 2b. The response of the transducer to the
excitation 1(¢) is a sum of the purely mechanical response (open-circuit trans-
ducer — (9)) and of some additional function, which is responsible for the
change of shape from the rectangular. Pulses are generated every 7, on both
surfaces of the transducer, but they no longer have the shape of the excitation,
but rather a shape which depends on the effect of the electrical side of the
equivalent circuit of the transducer on the mechanical side. For a time t € {0, 7,),
the response of the transducer is given by relation (13). Analogously to electrical
systems, the idea of a time constant can be introduced,

(m4+1)(mp—+1) = (B 4+ Ry)(Rp+ R,) ( —Co)
A(m,+my+2) R, SR, IR, o

where Ry = 2,4,, B, = 2,4,, and Ry = 254, are acoustic impedances, i.e.
R = (RA +Ro)“(RB+R0)
(the transducer acts as such a resistance for ¢ € {0, 7,);

0" = C,/N?

Y = R'¢ =

(14)

(a negative capacitance transformed to the mechanical side).

Since 7’ < 0, the output for t e <0, r,) will increase exponentially, with
a time constant for this increase equal to R'C’.

With consideration of the electrical source and the shunt coil L, (which
compensates gy at the frequency f,), we have

z
§ S LA ik 1
[4"] = 8Lo | " 41 K sC, || N ? [“’11 “12] (15)
o < e o x|lon ol
sk,

while the transfer function of the transmitting transducer becomes:
H,(8) = mgN[(m,+1)e0—(m,—1)e *0—2] X

f

u) [(m,4+1)(mp+1)e* —(m —1) X
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A 2,
 (my 1)) =2 (14 22 fm -y 4.2) x

=1

Xe™ —(m 4+ mg—2)e~0—4]} . (16)

Fig. 2¢ shows the wave of force generated by the same transducer as before,
but this time including the parameters of the transmitter, according to formula
(16), with the excitation, as before, of a voltage step. In this case multiple
reflections depend on the impedance ‘“seen” an the borders of the transducer.
This impedance is formed by both mechanical and electrical elements, with
the shape of response ultimately obtained depending on the superposition
of the waves occurring as a result of multiple reflections. The calculation re-
sults shown in Fig. 2, were obtained for a transducer with the parameters:
%y = 27.0-10°kg/m’, 2, = 6.3-10°kg/m?, f, = 2.13 MHz, C, = 1730 pF, and
a diameter of 2 cm; while, for the case in Fig. 2¢, 2, = 100 Q was assumed.

g boe gy
B

Fig. 3. An equivalent circuit for the receiving transducer

N
2, A, tanh—==

ZgA, 2  sinhst,

Z, A, n:vnnh+5-2l'g

",

Fog, Voq are the acoustic force and velocity exciting the transducer, Eoq,s Ipq are the voltage and current genera-
ted by the transducer, and z,4 is the imput impedance of the electrical receiver

The circuit of the receiving transducer loaded by the electric impedance z,;
is shown in Fig. 3. The relations describing the system are given by formulae
(17) and (18):

Fod - od J?oa’.
[7{)@]444 ][ ) a7
where .
g N 0 i i1 -0
ody __ ZAg| | Azp Gqy 1 1
[A%] _[0 1 ][‘121 au] 0 sC, 1l (18)

N||sC, 1 sL,

The transfer function of the receiving system was obtained from (17 )
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and (18), in the form:

= Zoq . Nzor:l
= od od
A2+ AT 2od

Ead ST,
Hoals) = 5 [(m+1)e™0 —
od

—(m 4 —1)6_3’0—2]{(30'ﬂzod+ Pod +1) [(my4+1)(mp+1)e® 0 —

sL
—(m4—1)(m —l)e"“"ﬂ]—i 1+ ok [(my+mg+2)eo—
4 B 5 oL, 4 B
-1
H(m‘4+m3—2)e“s’°—4]} : (19)

The transfer function of the receiving transducer H,;(s) has the same
form as the transfer function of the transmitting transducer; a similar
shape for the voltage being generated by the receiving transducer, as for the
shape of the force generated by the transmitting transducer (see Fig. 2e¢).

The transmitting-receiving system

If we consider the transmitting-receiving system described in the assum-
ptions, then the transfer function of such a system is given by the formula

H(s) = g"d = 2H,(s) Ho(s), (20)

n
where H, (s) and H,(s) are defined by (16) and (19), respectively. On the basis
of these relations, the behaviour of the receiving transducer in any T-R arran-
gement and for any transducer, can be calculated.

The effect of the shape of the excitation on the shape of the voltage obtained
for a transducer with the parameters z, = 25-10°kg/m’, f, = 2.72 MHz,
C, = 1260 pF, loaded at the back with an acoustic impedance of z, = 6.1-
+10° kg/m®s, compensated with an inductance L,, and shunted in the trans-
mitter with the resistance R = 6.8 kQ, was analyzed for the T-R system of
the ultrasonograph. All the results presented subsequently in this paper, with
the exception of those for the divided transducer, are presented for a transducer
with the parameters given above. The amplitude of the exciting voltage was
250 V.

A Heaviside function was assumed as the first approximation to the shape
of the excitation

E,(t) = —H,-1(1) : (21)
with the results being shown in Fig. 4a.

2 — Archives of Acoustics 3/80
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As the actual excitations in the ultrasonograph have a finite rise time,
an excitation closer to reality, which is described by the following function,
was considered as the second excitation:

0 .

t for t<
7 (22)
—E, for 1 = ;.

B,(t) =

The shape of voltage obtained for this type of excitation is shown in Fig. 4b.
In the case of excitation with a rectangular pulse of width z,,

E,(t) = —E,[1(t) —1(t —70)], (23)

the response of the system has the form shown in Fig. 4¢, and that for a trapezo-
idal pulse of duration 7, and decreasing from a value E, to § E,,

—F
Eﬂ(t) == 0( 410
0 for 1= 7,,

i
——+1) for t < 7, (24)

is shown in Fig. 4d.

A number of excitation types (a rectangular pulse of duration 27,, a double
Heaviside function, a trapezoidal pulse) have also been analyzed, but this
paper gives only the results which are more interesting from a practical point
of view.

The shape of the pulse obtained depends on the multiple reflections occur-
ring as a result of a lack of mateching of the transducer on both electrical and
acoustical sides. The excitation of the transmitting transducer causes the gene-
ration of an acoustical pulse whose shape is different from the shape of the
excitation. The acoustic behaviour is the result of the superposition of successive
waves generated every z,. In turn, the acoustical signal causes the generation
of an electrical signal by the receiving transducer.

Since a number of changes occur in the instantaneous value of the acoustic
behaviour, each causing the generation of a number of waves in the receiving
transducer, the duration of the signal received increases even more.

In a diagnostic apparatus the signal received should have as large an
amplitude and as short a duration as possible. A change in the onset time bet-
ween the limits 0 < ¢ < 7, affects the amplitude of the signal received, having,
however, no larger effect on the duration. It follows from the calculations
performed that the largest amplitude is obtained for excitation with a rec-
tangular pulse of width 7, (see Table 1).

Illustration of the effect of the resistance shunting the head in the trans-
mitter was analyzed for the ultrasonocardiograph system in which it is possible
to adjust this resistance. A 1(¢) of amplitude of 600 V was assumed as an exci-
tation. The results presented in Figs. ba,b,e are for R = 3.3 kQ, 110 Q, and
20 Q, respectively. The following conclusion can be drawn on the basis of the
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Table 1. Parameters of the voltage pulse received in the
T-R system for different excitations

l maximum
No, | shape of exciting voltage duration Fig
voltage | received t [8] ‘
| Uma.x[v]
g a Heaviside time ! J
Frration l 6.8 13.87, | 4a
2 a linear increase b
to a constant value B 13.9 7o 5
a rectangular pulse |
i e [ 123 137 ¢, de
a trapezoidal pulse |
L. | ot witdh %, ‘ 10.9 13.0 7, 4d

results obtained: the durations of the transmitted and received pulses can be
changed by a change in the shunting resistance. However, an optimum value
of shunting resistance exists, for which the duration will decrease if a suitable
sensitivity of the head is preserved (see Table 2). The shape of the pulse genera-
ted also changes. A component of higher frequency, which is difficult to explain,
occurs for a low value of the shunting resistance R.

Table 2. Duration of the pulse received in the T-R
system for different shunting resistances

e shunting resistance duration | p. g.
E t[s]
1 | ultrasonograph
6.8 kQ 13.8 7, 4a
2 | ultrasonocardiograph
3.3 kQ 1797, | b5a
3 {1100 10 7, 5b

The effect of acoustic loads

Since a large mismatch occurs between the transducer and the biological
medium, the possibility of improving the operating conditions on the acoustical
side was analyzed.

One solution may be the introduction of a matching layer between the
transducer and the biological mediumn.

The requirements for matching are that the layer should have a thickness
of /4 and an acoustic impedance equal to the geometrical mean of the impe-
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dances to be matched [4, 13]. A 1/4 layer best matches those two media hwose
impedances are real and only slightly different from each other. Exact matching
occurs for one frequency only.

In the present case, these conditions are not satisfied (a broad frequency
band is used) and therefore ideal matching cannot be expected. The 1/4 layer
was included in the equivalent circuits in the form of a transmission line, the
transfer functions the 7-R system [13] determined, and further calculations
performed.

Fig. 6 shows the voltage received in the 7-R system of the ultrasonograph
working with transducers with 1/4 layers with an excitation 1(?) of amplitude
250 V. Further results presented were calculated for this type of 7T-R system
with 1(¢) excitation.

urvi

24
20
16
i2

8

; VA1||||(\A1A|LIV‘4 i

3 § VQV n\S13™M5 17 i,

-8
-12
-16
-20
=24

I|||i[|[l]l[

-
W

Fig. 6. Voltage received in the T-R sys-
tem for transducers with a /4 layer,
for the excitation 1(f)

| QLB R e A A

The use of this layer mainly improves the amplitude. Calculations were
performed for different excitation types. A slight decrease in response duration
from 1.7 74-2.7 74, and amplitudes larger by a factor of 2.4-3.8, were observed.

The difference between the acoustic impedance of the transducer and that
of the biological medium is so large that in principle a whole cascade of Al4
layers gradually decreasing the acoustic impedance, should be used. The use
of two layers 1/4, whose impedance satisfy relations (25), gives the result shown
in Fig. 7:

By zol/zozB, 2y = ]/zBl/zozB. (25)

A fairly good matching occurs for the behaviour in the transducer in the
time interval { e {0, 7,). Matching to the wave reflected from the back wall
of the transducer, has also been assured. These two pulses dominate the beha-
viour of the received voltage, while in the two cases considered previously the
behaviour for ¢e (0, 7,) was very small compared to subsequent intervals,
sometimes even U < 10°/, U,,... It should be remembered that the multiple
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urvis

Fig. 7. Voltage received in the T-E sys-
tem for transducers matched to the bio-

logical medium by two i/4 layers -3=
urvia

3+

2k

1 s

0 1 & skl e, e o

FHE 4\5/5 t,

Fig. 8. The shape of voltage received for a trans-
e S ducer ideally loaded at the back, i.e. 2, = 24

urvi

Fig. 9. Matching of the back load by
a A/4 layer =i

reflections occurring at the faces of the layers affect the shape of the response.

A large broadening of the frequency band of the head is obtained by an
increase in the back load [9]. Fig. 8a shows the calculation results for a trans-
ducer which is loaded at the back by an impedance equal to its own. Although
the greatest shortening of the response duration was obtained, the sensitivity
of the head decreased at the same time. The next step, therefore, was an ana-
lysis of the operation of the head matched by a 4/4 layer to the backing load
(Fig. 9).
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2k Fig. 10. Voltage received hy a head
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=16 - logical medium and the backing load

The result of these considerations is a head which has two A/4 layers mat-
ching the transducer to both the biological medium and to the backing load.
Fig. 10 shows the voltage received by a head of this type. Table 3 shows the
results obtained. It follows from the calculations performed that the most
suitable working conditions are assured by a head matched with two A/4 layers
(Table III, p. 6).

Table 3. Parameters of the pulse received in
the T-R system for different acoustic loads

: dura-
Wa: acoustic load Upmax Sk Fig.
10° [kg/m?®-s] [Vl t [s]
1| 61]g 15 6.8 |13.87, | 4a
il4
2k 61| 15 231 | 1Llg, | 8
A4
8| 61]s || 1.5 2.2 81z, | 7
i/4
4 | 25.0 |¢ 1.5 26 | b7, 8
5 |-8.0] |g 1.5 24 | 107, 9
il A/4
6 | 80| [g | 1.5 14.8 6.87, |10
7 | 6.1 [[33.0N 15 5.2 637, |13

2y = 25-10° kg/m?s
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A wedged transducer

A completely different solution, with respect to the ones discussed previo-
usly, is the design of wedged transducer [2]; here also the improvement of the
working conditions is achieved acoustically. Such a transducer consists of a
conventional transducer which radiates an acoustic wave into the biological
medium though a wedge made of material whose impedance is close to the
acoustic impedance of the transducer (Fig. 11). The transfer function of
the T-R system has the form

Hy(s) = EyH(s), (26)

where E;; is the transmittance of the echo.

Fig. 11. A wedged transducer

P — transducer, K — matching wedge, B — biological medium (water), » — normal to the border wedge —

water interface, p — the incident wave, I, { — reflected transverse and longitudinal waves, w — wave penetrating

into the water (longitudinal), ¢, ¢; — velocities of longitudinal and transverse waves in the wedge, ef — density
of the wedge

For the T-R system working on longitudinal waves

4 opcy cosa;cosia,
o il cosa

u (27)

where a is the angle between the direction of the incident wave and the normal
to the plane of the edge, contiguous to the biological medium, ¢, is the angle
between the reflected transverse wave and the normal, and a; is the angle

PpCpCOS a;

28
06,C08 @ 25

e 2
N= (’) 8in2gq;sin2a; + cos?2q, +
G

Brass was chosen as the material for the wedge.
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Attenuation in brass is very small and can be neglected in this case. The
transmittance of the echo calculated for a transverse wave for the medias:
brass — water is given in Fig. 12. The lengths of one distances of the wedge
are selected so that in the receiving transducer, the transverse wave does not
fall on the plane of the transducer. For the wedged transducer designed, the
shape of the voltage received in the 7-R system of the ultrasonograph, for a
1(?) excitation was calculated, and the results are shown in Fig. 13. The duration
of the response was nearly halved, with only a slight decrease in the value of
the maximum voltage, compared to the conventional transducer (cf. Fig. 4a),

Srem——
00° 39° 76°11.2°14.4°17.3° 19.6°21.3° 22 4°
AN | l | ] ! I !

I f 1 f T r 1 l T
E 0.0° 5.3°10.6°15.5°20.1°24. 2°276°30.2° 31.8°

——»aq,
I 0.18
i
"'\\
i
0.14 <
S \
0.10 o
o g
™
~
0.06
002
o° 20° 40° 60° 80°  °  Fig. 12. Transmittance of the echo at
—q, the interface of brass —water

urvi l

6+

‘ -

2 3%

o /\ I[\ f\l L~ =
Fig. 13. The shape of voltage received |7 3 V7 % t/t,
in the 7-E system working with wedge
' transducers -2+
the parameters of the wedge; zp = 33-10¢ -
kg/m?®, the cone distances of the wedge: 55 mm

and 77.5 mm (a; — 40°) g
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A divided transducer

One of the methods for matching the transducer to the electrical system
at higher frequencies (the frequencies 8-12 MHz are used in ophtalmoscopy)
is a division of the transducer and a serial connection of its parts. Thus an
increase of the resistance of the transducer at resonance is achieved. The trans-
mitting or receiving transfer funetion has the form
N 2

k

' 2 zsC,
H - 1 8T e = — 8T, _2
R [(m,+1)e™ —(m  —1)e "% ]{[(1—{— SL(}K) k- i ]X

X +1) g 1) 60— 1) (my —D)e~0] = 2 (147 (29)

Siyg

-1
X k[(mA ‘f"mB-i—Z)es'ﬂ—(mA+mB_2)e—sro_4} :
kz

K = ’
;Cy

where k is the division ratio and z the electrical load.

This time, the calculations were performed for a transducer with para-
meters z, = 25-10° kg/m?2s, 2, = 6.1-10 kg/m?s, f, = 8 MHz, C, = 2930 pF;
working in the ultrasonograph system. Fig. 14a shows the shape of voltage
received in the case of an undivided transducer, while the successive results
(Fig. 14b-d) show the effect of dividing the transducer into 2,3, 4,5 parts.

An initial division of the transducer causes violent, advantageous changes
in the behaviour of voltage received (an increase in amplitude and a decrease
in duration). There is a certain optimum division ratio, &, which assures best
matching, beyond which further division of the transducer can cause distor-
tions of amplitude and phase to occur in the response (see Table 4). In a specific
system, the division cannot be arbitrary, but such as assures a matching of
resistance of the transducer and the electrical system at the resonanse frequency.

Table 4. Parameters of the pulse received in the T-R system
in the case of a divided transducer

| maximum
No. voltage duration Fig. | Remarks
received t[s]
Umax [V]
1 | transducer 2.03 21.7 7, 14a
undivided
2 2 9.84 15.4 7, 14b
3 3 9] o aeTe |48 |
4 4 | 23.4 | 1167, 14d | occurrence
5 51 23.5 | 9.7 7, 14e | of distor-
tions
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Fig. 14. Voltages received in the T-E system
working with divided transducers

a) undivided transducer; transducer divided into: b) 2
parts, ¢) 3 parts, d) 4 parts, e) 5 parts
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Conclusions

The method presented numerical calculation, using the FFT and circuit
theory, appears to be relevant for the analysis of ultrasonic heads for different
present combinations of parameters of the transducer and the T-R systems.
Using the method described, a certain number of different desing solutions
of heads were analyzed. From the results a number of conclusions can be formu-

lated.
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The multiple reflections occurring at both faces of the transducer have
a decisive effect on the responses generated by and received by the head.

The selection of a suitable shape of eleetrical excitation on the transmitting
side can improve the amplitude conditions of the whole T-R system. However,
a change in the output impedance of the transducer not only changes the values
of the maximum voltage received, but also its duration, in a broad range.

A matching of the transducer to the biological medium with just one
2/4 layer only slightly decreases the duration of the response, but at the same
time increases the maximum value of voltage received. The use of two /4
layers advantageously decreases the duration of the pulse. Such a solution
can be used particularly where we are interested in the early part of the response.
A decrease in response duration can be achieved by increasing the backing
matching directly, or by matching the transducer to it with a /4 layer. Fairly
good results are obtained for a head working with two i/4 layers on both sides
of the transducer. -

At higher frequencies, fairly good results can be obtained using a divided
transducer.

The use of a wedged transducer considerably improves the working condi-
tions, compared to a conventional transducer, decreasing the duration of signal
received, while preserving almost the same sensitivity of the head.

Acknowledgement. I wish to express my gratitude to Prof. Dr. L. Fiuip-
ozykskr for all his valuable remarks and instructions, in the course of the
present work.
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Appendix

In the numerical elaboration of the analytical method, the following rela-
tions [1, 3] were used.
The continuous Fourier transform was defined in the following manner:

H(f) = ofh(t)e‘f’ﬂf*dc,

h(t) = TH(f)eﬂ“ﬂdt,

h(t)= H(f).
The principles of discrete representation of the function and its transform

are formulated by the sampling function. In the time domain it has the form

1
2f.’
where fz(t) is a discrete function defining a continuous function #&(t), n is

the number of samples, d(t) is the Dirac function. However, in the frequency
domain it is defined by the formula

5 n S n
i =0 =R ~2(55) 2. oli=oz)

N=—0co

AH(f) = 0= h(t) = h(nT) Z d(t—nT)AT =

f>fg

n=-—00

and where H (f) is a discrete function defining a continuous function H (f).
Discrete Fourier transform is defined by the following relations.
If g(kT) is a sampled periodic function,
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g(kT) = gl(rN+k)T], r=0,%1, £2,...,
then discrete Fourier transformation is given by

N-1

i :
G(__) = Z g(T)e #™HN g =0, +1, +2,...
NT —

with G(n/NT) also being a periodic function:

n (rN +n)
G(W)ZG[T]’ 1":0,:}:1, :|:2,...

The inverse discrete Fourier transform has the form:
N-1 %
gk = N G(ﬁ) SN | =0, 41, 42, ...,

n=0

n
ET) =G| —).
9(kT) ( M,)
If the discrete function fz(t) approximates a continuous funetion A(?),
defined in the range ¢ e {0, L), then both continuous and discrete functions
agree, with an exactness of a constant and

i n
H (nf,) = LH (35)5

where H is the discrete Fourier transform, and H the discrete function approxi-
mating a continuous Fourier transform.
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ACOUSTIC PROPERTIES OF SELECTED LIQUIDS OVER THE ULTRA- AND HYPERSONIC
RANGES

MIKOLAJ LABOWSKI

Acoustics Department, UAM (60-769 Poznan, ul. Matejki 48/49)

The paper presents the results of the investigation of the ultra- and hyper-
sonic properties of some selected liquids. It also analyses the temperature
variation of the ratio I,/21 375 in the fine structure of the Rayleigh line of scattered
light. On the basis of the results of the experimental investigation it is shown
that the following relaxation processes occur in the liquids investigated: rota-
tional isomerism in n-hexane and iso-octane; structural relaxation in isobutyrie
acid and vibrational relaxation in n-heptane. It has been observed that no
acoustic dispersion occurs in nitroethane below a frequency of ~4 GHz.

1. Introduction

Numerous association processes and the formation of complexes by hydro-
gen bonds or other weak chemical interactions, the rotation of isomers, and
also the excitation and inactivation of intramolecular vibrations, occur in the
liquid phase with characteristic times of the order of 107 to 10~ s [1]. Such
fast reactions have recently been successfully investigated, using acoustic
spectroscopy methods which give information on the dispersion of velocity
and absorption of ultra- and hypersonic waves propagating in liquid media.
These are relaxation methods.

The condition for an acoustic method to be used in the investigation of
the relaxation process mechanisms in liquid media is that the acoustic waves
used in the investigations should have periods T close to the relaxation time, 7,
of the process investigated. Thus the investigation of the nature of different
relaxation processes having different relaxation times, should be performed
over a wide frequency range.

The information obtained on a given relaxation process becomes the fuller,
the broader the frequency spectrum of the ultrasonic waves used in the investi-
gations becomes.

3 — Archives of Acoustics 3/80
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Very often only one normal reaction can be observed to occur in a system,
and the speetrum of acoustic relaxation times is reduced to one value of [1]

a A 4B .
F T T en b
and ;
Aw,
= 2 (2)

where 4 is a parameter depending on the equilibrium characteristics.

The constants A and B are determined from the experimental shape of
the dispersion curve, expressing the dependence of the quantity a/f* on logf.

The following method is usually used for determination of the value of
the quantities 4, B, the relaxation time 7 and the relaxation force e. Using
the quantity a/f*, we check if for some frequencies in the dispersion range the
frequency dependence of the quantity a/f* is, within the errors of measurement
and calculation, described by expression (1). The values of A, B, and 7 are then |
determined. Using the values found for 4, B, 7 and &, the values of the relaxation
force e is calculated from formula (2).

The quantities A, B, 7, and e are characteristic of relaxation processes
occurring in liquids. These processes include for example: vibrational relaxation,
structural relaxation, and rotational isomerism.

By investigation of the temperature dependence of the quantities A4, e,
Ny/Ns, 1t is possible to identify the type of process involved [1], since these
quantities decrease as temperature increases in the case of rotational isomerism,
and increase in the case of vibrational relaxation. In the case of structural relaxa-
tion, the quantities A and e decrease, while 7,/n, is practically independent
of temperature.

The velocity and absorption coefficient of the acoustic waves were meas-
ured at three independent measuring positions at frequencies from 20 MHz
to 150 MHz, and 300 MHz to 1000 MHz, using suitable pulse methods involving
resonance and non-resonance excitation of piezoelectric transducers, and also
at hypersonic frequencies, from the displacement and half power width of the
Mandelshtam-Brillouin components in the fine structure of the Rayleigh lines
scattered light.

The propagation velocity and absorption coefficient of hypersonic waves,
and the I,/21,, ratio were determined at different temperatures from photo- |
electrical recordings of the fine structure of Rayleigh light scattering. The
liquids used in the investigation were additionally cleaned chemically and |
distilled. The degree of purity was controlled through measurements of refractive
index and density.

An exact description of the measuring apparatus and methodology is
given elsewhere [2, 18].

R e SRS
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The values of a,/f*, the coefficient of volume viscosity, and the coefficient
of adiabatic compressibility were calculated from the formulae:

g £ §_ ﬂzns l
P &
Apvd :
=5 s (4)
1
A= (5)

where 7, is the coefficient of shear viscosity, and ¢ is density. A maximum
absorption on the wavelength, u,.., at a frequency f = f,, was found from the
expression

Avfy '
Pmax = 9 - | (6)

The ratio of the total intensity of the central line to the total intensity of
the Mandelshtam-Brillouin lines was determined for all the media investigated
according to the formula (given in [3])

I, I; o, .
=5 ) (7)
2IMB total 2IMB max 6”MB v

where dv and v, are the half power widths of the central and lateral compo-
nents.

The results are presented below of the acoustic investigation of the following
selected pure liquids: isobutyric acid, n-heptane, n-hexane, iso-octane, nitroethane
in both ultrasonic and hypersonic ranges.

The selection of the different objects for the investigation was caused,
among other things, by the fact that they are components of the critical mixtures
[19]. In addition, an attempt was made to show that the thermodynamies
of irreversible processes, as developed by Mason [1], provides a sufficiently
universal method and which can be used for the explanation of the molecular
mechanisms of reactions occurring in different liquids.

2. Measurement results and their interpretation

2.1. Isobutyric acid. The acoustic properties of isobutyric acid were investi-
gated in both ultra- and hypersonic ranges. As an illustration, Fig. 1 shows
the original recordings of the fine structure of the Rayleigh line of light scattered
at an angle 6 = 90° in isobutyric acid at selected temperatures. The values
of Av, f, I,/21,,; are shown at the side of each recording, while the dependence
of I./21,,; on temperature is plotted in Fig. 2.
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Fig. 1. Variation behaviour in the original recordings of the fine structure of the Rayleigh
line of light scattered at an angle 0 = 90° for isobutyric acid at different temperatures

a) t = 75°C, dv = 0.094 em™?, f = 2.8GHz, I /2Iyp = 0.459;
b) ¢ = 45°C, 4v = 0.123 ecm™?, f = 3.69GHz, I,/2Iyp = 0.686;
e) { = 25°C, 4v = 0.102em, f = 3.07GHz, I./2Iyp = 0.982;
d) ¢ = 18°C, 4v = 0.122cm™?, f = 3.68GHz, I./2I yp = 1.220.

The results obtained for the absorption coefficient of the ultrasonic waves
of varying frequencies at temperatures of 10°, 20°, 30° and 40°C are shown graphi-
cally in Figs. 3 and 4.

It can be seen from Figs. 3 and 4 that acoustical relaxation occurs within
the investigated region of frequencies and temperatures. It can also be seen
from the character of the curves for the dependence of the quantity «/f* on
logf, that this is the second range of acoustic relaxation for isobutyric acid.

1721,
Lo
] S o A s Fig. 2. Dependence of I./2Iyp on tem-
0 10 20 30 40 50 60 70 fi°cs perature for isobutyric acid
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Fig. 3. Dependence of a/f? on logf for isobutyric acid at temperatures of 20°C and 30°C

(a/F2)10" |
[ ms?]

200 -

100

| 1
1

|
& log f [MHz]

Fig. 4. Dependence of a/f? on logf for isobutyric acid at temperatures of 10°C and 40°C
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The first range of acoustic relaxation occurs below the lower frequency used
by the author.

Analysis of the measurement results showed that the frequency dependence
of the quantity «/f? in isobutyric acid for the second relaxation range, within
experimental error, is described by relation (1). This permitted the values of the
following quantities: A, B, 7, 7y, 1,/7ss @ /f? Hmaxs & B, t0 be determined as
shown in Table 1.

Table 1
A-1015 B-1015 71010 v B-108
t[rec 102
A, [m-1-s2] | [m-1-s?] (5] e [m/s] [bar—1]
10 132 58 497 2.52 1193 73.6
20 112 55 4.0 2.6 1155 79.5
30 99 51 3.43 2.6 1117 85.5
40 87 48 2.84 2.62 1079 93.0
" 7 10 0
t[°C] &-10? cd 4 N/ Ns a
[eP] [cP] n1-a8] [g/em?]
10 1.62 1568 | 11 | 7 25.2 0.9592
20 1.66 1.318 8.35 6.5 23.8 0.9504
30 1.66 1.129 6.6 5.85 22.7 0.9414
40 1.67 0.98 5.2 5.3 . 21.9 0.9325

Other workers [4-6, 13] have investigated the mechanisms of quasi-chemical
processes occurring in simpler carboxylic acids. These papers showed that
the first range of acoustic relaxation in acetic, propionic, butyric and valeric
acids is caused by the reaction

ring dimer = two monomers
while the second range is connected with the reaction
open dimer = two monomers.

In isobutyric acid acoustic dispersion can be observed in the same ranges
of frequency as in the acids mentioned above. It can be assumed therefore
that the acoustic dispersion in isobutyric acid is caused by the same molecular
mechanisms.

2.2. n-heptane. The ultra- and hypersonic properties of liquid heptane
have been discussed by many workers [7-9]. Their investigations showed that
at frequencies between ~10°and 10° Hz, the values of a/f? in the range of the
measurement error do not depend, within experimental error, on the frequency,
and exceed the values of the quantity a,/f* by more than a factor of five.
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Fig. 5. Dependence of a/f? on logf for n-heptane at temperatures of 10°C and 40°C
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Fig. 6. Dependence of a/f? on logf for n-heptane at temperatures of 20°C and 30°C
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In accordance with references [7-9], the excess-Stokes absorption of acoustic
waves in heptane is caused by the presence of volume viscosity in the relaxation
process occurring at higher frequencies. As was proposed in reference [7],
the relaxation process in n-heptane is connected with the internal rotation of
the CH, group around the C —C bonds.

Other authors [8] have proposed that structural relaxation is present in
n-heptane. :

In order to obtain an unambiguous answer to the question of the mecha-
nism of acoustic relaxation in n-heptane, it is necessary to have data on the
propagation velocity and on the absorption coefficient over a wide frequency
range, - '

The present author has performed acoustic investigations in heptane
over a wide frequency range at temperatures of 10°, 20°, 30°, 40°C.

Figs. 5 and 6 show the experimental values of a/f* for different frequencies
and temperatures. The propagation velocity of the acoustic waves was deter-
mined at the frequencies: 28 MHz and ~3600 MHz.

It can be seen in Figs. 5 and 6 that for n-heptane over the frequency range
of ~20-3600 MHz, the absorption coefficient of acoustic waves maintains,
within experimental error, a square law dependence on the frequency.

The experimental values of a../f? Vo, @a/f2 %sy Moy MolMsy Gex /B, and also
the values of C,, C, and the total specific heat of vibration (7, are shown
in Table 2.

The values of C,,, are found from the data on the normal frequencies of
vibration of the molecules, using the Planck-Einstein formula [1]. It can be
seen in Table 2 that the values of the quantity a, /f* increase with increasing
temperature. This type of dependence of the absorption coefficient of acoustic
waves on temperature, suggests the existence of vibrational relaxation. Assuming
that in n-heptane the excess-Stokes absorption of the acoustic waves is caused
by the excitation and damping of intramolecular vibrations, a formula given
in paper [16] permits an evaluation of the characteristic vibrational relaxation
time in n-heptane to be ~107!s,

2.3. n-hexane. The ultrasonic properties of n-hexane were also discussed
in reference [9] where it was shown that the quantity a/f? is stable at a tempera-
ture of 20°C in the frequency range of 4-15 MHz, i.e. no acoustic dispersion
was found in m-hexane.

The present author has investigated the acoustic properties of n-hexane
over a wide frequency range at temperatures of 20°, 40°, 60°, —10°C. Fig. 7
shows the dependence of 1,/21,,5 on temperature for n-hexane,

Figs. 8 and 9 show the dependence of a/f? on logf for all the temperatures
investigated. Figs. 8 and 9 show that over the frequency range from ~20 to
3500 MHz, acoustic relaxation can be observed in n-hexane, with accompanying
weak dispersion of the wave propagation velocity: ~0.012. The value of
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/21,1
1.0+
m
Fig. 7. Dependence of I,/2Irp on temperature E 00 BT e O A O -
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Fig. 8. Dependence of a/f2 on logf for m-hexane at temperatures of 20°C and 40°C
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Fig. 9. Dependence of a/f? on logf for n-hexane at temperatures of 60°C and —10°C
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(A2 [0)ipeor ~0-0101, which agrees with the experimental value, within experi-
mental error. Thus the relaxation process observed can be described with one
value of 7.

The acoustic parameters are given in Table 3.

According to previous investigations [10], associated complexes do not
exist in n-hexane at the expense of hydrogen bonds.

In the liquid and gaseous states, n-hexane takes the form of a mixture
of rotational isomers. Answering the question as to which of the possible rota-
tional isomers are actually present in the medium investigated, involves consid-
erable experimental difficulties.

Calculations made using the Herzfeld formula given in reference [17]
showed that the vibrational relaxation in n-hexane has a time of ~0.6-107''g,
i.e. it is shorter by an order of magnitude than the experimentally found value
of 7 = 0.8-107' 5. Thus the relaxation process observed in wm-hexane in the
frequency range of ~107-3.5-10° Hz and in the temperature range investigated
is, in all probability, caused by rotational-isomeric changes in the molecules of
n-hexane.

Using the values of 7, the height of the energetic barrier between the rota-
tional configurations was evaluated as ~3.5 keal /mol.

2.4. Iso-octane. The acoustic properties of iso-octane were investigated
over the frequency range from ~20-3400 MHz by pulse and optical methods.
Fig. 10 shows the dependence of I,/21,,5 on temperature.

i

1.0F

-o___o___o_____o_.—-o-‘

L5 SR (S O — > Fig. 10. Dependence of I,/2I;5 on temperature
10 20 30 40 50 60 70 t[°CI for iso-octane

Data on the amplitude absorption coefficient of acoustic waves at different
frequencies and two temperatures are shown in Fig. 11 where the dependence
of a/f? on logf is presented graphically.

Fig. 11 shows that in iso-octane over the frequency range of ~20-1000 MHz,
a/f* is, within experimental error, independent of the frequency, being
~62-107"" em ™! 52 For a hypersonic frequency of ~3.4 GHz a/f* decreases to
48-107"" em ™! 82, which suggests that in the frequency range of ~20 MHz-3.4 GHz
a relaxation process with a relaxation time of ~0.4:107' s occurs in iso-octane.
Using the value of 7 = 0.4:107" 8, (4v/0)peor Was calculated. The result,
(49 [v)gpeor = 0.3%, agrees with the observed value (A4v/v), = 0.2%. This
agreement of theoretical and experimental values of Av/v suggets that
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the acoustic relaxation observed in iso-octane over the investigated frequency
range is characterized by one value of 7. All the parameters defined are shown
in Table 4.

According to earlier investigations [11], associated complexes with vibra-
tional relaxations occurring at frequencies higher than ~10' Hz do not occur
in liquid iso-octane.

It can be seen in Table 4 that the value of #,/7, is not the same at both
temperatures, since it is lower for the higher temperature. This permits the
assumption that in iso-octane, as in other paratfins [12], the acoustic digpersion
is connected with rotational-isomeric transformations of the iso-octane mole-
cules.

(a/F210" 4
[m.s2]
100}
40°C
50 31.7°C
1 1 | =
1 2 3 4 log f [MHz]

Fig. 11. Dependence of a/f* on logf for iso-octane

Then, using the experimentally found value of 7, the height of the energetic
barrier between the two configurations can be evaluated as ~3.3 keal /mol,
which agrees with the values obtained by Pmmrcy for other paraffins [12].

On the other hand, it is interesting to evaluate the vibrational relaxation
time.

The values of €, C,, €5, C5y are shown in Table 4. The vibrational reiaxa-
tion time 7, obtained for iso-octane was found to be ~0.6-107"s, i.e. shorter
by an order of magnitude than the experimental value of ~0.4-10710 g,

This eircumstance confirms the thesis that acoustic relaxation in iso-
octane is caused by rotational-isomeric transformations of the iso-octane
molecules.

2.5. Nitroethane. The ultra- and hypersonic investigations showed that ac-
oustic dispersion does not oceur in pure nitroethane below a frequency of ~4 GHz.
Fig. 12 shows graphically the dependence of a/f* on logf over the whole range
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of frequencies investigated, at a temperature ¢ = 31.7°C. It can be seen that
within experimental error, the absorption coefficient of the acoustic waves
is proportional to the square of the frequency, and the values of a/f? are rela-
tively low. Fig. 13 shows the dependence of I,/21, on temperature.

The values of A, B, 7, Ny /7> & By Amaxr P03 Uny Fex/f® alf?y Avy Wyp,
1./21,5, have been determined for all the liquids investigated.

ta/f?)10")
[m.s2]

50

C,HsNO,

: 31.7°C

1 1 | a
1 g 3 4 log f IMHz]

Fig. 12. Dependence of a/f? on logf for nitroethane at a temperature of 31.7°C

It was shown on the basis of the experimental results that the following
relaxation processes occur in the liquids investigated: rotational isomerism
relaxation in n-hexane and iso-octane, structural relaxation in isobutyric acid,
and vibrational relaxation in heptane.

It was found that acoustic dispersion does not occur in nitroethane below
a frequency of ~4GHz. _ _

Recordings of the Mandelshtam-Brillouin speetra and measurements of
the absorption coefficient and propagation velocity of ultrasonic waves were
made in Prof. M. I. SHAKHPARONOV’s Solutions Laboratory, at the M. W. Lo-
monosov University in Moscow, in Dr. O. I. ZINOVYIEV’s section, to whom the
author wishes to express his gratitude.

The author wishes to thank Prof. Dr. hab. A. SLIwIfsk1 from Gdansk
University for numerous valuable digcussions of the results obtained.
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Fig. 13. Dependence of I./2I,/p on temperature for nitroethane
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MUTUAL ACOUSTIC IMPEDANCE OF CIRCULAR MEMBRANES AND PLATES WITH
BESSEL AXIALLY-SYMMETRIC VIBRATION VELOCITY DISTRIBUTIONS

WITOLD RDZANEK

Theoretical Physics Department, Higher Pedagogical School
(65-069 Zielona Goéra, Plac Slowianski 6)

In this paper the mutual impedance of circular membranes and circular
plates clamped at the circumference is analyzed. It was assumed that a Bessel
axially-symmetric vibration velocity distribution was predetermined on the
surface of the sources, and that the sources were placed in a rigid planar baffle.
The impedance was calculated by a method based on a Fourier representation
of the acoustic pressure. In view of the axially-symmetric vibration velocity
distribution, the acoustic pressure and the subsequent formulae for the mutual
impedance are given in the Hankel representation. As a result, the mutual
impedance can be expressed in the form of a single integral. Practically useful
formulae are derived for specific cases. The results of the calculation are also
shown graphically.

1. Introduction

Most of the planar acoustic sources that have a practical usefulness, are
characterized by a nonuniform vibration velocity distribution. The Bessel
vibration velocity distributions have a particular significance, since they are
suitable for an exact description of the problem of the vibration of a membrane
or of a circular plate clamped at the circumference.

The literature on the acoustic impedance of source with nonuniform vibra-
tion velocity distributions contains only a few items.

The problem of the mutual impedance of two elastic circular pistons vibrat-
ing in the flexural mode was investigated in 1964 by PorTer [5] and CHAN [1]
in 1967. They assumed that the vibration velocity distribution was axially-
symmetric and could be expressed by a power series in the radial variable.

The problem of the mutual impedance of two circular sources with non-
uniform axially-symmetric vibration velocity distributions, namely: gaussian,

4 — Archives of Acoustics 3/80
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parabolic and Bessel distributions, was investigated by the author in papers
[6-10] in the 1970’s.

The problems presented in the present paper are connected with the mutual
impedance of circular membranes and circular plates clamped at the circum-
ference. It has been assumed in the calculation of the impedance that there is
a Bessel axially-symmetric vibration velocity distribution on the surface of
the sources, and that they are situated in ideal rigid:planar baiffles. The results
of the calculations are presented graphically.

Notation

The numbers in parentheses denote the formulae giving definition or application of
the symbol. '

@ — radius of the circle,

¢ — the wave velocity,

f — the vibration velocity distribution function,

H{' — a cylindrical Hankel function of the second kind of the pth order,
k"  — a spherical Hankel function of the second kind of the pth order (27),
i - V-1, -

Jn  — a cylindrical Bessel function of the nth order,

jm  — a spherical Bessel function of the mth order (24),

k — the wave number,

L, — the distance between the centres of sources 1 and 2,

N,, — a cylindrical Neumann funection of the mth order,

My, — & spherical Neumann function of the mth order (26),

Pz — the acoustic pressure generated by source 1 acting on source 2 (10),
Vi — the distance between two points on the two sources,

¥ — the radial variable in a polar coordinate system,

t — time,

U — a characteristic funetion of the source (15),

v — the vibration velocity of points of the source,

Y — the vibration velocity of the central point on the surface of the source,

W — a characteristic function of the source for an axially-symmetric vibration velocity
distribution (17),

Z;; — the mechanical self-impedance of one source,

Zj, — the mechanical mutual impedance of two sources (9),
6, — the normalised mutual resistance (11),

%12 — the normalised mutual reactance (11),

L3 — the normalised mutual impedance (11),

o — the denrity of the medium,

a — the area of the source,

w — the angular frequency.

2. Assumptions of the analysis

It is assumed that in an infinite ideal liquid medium of density o there
is an ideal rigid baffle at the plane z = 0, with a system N of sound sources.
The sources are assumed to be harmonically vibrating circular transducers,
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each of thickness # and radius @ (Fig. 1). The distance between the centra
points of sources 1 and 2 is

Ly = V(Xg—2,)2 4 (Y2 —4,)2 .

We can consider a transducer to be a vibrating circular plate of specified
thickness, rigidly clamped by its edge to the housing. For this reason we shall
take as the basis for assuming a suitable vibration velocity distribution on the
surface of the source, an exact mathematical solution of the problem of the
free vibration of a circular plate rigidly clamped at its edge.

Yy

o P(r,B)

Fig. 1. The coordinate system assumed for the determination of the mutual impedance of
circular sources vibrating in a rigid planar baffle

It is known from vibration theory [3] that the transverse axially-symmetric
free vibration of a uniform circular plate of a thickness small compared to its
radius [2], for vibrations that are harmonic in time, can be described by the
equation

E(res 1) = Ly(re)e™ = [Ao o (kre) +BoI o (kry)]6*, (1)
where &(ry, t) is the displacement of points of the plate in the transverse direc-
tion, w is the angular frequency, ¢ is the time, i =V —1, k* = oV M /B, M is
the mass of the plate per unit area, B is the flexural rigidity of the plate and A,
and B, are constants. The special function which oeccurs here, I,(kr,) is a modi-
fied Bessel function of the first kind of the zeroth order, which can be described
as a Bessel function J, of imaginary argument [11], i.e. I,,(w) = i~™ o (10).

The boundary conditions for r, = a are the following:

1) the plate has zero displacements at the places of rigid clamping:

Lo(O0)lrpma = 0 (2)

2) and the plate cannot rotate:

—dy—oio(%) S5 =0. (3)
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For behaviour which is harmonic in time, the vibration velocity distri-
bution v(ry, t) = v(r,)¢', with consideration of relations (2) and (3), satisfies
the boundary conditions

v(7,) =0, “‘d_”('ro) =0,

rp=a d'rl) rp=0a

which lead to the so-called frequency equation:

Jo(ka)l,(ka)+J,(ka)Io(ka) = 0. (4)
The solution of the frequenecy equation is an infinite series in the quantity %:
k=kFk, for n =1,2,3,..., and one number y, = k,a corresponds to each
value of k,. The frequency of free vibration of the circular plate is
1 5
A e i

with yq, ¥2, 73 = 3.195...,6.306 ...,9.439 ..., being found for » =1,2, 3;
and, if » is sufficiently large, y, ~ nm.

In the case considered here, the Bessel vibration velocity distribution
for any point of the plate, thus for the points on the surface of the plate, has
the following form (Fig. 2):

"o Jo(¥n) ( Ty
PR J —]— 1 —I1- 6
0, (70) ?)On[ O(Yﬂ a) Io(y,) o\ Va = (6)
If, however, the vibration source is a circular membrane tensioned with
equal force over the whole circumference, then the axially-symmetric free
vibration velocity distribution is expressed by the formula (Fig. 2)

tu(r) = oo ) @

where g, is nth root of the equation
Jo(B,) = 0. (8)

In this equation 8,, f,, §; = 2.4048...,5.5201...,8.6537 ..., and, generally,
if n is sufficiently large [11], then 8, ~ nrm—n/4 ~ nw.

The calculation of the mechanical mutual impedance Z,, of two planar
sound source is carried out on the basis of the definition [5, 9]

1
Zyy = P> fpla(wm Yo) ¥ (o, Yo) oy, (9)
V91Y2 o
where
ikoe g
Praoo, o) = o [ 0(w,y)—do (10)

b |
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is the acoustic pressure generated by source 1 and acting on source 2, v, is the
vibration velocity distribution on the surface of source 1, v,, is the amplitude
of the vibration velocity of the centre point of source 1, v* is a quantity coupled

in a complex manner with », B = I/(..'r;—ac(,)z—i-(y'—y.,)2 is the distance from
the surface element do on source 1 to the point (z,, ¥,) on source 2.

Vo /Vy,

10 \.._1\5
W\ \
08 \ \
\
06

W\
[\
04 \

\
L\
02 -y
\FR e
‘\
0 \ \
\
-02 \\
Fig. 2. The plots of the function of the Bessel \
axial-symmetric vibration velocity distribution \
for the first three modes: n — 1, 2 and 3. The ~04
curves of distributions for a circular plate are n=3
plotted with a continuous line, the curves for _ 06 r. /a
a circular membrane with a discontinuous line 02 04 0.6 08 1.0

In numerical calenlations it is convenient to use the concept of the norma-
lised impedance
Zlﬂ
limZ,,

k—o

=l = 612+1:Z1z, (11)

where 0,,, x,, are, respectively, the normalised mutual resistance and normalised
mutual reactance between sources 1 and 2. For k — co we have p,, (@, y) =
= gevy(#, y), and then-formula (9) — we obtain

lim Zy, = o0 [ fi(@, y)do, (12)

k—>oc0 o

where v, (@, ¥) /vy, = fi(®, y) is a function of the vibration velocity distribution
on the surface of source 1.
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3. Integral formulae for mutual impedance

In order to facilitate the calculation of the surface integrals (9) and (10),
the term ¢~ *E/R can be represented by a double integral [9],

e—ikR i ? /24400 2w
f exp{ —iksind [(z —ay) c08 @+ (y — o) sing T} sinddddy

0 0

R 2n

(13)

with integration in the plane of the complex variable # = 6+ iy being perfor-
med along the real axis in the section (0, =/2) and on the ray (0, oo) parallel
to the imaginary axis.

The formula for the mutual impedance takes the form

m/2+t00 27
ock? )
2= f f U,(9, 9) U3 (9, p)sinddody, (14)
where f. 4
U®,¢) = [fo,y)exp{—iksind(zcosp-+ysing)}do (15)

is the so-called characteristic function of the sound source.

In the case of circular source (each of radius a) with axially-symmetric
vibration velocity distributions, we introduce local polar coordinate systems
(Fig. 1): o —a, = rcosf, y —y, = rsinf, @, —x, = ,C08f,, Yo—Ya = 78D f,.
After integration over the angular variables between the limitg (0, 2w), we
obtain an expression for the mutual mechanical impedance in the Hankel
representation [9],

m/24+dic0

Z1 — 2mook? f W (kasing) W* (kasind)J, (kl,,sind)sinddd,  (16)

where
a

W (kasind) = [ f(ro)do(krosind)rdr,. (17)
0
In the sound source are circular plates, on whose surfaces Bessel type (6)
vibration velocity distributions occur, then the normalized mutual impedance
[9] is equal to

/24100

& . (2 ka )2 f sinde  (kl,581n3)
== ¥ 4 2
i g [1 .- (ﬁ) sin‘ﬁ]
Yn

k 2
% [ J1(7n) Jo(kasind) — — sindJ, (ka sim‘})] d¢  (18)
Jo(72) oo - :
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and the normalising factor has the form

lim Z}, = 2raped i (y,). (19)

k—oo

However, when the sound source are circular membranes, we obtain [9]

” ( ka )2 FEL I (kasind)
TR s : La \2
& [1—(—“) sin%ﬂ‘]
B

lim ZY — na2ged?(8,). ' (21)

k—o0

5 o (klyu8ind) sinddd (20)

with

The expressions given here for the mutual impedance in the form of single
integrals, without using additional simplifying assumptions, can be numerically
evaluated only with the use of computers.

Considerable simplification can be achieved if ka =y, for a vibrating
plate, or ka = §, if membrane vibrations are considered.

Formula (20), which is an expression for the mutual impedance of sound
sources, is exact only when the sources are circular membranes. Thin circular
plates exhibit vibration of the same character (Fig. 2) with the exception
of slight deviations close to the edges where they are rigidly fixed to the housing.
Thus expression (20) can also be used as an approximate formula for the calcu-
lation of the mutual impedance in the case of thin circular plates.

For ka = f,,, the real component of the mutual impedance from formula (20)
takes [9] the form

(=]

i = D) weinln ), (22)

12

where
: 8
0o(Ba) = ?ﬁicfi(ﬁn),
. ; e ;
o’l(ﬁ“) 7 (%_) Jl(ﬁn)Jz(ﬁﬂ) . —gﬂzaJ?(ﬁn)s
F( _|__1_) ' (23)
a,(B,) —ﬁl ¢ 2 5‘ g g 11(Bn) I p—qi1(Bn)
PR T2 e & (@)Y p—g+1)! ]
and [11]

) E_]/ o Ty (). (24)
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The imaginary component of the mutual impedance is equal [9] to

0 p I :
A= = D) wwam (s 2), (25)
p=0
where [11]
Mo () = ]/%Nmﬂ(u) (26)

is a spherical Neumann function of the mth order. Using the definition for
a spherical Hankel function [4] of the second kind

B () = i () =iy, (1), (27)

the normalised mutual impedance of two circular membranes, for ka = §,,
can be written in the following way:

o0 ) ; l
i = Z(l‘i) ap(ﬁn)h;’(ﬁ@}})- (28)

n=0

In order to simplify numerical calculations using formulae (22), (25) or
(28), the values of the coefficients ¢,(f,) are grouped in Table 1.

Table 1. The expansion coefficients o, (8,) calculated according to formula (23)

n Ty ! 1 T3 } O3 ‘ Oy 1 ]

1| 0.77932 0.32410 0.17557 0.09282 0.03327 ' 0.02073
2| 1.76398 0.31955 |—0.28180 |—0.46808 |—0.01840 | 0.39125
“3| 2.75907 0.31883 | —0.58845 |—0.54459 0.34325 1.09679
4| 3.75670 0.31859 |—0.86487 | —0.56872 0.65486 | 1.35270
5| 4.75530 0.31849 |—1.13017 |—0.57930 0.03842 ’ 1.47003

5. Impedance in specific cases

In the cases where ka < f, or ka < y,, the analysis of the acoustic mutual
interaction is considerably simpler since approximate formulae can then be
used. _

For (kaly,)* <1 we assume the following simplifications in formula (18):

ka \* “ f -2
I Il S S R
Y Yn

The normalised mutual impedance of two vibrating circular plates can
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then be reduced [9] to the form

[ a\? 2
- S

Pp=0 12
() % x (2) 2 Y (2)
+ |10 — {4 )W)+ () (245 )2+ 5 ) M0 |}, @0)
12 12

where

ka\* T'(p+13) F2(r)) N Jglka)d,_,(ka)
b, =[2— p , 30
v ( yn) e T S gty s
ka\ D(p+3) Ji(ra) \1 s (ka)J,q(Ka)
= —{2— ’ 30b
o=l )7 Tor) &0 4l (p—a)! e
I'ip+3) q+1(ka’) p— q+1(ka)
d = 4 : 30¢)
(;un) i Z p—g)! e

q=0

1f kay, < 1, then in formula (30) we need consider only the term containing
the coefficient b,,, neglecting the terms which contain the coefficients ¢, and d,,.

Then
Do? a
s Z ( lm) b (ilys). (31)

The calculations of the mutual impedance are less complicated if the sound
sources are vibrating circular membranes. In this case for (ka/f,)* €1 we

obtain
T.‘ »
1= () v, (32)
p=0
where
A Bn J1ly n)]
b, = ab a, =2 (33)
% - I:Yn Jo(Vn)

For the first successive Bessel modes (n = 1 2 and 3) the coefficients a,
are equal to: a, = 0.7724 ..., @, = 1.2969 ..., ag = 1.4997 ..., while lima, = 2.

From relations (31)-(33) we obtain e
{)2 o ancig (34)

for ka < y, and (ka)* < B2. This means that for the first Bessel mode the mutual
impedance of the plates is smaller than the mutual impedance of the membranes.
However, for the second and higher modes the mutual impedance of the plates
is smaller than that of the membranes.

If we assume that ka < 1, then in formulae (31) and (32) we consider
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. only the element of the zeroth order (p = 0), neglecting the remainihg elements
as small quantities of higher orders‘ We then obtain

sm(klm) _cos (klys)
D zap
a, [ o+ ] (35)
sin(kly,) . cos(k 2)] g
_BM 12 1
G [ e T, (39
where the quantities _
o k 2 2 k
6, g(zi) M, oM 2( “) (37)
yn Ju(?n) ﬁn

are the expressions for normalised self-resistances, provided ka <1.

6. The analysis of the results

In the numerical examples, the mutual impedance of the two kinds of
source was considered:

a) circular membranes,

b) circular plates rigidly clamped at the circumference.

The impedance was calculated for Bessel axially-symmetric vibration
velocity distributions shown, using formulae (7) in the case of the membranes,
and formula (6) for plates. s

If ka > 1, the approximate formulae (35)-(36) can be used. In practice,
this approximation is valid if ka < 0.2. .

The calculation of the mutual 1mpedance on the basis of formula (30)

r (32) involves a relative error of less than 59, it ka < 1/3y,, 1/30,.

In the case of the frequencies of resonance, i.e. for ka = f,, formula (28)
is convenient for the calculation of the mutual impedance of the membranes.

If ka » y,, B,, the real component of the normalized mutual impedance
is close to unity; the imaginary component, however, is close to zero.

In the other cases, when the approximations cannot be used, or when
great exactness of results is required, the calculation can be performed using
computers on the basis of the integral formulae (18) and (20).

The practical formulae for numerical calculations of the self-impedance
of one membrane or one plate, can be obtained from the integral formulae (18)
and (20). This problem was analyzed in reference [9].

On the basis of the results obtained from the investigation of the problem
of the mutual impedance of the Bessel axially-symmetric modes of vibrating
circular plates, clamped at the circumference, or vibrating circular membranes,
the following conclusions can be formulated:

1. The mutual impedance of two sound sources depends predominantly
on the distance l,, between the central points of the sources.
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The real and imaginary components of the mutual impedance oscillate
around a value of zero, i.e. take extreme values that are alternately positive
and negative, where the oscillations decay as the distance between the sources
increases (Fig. 3). The curves of the mutual resistance are shifted relative to
the reactance curves (Figs. 3-5). When the linear dimensions of the sources
are smaller than the acoustic wavelength, then the mutual impedance depends
on the distance I, through the function e ~#kls kT, 7~ where k = 2x/A. This
regularity is valid in the case of the mutual reactance with an additional assump-
tion that 1, > 0.

612‘ '1-1'2

02

01
Fig. 3. The normalised mutual impe- 0 / /r><\ .
dance of two vibrating circular mem- / / \i)é// \__

branes for the first axial-symmetric
Bessel mode (m = 0, n = 1), depend-  *0.1
ing on the parameter ki, for
ka = 2.2
ki
6 8 0 <12 oW 1B "

Curve 1 — resistance, curve 2 — reactance

2. The mutual impedance for a given distance between sources and given
sizes of sources, is an oscillating function of frequency, oscillating about a value
of zero.

The extreme values of the mutual impedance of vibrating circular plates
or vibrating circular membranes, occur for values of ka close, respectively,
to y, or f, (Figs. 4 and 5).

In the case of higher Bessel functions, i.e. when = is sufficiently large, the
approximation f, ~y, ~n=n gives us the simple relation wi ~2a in placé
of (2x/2) ~ af, and (2n/A)a ~y,. It also seems characteristic that the acoustic
interaction decays rapidly for wavelengths only slightly different from the
value 2a/n. For example, for the fifth axially-symmetric Bessel mode (n = 5,
A~ 2a/[5), the largest acoustic interaction occurs for a narrow range of wavelen-
gths which are only slightly different from-the value 4 = 2a/5. Outside this
narrow radiation band, the acoustic interaction decays violently.

3. The form of the vibration velocity distribution on the surface of the
sources affects the size and behaviour of the variation in the mutual impedance.

For given source size and separation the acoustic interaction becomes
greater, as the active surfaces of the sources become greater.

The highest values of the mutual impedance occur for the first mode
(Fig. 4), for successively higher Bessel modes (cf. Figs. 4 and 5) the extreme
values become lower and are shifted towards shorter wavelength. This property
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can be clearly seen for the second and higher Bessel modes, for which the ele-
ments of the surface of the source (circular rings) vibrate with opposite phases.
This is conditioned by the size of the active area of the sources, which becomes
smaller with higher order Bessel modes.

4. Increasing the sizes of sources can be used to obtain an increase in the
extreme values of the mutual resistance and reactance.

The limited range of variation in this quantity should be considered in
the investigation of the dependence of the mutual impedance on the linear
dimensions of the sources. For example, for circular sources (each of the radius a),
with the centre points of the sources separated by [,,, the condition 0 < 2a < I,,
oceurs.

For a given distance between the sound sources and given wave number
k = 2n[A, provided the linear dimensions of the sources are smaller than the
wavelength 1, the mutual impedance depends only on quantities used for
characterizing each source individually. If, in addition, the shapes of and the
vibration velocity distributions on the two source are the same, the mutual
impedance depends on the self — resistance of one source (cf. formulae (35)
and (36)).

I wish to express my gratitude to Prof. Stefan CzARNECKI for assistance
in the scientific research and the suggestion of the problem investigated here.
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SUPERCONDUCTING TUNNEL JUNCTIONS

MIKOLAJ ALEKSIEJUK, MIECZYSLAW M. DOBRZANSKI

Institute of Fundamental Technological Research of the Polish Academy of Sciences
(00-049 Warszawa, ul. Swigtokrzyska 21)
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The investigations of superconducting tunnel junetions as phonon gener-
ators and detectors are reported. Theoretical predictions and the published
results of the experimental research on such devices are briefly reviewed. The
experimental results of the investigations of the current-voltage characteris-
tics of fabricated tin tunnel junctions are presented and discussed, and then
the measured current-signal transmission characteristics of pairs of identical
tunnel junctions deposited on the corundum sample are analyzed and inter-
preted. The results obtained are compared with the results o similar investi-
gations reported in the literature.

1. Introduction

The process of the generation and detection of phonons in superconducting
devices is based on the production of nonequilibrium (quasi-equilibrium) states
in thin superconducting layers. In general, the nonequilibrium states of the
superconducting layer can be produced by the injection of electrons, phonons
or photons. :

In the case of a detector, the nonequilibrium state is produced by a flux
of incident phonons, while in the case of a generator the external source of
energy produces an excess population of quasiparticles. Of the various methods
for producing nonequilibrium population of quasiparticles in superconducting
layers, superconducting tunnel junctions [1, 2], the a.c. Josephson effect [3],
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and the “phonon fluorescence” effect [4, 5], (i.e. the effect of thermal pulses)
have been used to generate phonons, while the possibility of using laser light was
noted in [6].

Since a conversion of the energy of the external source into the energy
of the phonons oceurs in a superconducting generator, it is possible to obtain
the similar intensity of the flux of phonons generated for each of the methods,
because it is limited by the possibility of destruction of the superconducting
state. The superconducting devices used for phonon detection are super-
conducting tunnel junctions [2] and bolometers [1]. The general model and
the related quantitative description of the performance of detectors and gene-
rators with superconducting elements must therefore be based on the equations
of dynamic equilibrium of the kinetic processes occurring in a nonequilibrium
superconductor. It is assumed that the time scale of the action of the external
source, which produces the nonequilibrium is several orders of magnitude
greater than the time scale of the kinetic processes in the superconductor itself —
and thus it can be assumed that we are concerned here only with the steady
states of the nonequilibrium superconductor. The general equations of dynamie
equilibrinm balance of the superconductor were derived in [7] and developed
in [8]. These equations are valid for macroscopic densities of phonons
and quasiparticles and they do not determine the energy distributions of these
excitations.

In order, however, to determine the spectrum and possibly also the inten-
sity of the flux of phonons generated, or the variation of the detector current
caused by a given incident flux of phonons, it is necessary to know the distri-
butions of the quasiparticles and phonons and the characteristic times of the
kinetic processes in the layer of the nonequilibrium superconductor under
investigation. These quantities can be calculated from solutions of the coupled
balance and kinetic equations and from the gap equation of a nonequilibrinm
superconductor. Such equations were derived in [9], with the assumption that
the processes of scattering and recombination of quasiparticles and phonon
trapping are equally significant in the nonequilibrium superconductor [10].

In previous models of a nonequilibrium superconductor [11,12] it was
assumed that scattering is the main mechanism of the relaxation processes.
In [9], however, only a linearized form of these equations was derived, with
the assumption of relatively low energy of the injected excitations i.e. weak
nonequilibrium and, thus ignoring electron —electron interactions, which
are essential for quasiparticles of large energies, and also assuming that the
superconducting layer is “thin” i.e. phonon escope time is independent of pho-
non energy. Thus the applicability of [9] for actual generators and detectors
of phonons depends on the satisfaction of these assumptions.

The problem of a nonequilibrium supereconductor has not yet been solved
for the general case, and it is not therefore possible to present a general model
for a superconducting generator and detector of phonons.
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Application of superconducting tunnel junctions for the generation and
detection of incoherent phonons was developed in early 1970°s [5, 12, 14-20].
In this paper we present the results of the experimental investigations related
to the technique of manufacturing superconducting tunnel junctions and the
results of the observations of the current-signal characteristics of two identical
junctions on a sample of Al,O, (corundum) operated with low modulation
of the generator current [5]. These results are compared with the published
experimental investigations and with the theoretical predictions.

2. The superconducting tunnel junction as a generator and detector of phonons

The papers concerning the application of superconducting tunnel junctions
for the generation and detection of phonons, in addition to the results of experi-
mental investigations, have also presented same attempts to build a theore-
tical model of such devices in- order to calculate the spectrum of the emitted
phonons and the transmission characteristics. The calculations of the spectrum
of the emitted phonons [13, 14], and of the transmission characteristics of tunnel
generator —tunnel detector system [16] were performed on the basis of a model
of a equilibrium superconductor at zero temperature [21]. This required the
assumotion of a negligibly low density of injected excitations compared to the
equilibrium density, and also that the phonons produced in the relaxation
and recombination of the excess quasiparticles are not trapped.

In [19] and subsequently in [5], a quantitative description of the generator
detector system was based on the balance equations [7] and on a simplified
model of the generator and detector, assuming three possible energy levels
for the quasiparticles and the same functions for the density of the quasiparticles
and phonons as for an equilibrium superconductor, which in consequence gave
an “artificial” root singularity in the “theoretical curves”.

In the case of moderate quasiparticle injection generator current and
relatively low temperatures good agreement of the calculated and experimental
results was achieved for Al—I—Al [15] and Pb—I—Pb [19] junctions,
while in the case of Sn —I—8n junctions the discreponcy was significant [5].

A description of a nonequilibrium superconductor was attempted in [18],
using discrete levels for the states of the quasiparticles and phonons, and on
the basis of detailed balances of the velocities of escape and scattering of pho-
nons and of pair breaking by phonons the energy spectrum, i.e. the width
of the recombination peak of the phonons emitted by a tunnel generator operated
in the low intensity range V < 44/e (where 24 is the width of energy gap,
and e is the charge of the electron) was found by numerical calculation.

The calculated results were compared with the experimental results for
a Sn —I—8n junction and gave good agreement.

The phenomenon of resonance absorption of phonons by the donor levels
of Sb in a uniaxially stressed smaple of Ge: Sb was used in [5, 16] for an experi-

5 — Archives of Acoustics 3/80
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mental determination of the spectrum of the phonons emitted by the supercon-
ducting tunnel junctions.

The problem of an appropriate and full theoretical model for superconduct-
ing generator and detector of phonons has not yet been solved to the authors
knowledge and thus the first stage of the investigations undertaken was limited
to an experimental investigation. It seems, however, that the approach proposed
in [9, 22] may prove fruitful in theoretical analyses.

3. The experimental investigation of a system of tunnel junctions

The superconducting tunnel junctions used for the generation and detection
of phonons are usually made of tin (Sn) [2, 5, 13, 18], lead (Pb) [16] or aluminium
(Al) [15]. The use of aluminium, requires a working temperature below 1K,
because of its relatively low critical temperature and this causes some technical
difficulties. Junctions made of tin and lead can work effectively at slightly
higher temperatures, with the former giving a better signal to noise ratio in
the measurements, because of the lower recombination velocity, compared
to that of lead. Tin tunnel junctions were therefore used in the present investi-
gations. The junctions had the form of two thin layers, 2000 A thick, between
which there was a dielectric barrier of tin oxides (Sn,0,) approximately 20 A
thick. The surface area of the junction was 1 mm?2 The sample was a single
corundum crystal (Al,0,) of dimensions 7 x7 x4 mm?® Thin layers of Sn were
deposited successively in a vaccuum apparatus, and the oxide barrier was
obtained by oxidining the first (bottom) layer of Sn in the atmosphere, with
the barrier thickness being controlled by varying the time of oxidation.
In the normal state, the resistances of the junctions prepared did not exceed
0.3 Q. The junctions were placed on the largest opposite sides of the sample
perpendicular to the ¢-axis of the single erystal. The sample with the junctions
is shown in Fig. 1. The sample with the junctions was clamped, providing
electrical connections, and the whole was placed in a metal eontainer immersed
in liquid helium. A typical cryostat equipped with a booster pump was used,
in which temperatures from 4.2 K to 1.8 K were obtained by helium evapo-
ration.

Sn

Al,0,

Sn

T
SN
»
p

Fig. 1. AnAlLO, single ecrystal sample with
Sn—(8n,0,) —Sn junctions
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Investigation of the tunmel junctions

The investigations of the current-voltage characteristics of the manu-
factured junctions were performed by the four point method using an X-Y
recorder. The aim of these measurements was to examine the correctness of the
junction fabrication and to find the point on the characteristic at which the
junction would be operated as phonon detector, i.e. the voltage V < 24]/e
in the vicinity of which the I(V) characteristic is approximately most linear.

An example of the I(V) characteristic of a junction operated at a tempera-
ture of 1.8 K used for both phonon detection and generation is shown in Fig. 2.

I
fmAl
80
60
40
20
Fig. 2. The current-voltage characteristic
of the 8n —(Sn,0,) —Sn junction at a tempe- T i Pl
rature 7 = 1.8 K 0 7 2 3 Vimvi

From the current-voltage characteristic of a junction the width of the
energy gap can be evaluated and for the characteristic shown in Fig. 2, 24 =
= 1.2 meV. Since all the Josephson effects occurring in a superconducting
tunnel junction can be suppressed by the application of a low magnetic field
parallel to the superconducting layers, thus reducing the “zero current” of the
detecting junction, the influence of a low magnetic field on the current-voltage
characteristic of fabricated junctions was determined. The results of these
investigations are shown in Fig. 3. It can be seen in the figure that for H =
= 40 A/m the “zero current” decreases more than three times. As a result

I
[ mA}r
50
!
it Fig. 3. The current-voltage character-
f istics of the Sn—SnO —8n junction
for weak magnetic fields
‘ 1-H=0,2-H=20 A/m, 3 - H= 40
1 1 A/m. The magnetic field H was paralell to

0 05 10 VIimVi the plane of the junetion; T = 1.8 K



256 M. ALEKSIEJUK, M. M. DOBRZANSKI, W. LARECKI

e
[mAl /
50
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25
Tig. 4. The current-voltage characteristics
J— of the junction for strong magnetic fields
z | s = S :
B 0.5 r Vioyy 1 H=0,2—H=13000AMm, 3~ H = 3000 A/m;

=18K

of the dependence of the width of the superconduction energy gap on the magni-
tude of the parallel magnetic field, it is possible to tune the energy threshold
of the tunnel phonon detector by applying the magnetic field. In an analogous
manner, the spectrum of the phonons emitted by the tunnel generator can be
affected. These possibilities were sugested in [14], although it was noted that
the blurred energy gap, caused by the magnetic field occurs. Thus, the influence
of a relatively strong magnetic field on the current-voltage characteristic of
the junction was investigated. This is illustrated in Fig. 4. A magnetic field
of 3000 A /m induced a decrease in the energy gap of approximately 30 percent.

The investigations performed show that the junctions had *correct”
current-voltage characteristic both without an external magnetic field and in
the presence of a magnetic field. The “zero current” of these junctions (i.e. the
current for V < 24/e) was, however, much higher than the “zero current”
of the similar junctions used, for example, in [5, 23]. This may have been caused
by a slightly higher working temperature, and also by the possible existance
of “point” breakdowns of the isolating barrier.

Investigation of the transmission characteristies

In the investigation of a superconducting phonon generator — material
sample — superconducting phonon detector system, two basic methods have
been used: the pulse method, connected with the measurement of the phonon
arrival times and the separation of the individual phonon modes; and the
method of the measurement of transmission characteristics, connected with
the integration with respect to time of the phonon modes that occur. Both
methods have been used in the investigation of systems with superconducting
tunnel junctions [2, 13, 14, 18, 20], with fairly detailed description of a typical
measurement set being given in [5]. In the present paper, only the transmission
characteristics in the form of the dependence of the derivative of the detector
signal with respect to the generator current dS/dI;, on the generator current I,
have been investigated. The schematic diagram of the measuring system is
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1 2 3
{ i s
&
; * a2 I
Fig. 5. A block diagram of the measuring system

1 — digital voltage indicator, 2 — electromagnet supply, 4 s i e | +
3 — bias source, 4 — saw-tooth voltage generator,
& — the sample with junctions, 6§ — electromagnet, 7 —
phase sensitive detector, 8 — low-frequency generator, e

9 — X-¥ recorder

shown in Fig. 5. The generating junction was biased from a current source
with a saw-tooth waveform, whose rise time was adjustable over the range
5 to 50 s, and amplitude over the range 0 to 2 A. A small a.c. signal with a frequ-
ency of approximately 130 Hz was superposed on the saw-tooth bias. The
detecting junction was biassed by a d.c. voltage corresponding to the earlier
determined working point of the junction and was connected with a phase
sensitive detector adjusted to the frequency of the a.c. generator current modu-
lation. The connection of the input X of the recorder with the source biassing
the generating junction and of the input ¥ with the output of the phase sensitive
detector permits direct recording of the characteristics under investigation.
An example of the transmission characteristic is shown in Fig. 6. It can be seen
from Fig. 6 that over the range of generator currents, I, from 1 mA to 60 mA
corresponding to voltages 24 /e < V < 44 /e the derivative of the signal rises
slightly, nearly linearly with increasing current. The jump in the derivative,
whose slope depends on the magnitude of the modulation of the generator
current and corresponding to a generator voltage V = 44 /e, occurs at a eurrent
Iz = 60 mA. For currents I; between 60 mA and 90 mA corresponding to
voltages 44 /e < V < 64/e the derivative of the signal is nearly constant. As
the current increases above 90 mA, which corresponds to the voltage range

dS/dl,
[arbit.unitsj

1 ! 1 ]
0 30 60 90 120 IlmAl

Fig. 6. The characteristic dS/dIy as a function of the generator current for a system of two
identical 8Sn —SnO —S8n junctions at T' = 1.8K
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V > 64/e, the derivative of the signal increases monotonically at a varying
rate, with a maximum slope for I, —90 mA, ie. V = 64/e.

The experimentally determined transmission characteristics are basically
in agreement with the characteristics expected from a rather qualitative ana-
lysis of the performance of a system of junctions, and also in agreement with
the characteristics measured in [2,5]. Some differences from the expected
curve, and also from the characteristic measured in [18], involving a slight
monotonical rise of the derivative for generator voltages 24/e < V < 44]e,
and the absence of a local minimum of the derivative over the voltage range
4Aje < V < 64]e most probably results from the resistance of the junctions
in the normal state being much higher than in [18], and from a much higher
“zero current” of the junctions used, which in turn is connected with the much
higher working temperature of the system compared to that in [18] and to un-
damped Josephson effects. The sensitivity of the measuring apparatus used,
the magnitude of the signal modulating the current of the junction and the
electrical matching of the individual elements of the measuring system may
also be of some significance.

The authors wish to thank the Director of the Physics Institute of Polish
Academy of Sciences for providing the possibilities of performing the experi-
ments and Grzegorz JunNe for fabricating the tunnel junetions.
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GENERATION OF ACOUSTO-ELECTRICAL WAVES USING A SOURCE OF TRANSVERSE
VIBRATIONS

NGUYEN VIET KINH, W. PAJEWSKI

IPPT PAN (00-049 Warszawa, ul. Swigtokrzyska 21)

The paper presents a theoretical analysis of the generation of transverse
surface waves, using a linear source of vibrations, placed in the plane in which
the generated wave propagates. On the basis of the results of the theory pre-
sented, the problem of the generation of a surface wave excited by a source of
finite dimensions in the form of piezoelectric plates is considered. This method
of wave generation was used for the generation of transverse surface waves
on a piezoelectric ceramic and on niobiate and iodate of lithium.

1. Introduction

Transverse surface waves are generated when the velocity of bulk trans-
verse waves close to the surface decreases. This phenomenon may be caused
by a decrease in the stiffness of a material, or an increase in the density in the
surface layer. Such boundary conditions exist, for example, in the case of a
piezoelectric material whose stiffness depends on the electric field. Waves of
this type were described by BLEUSTEIN [1] and independently by GULAEYV [3],
in 1968. At present, with the progress in the technology of materials whose
surface layer has different properties from the properties of the other parts
of the material, surface waves can useful for the investigation of the properties
of these layers [11]. In the case of piezoelectric materials, the investigation
of surface transverse B. (., also called acousto-electrical, waves is very advanced
[2,4-6]. The source of these waves is usually an interdigital transducer to
which a variable electric field is applied and which, through the piezoelectric
effect, generates an elastic wave. The theoretical methods of solving the problem
of the generation of acousto-electric waves are based on the calculus of varia-
tions [9] and the use of the Fourier integral [9].

In addition to the above methods for the generation of surface waves
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using an electrie field, it is possible to excite waves by the application of a sui-
table source of mechanical vibration on either a piezoelectric material or a
nonpiezoelectric material with a layer structure. This method of exciting trans-
verse surface acoustic waves permits a broadening of the range of their use
in the investigation of the surface layers of materials treated using modern
technologies.

The subsequent parts of the paper will discuss the theoretical side of the
problem, and some experimental investigations performed using known piezo-
electric materials. :

2. Generation of transverse surface waves using a source of transverse vibrations

The paper analyzes the following cases:

a. a linear source of transverse vibrations on the surface of wave propa-
gation,

b. a plate source of transverse vibrations on the surface of wave propa-
gation,

¢. a plate source on a surface perpendicular to the surface of wave propa-
gation.

The methods for the analysis of these three cases are similar. Therefore,
the first case considered will be the simplest: that of a linear source, where
the wave propagates on a piezoelectric material with a free surface or a surface
covered by a thin metal layer with very small mass and stiffness.

Using the coordinate system shown in Fig. 1, and assuming that the surface
of piezoelectric material is covered with metal layer, we take the direction X,
as the direction of surface wave propagation; the vibration direction coincides
with the X, axis, which is an axis of twofold symmetry for a LiIO, ecrystal,
and the polarisation axis for a ceramic. We look for a component of the vector
displacement in the X, direction on the surface X, = 0, caused by the linear
source. For the case of a ceramic, the boundary conditions are the following:

E aUgQ"' —jot
Tzsixz:o = 044—51 = 0(X;)e s (1)
2
¢ 815 (1)
JXE:{) ek U3m+‘P|X2=o =0, (2)

€11

where UY)) is the component of particle displacement in the X 3 direction for
the metal surface and é(») is the Dirac function.
US) and @ satisfy the following conditions

37n+815172@ s QUZH J (3)
esV2UL) — 512 = 0., (4)

CEP UL,
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C%, e, &), are, respectively, the elastic, piezoelectric and dielectric con-
stants, @ is the electric potential connected with the electric field, # = —grad @

and ¢ is a potential satisfying the following equation:
) &y
—— = = 0. (5)
X3 ;X

It is well known that the vector of displacement of a particle of the me-
dium can be written, in general, as

T_; = gradr+roty. (6)

7 and y are the scalar and vector potentials of the acoustic field. Since
the required wave is a plane transverse wave, r = 0 and y has only one compo-
nent y, = y(X,, X,). Expression (6) takes the form

oy
o) = ——. 7
3m 8X1 ( )
p(X,;, X,) satisfies the equation
&y Py
Ky =0 8

where k, = w/C; is the wave number of the transverse wave in the material
which is stiffened as a result of the piezoelectric effect

CE
0; = l/ %14 K%
o

0 | )?r —bxr
| -a
! i
e |
by b
Fig. 1. A linear source with trans- Fig. 2. A plate source with
verse vibration on the surface transverse vibration on the
of wave propagation _ surface of wave propagation
1 — linear source, 2 — the surface of 1 1 — plate source, 2 — the surface of

wave propagation wave propagation
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is the velocity of transverse waves and

K2 3%5
Eflcﬁ
is the coefficient of electromechanical coupling.

On the basis of expressions (5) and (8) the following expressions for ¢ and y
can be written in the form of the Fourier integral:

+ 00 i

¢(X1, Xo) = [ p(k)exp{j(V =X, +kX, —ot)}dk, (9)
+eo

P(Xyy Xy) = [ w(k)exp{j (V] —KX,+kX, —ot)}dk. (10)

— o0

From expressions (9) and (10) and the boundary conditions (1) and (2)
one can obtain

e

Py = —gﬁj’“"(’“)’ (11)
pk) = —— S RO (12)
2nOBK[K*V —k* —VE — k(1 + K?)]

Inserting (12) into (10) and (7) results in an expression for the component
of vector particle displacement on the surface X, = 0,

+°°ej(le—mt)

J

UL — _ i e S )
" = Gn08 ) ) dk, (13)
where
Fib)=KY B -VE-F(1+EY. (14)

After caleulations, one obtains expressions for the component of vector
displacement on the surface X, = 0, for kX, > 1, to a first approximation

Kz
e — efkBaX1 15
The wave number &k corresponds in this case to the wave number of the
transverse surface wave, for which the designation kg, was introduced.
In the case of a nonmetallized surface the boundary conditions are the
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following:
; oUf) o :
Tylzymo = Oz + o5 = (EZ)e™", (16)
2 2
ouP 4 00| o’

— = gg——[1—6(X 1

€15 oX, & aleXfo £o 3X2[ (X411, (17)
By, = D' [1—8(X)], (18)

where &, is the dielectric constant of a vacuum, and @' is the electrical potential

in a vacuum, satisfying Laplace’s equation
P P
X3 X3

&(X,,X,;) -0 when X, - —oo.

The remaining symbols are the same as before, using expressions (11)
and (12), @' in the form

= (19)

+00
@ = [ & (kexp{j(—V kX, +kX,—ot)}dk, (20)

and the boundary conditions (16)-(18), one obtains:

1

y(k) = (21)

1
CE2nk KV —k2
&1 /e0+1

Inserting formula (21) into (10) and then into formula (7), one obtains

—(1+E)VE —k?

A0 PIhX—wt)

- J f dk 29
Us 2rCE F(k) ; (24

where

KV —k?

&> Jeo+1 :

Using the same method as in the first case, an expression for the vector

component of the displacement on the surface X, = 0 is obtained, which proves
the existence of a transverse surface wave of wave number kpg,

F(k) = (1+E) (VI — k) —

GE* (L +e3) [eg) €780

0P = —— —
; CE((L+2K?) (5 [eo+1) + K'e5 [eo (€51 /20 +2)

(23)

where
. kt
G8 T L —K*/(1+ E?)*1/(1+e)) [eo]'"
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is the wave number of the transverse surface BG wave in the case of nonmetalliz-
ed surface. It can be seen from formulae (15) and (23) that the source generates
a surface wave only when the medium is piezoelectric (K + 0, UY), U, + 0)
The effectiveness of the radiation, as defined by the wave amplitude, depends
on the coefficient of electromechanical coupling K (when K changes from 1/3
to 1, U, increases by a factor of 3). The effectiveness of the excitation in the
case of a source placed on the surface of a metallized medium is about £11/€
times greater than in the case of nonmetallized medium. Thus the wave ampli-
tude on a metallized surface is approximately &3 /e times greater than the
wave amplitude on a nonmetallized surface. In the case of lithium iodate LiIO,
the conditions are similar. The difference is that the terms €,,(0®/0X,) and
€,(0U,/0X,) occur in the boundary conditions (1), (16), and (17), and the
piezoelectric constant e,, enters the expressions for the wave number.

3. A source in the form of vibrating plate on the surface of wave propagation

The coordinate system.is shown in Fig. 2. In the case of a metallized sur-
face, the boundary conditions are the following:

: UG oD (o x|
Tyslx,—o = OE = m =Vl 8, 24
23[.X2—0 44 aXZ +615 6X2 {egmt’ !.X! \<\ a, ( )
e -
Dlx,-o =0, e‘l; Ug?a"“mxz:n =0. (25)

11

Using a similar calculation method, one can obtain the following formulae
for the vector component of particle displacement on the surface X, =0;

_— 2K sinkpg

= —_—— ikpaX,t. 26
3m Cﬁ(l +2E2) kBG exp{-? BG*1J ( )

While for a nonmetallized surface one obtains:
£ sin !
2JK* (14611 [eg) — —2 exp{jkpeX,}
U = - Fza . + vru: -1 (908
kBGCf:;{(l -+ 2K2) (Sﬁ [eg+1)2 4 -Kz(e?l IIEO)(S?I [ea+ 2)}

It can be seen from formulae (26) and (27) that the conclusions for the first
case are also valid for this case. The dependence of the amplitude of the trans-
verse BG wave on the width of the surface of the source also occurs. Maxima

and minima of the amplitude are seen, depending on the width of the source a.
When

2n+1 =
a = =—
ke 2

5= 01 B yias (28)
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the amplitude is a maximum, and when

n T

4. A source in the form of plate vibrating on a surface perpendicular to the surface of wave
propagation

The coordinate system is shown in Fig. 3. It is assumed that the BG wave
propagates from the surface X, = 0 to the surface X, = 0 with a certain trans-
mission coefficient N. In this case a change of the energy of the transverse
wave into the energy of BG wave occurs close to the line at which the surface
X, = 0 crosses the surface X, = 0.

Fig. 3. A plate source on the surface perpendicular to the
surface of wave propagation

1 — plate source, 2 — the surface of wave propagation
If the surface is metallized, two sources of strain are placed on the surface
X, = 0, satisfying the following boundary conditions; for the first source
U oD
e
+ 15 axz

where a is a coefficient of decay. It is assumed that it is equal to the decay
coefficient of the BG wave, i.e.

Tyslxp=0 = Ci

44 8X

—2aa
- 3(X;) (1—_2 ) eiot, (30)

KZ
ﬂ?"m’ Bht
gz)|X2=o A U(s) +‘P|X2=o Wi _ (32)
11
For the second source
ou® b 0 x>2a, 2<0
R b ’ ’ 33)
23!4\.2—0 44 E + 1§ r)Xe NG—JHJJ, mg 2@, ( )
e _
Plx,—q si‘ US4+ @lx,m0 = 0. (34)

Atter calculation, the fo]lowing results are obtained for the vector compo-
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nent of particle displacement on the surface X, = 0:

j2K? [ 3. < g% ;
) s TkpaX)
U= a2 (35)
where
1:
= |- (ef*BG?e _1) N’ (36)
‘ Ik :
and N’ is the transmission coefficient in the case of metallized surface.
For a nonmetallized surface one obtains
o — — (L + e feg) 6Tt ’ o
Co{(142K%) (&) [eg —1)2 + K*(ef) e,) (65 60 — 2)
where '
B e
» = f-fm(e”*wm—l)‘ N. (38)

Jkpg
N is the transmission coefficient in the case of a nonmetallized surface,
and a, the decay coefficient, is given by
Kz
a’ = k . (39)
(L+E) (L +efife0) 7
If the transmission coefficients N and N’ are very low, the second term
in formulae (35) and (37) can be neglected. Then the amplitude of the BG wave
on the surface X', = 0 is inversely proportional to the decay coefficient U ~
~1/a, U < 1/a’. Thus the optimum transducer height is given by:

5
28gpt = = (metallized),

1
2805 = = (nonmetallized).

For a’ < a and a,,; > a,,,, the ratio of the amplitude interfering bulk wave
to that of the BG wave is very large in the case of a nonmetallized surface, and
thus the excitation effectiveness of the wave is very small.

If the transmission coefficients N and N’ are large, the first terms in for-
mulae (35) and (37) can be neglected, and the amplitude of the BG wave on the
surface X, = 0 is proportional to p or p’, i.e. it depends on the width of the
source.

5. Experimental methods for the generation and detection of transverse waves

It follows from the theoretical investigations that the transverse surface
wave in the case of a free surface penetrates in the piezoelectric material and
has a velocity close to the velocity of the bulk wave, so that in practice the two
waves cannot be distinguished [6]. Covering the propagation surface with a
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thin and weightless conductor changes the conditions of wave propagation
in favour of the surface wave. A rige in the pulse transmitted by this wave and
a decrease in the wave propagation velocity can be observed. This is caused
by a formation on the surface of the piezoelectric material, of a layer of decreaged
stiffness, due to the compensation of the inner piezoelectric field. The experi-
mental investigation of the generation and propagation of transverse surface
waves is usually performed in the presence of a conducting surface, but even
with a conducting surface, the separation of the surface BG wave from the
bulk SH wave is a difficult but vital problem, which is not always appreciated
by experimentors. This problem also occurs in the use of interdigital (IDT)
transducers [8], and the impossibility of differentiating the pulses of the BG
and SH waves can lead to incorrect conclusions.

As a result of a small difference in wvelocity, the separation of pulses of
BG@ and SH waves can be achieved in the case of a sufficienfly long sample.
In the experimental phase of the present work, investigations of the generation
and detection of the surface wave were performed using plate transducers placed
on the sides of the sample as shown in Fig. 3. Acoustic pulses of an appropriate
frequency were generated using an electrical pulse generator and piezoelectrie
transducers. The presence of the waves was detected by a second transducer
connected to an oscilloscope. Samples of piezoelectric ceramic with polari-
sation parallel to the propagation plane, and of lithium iodate cut parallel
to the z axis, were used in the investigations.

The presence of the BG wave can be found by exerting mechanical pres-
sure on the surface of wave propagation or better still by covering this surface
with viscous resin. The pressure causes damping of the BG pulse (Fig. 4)
which is not observed in the bulk wave. In the case a conductive surface, the
surface wave propagates in the layer below the surface, while the bulk SH
wave propagates more deeply. This phenomenon can be used for the separa-
tion of the pure BG wave.

It was found possible to obtain a separated, pure transvers surface BG
wave on the samples of piezoelectric material, with a dimension of 46 mm,
using piezoelectric transducers contiguous to the sample along a line (Fig. 5).
This contact can be considered as a linear wave gource, and it can also be realized
by a slight inclination of the lateral planes of the sample.

It can be seen from Fig. 6 that the surface wave is almost completely
attenuated by the viscous resin placed on the propagation surface. However,
in the case of a nonmetallized surface, only the bulk SH wave oceurs in practice
and it is not attenuated by the resin, Fig. 6.

The excitation of the BG wave by a transducer placed on the propagation
surface is shown in Fig. 7. Moving the transmitting transducer over the surface
causes the position of the pulse on the time axis of the oscilloscope to shift
in direct proportion to the path length of the wave. The measured wave velo-
city shows that a surface (BG) wave occurs.

8 — Archives of Acoustics 3/80 i it 'i\
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5 2MHz

a) b)

Fig. 4. The effect of pressure on the amplitude of the transverss surface wave on lithium
iodate with a metallized surface

& — the pulse without loading on the surface, b — the pulse on the loaded surface

— 86

ey S
Fig. 5. The manner of exciting a pure acousto-electri-
cal (BG) wave of a piezoelectrie ceramie

Generally, separation of the transverse surface (BG) wave is easier in
lithium iodate. This is connected with the properties of the surface layer. In this
:ase, this layer seems to reach deeper and in this connection the transducer
generating the wave is within the region of the surface layer. -

6. Conclusions

It follows from the theoretical consideration and from the measurements
performed, that it is possible to obtain pulses of pure transverse surface waves
using plate transducers, despite the fact that the velocity of the surface wave
is only slightly different from the veloeity of the bulk wave, and superposition
of the pulses can occur with short samples and wide transducers. Exeitation
of surface waves with plate transducers is relatively easy and can be used in
the investigation of new piczoelectric materials, and of those materials whose
surface layers are changed by technological processes [117]. Separation of pure
surface waves is also significant in the investigation of their properties [10].

D
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Fig.

LiI0,
1 BG 2
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a) d
82mm
5.5MHz
] —e BG &
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d
15.4 mm

M

7. Pulses of transverse surface wave generated on lithium iodate with a metallized surface

I — transmiter, 2 — receiver, d = 4.6 mm, (3-4) d = 9.2 mm, ¥F-cut, propagation direction X, frequency —

(1]
(2]

[3]
[4]
[5]
[6]

[71.

5.5 MHz, horizontal scale 1ps/em, vertical scale 0.1 V/em
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