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The paper presents a method of predicting the noise equivalent level value
in urban structure. Unlike the methods used thus far, the presented method
consists in determination of a parameter a which is a measure of the energy
reaching the observation point during motion of a single source. The method
ig very laborious and, therefore, the paper presents a solution of the problem
of determination of the minimum number of the measurements of the para-

meter a, necessary to determine the noise equivalent level value with a preset
aceuracy.

1. Introduction

The pooling investigations performed among the inhabitants of towns
[13, 23] have revealed that they rate the traffic noise as the most nuisant type
of noise. Within the already existing urban structure, where it is impossible
to change the localization of buildings and transportation routes, the noise
can be minimized by an appropriate “programming” of the structure and
intensity of transportation traffic. In such a case it is necessary to know the
relation between the parameters describing acoustic field (noise evaluation
indicators, e.g. noise equivalent level Lgg) * and the value of “traffic intensity”
(ny) of the noise sources, i.e. transportation vehicles. Provided the relation
Leq = f(n;) is available, it is feasible to determine the permissible values of
traffic intensity which correspond to a predetermined (e.g. given by a standard)
value of L.

Determination of the function f(n,;) in an urban area is much more difficult
than in the case of an open area, e.g. in the vicinity of a motor way where
the noise sources move at a constant speed (an extensive reference list ot this
problem is given in [16]).

1 Other noise evaluation indicators are discussed in [16].
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The configuration of acoustic field in an urban area complicates as a result
of reflections from many planes and non-uniform motion of noise sources
(rounda-bouts, crossings, traffic lights etc). Only if urban strueture is highly
gsymmetric (e.g. “tunnel” development), it is possible to determine the funetion
f(n;) by mathematical analysis. In other cases this function is being obtained
by regression analysis. The results of investigations in the form of plots, nomo-
grams, tables, corrections ete. are presented in [1, 3, 6, 7, 8, 24].

This paper presents the principle (Section 3) and experimental verification
(Section 4) of a new method of predicting the noise equivalent level value in
an urban area. The theoretical background of this method was discussed in [16].

The essential difference between this method and the presently used method
based on regression analysis is that the parameters a; appearing in function

Loy = 10 log (Zn.;ai +0)

are determined from the measurement of the signal emitted by a single source
(Section 3.2) rather than from the set of values L,, for the resultant signal
(being the sum of signals coming from individual sources).

The problem of minimization of the number of measurements, necessary
to achieve the required degree of consistency of theoretical and experimental
results, is discussed in Section 5.

The basic concept of the new method of noise equivalent level determination
results from equation (13) derived in [16] from the definition (1) of noise
equivalent level. The consistency of the proposed method with other measure-
ment methods is demonstrated in Section 2 by deriving from the same definition
equations (9) and (12) encountered in the literature and thus proving their
equivalence.

2, Methods of equivalent level measurement

The noise equivalent level L., is defined [20] as

T2
1
Loy = 10l0g— f 10%120 gy, (1)
-T2

where L(t) is the noise level measurement in dB(A) and T — measurement
duration.

There exist instruments like Briiel-Kjaer, type 4426, or RFT, type 00005,
which measure L,, directly.

The value of noise equivalent level L,, can also be determined by using
a noise level meter and a recording voltmeter to register the course of L(t).

By dividing the noise level into classes of constant width (L;, L;+4L)
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Fig. 1. Changes of sound level vs. time L(f) [dB(A)]

(cf. Fig. 1), the integral in definition (1) can be presented in the form of a sum,

T2 N bi41
[ 10050d = 3 [ 10%H0de, (2)
-T2 i=1 lj

where t, = —T/2, ty,, = T/2 are the instants of the beginning and the end
of the measurement, respectively.

By approximating each integral by the product of the mean value of the
integral function in the interval (4, #,,) and the length #;,, —1; of this interval,
we obtain

T2 N
[ 10 0ar = 3710 (4, — 1), (3)
-T2 J=1
where
i1
10% %y = MRS f 10" g, (4)
=Y o

When the width of the class tends to zero (4L—0), the length ¢,,, —1; of
the integration interval tends also to zero and thus equation (4) can be written
in the form

lon,le ~ lon,l(L‘+}AL), (5)
LA
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Fig. 2. Noise level I; (equation (3)) as the mean value of values L;, L;+ AL defining the
lower and the upper limit of a “class”
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where L, is the lower limit of the i-th class and AL is its width (Fig. 2) since,
under the assumption of the monotonic course of L(t), the relation

a-+b
2

b
tim [ f(@)ao - 1(“52) 00 (®)
Ma
is satisfied. By virtue of (5), equation (3) can be written in the following form:
re N
f 0%20g = Faovacrazeyg g, (7)
— Y2 j=1
It may happen that the course of L(t) is within the same class (L;, L;+ AL)
for several time intervals (t;, #,,), as for the intervals (¢, ta), (fy txs1)s (bms tmsa)
in Fig. 1. This means that the sum (7) may contain several terms with identical
factor 10%'%&+4L%) By grouping such terms and next summing with respeet
to all classes we obtain
72
J‘ 10%E0 gp — Zt‘_loo.l(quma), (8)
—T2 3
where

b= X~

is the total time interval in which the temporary value of noise level L(#)
satisfies the unequality L, < L(t) < L;+ AL.

By using equation (8) in definition (1), we obtain an expression determining
the value of noise equivalent level L,, in terms of instantaneous values of
sound level L(#) measured in A decibels:

:
Log = 10log D 100z, 9)
i

As it was mentioned, this formula can be applied only if the measurement
is performed using a recording voltmeter and a noise level meter. To derive
the formula making it possible to determine the noise equivalent level value
using noise level meter alone we proceed as follows.

Let us assume that the integral appearing in definition (1) can be replaced
by a sum of integrals as in equation (2) except that the integration intervals
are equal to each other:

tj_]_l—tj':At, j=1,2,..-

Under the assumption of a sufficiently short integration interval A¢ and
monotonic course of L(t) in the interval (4, #;,,), equation (2) can be written
in the form

T/ N
[ 10mm0g — ¢ ¥ 10%15, (10)

-T2 J=1
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Fig. 3. Noise level I; (equation (10)) corresponding to the moment i = (4 +ty41)-

where L; = I.,((agprl +1;)/2) is the value of the sound level at the instant § (., +1)
(cf. Fig. 3).

Since T = N Ai, by virtue of equation (10) we obtain from definition (1)
another expression for calculating the noise equivalent level value:

N
Ly = 10log % Z 10%1%, (11)

J=1

I the successive readings of level L are repeated in such a way that values
L; correspond to numbers n;, then

Loy = 10 log -1-1\; Z ny-10%15, (12)
]

This formula makes it possible to determine the noise equivalent level
value by reading instantaneous values of sound level (expressed in dB(A))
in equal time intervals.

It follows from formulae (9) and (12) that the accuracy of L,, determination
is the higher the smaller the width of the class (4L->0) is and the more fre-
quently the readings of instantaneous values of sound level are taken, i.e. when
At—0.

3. Dependence of noise equivalent level on tramsportation
traffic intensity

3.1. Theoretical background

Let us consider several sources of the same j-th type (e.g. 7 vehicles of the
same type). Under the assumption that they move with the same speed V,(f)
along the same I-th path, we obtain the set of signals L®(f) very similar to
each other (cf. Fig. 4).

To simplify the notation, we introduce an index ¢ for each possible combin-
ation (j k1) which will identify the “class” of the source [16].
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Fig. 4. Noise level changes L () [dB(A)] recorded at the passage of a single source belonging
to the i-th class

If we have, for instance, two types of sources — two types of vehicles
( = 1,2) which move at the same speed V. (t)(k = 1) along two different
paths (I =1, 2), we shall register four different signals L®(f)(i = 1,2, 3, 4)
since this is just the number of possible combinations among the indices (j % 1).

The urban noise is a result of the superposition of signals produced by in-
dividual sources. As it has been demonstrated [16] the noise equivalent level
L, can be determined by means of the formula

M +00
Leqzlologri[zn,. f Ii(t)dt—i—f"],
0

i=1 -0

where I;(¢) is the time-dependent intensity of noise generated by a moving
source of i-th class, I® — the average background intensity, I, — the reference
intensity, m; — the number of sources of i-th class passing the observation
point per unit time (traffic intensity), M — the number of classes of noise
sources.

Actually it is the pressure level which is the measurable quantity

L(t) = 10logp*(t)/p;,

where p, = 2-107° N /m®. As it was demonstrated by Beranek [2], it can by
assumed that the pressure level equals to intensity level with an accuracy
much better than 1 dB,
It
L(t) = 10log I( ) "

0

where I, = 1012 W /m?2,
Hence

M
Loy = 10log| ¥'nya;+10%5], (13)
i=1

where
+00

a = [ 10ME0g (14)
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and I;(¢) is the time-dependent noise level expressed in dB(A), produced by
a single source of ¢-th class (the method of the measurement of a; will be discussed
later on); L, is the time-averaged level of background intensity — I° The
measurements performed in the city of a large town at a large distance from
the stream of wvehicles reveal that L, ~ 45-50 AB(A). This allows to omit
the last term of the sum in equation (13) in case of the high traffic intensity
(large values of n;) and the measurement points located close to the road.

Provided the values of parameters a; are determined in advance, equation
(13) makes it possible:

(a) to determine the value of L, if the traffic intensity n; is known;

(b) to modify the value of L., by imposing appropriate limitations upon
the traffic structure: n; < n;.

These problems will be treated in more detail later on.

3.2. Method of calculating the values of oy

Equation (14) provides a way of calculating the values of a;. As it was
already mentioned, the quantity I,(f) appearing in this equation is the noise
level generated by a single source of the i-th class. To obtain the course of
L,(t), the measurement should be performed under the conditions when only
a single source is actually moving in the vicinity of observation point. It is
thus convenient to perform such measurements in the night (preliminary
investigations indicate that the method of model measurements can also be
applied for this purpose).

However, such measurement yields the signal L{?(#) (noise level produced
by the source and the background) rather than “pure” signal I,(f), and the
former is different for each j-th source belonging to the same i-th elass:

I}‘) (t) f(ﬂ))

=

ZP(t) = 1010g( 7 5
o 0

Introducing the notation

) (¢ S 70)
I (1) = 1010g1} ( ), Ly = 10log—
I, I,
(L{" is the noise level produced by the source only, L, — the noise level associa-
ted with the acoustic background present during the measurement), from
(14) we obtain
/2
ay = J’ [100.114‘)(;) —10%0)at, (18)
-2
where 7 is the signal duration (cf. Fig. 4), i.e. the t'u:ne; of source passage,
L{ (t) — the registered change of intensity level with time, L, — the background
level during the measurement. The quantity L, has, as a rule, a value diffe-
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rent to that of L, (equation (13)) (for instance, the acoustic background in
the night, when the measurements of L (t) are performed, is different than
during the day).

To determine the values of parameters a; we divide, in agreement with
equation (15), the interval (—v/2, /2) into equal intervals At and obtain the
formula

M
ay = At 3 105 r.10015, (16)
k=1

where L{f) is, in agreement with Fig. 4, the value of the sound level at the
instant %) = }(t,,,-+1,), i.e. in the middle of the interval (fy,,, t).

4. Measurement results

4.1. Classification of moise sources

The parameters a; were determined for vehicles moving along a two-way
street. The measurement point was placed at a height of the third floor at
a distance of 30 m from the nearest street crossing. Fig. ba presents a cross-
gection of the street and Fig. 5b — its view from the top with the marked
meagurement point 4.

a A
ol /%/’
b

J[ [‘L

 m—

 [e2zzzzzz) [

Fig. 5. Localization of the measurement point 4 at a two-way street

The measurements of L{" (f) in dB(A) were performed using a set of Briiel-
-Kjaer equipment composed of type 4144,1”, capacitance microphone type,
2602 microphone amplifier, and type 2304 recorder with 50 dB potentio-
meter. The courses of I{" (f) were recorded during the night between 23h and
3h since undisturbed signals produced by a single vehicle were possible to
obtain only during that time. Typical courses of the noise level L{?(t) [dB(A)]
produced by Fiat motor-cars and Jelez buses moving to the right and to the
left are shown in Fig. 6.
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ig. 6. Noise level changes L{"(f) [dB(A)] for several single vehicles
7

The values of parameters ay for each course of L{’)(t) were calculated using
equation (16) and next mean values a; were determined from the formula

X
s 3 2 Qij s (17)

where N, is the number of registered signals produced by the sources of the
i-th class.

The values of a; and the numbers N, for 22 classes of sources are given
in Table 1. It follows from this Table that the values o; corresponding to buses
are higher by an order of magnitude from the remaining values. One can also
see a marked difference between the values of a; corresponding to different
directions of the vehicle movement. This difference is associated with a diffe-
rent distance from the measurement point. Therefore, for further calculations,
we accept a 4-class classification of the noise sources:

1. motor-cars moving to the right,

2. motor-cars moving to the left,

3. buses moving to the right,

4. buses moving to the left.

The mean values of a; calculated from equation (17) for these classes of
noise sources amount in hour/veh., respectively, to:

a = 2359, ay=1072, a,=49049, a, =28397.
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Table 1. Mean values of parameters a; recorded at the measurement point

A (cf. Fig. 5)

No. of source Directi.on Type of N h::u-

class of motion source : [
veh.
1 to the left Warszawa 33 1091
2 to the right (motor-car) 32 2 004
3 to the left Fiat 51 1166
4 to the right (motor-car) 52 2 607
5 to the left Dacia 8 942
6 to the right (motor-car) 10 2159
7 to the left Volga 2 1 281
8 to the right (motor-car) 5 1755
9 to the left ‘Wartburg i 783
10 to the right (motor-car) 4 1392
11 to the left Syrena + 900
12 to the right (motor-car) 6 3 546
13 to the left Moskvich 2 379
14 ‘to the right (motor-car) 5 3 257
15 to the left Trabant 1 708
16 to the right (motor-car) 3 2 883
17 to the left Skoda 3 1 554
18 to the right (motor-car) 2 1402
19 to the left Nysa 6 776
20 to the right (pick-up) 2 422
21 to the left Jelez 13 28 397
22 to the right (bus) 10 49 049

The standard deviations Adeg; caleulated from equation
1 Ng 5 1/2
Aoy = l s Z (o aal (18)

amount to:
da, = +15b565, Aay, = +723, Aag = +18732, Ae, = £+10721.

Substituting the mean values of a; to equation (13), we obtain the expected
value of the noise equivalent level at measurement point A in the street of
the cross-section shown in Fig. 5,

Leq = 1010g (23591, +1072n, + 49 0491, -+ 28397 n, -+10% o), (19)

where n, is the number of motor-cars moving to the right [veh./hour], n, —
number of motor-ears moving to the left [veh./hour], ng — number of buses
moving to the right [veh./hour], n, — number of buses moving to the left
[veh./hour], L, — acoustic background.

At high traffic intensity the last term accounting for acoustic background
can be disregarded in calculations.
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4.2. Experimental verification of the formula for determination of Lgq

To verify the validity of the obtained formula, direct measurements of
L,, were performed in 10-minute intervals, while counting simultaneously the
vehicles of a particular clags. Thus the traffic intensities n,, n,, 7y, B, Were
determined.

The direct measurement of Lf,’{;) was performed using a set of RFT equip-
ment consisting of MKD MV 1" capacitance microphone No 3103, PSI 202
precision noise level meter and PSM 101 type 0005 noise equivalent level meter.

The results of measurements are summarized in Table 2. Columns 1 to
4 present the traffic intensities of individual classes of vehicles, column 5 — the
value L{™ obtained by direct measurement, column 6 — the value L] obta-
ined from equation (19), column 7 — the difference L — L), column 8 —
the standard deviation AL{) calculated according to the law of “error pro-
pagation” [10]. Use was made here of the formula

s (S0 oo

f=]
i.e.
4
101
AT 2305 o {an(aa‘)s}. (20)
Aot

Table 2. Summary of the values of L, caleulated and measured at the measurement point
A (cf. Fig. 5) at known traffie intensities n;

n. n, n. n,

S ek o el vek s | VR dgé’&z dLg’li Lp-L{ | ALQ
[hw] [hour [hm] hm] [dB(A)]| [dB(A)] | [dB(A)] | [dB(A)]

1 2 3 4 5 6 ; § 8
1 174 210 6 12 61.3 61.0 0.3 1.2
2 144 156 18 12 62.8 62.4 0.4 ;A
3 174 120 12 6 61.5 61.1 0.4 1.2
4 132 84 6 12 60.5 60.2 0.3 1.1
& 126 216 18 6 62.5 62.0 0.5 12
6 168 174 18 1% 63.0 62.6 0.4 I
7 108 120 6 12 60.5 60.1 0.4 1.3
8 162 144 12 12 62.1 61.7 0.4 1.6
9 120 102 6 | 6 59.7 59.0 0.7 1.3
10 162 84 12 s 61.9 61.5 0.4 1.1
11 162 180 12 [ 18 62.6 62.2 0.4 T.I
12 198 156 6 - 59.9 59.7 0.2 1.6
13 186 198 6 12 61.3 61.1 0.2 0.9
14 150 222 12 12 62.2 61.8 0.4 1.1
15 114 138 6 6 59.8 59.5 0.3 1.2
16 150 120 12 =15 62.4 62.0 0.4 1.1
17 174 138 6 6 60.4 60.1 0.3 A 1.3
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It follows from Table 2 that the difference LM — L) between the directly
measured value and the value obtained from equation (19) for given traffic
intensities n,, 7y, ng, n, is smaller than 0.7 dB(A). The average value of this
difference equals to 0.4 dB(A).

It may be thus concluded that the method of predicting the noise equi-
valent level L, in urban structures, based on equation (13), is fully justified.

5. Optimization of the measurement process

The spectacular agreement between the values L., obtained by caleulation
and by direct measurement can be explained as due to very small differences
between the values a;(¢ =1,2,3,4) appearing in (19) and the values

a; = lima;
N>
which apply to the whole population of noise sources passing the observation
point. Let us denote these differences by da;. The value of de; is the smaller
the more accurately the value of a; in (17) is calculated, i.e. the larger is the
number of measurements N;.

The question arises how large should be the number N; to make the values
of da, small enough to determine the value of L,, from equation (13) with an
error 0L,, smaller than k dB(A) with a probability p.

Replacing the standard deviations Ade; in (20) by the quantities da;, we
obtain a general expression defining the error 6L,

10loge

M
2 2 1/2

0Ly = 5 % n; (day) ’
2 'nl‘ a‘ +100.1-Lo f=1
i=1
where M is the number of classes of noise sources.

From the requirement 6L,y < k dB and under the assumption that every
class provides the same “contribution” to the value 4L, , we obtain

M -
k Eﬂv‘ a; +10°' Ly
i=1

VM  m;10loge
The parameters a; in (17) are random values.
¥ o;(j =1,2,...,N,) have a normal distribution [10], then
dai ¥ tg}A a; r
V¥,
where tg" is the value obtained from Student’s distribution for the probability

p at N, —1 degrees of freedom, da; — standard deviation given by (18),
N, — the number of measurements of a;(j =1,2,..., Ny).

Miuel (21)

(22)
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From equations (21) and (22) we find N; — the number of measurements
of parameters ay(j = 1,2, ..., N;), necessary to reduce the error L., of the
disseussed method below %k dB with a probability p:

10log etPn,; Ao, \ 2
NS deMifiir BBt S (23)
kz N0 +100']Lo

i=1

To find the value of N} from this formula a “pilot” series of measurements
of ay(i =1,2,...,M;j =1,2,...,N,) should be performed and the values.
of a; (17) Aa,(18), and #? should be determined. If the inequality Ny < N, is
satisfied, there is no need to perform additional measurements since the power
of the set {a;} is adequate.

It follows that the number of measurements N, necessary to determine
the value of L,, from (13) with an error less than %k dB (with probability p),
tends to zero if the intensity of the motion of noise sources tends to zero.

Equation (23) has been derived under the assumption that the partition
of noise sources into individual classes has been executed “a priori”. Practically
it happens that the values corresponding e.g. to various types of noise sources
do not differ much from each other and the need to form separate classes for
these sources becomes questionable.

Table 1 presents mean values of a for various types of motor-cars. In com-
parison with the values of a for buses the differences between these values are
small and, therefore, we have decided to form a single common class for all
motor-cars regardless their types and taking into consideration only their
direction of motion.

In general case this problem can be formulated as follows: how to perform
a partition of all sources into classes in such a way that

(a) The error 8L, of determining the value of equivalent level L, from
(13) is less than k¥ dB with a probability p.

(b) The total number of the measurements of parameters a;(j =1,2,...,
N, i=1,2,..., M) is minimum, i.e.

M
N} = minimum. (24)
i=1

Condition (b) can be regarded as the aim of the optimization of the measure-
ment process.

Similarly to the case of determination of the “necessary” number of measu-
rements N, let us assume that we have at our disposal a “pilot” series of mea-
surements {a}. As a first step to solving the above problem we introduce a par-
tition into “unquestionable” classes, i.e. the classes with markedly different
values of a. Let the number of these classes be M,. It follows from the example
discussed in Section 4 that M, = 2 if the noise sources have to be divided
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into at least two classes: motor-cars and buses. It is less evident whether it
is necessary to split these classes with reépec’s to different motion directions
“to the left” and “to the right”.

Next, we check, using equation (23), whether the number of measurements
N;, in each class is sufficient (at the assumed value of probability p and
error k), i.e. whether the relation N, > N7, is satisfied.

In turn, we perform a new partition of the set of parameters {a;} into
M, classes (M,> M,), check the validity of relation N,,> N;,, repeat
the same for M, classes etc.

At each g-th partition into various classes, i.e. when the set {a;} (of power
N) is divided into subsets of power N,,, use can be made of the papers of
Christie, Hillquist and Scott, Jonasson, Lewis, Olson, Nelson and Piner, Priede,
Rathe, Ulrich, Waters [4, 5, 9, 11, 15, 17, 19, 21, 22, 25, 26, 27] which give va-
lues of the noise level as functions of velocity and acceleration.

Further on we consider only those parfitions into classes (among all
q =1,2,...) for which the inequalities

Negiow Blon.o $ihdeBpeson Mg (25)

equivalent to condition (a), are satisfied. (If none of the partitions into classes
satisfies these inequalities, then the set {a;} has to be supplemented with
additional measurements of parameter a.)

Out of all partitions into classes, which satisfy inequalities (25), we choose
that one for which the sum of necessary measurements in each class N;,
(¢ =1,2,..., M,) satisfies condition (24).

This partition into classes in the optimum one, since it permits the value
of equivalent level (13) to be determined with an error less than %k dB (with
the probability p) from the minimum number of measurements.

Example. Let us assume that measurements of the parameter a (Table 1)
are the “pilot” series with the power of individual classes (M = 4) N, = 121,
N, =117 (classes of motor-cars moving “to the right” and “to the left”) and
Ny =10, N, = 13 (classes of buses moving “to the right” and “to the left”).

Let us assume the probability p = 0.99 and the value of acceptable error
k = 0.5 dB (it means that the values L,, obtained from (13) will bear an error
less than 0.5 dB with the above probability). From Student’s distribution
for the numbers of freedom degrees N; — 1 =120, N, —1 =116, N, —1 =9,
N, — 1 = 12) we obtain that t{!), = 2.58, t{}, = 2.58, #{*}, = 3.25, t{*}, = 3.05.
The values of standard deviations 4a; are given in Section 4.1. It follows from
(13) that the sum in the nominator of expression (23) can be presented in the
form

Zniai +10% %0 — 1% Feq,
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Assuming the mean traffic intensities, obtained from the measurements,
presented in Table 2: n, = 153, n, = 151, ny = 10, n, = 10, and the correspond-
ing value L,, = 61 dB(A), we have N, =70, N, =15, N, = 69, N, = 20.

The results obtained indicate that to use formula (19) for the determination
of the value of L,, with the accuracy 0.5 dB (with the probability p = 0.99)
the number of measurements a; in classes 1 and 2 was too large (N) < N;)
and in classes 3 and 4 — too small (N; > N,). The two latter classes should
be complemented with additional measurements to satisfy condition N; < N;.

6. Conclusions

The work is primarily aimed at verification of the method of predicting
the value of noise equivalent level L,, outlined in [16]. Good agreement of the
experimental data and the results obtained from formula (13) confirms the
validity of the method (Section 4.2.).

To demonstrate consistency of the new method with other measurement
methods, definition (1), which is also the starting point to derive equation (13),
is nsed in Section 1 to derive expressions enabling L,, to be determined either
from the record of noise level changes in time (equation (9)) or from a set of
instantaneous values of noise level, recorded at equal time intervals (equation
(12)).

The method of determining the value of L., in urban structure follows
from equation (13). An application of this formula requires a partition of all
sources into appropriate classes. This partition is made baging on the value
of parameter a (equations (14) and (15)) which is a measure of the energy
reaching the observation point during motion of an individual source. Equation
(13) contains the quantities a; — mean values for particular classes. The error
introduced by calculating L., from (13) is the smaller the more accurately is
the value a; of (17) calculated and the larger is the number of measurements
of a; (j =1,2,..., N;). Equation (19) is the form of (13) specified for a parti-
cular case.

The problem of minimizing this error is linked to the problem of optimizing
the measurements. It was demonstrated in Section 5 that if the value of the
error is assumed to be %k dB with the probability p, then — after performing
a pilot series of measurements of {a} for randomly chosen noise sources —
the whole population of sources can be divided into classes (after eventual
complementing the number of measurements to satisfy the inequality N; < N,)
in such a way that the assumed requirements of the accuracy of the method
will be satisfied.

The values of parameters a; depend on the power of acoustic sources (e.g.
on the types of cars), the trajectory, the way of operation and the type of
urban structure and, therefore, equation (19) is valid only for measurement
point A, as indicated in Fig. 5. Therefore the general form of equation (19)
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is as follows:
¥ _(m)
Zfm = 10log( 3 afMaf™ 410050 ), m =1,2,..., (26)
i=1
where a{™ is the traffic intensity of noise sources passing the m-th observation
point, M{™ — number of classes of sources in the vicinity of the m-th point,
L™ — mean background level measured at the m-th point.
If we assume that the condition of favourable acoustic climate in the vieinity
of each of these points is given by inequality

ng)<'ig’1‘)’ m=1,2,..., (27)

where L{™ can be considered as values resulting from various standard values
for residential areas, hospitals, schools etec., then equation (26) yields information
on the requirements which should be imposed on the values of traffic intensities
{n{™} along particular streets (Fig. 7) to satisfy inequalities (27).

Ty

(pim-2) ™ oy

Fig. 7. Localization of measurement points in a typical urban structure

Thus the acoustic climate in urban areas can be formed by suitable “pro-
gramming” the structure of transportation traffie.

Let us consider for example the case discussed in Section 4. Let us assume
that the standard requires that L, < 60 dB(A) at point A. Assuming the mean
background level L, = 40 dB(A), from (19) we obtain

Ly
23591, --1072n, -+ 490490, -+ 283970, < 99-10°.

This is a particular case of inequality (27) with equation (26) taken into
account. This inequality provides information on the maximum intensity of
the traffic of motor-cars (n, and n,) and buses (ng and n,) for which the con-
dition of good acoustic climate at point A is still satisfied, i.e. Lyq < 60 dB(A).

The method of predicting the value of noise equivalent level (L), presented
in this paper, is fairly laborious but the error of L, determination is wvery
small.

The theoretical and experimental investigations carried out presently at
the Chair of Acoustics of the Adam Mickiewicz University are aimed at such
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development of the presented method which will make it applicable over a pos-
sibly widest range of problems. In particular, this method may become a start-
ing point for development of a new methodology of preparing acoustic maps
of towns since it permits us not only to determine the acoustic climate (the
value of Lg,) at various points of the town but also to “program” the structure
and intensity (m;) of traffic in such a way that this climate will satisfy the
given requirements, i.e. the values of L, will be e.g. less than the values di-
rectly related to the existing obligatory standards.
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The paper presents an analysiz of the properties of the acoustic field in
a cuboidal space with the aid of the geometrical method using computer techni-
ques. The assumptions and a brief deseription of the method together with
the results of caleulations for a space of fixed dimensions are presented. The
studied properties of the acoustic field are in disagreement with results obtained
by the statistical method. The directional properties of field, expressed in terms
of energy, have been described as a directional characteristic of the equivalent
source. Examples of plotted characteristic curves are given and the effect of
various parameters on their form is discussed.

1. Introduction

Complicated physical phenomena, occurring during the propagation of
acoustic waves in bounded spaces, have not yet been described satisfactorily
by mathematical relations. The preferably used methods of the analysis —
the wave and statistical ones — are based on the simplifying assumptions which
idealize the conditions. Consequently, the results obtained from such an analysis
are an idealized approach to reality. The adopted simplifying assumptions
either restrict the number of cases to which the method ean be applied with
a sufficiently small error or result in difficult for a quantative determination
errors. The assumptions of the wave method limit its application range to the
regions of cuboidal or other regular form. On the other hand, the assumptions
of the statistical method disregard the shape of the space, the arrangement;
of surfaces with different absorption coefficients, the position of the sound
source and observation point, as well the decrease of the energy density due
to the spherical shape of the propagating wave. These are essential simplifications
since practice has shown that especially the shape of an interior and the distri-
bution of sound absorbing materials can perceptibly affect the properties of
the acoustic field. The effect of the above-mentioned factors on properties
of the acoustic field is accounted for in the geometrical method of the field
analysis in bounded spaces, which is based on the principles of geometrical



250 M. TAJCHERT

opties. It seems that simplifying assumptions adopted in this method allow
for its wider application and relatively easy estimation of errors. The appli-
cation of the geometrical-graphical method is hindered by the tedious de-
termination of image sources of higher orders and the summation of energy
of individual waves reaching the observation point. This problem can be easily
solved by the use of computers and only such approach to the geometrical
method will enable us to take advantage of its possibilities. Straszewicz [4].
dealing with the geometrical method of the field analysis, made a brief evalu-
ation of methods used for the analysis of the acoustic field and showed the
superiority of the geometrical method over the statistical and wave methods.
Basing on results of the analysis of the distribution of image sources in
two-dimensional areas, obtained without the use of a computer, he has come
to a number of interesting conclusions. This result suggests a need for further
development of the method using computers.

2. Computational techniques in geometrical method of field analysis

The method of field analysis, known as the geometrical method, is not
defined uniquely. In the early days of the archictectural acoustics the geometri-
cal method used to be defined as a method which used the laws of statistics.
This method is now referred to as a statistical method. Kuttruff [2], carrying
out the acoustic field analysis employing a method called by him the geometrical
method, takes advantage of the mirror reflexion of the sound waves and intro-
duces the simplifying assumptions characteristic for this method, but in the
obtained relations, defining the reverberation time value, he is applying the
laws of statistics. Thus his method can be termed as the geometrical and sta-
tistieal method of the acoustic field analysis. The method presented below
is a “pure” geometrical method of the acoustic field analysis in a bounded
space, i.e. it is based exclusively on the principle of the geometrical optics.

Simplifying assumptions of the method can be divided into two groups:
the general — related to the very essence of the method — and the additional
detailed assumptions related to a certain way of its realization.

The general assumptions for the geometrical method are the following:

1. Sound waves are replaced by “sound rays” propagating from a determined
point, i.e. from a sound source. The “rays” obey the same laws of propagation
ag do the light rays.

2. The dimensions of the bounded space are large in comparison with the
wavelength.

Additional assumptions of the presented geometrical method are:

1. The space is bounded by surfaces with a determined absorption coefficient
@ €(0,1) which is independent of the angle of incidence of a “sound ray”.

2. The sound source is a point source which emits a spike pulse or a very
narrow noise band.

3. The change in the energy density within the investigated space results
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from the propagation of a spherical wave and the absorption on the boundaries
of the space.

4. Absorption of energy by the medium is neglected.

5. Diffraction and phase relationships, during propagation and reflexion,
are also neglected.

6. The only interference effect of the signals reaching the observation
point is the addition of the energy of waves.

As it has already been found in the previous investigations, additional
gimplifying assumptions are the result of the approach to the method involving
the use of a simple procedure algorithm enabling the definition of certain para-
meters of the acoustic field. A different approach to the method and the use
of another algorithm can extent the domain of applications.

Each acoustic wave reaching a given observation point, after being reflected
from the surface enclosing the space, is determined uniquely by its pressure,
the phase, the direction and the reverberation time. Of these four quantities
only the sound pressure and the reverberation time will be described in the
presented method. Below, a procedure algorithm used for this purpose is pre-
sented.

1. The determination of the position of the sound source and observation
point.

9. The calculation of the distance of the image sources from a given
observation point.

3. Theoretical caleulations of an echogram for the purpose of determing
the amplitude-time characteristic of reflections, i.e. the room impulse response

k(1) = D) And(i—1,), 1)

where A, denotes the value of the pressure of the m-th reflection reaching
the observation point after the time {,.
If the room impulse response is determined, then it is possible to evaluate
the response s’(t) for a given signal s(f):
+00
s'(t) = [ s(X)k(1—X)dX = D) Ags(t—t,). (2)
-3¢ 4 n
4. The determination of the reflected waves pressure level L, and of the
total pressure level L with the direct wave being at a given observation point

[+ ‘ﬂ
L, =10log [ s'(t)dt = 10log )’ [ZAia(twtn)], (3)
=0 =, =
[=+] ‘1’3
L, = 10log [ s'(t)dt = 10log [ZAf,a(t—t,,)], (4)

t=ty =t n
where t, is the arrival time of the direct wave and ?, is the arrival time of the
first reflected wave.
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3. Subject of amalysis

In this paper the properties of the acoustic field in a cuboidal space will
be analyzed with the aid of the geometrical method using computers.

Since the laws of the propagation of a wave propagating directly from the
sound source are precisely defined and can be introduced at any moment into
the analysis, the main emphasis will be placed on the properties of the acoustic
field of the reflected waves [4]. The main parameter defining the field in the
method used is the spatial distribution of the reflected waves pressure. An
analysis of this distribution will constitute an essential part of this paper.

70

75,

Fig. 1. The position of the tested enclosed space in the coordinate system

The limitation of the range of analysis to only one form of the cuboidal
space has resulted in such advantages as clear form of the results and the
possibility of systematic investigation of the changes of the field parameters
as functions of other parameters such as the distance between the source and
observation point, their arrangement within the space, and also the absorp-
tion coefficient at various surfaces. In the cuboidal space the distribution of
the image sources and its changes under the influence of the above-mentioned
parameters are easy to predict and, since this distribution determines the
properties of the acoustic field, one can discuss without difficulty the results
obtained by computation. Furthermore, the use of the geometrical method
for the cuboidal spaces has enabled to evolve a simple and concise computation
program, e.g. in comparison with a program for the region of any shape [6].

In the examples of the use of computers in the geometrical method of the
field analysis, as cited in the literature [5, 7], preference is given to the “ray
method?” while the forms of the analyzed spaces are rather simple for reasons
mentioned before. The properties of the acoustic field —found for the cuboidal
spaces — can, to some approximation, be extended to the acoustic field in
regions of different form, but the distribution of the apparent sources in a given
case should be accounted for, at least qualitatively. Obviously, for the accurate
calculations, a suitably elaborated program is a necessity.
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4. Outline of the program

The program has been written in the FORTRAN language; the calculations
were performed on CYBER CDC 6000 computer. Below the block diagram of
the program is given.

Data

¢
Caleculation of one coordinate determining the distance from the obser-
vation point as well as the number of reflections from either of two walls
perpendicular to the axis on which the coordinate is calculated

Caleulation of the distance of the 'sound source from the observation
point, the approach time of the reflected wave to the observation point,
the losses arising from reflection as well as pressure of subsequent reflected
waves, i.e. of echoes

Arrangement of results in sequence of the growth arrival time of echoes

Addition of the energies of echoes, the difference of the arrival times
being C

Calculation of the total pressure level L as well as of the pressure level
of the sum of reflected waves ILg,

4
output of the result

The input data of the program are: dimensions of the bounded space,
coordinates of the sound source and observation point, absorption coefficients
of individual surfaces, the time interval € over which energy of reflection is
summed, pressure level of the direct wave at a distance of 1 m from the sound
sorce, the order of reflections < 10 to be considered. The results of calculations
are: a full theoretical echogram containing all the echoes and giving the se-
quence of reflections from particular walls, an abbreviated echogram, i.e. the
echogram obtained after the summing up the energies of the reflected waves
which reach the observation point in sufficiently small time intervals, the
reflected waves pressure level I, and the total pressure level L at the obser-
vation point.

5. The results of investigations and their interpretation

The calculations have been performed for a cuboidal space of dimensions
15 % 25 x10 m, with a point sound source radiating the wave with a pressure
level 100 dB at a distance of 1 m.

To limit the computation, time reflections up to the 7-th order were taken
into account and this seems to be sufficient considering that the last reflected
wave reaching the observation point after approximately 500 ms has a pressure
level lower by 35-40 dB than the first one. The time interval C is equal to 0,1 ms
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and this practically ensures the summation of the waves reaching the obser-
vation point on the paths of equal length. The position of the sound source
and observation point and the surface absorption coefficient are changed in
the caleulations.

The computations yield interesting results on essential spatial properties
of the acoustic field which do not agree with the results of the analysis per-
formed by statistical method, namely:

1. variability of the reflected waves pressure level L, as a function of the
distance from the source r;

2. relation between the reflected waves pressure level L, and the position
of the sound source and observation point in the space at a constant distance
+ from the source;

3. relations between the reflected waves pressure level Ly, and the arran-
gement of boundary surfaces with different absorption coefficients.

The variability of the reflected waves pressure level as a function of the
distance of the observation point from the sound source was observed by Stra-
szewicz [1] in the case of non-rectangular shapes of the projections of the
interiors. For this purpose he took advantage of the geometrical analysis method
without resort to computation. The results of calculations of the reflected
waves pressure level L obtained with the aid of the geometrical method, as
shown in Figs. 1-5, are compared with those obtained by the statistical
method [1].

The comparison of these results is complicated because of the fact that
in the geometrical method the value of the absorption coefficient a, should
be close to the value of the physical coefficient while in the statistical method —
to the value of the reverberation coefficient a,. The relation between these
two coefficients [3] depends on the frequency and absolute value of coefficients.
In all comparative caleulations performed by the statistical method it has
been assumed that

Llina J00: @ 5 0.5,
% _Ho for 0.5<q,<08, (8)
% 1 for a,> 0.8.

The analysis of individual groups of results leads to the conclusions which
are summarized below. The reflected waves pressure level L, is plotted in
Fig. 2 as a function of the distance from the source r, for several positions
of the source and the pressure level L, calculated by the statistical method,
with the absorption coefficient level being equal at all the surfaces (Fig 2a —
a = 0.1; Fig. 2b — a = 0.6).

Remark 1. The reflected waves pressure level decreases with the growth
of the distance from the source.

Remark 2. The rate of changes of the pressure level L, depends on the
position of the sound source; these changes are the faster the closer lies the
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Fig. 2. The reflected waves pressure level Ly, as a function of the distance from the source r

The observation point is located on the longitudinal axis of the room; absorption coefficients identical on all
surfaces: (a) @ = 0.1; (b) a = 0.6; (c) difference between reflected pressure level at a = 0.1 and e = 0.6 for two
positions of the source (the coordinates as shown in FO%.

1a). For comparison the values calculated by the statistical
are given

sound source or observation point to the boundaries of the space; in a given
position of the source the greatest differences in the pressure level of the
reflected waves occur for small distances, e.g., in Fig. 2a curve “1” when the
source lies in the centre of symmetry of the space AL = L, ;5 — L,y
= 0.07dB, and AL= L,_ys—L,_;; = 0.19 dB; curve “3”, when the source
is close to the wall AL = L,_ys—L,_3.s= 4.34 dB, AL= L,_; ;—L,_,;, = 1.7 dB.
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With an accuracy up to a constant factor the reflected waves pressure level
can be expressed by

Ly, ~10logP;, = 10log 2 antilog (P; — 20 logl,), (6)
L3
P;
Pro~ Z T (6a)
i T

where P; is the “power” level of the ¢-th image source which varies with
the losses due to the subsequent reflections and I, is the distance of the obser-
vation point from the ¢-th source. It can be seen that the greatest changeg
of L, take place for small distance from the source, i.e. for the smallest l;.

Remark 3. The reflected waves pressure level exhibits the best stability
when the source is placed at the centre of symmetry of the region and at the
possibly small absorption coefficient of the boundary surfaces. The greater
is the absorption coefficient at the same position of the source the smaller
is the “power” of the image sources, thus the greater is the influence of
the distance of the image sources on the pressure level of the reflected waves,
the greater are the pressure changes at the displacement of the observation
point (6), e.g. in Fig. 2a (a= 0.1), curve “1”, we have AL = Lot ~Loin
= 0,27 dB; curve “3”: AL = L,_5—L,.,;, = 6.04dB. In Fig. 2b (a= 0.6),
curve “1”, we have AL = L,_,;—L,., = 1.09 dB; curve “3”: AL —
Loiiie— Lo 13, =:10.88 4B,

Remark 4. It follows from Remark 3 that the best agreement of the results
obtained by the geometrical and statistical methods can be achieved by placing
the sound source close to the centre of symmetry of the space. The regularity
of the arrangement of the apparent sources brings about that the displacement
of the observation point leads to only minor changes of the value of I,

Remark 5. The increase of absorption coefficients on the boundary sur-
faces causes faster changes of L, as a function of the distance » (for explanation
see item 3). Fig. 2¢ shows the value of the difference of levels AL of the reflected
waves as a function of the distance from the source, with absorption coeffi-
cients a = 0.1 and a = 0.6 for two positions of the source. It can be seen that
the rate of changes of AL decreases when the source is moving away, with
their increasing absolute value, i.e., the increase of the absorption coefficient
causes the greater changes the greater is their distance from the source.

Remark 6. With various positions of the source and the constant distance
of the observation point, with identical absorption coefficients on the surfaces,
the reflected waves pressure level is the smaller the greater is the distance of
the sound source or observation point from the boundary surface. Considering
the symmetry of the spatial structure of the network of apparent sources for
a cuboidal space, it is possible to interchange a position of the sound source
and the observation point.
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{ Fig. 3. The reflected waves pressure level Lg, as a fun-
i ction of dijp: dg is marked by a cross; dp— by a small

2 circle; the distance from the source r = const; the
Tt observation point is situated on the longitudinal axis

fog earian wpith g, L of the room; absorption coefficient a identical on all
8 10 72 d min(m] surfaces (a = 0.1)

A change in the position of the sound source and the observation point
does not cause any change in the pressure level of the reflected waves. Important
for L, is the position of the sound source or of the observation point located
closer to the enclosing surfaces and this is shown in Fig. 3 by the parameter
@i, Which is the smaller one of the two values (dg, d,), with

(dgy dp) = V&2 + a2+ 2, (7)

where d; is the distance to three nearest surfaces of the cuboidal space. After
having calculated the distance of the sound source and of the observation
point from three nearest walls the smaller of these values should be assumed
a8 dy,.

Remark 7. Fig. 4 shows a dependence of the reflected waves pressure
level on the distribution of sound absorbing materials. If one of the surfaces
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Fig. 4. The effect of non-uniform distribution of sound absorbing materials on the reflected
waves pressure level Lg, as a function of the distance from the source

Absorption coefficient of one surface much higher than that of the others (a = 0.6, the others a = 0.1 as stated

on the projection); the observation point is situated on the longitudinal axis of the room; the coordinates of

the source 7.5; 12.5; 5.0 m. For comparison Lga(r) has been plotted with a = 0.1 at all surfaces and L'g, for bot
cases
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has the sound absorption coefficient greater than the others, at the equal
distance from the source, the value of L, depends on the position of the obser-
vation point relative to this surface : when » = 12 m, for a point located nearer
the absorbing surface L, is smaller by 0.6 dB than for a more remote point.
The difference between the sound pressures levels of the waves reflected before
and after the change in the absorbing power of the interior is 1.65 dB for the
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Fig. 5. The effect of non-uniform distribution of sound absorbing materials on the reflected
waves pressure level Ly, as a function of the distance from the source r

Surface absorption coefficients ¢ = 0.1 and @ = 0.6 as stated on the projections; the observation point is
located on the longitudinal axis of the room:

(a) the coordinates of the source 7.5; 12.5; 5.0 m.

(b) the coordinates of the source 7.5; 0.5; 5.0 m; in the bottom portion of the graph the course of AL(r)
has been plotted, where AL = Lgog —Lgagi

The values of Lg, calculated by the statistical method for particular case are given
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statistical where .as in the geometrical method, it differs for various directions:
for r = 12 m it is between 0.96 and 1.61 dB.

Fig. 5 shows the effect of the arrangement of sound absorbing materials
on the sound pressure level of the reflected waves at the same position of the
source and the observation point. For comparison the values of L, are calcula-
ted by the statistical method.

Remark 8. Cases “2” and “3” are equivalent in calculations by the stati-
stical method. In the calculations by the geometrical method the difference
between the sound pressure levels of the reflected waves AL for these two
cases varies with r, and this is shown in the bottom part of Fig. da: this dif-
ference varies from 2.64 dB for r = 0.5 m to 0.65 dB for r =12 m.

Remark 9. If the source and the observation point are at equal distance
from opposite walls, then the use of sound absorbing materials on each of
either walls gives the same result in the case of consideration of L, e.g., in
Fig. ba curves “2” and “3” for r = 24 m, L, = const.

Remark 10. For non-uniform distribution of sound absorbing materials
the sound pressure level of the reflected waves may not be the highest at the
source point as is the case of the uniform distribution (Fig. 3, curve “1”). Although
for the source point the sum of distances from the apparent sources is the
smallest, their different “power”, being determined by the distribution of
sound absorbing materials, causes the displacement of the point having a ma-
ximum sound pressure level of the reflected waves towards the surface with
a smaller absorbtion coefficient (Fig. 5b).

Remark 11. Using the statistical method for curves “1” and “2”, it can
be seen from Fig. 5b that a lower level of L, can be obtained by using a material
with a smaller sound absorption coefficient on a larger area (“2”). On the other
hand, basing on results obtained by the geometrical method, it is evident
that for certain parts of the interior it is advisable — from the viewpoint of
reducing L,, — to use on a smaller surface a material with a greater coefficient
(“17). The total absorption for the mentioned curves “1” and “2” is comparable
and amounts to 420 and 460 m?2, respectively.

From the foregoing discussion practical conclusions can be drawn, e.g. from
the viewpoint of the sound proofing protection as regards the efficiency of
using sound absorbing materials on various surfaces depending on the position
of the sound source and the observation point.

All remarks concerning the spatial properties of the field for various distri-
butions of sound absorbing materials point to the occurrence of some directional
features. The directivity of the acoustic field has not so far been defined in
an inobjectionable way in spite of its undeniable significance for the perception
of sounds and the evaluation of the interiors. In the method used the field
at a given observation point is defined by the pressure level of the refleeted
waves, i.e. by a quantity proportional to the energy density. Therefore, an
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approach in terms of power to the directivity of the acoustic field hag been
proposed. Taking into account the distribution of energy in the field of the
reflected waves, the action of an omnidirectional sound source in an enclosed
space can be replaced by the action of a source with a determined direction
-characteristics in free space. In other words, the effect of the system geometry
(the space enclosed by the surfaces with determined abgorption coefficients,
the omnidirectional source, the observation point) on the distribution of energy
in the field of the reflected waves becomes transformed into the directional
characteristic of the sound source radiating in free space. Such approach does
not provide the information about the direction of the energy reaching a given
-observation point, but only about mutual relations of the energy of the wave
reaching various points of the field.

If we have a cuboidal space in which the position of the sound source and
of the observation point are defined and if we have a spatial polar coordinates
system (r, g, 0), whose centre lies in the source point, and thus the coordinates
of the source are (0,0, 0), the coordinates of the observation point (r, ¢, 6)
and the coordinates of the reference point (ry, @q, 0,), then the pressure at
the observation point is p,, at the reference point — p,. The power directivity
of the field is defined by the directivity coefficient of the equivalent source g,

P (

q(r, @, 0) = ];%1 (8)
where P, denotes the power of the omnidirectional source which at the obser-
vation point in a free space produces the pressure p,, P, is the power of the
omnidirectional source which at the reference point in free space produces
the pressure p,. By determining two of the three coordinates of the observation
point one can obtain suitable directional characteristics of the equivalent
source,

Pa("",% ) Pz("’,% 6)
1Pyt = 337, 0,0)" Oz = i 5 0)
pi(r, @, 0)
) e 9
Q( )g-ggnst _’[12(0,0,0)’ ( )

where p is the value of the sound pressure of the sum of the reflected waves at a
point with given coordinates. If for a given observation point (r, ¢, 6) the direc-
tivity index is greater unity, e.g. ¢(¢) > 1, this means that in the direction ¢ more
energy is concentrated than in the direction (r, 0, 6). To put it the other way,
in order to obtain such a pressure level as it is at the point (r, ¢, 0) of the
investigated field, it is necessary to use the source with a ¢ times greater power
than the power of the source permitting to obtain a determined pressure level
at the point (r, 0, ) in the case for which the source would function in free
space. With an arbitrary choice of parameters and of a variable out of (r, ¢, ),
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¢ > 1 means a gain of energy. Figs. 6-8 show — in terms of logarithmic mea-
sures — the determined directional characteristic of the equivalent source,
that is, a directional gain q,

P
q(r, 9, 0) = 10log > = 10logq(r, ¢, 0)aB, (10)
0
that is to say, the directional gain is indicated by ¢ > 0 dB. The omnidirectional
characteristic is represented by a cirele with the power 0 dB; at points located
inside the circle a loss of energy (g < 0 dB) occurs in relation to the reference
point, at points outside the circle there is a gain of energy (q > 0 dB). The
determined points of the characteristics connected by the straight lines do
not show the shape of the characteristic, but merely some tendencies and
regularities. The graphical presentation of more accurate characteristic would
require the determination of a considerably greater number of points than
four, nevertheless within the cuboidal space under consideration one might
not expect larger irregularities (even with the determined four points the in-
terpretation of the characteristic would be possible). To facilitate the inter-
pretation of the characteristic, three groups of cases have been established :

1. the sound source is located at the centre of symmetry of the space,
different absorption coefficients of boundary surfaces;

2. the sound source is located at any point of the space, equal absorption
coefficients of boundary surfaces;

3. the sound source is located at any point of the space, different absorption
coefficients of boundary surfaces.

The presented directional power characteristic of the acoustic field enables
to observe certain regularities of the distribution of energy at various positions
of the sound source and observation point as well as of the distribution of sound
absorbing materials.

Remark 12. The directivity power characteristic undergoes large changes
when the distance between the observation point and the sound source r is
changed. For the same direction ¢ may be smaller (loss) or even greater (gain)
than 0 dB depending on whether the point lies nearer on farther from the
source (of. Fig. 6a: q(p) “2”; Fig. 6b: q(p) “3”).

Remark 13. The directivity power characteristic is affected by the change
in the position of the sound source rather than by the difference in the absor-
ption coefficient value on various surfaces (ef. Figs. 6a and 6b; the scales of
figures differ tenfold).

Remark 14. With the sound source located at the centre of symmetry
of the space (Fig. 6a) power gain and loss amount to no more than 0.2 dB
(in horizontal plane) and are thus insignificant.

Remark 15. The gain or loss of power is greater in the direction in which
the linear dimension of the space is smaller, i.e. for the space under consideration

3 — Archives of Acoustics 478
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Source coordinates: )

1 7Z6; 72.5; 5.0m
(f_ 2 75; 125; 15m
»\ 3 75; 10; 50m

UPl)r05
9=,9”

Source coordinates: (e)
w:%f g 78 12.5; 5.0m «g=x
QF)_35 : § 725; 0.5; 50m 4
8=0 a=06

Fig. 6. The directional characteristics, expressed in terms of logarithmie values of the
equivalent source, defining the directional power properties of the field

(a) The source situated at the centre (;ia stjg&lmetry of t,he spn.ce different surface absorption coefficients
on projecti
(b) The sound source situated at any point of the spn.ce enclosing surfaces with equal absorption
coefficients a=0.1 and a=0.6.
(c) The sound source situa.bed at any point of the space enclosing surfaces with different absorption
cients according to the sketch on the projection

greater changes can be observed on the characteristic g (6) than on the chara-
cteristic q(¢), especially for the source located at the centre of symmetry (Fig.

6a, q(p) and q(0)).

Remark 16. The change in the directivity power characteristics is the
greater the greater is the surface absorption coefficient (Fig. 6b, “1” and “4”)
as well ag the greater are the differences between the coefficient values (Fig. 6a,
“2” alnd “4”).
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The above conclusions should be taken into account at the choice and eva-
lnation of the efficiency of the sound absorbing materials in industrial halls.
E.g. greater possibilities of the arrangement of the energy distribution in the
field are provided by the changes in the proportion size of the region and the
position of the sound source than by increasing the surface absorption coefficient
values.

The power criterion of the directivity of the field should be supplemented
with an evaluation of the distribution of directions of the reflected waves,
e.g. in accordance with Straszewicz [4] suggestion, and then the information
of the field directivity would be complete. The geometrical method of the
field analysis is the only one to provide such possibilities, thus it once again
justifies the advisability of its further evolution.

6. Errors of the presented method

In the presented method of the field analysis there occurs an error in eva-
luating the pressure level value of the reflected waves which results from the
limitation of the order of considered reflections. Apart from the errors resulting
from the adopted simplifying assumptions, the errors of the “limited order”
give quite large changes in the pressure level of the reflected waves; the diffe-
rence in the pressure level of L, calculated for the seventh and tenth order
with the absorption coefficient a = 0.1 on all surfaces is 1.04 dB. However,
it should be remembered that the error of the “limited order” is common for
all the results, that is, all calculated values of the pressure levels of L, are too
small in relation to the real ones, if the other sources of errors would be disre-
garded. It is an essential fact that the increase of energy at the observation
point due to considering the source of higher orders is almost the same for
various points of the field and this is caused by the occurrence of large distances
and small powers of the sound sources. Of course, the smaller are the “powers”
of the sound sources, i.e. the greater are the surface absorption coefficients,
the smaller are the errors of the “limited order”. For the calculated cases, for
which the absorption coefficients are small (¢ = 0.1, a = 0.6), these errors are
large, but considering their regularity the conclusions drawn from the calcula-
ted spatial distribution of the pressure levels of L, can be considered to be
right.

7. Conclusions

The use of computers in the geometrical analysis of acoustic field has
enabled us to find the properties of the field which differ from the ones
obtained by the statistical method, e. g. the variability of the pressure level
of the reflected waves as a function of the distance from the source; also with
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the use of the statistical method one cannot e. g. prove the dependence of L, on
the distribution of sound absorbing materials. The proposed power criterion
of the field directivity, as also the conclusions resulting from the spatial distri-
bution of energy in the field of the reflected waves (Remarks 1-16) can find
an important practical application and this motivates the advisability of the
work on developing the geometrical method of field analysis.
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TEMPERATURE AND PRESSURE CHANGES OF THE “COLLISION FACTOR”
IN SCHAAFFS® MOLECULAR-KINETIC THEORY OF WAVE PROPAGATION IN LIQUIDS
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Institute of Physics, Silesian Technical University,
44-100 Gliwice, Krzywoustego 2

Expressions have been derived which describe the pressure coefficient
and temperature coefficient at constant pressure and volume of the “collision
factor” s which determines, in Schaaffs’ molecular-kinetic theory, the values
of the velocity and attenuation coefficient of ultrasoniec waves propagating in
liquid. The values of the former coefficients have been determined for homolo-
gous series of saturated hydrocarbons, alkyl iodides, and benzene derivatives.

1. Introduction

According to Schaaffs’ molecular—kinetic theory [4], p. 253, the wvelocity
of ultrasonic waves in liquid is determined by the space filling and the elasticity
of molecular collisions and is expressed by the formula

W = Wy, 87, (1)

where w is the propagation velocity of ultrasonic waves, w, — a constant
coefficient equal to 1600 [m/s], 8 — collision factor (Stossfakior) determining
the elasticity of the collisions of the molecules of the liquid, » = BV, B being
the specific volume of a mol of molecules, and ¥V — molar volume of the liquid.
The value of the collision factor s determines also the attenuation of ultra-

sonic waves in liquid. According to Schaaffs ([4], p.437) the attenuation coeffi-
cient of ultrasonic waves in non-relaxation region is expressed as

a 4—s

e a O @
where a — attenuation coefficient, v — wave frequency, ¢ — constant coeffi-
cient determined by Schaaffs and equal to 1.1 x10-'3[s2/m]. Thus the tempera-
ture and pressure dependencies of the collision factor define the corresponding
relations for the attenuation coefficient of ultrasonic waves.



268 E. SOCZKIEWICZ

2. Temperature dependence of the collision factor

Schaaffs, Kuhnkies and Woelk [5] have demonstrated that the temperature
dependence of the collision factor in some liquids can be expressed by

=l £ 3
s (*962)’ (3)

where T is the absolute temperature.
Sette [6] (cf. also [1], p. 247) has shown, using Rao’s rule expressed in the
form

w'V = const. (4)
and the Sugden formula for the dependence of the density of liquid on tempera-
ture

T 0,3
—t-a(i-7) )

4]

where o is the demsity of the liquid, 3 — the density of saturated vapour,
oo — the density at absolute zero temperature, T, — the critical temperature,

that
T 0.6
0,

where K is a constant characteristic for the given liquid and depends, among
other, on g,.

In the present paper, temperature coefficients of the collision factor at con-
stant pressure and volume have been determined using the generalized Rao’s
rule ([4], p. 281)

w'™ V = const., (7)

where the exponent 6/n is individual for each liquid, and from the Kuczera
[2] formula for temperature coefficient of ultrasound velocity at constant

volume

1 {ow 7
—1am =y (8)
w\dT|, 6

where y is the bulk coefficient of expansion of liquid at constant pressure.

It follows from (1) and (7), after simple calculations, that

1/0s n
E(af)p: (1_ E) A iy
and from (1) and .(8)
1(0s 7 :
o) = 57 -
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Table 1 summarizes temperature coefficients (1/s)(ds/0T), and (1/s)(ds[0T);
of the collision factor caleulated from the above formulae for homologous series
of saturated hydroearbons, alkyl iodides and benzen derivatives. The expo-
nents 6/n have been determined from the relation implied by Rao’s rule (7)

1[/0w n 11

w?! T p—- E"V: (11)
and using the data from Landolt-Bornstein Tables [3] and the data of Ber-
gmann ([1], p. 235).

Table 1. The values of temperature coefficients of the collision factor (1/s)(ds/dT), and
(1/8)(98/0T)p determined from equations (9) and (10)

Substance yx10°[K~1] n o i(la—s) x 103 l(i) x 108
s \oT » o
n-pentane 161.00 19.20 354.20 187.80
n-hexane 135.00 16.86 244.30 157.50
n-heptane 124.40 17.30 234.30 ’ 145.10
n-octane 114.00 17.36 215.90 133.00
n-nonane 102.00 18711 205.90 119.00
n-decane 101.50 17.43 193.30 118.40
n-dodecane 96.20 17.77 188.90 112.20
n-tetradecane 89.40 18.58 187.40 104.30
n-hexadecane 80.00 19.32 177.70 93.80
methyl iodide 125.00 17.28 234.90 145.80
ethyl iodide 116.90 17.10 216.80 136.40
propyl iodide 109.50 Al 202.70 127.70
butyl iodide 102.00 15.65 164.10 119.00
benzene 123.00 19.12 269.00 143.50
fluorobenzene 116.00 18.14 234.70 135.30
chlorobenzene 98.00 17.57 188.90 114.30
bromobenzene 90.30 17.12 176.40 105.30
iodobenzene 83.00 17.40 157.70 96.80

3. Pressure dependence of the collision factor

It follows from thermodynamic considerations that the temperature coeffi-
cient of the ultrasound velocity at a constant pressure can be written in the
form

(@'W) _ O(w,p)  d(w,p) (T, V) (12)

aT),  (T,p)  I(T,V) 0(T,p)’
where d(w, p)/o(T, p), d(w, p)[0(T, V), and o(T, V)/o(T, p) are the respective
jacobians.

By specifing relation (12) one obtains

sice, Y i BOY . B
(ﬁ){ (ai")f ap)T Yy )
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since (0p/0T)y = y|Br, where f; is the isothermal coefficient of the compressi-
bility of liquid. By combining equations (1), (8), (11), and (13) one obtains an
expression for the pressure coefficient of the collision factor:

1/0s n-+1

o)
Table 2 presents the values of coefficients (1/s)(ds/dp)r calculated from

equation (14). The values f, refer to normal pressure and have been calculated
from the formula

»®
Pr = - 5 (15)
where x is the ratio of the specific heats at constant pressure and constant
volume, calculated from (1) and (7),
Tyiw?

Cp

% =1+

) (16)
where ¢, is the specific heat at constant pressure per unit mass of the liquid.

Table 2. The values of coefficients (1/s) (9s/dp)r at 293 K from equation (14)

Substance B x 101 [m2/N] l(%) % 101 [m?/N
s\dp/r
n-pentane 210.80 71.00
n-hexane 157.17 54.60
n-heptane 142.61 43.50
n-octane 124.10 38.00
n-nonane 112.50 35.80
n-decane 115.562 35.50
n-dodecane 95.46 29.90
n-tetradecane 88.04 28.70
n-hexadecane g 84.77 28.70
benzene 94.86 31.80
fluorobenzene 94.54 30.20
chlorobenzene 80.44 24.90
bromobenzene 65.48 20.40
iodobenzene 59.51 18.30

4. Conclusions

It follows from an analysis of Tables 1 and 2 that:
(a) The collision factor decreases with temperature increase if heating is
carried at a constant pressure since the derivative (0s/dT), is negative. In the

homologous series the values of (1/s)(0s/0T), decrease as the number of the
homologue grows.
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(b) The collision factor increases with temperature increase if heating is
carried at a constant volume sinee the derivative (ds/0T), is positive. In the
homologous series the values of (1/s)(ds/éT), decrease as the number of the
homologue grows.

(¢) The collision factor grows with pressure increase and the values of coeffi-
cients in homologous series decrease as the number of the homologue grows.

Schaaffs formula (2) as well as relations (9) and (14) derived in this paper
make it possible to calculate temperature and pressure coefficients of ultra-
sonic wave attenuation. In the case of benzene derivatives the calculated coeffi-
cients are only in qualitive agreement with experimental data. This problem
was treated in detail elsewhere [8].
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The measurements of hypersonic wave propagation velocity in the fre-
quency range 2-7 GHz and ultrasonic wave absorption coefficient in the fre-
quency range 10-60 MHz in thiophene have revealed the existence of two
relaxation regions associated with vibrational specific heat: the first one asso-
ciated with the first mode (»;) of molecule vibrations and the second, associated
with the remaining modes excluding the first one. It follows from the experi-
mental values of hypersonic wave absorption coefficient that the bulk viscosity
coefficient in this frequency range 7, . exceeds by a factor 2.5 the laminar
viscosity coefficient 7.

1. Introduction

The results of previous investigations of vibrational relaxation in simple
organic liquids such as benzene, toluene, thiophene and the like were analysed
in terms of a single relaxation process [9,10]. This approach was primarily
based on the data on the ultrasonic wave absorption coefficient. On the other
hand, Hunter [56], who measured the values of ultrasonic wave absorption
coefficient using pulse technique and the values of hypersonic wave propagation
velocity by stimulated Mandelstam-Brillouin scattering, came to a conclusion
that there exist two relaxation processes in benzene: the first one associated
with the specific heat of all types of vibrational modes except the first mode
and the second — associated with the specific heat of the first mode Takagi
[13] came to similar conelusions on the basis of the data on hypersonic wave
propagation velocity in benzene in the frequency range 2-5 GHz.

In his theory Hunter [5] argues (cf. also Kleszezewski [6]) that the results
based on the measurement of ultrasonic wave absorption coefficient do not
include relaxation of all vibrational modes since the assumption of a single
relaxation time leads to the description which is inconsistent with the results
of velocity measurements in hypersonic range (Mandelstam-Brillouin scattering).
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A consistent interpretation of the results on ultrasonic absorption and
hypersonic wave propagation velocity is feasible in terms of two relaxation
regions.

Beste [1,2] attributes the relaxation process in the vapours of benzene
and of its derivatives, i.e. in C; Hy F, C; H; Cl, C; H;Br, C;H; J to the specific
heat of a vibrational mode of the lowest frequency. From the determined mean
collision time he determines the transition probability for vibrational quanta.
This probability decreases with an increase of molecule vibration frequency [2].
Each vibrational mode can be associated with a single relaxation time. How-
ever, ultrasonic measurements reveal the existence of a single relaxation process,
also in the case of compound molecules. In the case of a continuous excitation,
such as at generation of acoustic waves in the medium, a strong coupling of
the modes occurs. Therefore the relaxation process will proceed through exei-
tation of the modes of the lowest frequency. The relaxation time of these modes
and their frequency both decrease with an increase of molecular weight [2].

The present paper describes the investigations of thiophene in the range
of hypersonic frequencies. The measurements of hypersonic wave propagation
velocity made it possible to draw conclusions on the nature of vibrational
relaxation in thiophene.

The measurements of ultrasonic wave absorption coefficient in thiophene,
shown in Fig. 1, indicate that in the frequency range 20-5000 MHz a single
relaxation process occurs with a relaxation time 7 = 5.7 x10-1%s.

These results made it possible to determine the acoustic relaxation eon-
tribution to the vibrational specific heat, amounting to C,, = 35.58 J(mole-deg).
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On the other hand, the analysis of the results of the investigations of mole-
cular spectra and the Planck-Einstein formula

(hv; [RT)*
Cose = 29’1 glpiﬂgr(::‘_ o WilkT ) ’ (1)

where g; is the degeneracy multiplicity, h — the Planck constant, & — the
Boltzmann constant, T — the absolute temperature, »; — the i-th frequency
of molecule modes, makes it possible to calculate the part of specific heat.
associated with intramolecular oscillations O,,. The frequencies of vibrational
modes for thiophene [12] are summarized in Table 1.

Table 1. Wave numbers of vibrational modes in thiophene [em~—!]

Y1 ' L vy \ Vg | Vs I Vg | Vs | Vg Vg Y10 1 " l Y12 Y13 Y14

450 : 603 | 710 ‘ 748 l 832 ’1031 ] 1078 l 1250 | 1357 | 1408 | 1588 , 1773 | 2998 | 3110

The value for thiophene calculated in this way equals to C,, = 41.149
J/mole deg. The difference U5 — Cy = 5.5674 J/(mole. deg). Thus, a past
of the specific heat is associated with relaxation at a higher frequency. Following-
the Hunter’s assumption this is the frequency of the first type of vibrational
mode, which in thiophene amounts to », = 450 m~' (13.56-10*2 Hz). The
specific heat for this type of vibration amounts to C,, = 5.599 J [(mole -deg),
and thus equals to the difference Oy, — C.

The aim of the paper was thus to find the second relaxation range in the
range of high frequencies, corresponding to the first type of vibrational mode »,.

2. Theory

The general form of the velocity dispersion equation for a single vibrational
relaxation process [4] is

1,,,‘zvﬁ{l;cjf.—o,, A } &

Gp Gu_'ooac 1'+‘(flfr)2

where O, is the specific heat of all types of oscillation modes, caleulated from
(1), » — acoustic wave propagation velocity, v, — acoustic wave propagation
velocity for f—0, f — frequency, f, — relaxation frequency, 0, — specific heat
at constant pressure, ¢, — specific heat at constant volume.

The value of the velocity at the highest frequencies follows from equation
(2) under the assumption f » f,. Then

io — o Ov(cp"'coac) 3),

. : Op(ou—cow) '
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On the other hand, if the process is deseribed by two relaxation times, one
can write [13]

—O, Gy
¢, ©0,—C 1+(fIff

cp_cv 4 0, N 0, - (flfz)z
OP 01:_01 Gu_Gusc 1+{flf2)2

where C, is the past of the specific heat associated with the relaxation at the
frequency f,, C; — the part of the specific heat associated with relaxation at
the frequency f, > f,, whereas C,, = 0;+Cs.

The theory of double relaxation, proposed by Hunter, assumes that the
first type of vibrational mode is associated with relaxation at a higher frequency
f» and the remaining types of modes-with relaxation at a lower frequency f;.

If two relaxation processes are sufficiently separated on the frequency scale,
one can write an expression for the intermediate velocity values expected
above the frequency corresponding to the process of first single relaxation.
By virtue of equation (4) we have

vg_v§{1+ O +

_|_

ho@

c,(0,—0)
- ,va vA\~p 17 1 5
‘vi 0 OP(CB—CI H ( )
while, in region f =~ f,, equation (4) assumes the form
vi—v 4
LR Ty A
Fm mity) ®

It follows from this equation that the dependence of (v} —u})/(v; —v®) on
f? is a straight line with a slope (1/f}). This relation makes it possible to esti-
mate the first relaxation frequency f;.

A similar equation for higher frequencies,

Voo—V; Ty
o m1+(ﬁ), (1)

makes it possible to determine f,.
The relaxation forces which are a measure of the influence of vibrational
degrees of freedom are determined [13] by the relations

vi—9 0,—0, €
. g . 4 0,0,
’Dgo b ’Di Gp o C!} 02

=z ot » 9
e T M - )

'U]_=

respectively, for particular relaxation processes.
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3. Experiment

The hypersonic wave propagation velocity was determined from the shift
of the components of the fine structure of the light scattered in the Mandelstam-
-Brillouin scattering process. The detection of light scattered at any angle
mode it possible to measure the hypersonic wave propagation velocity at
various frequencies. The measurement system is shown schematically in Fig. 2.

2
EE_:__ b; 1 - Laser He-Ne 6328 A., power 20 mW
B 2 - Lens of F=267 mm
L s 3 - Measuring tank
ezl g 4 - Water jacket
e o | 5~ Thermistor
& - Polaroid
7- Lens of £=236 mm
10 8- Gap

9— Interferometer Fabry-Perot
10~ Telephoto lens of F=400mm
0. __SONT M - Camera

Fig. 2

The hypersound velocity was determined from the formula

Ave A

~ 2npsing/2’ G

where Ay is the change of light-wave frequency in em-*, 0 — the velocity of
light, 2 — wave length of the light, n;, — refraction index for light, & — scat-
tering angle.

The hypersound velocity was measured with an accuracy of 1°/,. The
exposure time of photographic plate was about 1.5 h. The distance between
the mirrors of the Fabry-Perot interferometer was fixed at d = 10 mm. The
registered spectrum of scattered light was scanned photometrically using an
automatic ITFO 451 microphotometer. The investigated liquid specified as
analytically pure was additionally distilled twice. The temperature of the
liquid was kept constant with an accuracy of 0.1°C and monitored using a pla-
tinum temperature sensor.

The measurements of ultrasonic wave absorptlon coefficient in the range
10-60 MHz were performed using the US-4 High-Frequency Set manufacture

by the Institute of Fundamental Technological Research of the Polish Academy
of Sciences.

4 — Archives of Acoustics 4/78
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4. Experimental results and discussion

The results of measurements of hypersound velocity in thiophene at f =
20°C are summarized in Table 2.

Under the assumption of a single relaxation time the relation »* = f(f)
was plotted (Fig. 3). The values of the velocity of ultrasonic wave propagation
at the lowest frequency v, was obtained from (2) and the values of the velocity
at the highest frequency v, from (3). The value of relaxation frequency was

Table 2. The results of the measurements of
the shifts of MB components and the velocities
of hypersounds

6 | avfem] | f1GHZ] |0+ Av)[m fs]

33.5° 0.0668 2.0 1439 £ 15
44.0° | 0.0867 2.6 1449 116
56.5° 0.110 3.3 1450 4-14
89.5° 0.1656 5.0 1460 414
120.5° 0.2042 6.1 1465 414
145.0° 0.2260 6.8 1471 +15

v

174702
14602
14502

14402

14302

14202}
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assumed to be f, = 280 MHz on the basis of the relation a/f, = f(f?) presented
in Fig. 1. The data from Table 3 were used. -

The theory of double relaxation made it possible to determine relaxation
frequency f, in the high-frequency range from the dependence of (02, —17)
(v3, —2*) —1 on f2.

By making use of equation (4) the theoretical relation »® = f(f) was plot-
ted assuming double relaxation. Both theoretical relations v* = f(f) for the
single and the double relaxation processes, together with experimental points
are presented in Fig. 3. The location of experimental points (with measurement
error taken into accuont) indicate the existence of two relaxation processes
in thiophene; one associated with the specific heat of all types of vibrational
modes except the lowest mode and the second associated with the specific heat
of the lowest mode. The relaxation times of these two processes are 7, = 5.7 ;
107" s and 7, = 42-107' 5, respectively.

The relaxation parameters in thiophene, deduced from equations (7 5 (9)
and (10) are summarized in Table 4.

Table 3. Static and vibrational specific heat for thiophene

. | I o 0
T Cp f 05( Jl ;
OG J‘ ——
€l Sl mol deg 11101 deg] [mol deg]
: mol deg 11301 dcg
- i ~ } =
20 ‘ 125.106 ‘ 84.319 E 41.149 l 35.550 1‘ 5.599

a) — from [8], p. 528; b) — from the ratio CplCy = 1.46 cited in [11].

Table 4. Relaxation parameters in thiophene
(a)

|
LEC] ; v [m /8] v;[m/s] Veo[m /5] ’
J

20 | 1296 ! 1437 1478

1600 | 22
(b)
TIC] |[AMHZ)|  ny [fyM n
20 ’ 280 0.187 ‘ 3800 ‘0.0543

5. Conclusions

The results of the measurements of hypersonic wave propagation velocity
and ultrasonic wave absorption coefficient in thiophene reveal the existence
of two relaxation processes. A comparison of the values of the specific heats
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obtained from an analysis of the results of the investigations of molecular
spectra (C,,) and the values obtained from acoustical measurements (Cgy)
indicates that the first relaxation process in the range of ultrasonic frequencies
is associated with the specific heat of all types of vibrational modes except
the lowest frequency mode »,, whereas the second one is associated with the
specific heat of the lowest frequency mode.

The existence of the second relaxation process in thiophene is confirmed
by the value of the ratio of bulk viscosity coefficient at hypersonic frequencies
fpo 10 the laminar viscosity coefficient 7,. The bulk viscosity coefficient has
been determined from the formula

. (11)

( g) 27 (49 /3 + 7y, 00)
fz 0o Qvg

It has been assumed [11] that (a/f%), = 22-107" [m~' "], laminar visco-
sity coefficient 7, = 664-107° [m~' kg s~'], density o = 1.0644-10° [kg/m’];
v, = 1296 [m/s]. All above values refer to t = 20°C. The value of 7., cal-
culated from equation (11), makes it possible to estimate the ratio /7,
which turns out to be 2.5. This is greater than unity and thus indicates the
existence of a relaxation process in the hypersonic range. Its character has
been described above.
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CORRELATION FUNCTION DETERMINATION FOR INHOMOGENEITIES
SCATTERING AN ACOUSTIC WAVE

JOZEF LEWANDOWSKI

Department of Physical Acoustics, Institute of Fundamental
Technological Research, Polish Academy of Sciences (Warsaw)

A random inhomogeneous isotropic medium filling a domain immersed
in an infinitely extended homogeneous isotropic medium is considered. The
formulae describing the scalar potential of the scattered field are deduced for
small and large distances from the domain of the heterogeneous material.
The fluctuations of density and wave propagation veloeity (and also pressure
in the case of a nonviscous emulsion) are treated as random variables of the
space coordinates. The correlation funetion is calculated from the appropriate
farfield solution and expressed in terms of a scalar potential for the angular
distribution of the scattered wave. This general method is adapted for a non-
viseous random emulsion and the correlation function is expressed in terms of
the intensity angular distribution of the scattered wave.

List of symbols

¥’ — domain filled by the inhomogeneous medium
8’ — boundary of the domain V7’
r — position vector

p(r,t) — sealar velocity potential of an acoustic wave

gs and g,(r) — density of the homogeneous and heterogeneous medium, respectively

¢; and ¢,(r) — wave veloeity in the homogeneous and heterogeneous medium, respectively
{A> — mean value of a quantity 4

G4 (r) = A(r) — (A (r)) — fluctuation in a quantity 4 at a point »

y(#) — autocorrelation function (called shortly correlation funection)

L, — correlation length

B — volume concentration of the grains
F — equilibrium value of a quantity F
AF — acoustic disturbance of a quantity F
o — angular frequency

a — amplitude of oscillations

n  — unit vector in the direction of propagation of the incident wave
6 — angle of seattering

p  — pressure

7 — kinematic viscosity

I, - intensity of the incident wave

Iy, — intensity of the scattered wave
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1. Introduction

Several authors [1, 2, 5, 6] have considered the problem of finding the
secattered intensity and the scattering cross section in a random inhomogeneous
isotropic media from the incident acoustic wave and the correlation function [4].
In these previous works the scattering intensities have been calculated from
the appropriate farfield solutions, and the results have been expressed in terms
of correlation functions. The purpose of the present paper is to solve the inverse
problem of determining the correlation function from the angular distribution
of the acoustic field of a wave scattered in a random inhomogeneous isotropic
medium. The inverse problem under consideration is the analogue of the light
scattering problem discussed by Debye and Bueche [4].

In the present paper we start with the differential equation of motion for
the scalar wave p(r,t) in a heterogeneous medium, where the wave velocity
¢o(r) is a function of the position vector » and is independent of the time 1.
As a result we obtain an integral expression for the scalar scattered wave
Yoo (7, ). With the help of the correlation function [4] and use of the Fourier
integral transformation for odd functions we obtain, in the farfield approxi-
mation, a rather simple integral formula expressing the correlation function
in terms of |y (7, 1)|*)> or (| Vyg (7, )[*> and of the angle of scattering § where
{*> denotes an average. Next we consider the special case of acoustic wave
geattering in nonviseous emulsions. For this case we obtain an integral formula
expressing the correlation function in terms of the scattered intensity and the
angle of scattering. :

2, Basic assumptions and auxiliary notions

In discussing the problem under consideration in this paper, the random
heterogeneous isotropic material filling domain V" is assumed to be immersed
in an infinitely extended homogeneous isotropic material of density g,, where
the wave velocity ¢, is known and satisfies the following inequality:

[L—(ealea () =1 —[L+ (e0(r) —05)fe] | < Lloo(r) —05lfe} <1. (21)

Inequality (2.1) enables us to write with first order accuracy in

(00("“) _Gs) Jo, = (600(") +{Go(T)) — Ga) [¢s
the relation

U(r) =1—(efeo(r))® = U (r))+ 8T (r), (2.2)
where

U(r) = 2(eo(r)—¢,)[es) (2.3)
and

8T () = 2(eq(1) — {oo(7))) e (2.4)
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Furthermore, it is assumed that

KT (7)) < 180 (r)] <1 (2.5)
and

lesCs — go(7) co(7)| /0505 < 1, (2.6)

where p,(r) is the density of the medium filling domain V'.

The subsequent discussion uses a reference system with the origin at some
convenient point of the domain V'. It is assumed that the volume V' of the
domain filled by the inhomogeneities satisfies the inequality

(Vs L, (2.7)

where L, is the correlation lenght of the random inhomogeneities. The structure
of the heterogeneous material filling the domain V' is deseribed with the help
of the correlation function y g (r; —7,) which determines the manner in which
the fluctuation A in a quantity A4 at a given point r, is correlated with that
in another quantity B at a point r,. The fluctuation 6F(r,) in a quantity F
at a point », is given by the formula

OF (1g) = F (1) — {F(1)). (2.8)
‘When the material is isotropie, y,p(ry—7,) is a function of |r;—r,| and

is independent of direction. The correlation function y,z(r;—,) for an iso-
tropic material is defined [4] by

{84 (r1) 6B(73)) = yp(2) (04 (r,) 0B(ry)), (2.9)
where
X =1r—r. (2.10)
By comparing this equation with the condition
lim (04 (ry) 0B(r,—=)) = (34 (r,)0B(r)) (2.11)
and defining the correlation length L, by
lirél (8A (1)) 6B(ry—x)> = (BA(r)6B(r))/e, (2.12)
Wty
we obtain:
limy, g(@) =1, limy (@) =1le (e = 2.718...). (2.13)
x>0 z—+Lg

Formulae (2.9) and (2.13) are also applicable in the case of B being the
~ pame quantity as 4. Then

(8A () 0A (r — =)y = (6A(0)6A(x)) = y(w){(d4(r))® (2.14)

and y(z) is called the autocorrelation fumction. y(x) measures the degree of
correlation between the fluetuations at two points as a function of the distance
of their separation.
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The heterogeneous material considered is assumed to be a two-phase ma-
terial. One of the phases consists of isolated grains randomly distributed in
the matrix of the other phase in the domain V'. The fluctuations 484 (r),
dB(r), ... in quantities A4, B, ..., respectively, are the result of fluctuations
3p(r) in the volume concentration f(r) of the grains. For 44 (r) we have:

SA(r) = (M(ﬁ)) 8 it B <1. (2.15)
8 Jp=o
Substituting equation (2.15) into (2.14) we obtain
9A\?
(BA(0)34 (@)> = y(@) (a—ﬁ)ﬁ (3) (2.16)

It can be verified that

0A 0B
wam@y =0 (55) (55) <omm. @an
0B lg=o\ 0B |30
Thus the autocorrelation function y(z) is adequate to describe all correla-
tions if the fluctuations 84 (r), 8B(r), ... can be expressed in the form of equ-
ation (2.15). In this case an average of the type {44 (0) B (2)> can be also re-
duced to the mean-square fluctuation {(48)?). As a result of the asumption
(2.7) we have on the boundary 8’ of the domain V':
dy ()
V(@) zesr = 0, ——; =0. (2.18)
m xes!
The acoustic wave under consideration in the present paper are assumed
to be monochromatie, i.e. all the acoustic disturbances AF(r,?) associated
with the waves at a given point » are simple sinusoidal functions of time of the

form

AF(r, t) = éconst(r), AF =F-F, (2.19)

where o is the angular frequency of the wave and F is the equilibrium value
of a quantity F. It is assumed that

|AF(r,t)[F(r)] < 1. (2.20)

3. Angular distribution of the scalar scattered wave

The existence of a velocity scalar potential y(r,?) for an acoustic wave
in the heterogeneous medium under consideration is postulated. The equation
of motion for the scalar potential y(r, t) is postulated [7] to be

oty(r,t)

e (3.1)

Vigp(r, t) = (¢(r"))
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where i = 0 if » is within the domain V', i = ¢ and ¢,(r) = ¢, = const it * is
outside the domain V' or on the boundary & of V.
By substituting

p(r,t) = tp(’l")e‘"" = ‘P(r)ﬂ‘kscs‘r k, = wle,, (3.2)
we obtain the equation

(V2 +E)p(r) = K U(r)g(r), (3.3)

which the function @(r’) must satisfy. U(r) is given by formula (2.2); U(r)
being different from zero only if » is within the domain V’. Furthermore, the
scalar potential y(r, t) is taken as the sum of a monochromatic travelling plane
wave (primary or incident wave) with another one superposed (called the
scaltered wave).

The problem formulated above, of calculating ¢(r) when k, and U(r) are
known, is the same, apart from the factor % on the right-hand side of equation
(3.3), as the quantum mechanical problem of finding de Broiglie waves connected
with the stationary elastic scattering of spinless particles. On using a suitable
method (e.g. a Green’s function method) [3], the solution of equation (3.3)
is found to be

(P(’l‘) a e‘ksvr'i'tpm(r): ks - ksn! (34)

where n is the unit vector in the direction of propagation of the incident wave
¢™s™. The incident wave is the solution of equation (3.3) for U(r) = 0. Assum-
ing that

™™ > |@go(r)], (3.5)
we obtain for the sealar potential of the scattered wave the formula
Peo(T) = (L[r) A (r)e™s", (3.6)
where
i3 r pileg ' Jikg(lr—r'|—7)
Amy=--2 | ety dsr, (3.7)
im > r—r

the integration being over the volume of element
AV’ = @*r' = da’ dy’ dz’

in the scattering domain V’. By = we denote the position vector of a point
within the domain V', while by r — the position vector of an “observation
point” (r may be within the domain V' as well as outside this domain). The
additional assumption of the “farfield” approximation

k,(r)22r €1, || < r|, (3.8)
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enables us to write the expression for A(r) as

Bk k: n AH ’
A = - J' U (r') 65" @, (3.9)
where
K =[n—(r/r)]k,, K = 2ksin(0/2), (3.10)

6 being the angle between the vectors r and k, (the angle of scattering). Con-
dition (3.8) means that we are considering only the solution valid outgide the
domain V' at large distances r from the inhomogeneities.

Assumptions (2.1), (2.5) and formulae (2.2), (2.3), (2.4), (2.15) enable us
to write, with first order accuracy,

OE)TEDy = U 8T (1)) = y@) (0T (1)), @ =m—1, (3.11)

where

(BT ) = (Z—g :_0<(6ﬁ)’> it f <1 (3.12)
From (3.6), (3.9), (3.10), (3.11) it follows that
(rul =2 [y@d=drar, 8.13)
where 6
B = k(60 (r"))%) 1672, (3.14)

By introducing the new variables
o = (%o Yo» %) = 11— &[2 = 1, +2[2,

the integrations over @, ¥,, % and over all directions can be performed. Per-
forming these integrations (K being the polar axis), and using the Fourier
integral transformation for odd functions, we obtain:

g in K.
»(@) = (r2/2n2BY) f gD E2 s’;mmdﬁ. (3.15)
0
Using (2.13) and the well-known formula
NG i R (3.16)
0 x s
we obtain finally
3 sin K F =
yia) = [ [y B2 2 || [CouiErar [, 30
0 1]

o = const, r = const.
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Using formulae (3.6), (3.9), (3.10) the expression for Vg, (r) can be found.
Finding this expression and performing the same mathematical operations
which had given equation (3.17) from equations (3.6), (3.9), (3.10), we obtain
finally

sin Ko
Kz

y(@) = [f(IV%t"‘>K2 dK]-[f<{v¢,c|2>K=dK]", (3.18)

o = const, r = const.

Formulae (3.17) and (3.18) permit us to determine the correlation function
y(x) from the angular distribution of the scalar potential and the gradient of
the scalar potential of the wave scattered by a random inhomogeneous isotropic
medium, respectively.

4. Angular distribution of the intensity of the acoustic wave scattered
by a nonviscous emulsion

The case of a nonviscous emulsion will be considered as an example of a two-
-phase random heterogeneous material filling the domain ¥'. In the present
model an emulsion is considered as a mixture of two chemically non reacting
and nonviscous fluids, one of which is not soluble in the another. One fluid
is coherent and volumetrically dominant and the other is dispersed in the
forms of grains randomly distributed in the matrix fluid. The fluctuations
dey(r') and

Bo(1') = Bo(r') — @o(r')> (4.1)

(where g, (') is the equilibrium value of the density g,(r’) within the domain V')
are the results of fluctuations 8 in the volume concentration § of the grains.
In accordance with the basic assumptions of the present paper, the emulsion
filling the domain ¥’ is assumed to be immersed in an infinitely extended fluid
of density g,, where the wave velocity ¢,(r) = ¢, = const is known. It is
thus also assumed that inequalities (2.1), (2.5) and (2.6) are valid. Furthermore,
it is assumed that

|800(1")] /<00 (')) < 1. (4.2)

The linearized acoustic equations of the system under consideration may
be obtained from the general equations of flow, by omitting all the higher order
terms in small acoustic disturbances. The acoustic disturbances under consi-
deration in the present paper are assumed to be the periodie fluctuations, of
the form given by equations (2.19)—(2.20), in the density Apo(r,?), pressure
Ap(r,t) and the velocity »(r,t) of the liquid about the equilibrium values

o(r,t) =e(r), B(r,1) =p, =const, wv(r,i)=0, (4.3)
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respectively. The fluctuations are assumed to be adiabatic, i.e.

do(r,1)
dt
subject to the rules given under equation (3.1) for ¢ = 0 or i =3s.

It is assumed [1] that the equations of flow in the case under consideration
have the following form:

)
2D

’ (4.4)

—‘—I%—{— o(r, )ydive(r,t) =0, (4.5)
s Dy vy <o (4.6)

dt

In order to determine the range of applicability of the nonviscous emulsion
approximation given by equations (4.5) and (4.6), we have to introduce appro-
priate dimensionless variables into Navier-Stokes equation. In this way it
can be verified that the nonviscous emulsion approximation is justified if

Liw/n » 1, Lloo(r')>[n> 1, 2n{e(r'))[e > a, (4.7)

where 7 is the kinematic viscosity and a is the amplitude of the oscillations.
Combining equations (4.4), (4.5) and (4.6) we obtain [1] the first order acoustic
-equation
0* dp(r, 1)
a2
where ¢;(r) = ¢,(r') and VIng(r) # 0 if r is within the domain V', and ¢;(r)
= ¢, = const and VIng(r) = 0 if » is outside the domain ¥’ or on the boundary
of V.
By substituting

VE(dp(r, 1) = (o(r))~* +VIng(r)- V(dp(r, 1)), (4.8)

Ap(r,t) = Ap(r)e'™t = Ap(r)e™sd, (4.9)
we obtain
(V2+K;) Ap(r) = kg Uy(r) Ap(v), (4.10)
where U,(r) is given, to the first order, by the expression
Up(r) = U(r)+(1/k5 < (r))) V(da(r)- V, (4.11)

k, and U(r) are given by formulae (3.2) and (2.2), respectively.

The pressure disturbance Ap(r,t) is taken as a sum of a monochromatic
travelling plane wave (the incident wave) P,e““"**" gsuperposed on another,
called the scattered wave, Ap,(r)e’. Thus the solution of equation (4.10)
is taken as

Ap(r) = Pye™s™ 4 Ap,,(r). (4.12)
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The incident wave Pye™s™

of U,(r) = 0. The assumption
|4pgs (1)] < |Pye™s™| (4.13)

is the solution of equation (4.10) for the case

leads to
Apgy (1) = (1[r) 4, (r) ™", (4.14)

where A, (r) is given by formula (3.7) if U(r) is replaced by U, (r), and ¢™s -
is replaced by Pye™s”. Using the assumptions (2.1), (2.5), (2 6), and (3.8),
we arrive at the approximate (to first order) integral expression

C_BP, (. o) ik, iy 5
4,(r) ==~ f[z o Gk V(é@('r))]e ddr, (4.15)

Vf

where K is given by formula (3.10). These same assumptions together with
the assumptions of (2.18) and formulae (2.16), (3.11) and (3.12) enable us to
write, with first order accuracy,

B .
Upe )1y = =2 [ y(@)o o, (4:16)
7

where

ks Py V' aco(r)) k- K (aatr')) ]
i o 2 , (417
» = g m>[ ( ST RGN\ 0 hud? U1

and @ is given by formula (3.11). In the case of liquids (emulsion) the following
inequality [3] is valid:
k,-K 6@(?")) i 2 (Oco(r'))
v, :
Oy N0 - gl

ks@(r)> \ 0B 5|
Thus B, may be calculated, with the desired degree of accuracy, from the

following formula:
4 p2 2
B, = B qopm [ (4.19)
=0

(4.18)

1672

Formula (4.16) then agrees with the relevant formula given in [5].
Substituting into (4.16), (4.19) the relations

Iy = APy, I = A{|dps(r)]*), A = const, (4.20)
we obtain, after integrating in all directions (K being the polar axis):

oy k4V 2 dey(r') 2 @ 4
Ly = Lo <(36) >[c'( & )M] of oy (@) sinKods,  (4.21)
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where I, and I, denote the intensity of the incident and scattered waves,
respectively. This relation can be regarded as an integral equation for the
correlation function y(z). Using the Fourier integral transformation for odd
function and formulae (2.13), (3.16) we finally obtain

i ~ , Sin Ko ' g . el
y(@) = [ of LR dK] [ of IK dK] : (4.22)

w = const, r = const.
Formula (4.22) enables us to determine the correlation function y () from
the angular distribution of the intensity of the wave scattered by a random
isotropic nonviscous emulsion.

5. Final remarks

Tt has been shown that it is possible to determine the correlation function
y(z) from the angular distribution of the scattered scalar potential. This may
be done using formula (3.17). However, formula (3.17) has rather theoretical
value. In contrast to formula (3.17) the basic results of sections 3 and 4 have
a practical value. With the help of formulae (3.18) and (4.22), their value can
be seen in the fact that those enable us to determine the correlation function
y(«) from the appropriate measurements of the angular distribution of the inten-
gity of the wave scattered by a random isotropic granular medium. The function
() which drops from 1 to 0 indicates the average extension of inhomogeneities.
As a measure for their size we could adopt the value L, of # for which y(x) .
becomes equal to 1/e.
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4-TH INTERNATIONAL CONFERENCE
ON “ENVIRONMENTAL PROTECTION IN MECHANICAL ENGINEERING”

Gyor, Hungary, April 11-13, 1978

The 4-th Conference, held April 11-13, 1978, at Gyoér (HPR), was dedicated to the
problems connected with a broadly conceived environmental protection against harmful
effects and consequences of production processes and technical, technological and commu-
nication equipment encountered chiefly in the mechanical engineering. The Conference was
sponsored by the local section in Gyér of the Hungarian Secientific Society of Mechanical
Engineers in cooperation with the local section of the Hungarian Optical, Acoustical and
Film Technical Society (OPAKFI), as also with the Board for the Matters of Natural En-
vironment at Gyoér. Chairman of the Organizational Committee was Mr. J. Jambor, Secre-
tary General Mr. E. Varga. The deliberations took place in the Cultural Centre Raba at
Gyor, Szécheny Square 7.

Main themes involved three groups of problems:

I. Noise and vibration protection.
II. Water pollution protection.

III. Air pollution protection.

Aeccording to this program the deliberations took place simultaneously and independently
in three sections designated with numbers I, IT and III, respectively. The main aid of the
Conference was:

— the discussion of actual and steadily growing threat to natural environment in three
above mentioned fields caused by the intensive development and thus of the ever wider
range of harmful effects of the mechanical engineering, communication and other related
branches of engineering;

— a search for new methods, means and systems of the elimination or reduction of
these effects or the protection of man against these effects.

The conference was attended by some 300 participants, including several scores of
specialists from the following countries: England, Belgium, Czechoslovakia, Denmark,
France, Yugoslavia, the German Democratic Republic, Poland and the Federal Republic
of Germany. The Polish delegation consisting of seven persons representing the Polish
Academy of Sciences, technical universities and institutes sponsored by respective mini-
stries attended only the deliberations of the Section I, “Noise and vibration protection”,
delivering four lectures out of five included in the preliminary program. The number of
lectures to be delivered in individual sections was the following: Section I — 29 lectures,
Section IT — 15 lectures, Section III — 10 lectures. The conference was begun by a plenary
session at which Dr Tibor Bakécs, Chairman of the Economic Committee and Labour Rights

5 — Archives of Acoustics 4/78
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Protection of the Hungarian Academy of Sciences delivered a lecture on the crucial subject:
“Main problems of the environmental protection”.

With view to the absence of Poland’s representatives in the deliberations of the Sections
II and III and the subject of interest of readers of “Archives of Acousties”, this report will
only concern the deliberations of the Section I.

The Section held three sessions and ended its deliberation with a round-table conference
summing up its proceedings. Lectures delivered:

1. G. Ussiery (Hungarian People’s Republic), Possibilities and limitations of the use
of magnetic recording for making measurements in the field of noise and vibration proiection.

2. J. Kacerowskl, J. MoryLEwSKI (Polish People’s Republic), Measurement of noise
and acoustic diagnostics of machines.

3. J. BraascH (Denmark), New devices for measuring of noise.

4. D. Zoris (Yugoslavia), Aireraft noise: interdisciplinary aspects and ethic problems.

5. J. Miazca (Polish People’s Republic), Noise of automative vehicles as a threat to
man's natural environment.

6. L. CzaBaLAY (Hungarian People’s Republic), An analysis of methods for the evalua-
tion of communication noise.

7. F. AvecuszriNovicz, B. BuNnA (Hungarian People’s Republie), The method of control
measurements of moise inside and oulside of automolive vehicles.

8. G. Pora (Hungarian People’s Republic), The efficiency of moise control inside and
outside of buildings.

9. L. S4ArvAri, T. MarsaT, E. Kunos, J. Kovisc (Hungarian People’s Republic), The
results of measurements of noise in new residential districts at Gyér.

10. V. Migr6s (Hungarian People’s Republic) The effect of the design and exploitation
conditions of power substations on the level of produced noise.

11. B. Jost (France), The evaluation of noise level in indusirial buildings.

12. T. SzentmirrToNY (Hungarian People’s Republic), Damping of flow noise.

13. H. Baver (Federal Republic of Germany), The noise produced by conventional power
stations and the present stale of its damping.

14. J. GiereieL (Polish People’s Republic), Oonstruction means and possibilities of
reducing the moise of rotating machines.

15. D. 81urM (Federal Republic of Germany), The damping of noise by the use of shields
on an example of three big-power blowers.

16. V. NossgLt (Belgium), The problem of the ratio of formant frequencies to fundamental
Sfrequeney of noise in the light of measuring techniques.

17. J. Kazimierczak (Polish People’s Republic), Noise of machines as a subject of
investigations and results of work of their designer.

18. K. T6PFER (German Democratic Republic), The evaluation of new efficient calculation
methods of noise insulation in rail vehicles.

19. P. Tokarz (Polish People’s Republic), The effect of a woerking point on the noise
characteristic of radial fans (the lecture was not delivered).

20. L. TiMAR-PEREGRIN (Hungarian People’s Republic), Noise and vibrations of ro-
tating eleclric machines and their identification by measurements.

21. V. SruonLik (Czechoslovakia), Measurement and evaluation of noise for the purpose
of health protection.

22. W. PorranpTt, H. WALTER (German Democratic Republic), Measurement of moise
of mechanical vehicles in industrial plants and investigations on reducing the main noise sources.

23. 8. SPELLENBERG (Hungarian People’s Republic), Hzperiments on the complew in-
dividual noise proteciors in case of a light or medium hearing impairment.

24. H. G. Dierorr (German Democratic Republic), Mechanism of hearing imp airment
caused by stationary and impulse noise on a work siand.
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25. E. HOCHENBURGER, T. KATONA, D. MARTIEANY, O. RIBARIO, G. Viré (Hungarian
People’s Republic), Importance of Earproleclomeler in preventing the hearing impairment
because of moise.

26. G. Vir6 (Hungarian People’s Republic), Antivibrating rubber backings for machines
in textile industry.

27. J. Karvcz (Hungarian People’s Republic), Previous and present results of measure-
ments of moise damping in Metallurgical Plant at Ozd.

28. M. GAmNAIL E. BAross (Hungarian People’s Republic), Investigations of noise pro-
tection of workers in indusirial plants exposed to the action of noise.

29. L. TRARGEMAN (German Democratic Republic), Noise control in traffic (film
show).

It follows from this enumeration that 9 lectures, that is, about 329% of the total in
Section I (Nos. 1, 2, 3, 6, 7, 11, 16, 20, 21) concerned new methods, systems and devices
for the measurement and analysis of noise and vibrations; 7 lectures, that is, about 249,
(Nos. 8, 12, 15, 18, 26, 27, 29) dealt with various systems and equipment for silencing
the industrial noise sources; 5 lectures, that is, about 16% (Nos. 4, 5, 9, 13, 22)
concerned the intensivity and harmfulness of industrial and traffic noise of dif-
ferent physical structures encountered in factories, residential buildings and districts;
4 lectures, that is, about 14% (Nos. 10, 14, 17, 19) stressed the role and importance of
silent-running machines and equipment from the viewpoint of their designing; 4 lectures,
that is, about 14% (Nos. 23, 24, 25, 28) were dedicated to the methods of preventing the
hearing impairment caused by industrial noise by the use of individual protectors.

The scientific level of the lectures was not especially high since they were chiefly addres-
sed to the industrial workers as future recipients and users of the methods, systems and
equipment for the measurement of noise and vibrations and noise and vibrations control.

Nevertheless a number of conceptional, technical and constructional solutions in the
field of the instrumentation for the purposes of the metrology of noise and vibrations and
for the design of silent-running machines and equipment deserve attention because of their-
originality.

An important role played the round-table discussion which in a way has extended and
supplemented the discussion following individual lectures and at the same time enabled
mutual exchange of experience and information between representatives of various fields
of science, technics and engineering who represented various European countries. This has.
permitted to estimate objectively the present state in this field of acoustics and point out
new trends of development and formulate guidelines in realizing an efficient policy in the
range of noise control.

The organization of the Conference deserves a high praise both as regards the provision
of technical facilities for a simultaneous and efficient translation from Hungarian into two
languages English and German and conversely and the value of informative material published
in one volume containing the full texts of lectures delivered at three section in English and
German. One copy of this publication is available in the Acoustic Library of the Institute-
of Fundamental Technological Research (Warszawa).

Janusz Kacprowski (Warszawa)



