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The estimation of frequency response of multiple input systems is discussed
from the standpoint of systems identification, with application to problems
in noise control. The systems considered are assumed to have inputs, either
random or deterministic, that are identical in form but shifted in time. Such

inputs are found typically as force and pressure excitations in engines, pumps
and compressors. It is shown that the input cross-spectra can be neglected
for inputs of this type, providing proper frequency smoothing is used. If the
time-shift between inputs is not equal or if the analysis bandwidth cannot be
chosen arbitrarily, biased estimates of the frequency responses will result when
the input cross-spectra are neglected. Expressions for this bias error are de-
veloped and several numerical examples are presented showing the effect of
analysis bandwidth and timeshift on the bias error. This technique was applied
to the problem of estimating the structural-acoustical frequency response of
a diesel engine. By neglecting the cross-spectra between the combustion pres-
sures the frequency responses were computed on-line with a small digital pro-
cessor. As a result experimental and computer time were greatly reduced.

List of symbols

B, — bandwidth [Hz] N — number of inputs

f — frequency [Hz] @;(t) — 4" input to system

Ii — natural frequency of the i*2 input y'(t) — coherent output

H; — frequency response to the it input y(t) — total output

k — frequency index of unsmoothed 2(t) — incoherent uncorrelated output-
spectrum Sy — auto-spectrum of the 4th input

m — frequency index of smoothed 8ij  — cross-spectrum hbetween the 4th
spectrum and j* inputs

— number of frequency points Si  — cross-spectrum between the 4th

smoothed per band input and total output

* Presented, in part, at the 89th Meeting of the Acoustical Society of America, April
1975. .
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8; — cross-spectrum between the i Z;  — gain of the ith system

input and coherent output & — damping ratio
8iz — cross-spectrum between the ith 7;  — time delay between inputs ¢ and 1

input and incoherent output Tij — time delay between inputs ¢ and j
8, — auto-spectrum of incoherent out- @i — phase angle between inputs 4

put and j
8,y — aubo-spectrum of total output 0 . — estimate of any parameter
8y — auto-spectrum of coherent output E{n} — expected value of 7

— record length b{n} — bias error of 7
Introduction

In modeling dynamic systems, one often requires information to complete
the model that can only be accurately known from experiment. The process
of determining this information is termed “parameter identification” since the
needed information is in the form of one or more unknown parameters in the
mathematical model [1]. For example, a second-order model has two unknown
parameters: the system natural frequency and damping.

Traditionally, controlled laboratory experiments have been used to ascer-
tain system properties. The system to be modeled is subjected to a known
artificial excitation and the response is compared to the theoretical response
as predicted by the mathematical model. The unknown parameters are then
selected, by predetermined criteria, to yield the best agreement between pre-
dicted and experimental system response. The experimental techniques can be
either time domain (such as step or pulse response) or frequency domain. For
frequency domain testing the system excitation can be in the form of sinusoidal
steady state, sine sweep, impulsive, step or stationary random.

Alternatively, it is possible to determine dynamic properties while a system
is in its actual operating environment. This method is attractive for studying
systems not suitable for laboratory testing, e.g. ships, buildings, and other
structures. Parameter identification is accomplished by studying the system
response due to normally occurring excitations, providing that the excitations
and response are measurable. Since, in general, these quantities will be random,
stochastic theory is involved in the measurement and analysis processes. A bene-
fit of in situ testing is that the unknown parameter estimates are usually more
realistic than those obtained by laboratory testing since in the latter case the
system is removed from its operating environment. However, for in situ testing
the measurement and analysis techniques must remove, or properly account
for, the effect of extraneous information (e.g. ambient sound and vibration).

The estimate of the frequency response of a system is a useful information
in determining unknown parameters. In the system control, frequency response
data aids in the formulation of control strategy. Even in uncontrolled systems
(e.g. climate) the frequency response data are useful for predicting the system
behavior to sets of selected inputs.



INPUT CROSS-SPECTRA 155

Frequency response techniques ean be applied to eertain acoustic systems,
particularly with respect to practical problems of noise control. When the
system under study is a noise source of complex geometry, such as most ma-
chinery noise sources, simple acoustical models using idealized geometries
(spheres, cylinders, panels, ete.) often do not yield detailed information about
the system and its behavior. Frequency response data (providing it can be
obtained) can give an insight into the system behav:lor and aid in formulating
a more realistic acoustical model.

Chung et al. [2-3] have used frequency response techniques to defermine
the structural-acoustical behavior of diesel engines. Chung considered the
engine as a set of NV linear systems with N inputs #;, ¢ =1, 2, ..., N (cylinder
pressures corresponding to the combustion excitation in the N cylinders of the
engine) and a single output y (the engine noise measured at a point about 1 m
from the side of the engine).

The uncorrelated output z is included in the model to account for any
extraneous effects such as ambient sound or instrumentation noise. The fre-
quenecy responses were calculated from measured time records of the system
inputs and outputs using multiple input linear theory [4].

x,(t)—s]  Hy

SAREmee L

xrt)—  Hr

Fig. 1. A multiple input system with uncorrelated
output z

Seybert and Crocker [5-6] used the diesel engine frequeney responses fio
predict the effect on noise of engine operating conditions such as speed, load
and injection timing. :

The frequency responses are calculated by solving the following set of
algebraic equations, utilizing spectral estimates computed from measured time
records [4], where it is assumed that the time records are stationary:

[80 ()] = [85(HIH:(f)], (1)
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where the frequency response matrix

w1 =| 20|,

the spectral matrix

811 (f) 81 (f) .. Buy (f)
[S';j(f)] 5} ‘821 (f) S?.ﬂ (f)""SﬁN (f)

---------------

the cross-spectral matrix

'

Sy ()
18,1 = | Jov )
Sxalf)

The diagonal elements of the spectral matrix are the auto-spectral densities
of each input x;(f). These spectra can be estimated from computations of the
finite Fourier transform X,(f, T),

I 1
Sii(f):T{X:(f’T)Xi(f!T)}’ ?::1:2’---1N7 (2)

where T' is the finite record length and * denotes the complex conjugate.
Similarly, the cross-spectra between inputs are estimated by

. 1
Sij(f)=E{X:(f1T)Xj(f’-T)}5 'irj=152’---sN (3)

and are represenfted by the off-diagonal terms in the spectral matrix. The
cross-spectral matrix is made up of elements representing cross-spectra between
each input and the output y(#). These cross-spectra are estimated by

- 1
Sw(f)=?{X:(f,T)Y(f:T)}, 'i:1$27“'yN' (4)

It should be noted that the spectral estimates computed by using eqnations
(2)-(4) are inconsistent estimates and some form of smoothing must be used to
reduce the wariance of the estimates. Smoothing also removes the effect of the
extraneous output z(f), providing it is uncorrelated with respect to all inputs
(8;(f) =0, ¢ =1,2,...,N). If this is true, then it can be shown [4] that

Siy(f)—_—siy'(f), ":=1321---1N5 N

where 8;,,(f) is the cross-spectrum between each input and the coherent output
y(t).
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Using the quantities defined above, the total output speectral density
8,,(f) can be computed by

Sv‘y'(f) e Szz(f)_l"sw(f)’ (5)
where S,,(f) is the spectral density of the uncorrelated output z(¢), and
N N

By (f) = D) D) 8y(H) HE () Hy(f) (6)
- i=1j=1

is the speetral density of the coherent output ¥’ (f).

A typical frequency response for the diesel engine is shown [5] in Fig. 2.
It was computed using equation (1) with measured time records for the com-
bustion pressures (measured by quartz pressure transducers in each cylinder)
and the sound pressure as measured by a condenser microphone located about
1 m from the side of the engine. The engine was operating in a free-field environ-
ment. The frequency response in Fig. 2 describes the structural-acoustical
behavior of the combustion induced noise; regions where the frequency response
is high correspond to high dynamic response and/or high radiation efficiency
of the engine structure.

20 log(Hx10%)-d8

4

v

Frequency -hkHz

Fig. 2. Typical frequency response (magnitude)
for one oylinder of a diesel engine

A problem associated with estimating the frequency responses of multiple
input systems is the large number of cross-spectra between inputs that must
be estimated for equation (1). For an N input system, N (N —1)/2 input cross-
-spectra must be estimated (the divisor 2 appears since the lower triangle
cross-spectra in the spectral matrix are computed from the complex conjugate
of the upper triangle spectra — 8;(f) = 8j;(f) — see equation (3)). Since the
total number of spectral estimates needed for equation (1) is N (N +3)/2, the
input cross-spectra represent a fraction of (N —1)/(N —3) of the total spectra.
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Many analog-to-digital converters and digital processors do not have
sufficient capability to sample and compute more than one cross-spectral
estimate at a time, thus making experimental time quite long for systems with
many inputs. In addition, most mini-computer systems cannot perform matrix
inversion (necessary to solve equation (1)) for large values of N due to computer
core limitations.

The remainder of this paper will discuss a class of inputs normally occurring
in many physical systems, where the input cross-spectra can be neglected.
With such systems experimental time is reduced and the frequency responses
can be computed from a set of uncoupled equations (1) (with input cross-spectra
neglected). The computations are then suitable for mini-computers with small
memories since matrix inversion is unnecessary. That is, equation (1) reduces
to a set of equations

Hz(f) :'Siy(f)/‘gii(f)! 1=1,2,..,N. (7)

Conditions for neglecting cross-spectral terms

Equations (5) and (1) can be expanded to yield

N N N v
Syu 3 Szz+28ii |Hif2 et ZZSini*Hjs (8)
=1 116?_:31
N
By=H8y+ D 8;H;, i=1,2,..,7, (9)
Gd

where the direct contribution of the inputs has been separated from the cross-
-term contribution. The cross-terms can be neglected in equation (9) providing

N
D 8;H; < HS;, i=1,2,..,7, (10)
(20)
or
N
Z‘Sin:Hj < |Hy|*8, i=1,2,...,N,
(4)
thus
N N N
Y S,HIH; < Y 8y lHiP. (11)
=1 j=1 i=1

(F#7

-
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Hence, if equation (10) can be established, then equation (11) follows and
equations (8) and (9) reduce to

N
By = 8+ Zsﬁ |H;*, (12)
i=1

Siy 3 HiSﬁ" (13)

There are several conditions under which equation (10) is fulfilled, however,
most are trivial. For example, if the inputs are independent random processes
so that 8y = 0 for ¢ # j or if one-frequency response is dominant, see equation
(9) (in which case the multiple input system reduces to a single input system),
equation (10) is satisfied. There may also be certain symmetries between the
frequency responses that would satisfy equation (10), but in general this will
not be the case. In the case of the diesel engine, symmetry does exist between
the arrangement of the c¢ylinders and the mierophone position, but measurements
of the frequency responses do not reflect this.

One general condition that satisfies equation (10) oceurs when the inputs
are of the form

a’r',-(t)=.’v1(t—£—'r.‘-),'t¢-<T, ’I:=1,2,...,N, (14:)

where T' is the period of the inputs, if the inputs are deterministic processes,
or the sample record length if the inputs are random processes. Each input
has the same form but is delayed by a time 7z; from some reference (here 1)
input, as in Fig. 3. This class of inputs is typically found in multicylinder engines,
pumps, and compressors. For this case the auto-spectra are identical (see equa-
tion (2)),

8(k) = 8(k), i=1,2,...,N, (15)

_____ xp(t) T |
_________ G Ay ol
\-.—v-’ 3

Fig. 3. Identical inputs except delayed in time
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and the cross-spectra are given by (see equation (3))

Sij(k) =‘S(k)6w"':j(k)! J :f‘l'h @:5.7. =112:°"7N’ (16)
where
7;;(27k)
@i () =J—T—y Ty = Ti— Ty, (17)

and k = 1,2, ... is the harmonic multiple of the fundamental frequency 1/T.

Frequency smoothing is often used to reduce the variance of a spectral
estimate and is accomplished by averaging the spectral values of the raw spec-
trum over a selected bandwidth. The disadvantage is a loss of frequency resolu-
tion since the bandwidth is increased from 1/T to KT, where K is the number
of spectral values averaged. That is, a smoothed spectrum is given by

Sm) == > 80, m), (18)

where the raw spectra 8(k) of k points have been decomposed into m bands
of K points each (Fig. 4). Smoothing equation (9) yields

K K N
1 1
Su(m) = D 'Sy, (1, m) =T{Z{H,-(z, m) 8, m)+ 8y (1, m) By m)}. (19)
i=1 =1 J=1

(i#1)
ﬂk Points of raw spectrum § (k)
Points of smoothed spectrum S(m)
l '. : '
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Fig. 4. Example of frequency smoothing procedure, where the raw
spectrum of % points has been decomposed into m bands of K = 4
points each

If the frequency responses are relatively constant across the smoothing
bandwidth, then equation (19) becomes

N

Sy (m) = Hy(m)S;(m)+ > Hy(m)8y(m), (20)
Jj=1
(3#19)
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where 3 ¥
e 1 5 I
Sii(m) =“fg Siu(l,m) and Sij(m) =Ez 8 (T, m).

Examining 8;;(m) for the inputs described by (14) we get

K
5 1
Siylm) = = Z 8 (1, m) e, (21)
=1

If the auto-spectrum of the inputs S(I,m) is relatively constant across
the smoothing bandwidth, then

K
L 8 (m) :
8y(m) = —_Ze‘wff("m). (22)
K =1
It can be shown mathematically that
K
Dewtm L0, - Gabi ] el BN, (23)
=1

For the case where the time delay between any two consecutively numbered
inputs is T/N we have
(@ —NT

T{j = N

(24)
For this case equation (20) gives

giy(m) = Hf(m)gii(m)’ ¢ =1,2,..,,N. (25)

In equation (23) the quantity €?i®™ can be interpreted as the “roots

of unity” and represented geometrically in Figs. 5 and 6 for N = 3 and N = 6,

respectively. An interesting property of these roots is that for any specified

values N and ¢ —j the sum of the corresponding roots is zero, a fact stated in
equation (23) and shown in Figs. 5 and 6.

Im
k=14...
7200 ;
\ k=36..
Re
_/120"
k=2.5... k=74...
r-s=1 fnant

Fig. 5. Example of the function €/i* for different values of i—j for N = 3
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Im Im Im
k=24.. h=1.7... k=1.4.
‘ "“‘fzi"
o
hk=3.9... Qk:GJ?... k=3.6.. k=1.8.. h=2.4...
Re Re Re
h=4.70... | k=511... Im k=2.4... Im
r-s=1 k=¢4... r-5=2 k=4.10...| k=5,11... r-s=3
120°
Ris6.. k=23.. 60 h=6.12...
Re 3 e
k=158, k=28.. | k=17...
r-s=4 r-s=5§

Fig. 6. Example of the function €'?i;* for different values of i —jfor N = 6

Consequently, there exists an optimum smoothing index K, equal to the
number of mutually coherent inputs N, or a multiple thereof, that will allow
the cross-spectral terms between inputs to be ignored in calculating frequency
responses and in predicting the system output, when the inputs are given by
equation (14).

Bias errors

In many practical cases one cannot restrict the analysis bandwidth to
a multiple of N harmonics necessary to establish equation (25) or the time delay
may not be as in equation (24). The question arises: “What bias error is intro-
duced by neglecting cross-terms without proper frequency smoothing,” i.e.,
when K # N or a multiple thereof. It is also of interest to examine the bias
error introduced by neglecting cross-terms when the inputs are delayed from
one another by unequal amounts. If éw( f) is an estimated value of the true
gpectrum 8, (f), then the expected value of S’W in a bandwidth B, can be ex-
pressed as

T+B,[2

B8, ()] == 8y, Ed¢ (26)

B

C1—B,l2

where E[ ] denotes the expected value operator and represents the mean-

-square value of the process in a bandwidth B, normalized by the bandwidth,

and £ is a dummy frequency variable. In general
E[Sw(f)] # Sw(f)
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due to bias errors associated with the form of the actual spectrum §;, or the
nature of the estimation process. The bias error b[8;,(f)] is defined as

b[84,(H)] = B84, (f) —8u ()] (27)

Stationary random inputs

Using equations (9), (15), (16) and (26) one obtaines
T+B,2

B8, (N1=5
r—B,/2

N
{H,-ww(mS(aZHI(ae"’ﬁ“’}ds §=1,9,.., ¥, (8)
dd
where the spectral quantities have been expressed as continuous functions
of frequency rather than discrete values at harmonic numbers k.
Also
@y = 2rfry, (29)
where 7;; is the delay between any two inputs 4 and j.
It 8(f)H;(f) (j = 1,2, ..., N) is not a strong function of frequency across
the smoothing bandwidth B,, then equation (28) becomes
F+B,/2

B[84()] = H(HB(+ S(f)H;(f ¢ dg
ij Z i(f i .J;/ -
(faﬁi)
or
A N1 siny; B
By ()] = 8(f) {Hi(f) + é () e‘*‘zwﬁf}, - (30)
(75£1)

where y; = nr;;. Therefore the bias error in S",, (f) is, from equation (27),

N
siny; B,
D18, (N1 = 8() Y Hy(f)— T2, (81)
= PijDe
(7#1)
and the bias error for the frequency response (defined similarly to equation (27))
Sm iP‘IJ‘Be 12 f
b[H D H,( Vi 32
Z vy B, o
U#)

The magnitude of the bias of the frequency response can be expressed as

siny; B,

e (33)

N
LD D 1H,(f)

(1)
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so that the equality in equation (33) is the upper bound of the bias error for
the frequency response magnitude. The zeros of equations (31)-(33) occur if
siny; B, 0
e N ’
vy Be

that is
wﬁBe='an, ’ﬂz=1,2, ey

or, using the definition of y;,

B,=—, j#4;4,j=1,2,...,N. (34)
i
Therefore, in general, there is no bandwidth that will result in zero bias
error for all of the inputs under consideration. One exception is when the time
delays are given by equation (24), in which case the largest bandwidth is

(35)

which is in agreement with the interpretation of equation (23). Although a special
case, many physical systems have inputs of this form. In general though, an
optimum bandwidth would be selected that would minimize the bias errors
for all the frequency responses according to some predetermined criterion — for
example that the sum of the bias errors for all the frequency responses should
be a minimum.

Bias errors — periodic inputs

In the case of periodic inputs of the form of equation (14), where T' is the
period of the inputs, the bandwidth is restricted to a multiple of 1/T, the funda-
mental frequency of the inputs. In this case, the expected value of the cross-
-spectrum between each input and the output is

K
3 1 -
B8y (m] = > Syl m), (36)
=1 -
and the bias error
’ b8y (m)] = B8y (m) — 8,y (m)]. (37)

Substituting equations. (9) and (15) into (36) we get

K N
B, ] = > Hl, mS(E, m)+80,m) > Hy(l, m)dwstm

=1 j=1
(371)

T o A R (|
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Again, assuming that the spectra and frequency responses are not highly
variable across any band K/T, we have

N K
3 1 ‘
E [S y(m)] = S(m) {H (’j’n) - y H (m) e eiPﬁ(l,m}} -
(31)
Since
a N i2rr g Km|T 1 inl(K onIT
Bisym) = 5o {mim+ 3 mm (-5 + 5 g
G i
7 i ! ;.  co8(K +3)7y2xn/T
-H(Ecot T Ben(egnlT) )]},

the bias of the frequency response is

N 5
: Hy(m) PRI sin[(K +3)2p,/T]
S = 3, ~=op [+ =
(7+1)

cos[(K +3)2y,/T ])] (39)

+i(coty,;/T) — sin (v /T)
1]

Numerical results

Equation (32) is an expression for the bias error in estimating the frequency
response when the cross-spectra between inputs are neglected. Note that in
order to estimate the bias error, estimates of the other frequency responses
are needed. Several example will be discussed to show the form of the bias error
and the effect, of the assumption that the product S8(f)H;(f) is relatively con-
stant in any one band.

Example 1. Consider a six-input system where the inputs are mutually
coherent band, limited white noise (consta.nt spectral density) and the time
delay between inputs is uniform and equal to 20 msec. The frequency responses
are independent of frequency and have equal real and imaginary parts, as
given by

H; = Z,(1+1),

where Z; =1, 1, 2, 2, 3, 3, for ¢ =1, 2, ..., 6, respectively. A band center-
frequency of 208 Hz was chosen. Figure 7 shows the computed and actual
bias error for H , as a function of analysis bandwidth B,, where the solid lines
are the real and imaginary bias error calculated from equation (32) and the
symbols are actual bias errors determined by estimating H, from equation (13),
where cross-spectra between inputs have been neglected. The theoretical error
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Fig. 7. Computed and theoretical bias error for Example 1

predicts exactly the actual error. The bias error is smaller for larger bandwidths
due to the effect of frequency smoothing, which is really spectrum integration
od 8;, (equation (26)). The cross-spectral terms of §;, (equation (9)) are oseil-
latory in frequency, being both positive and negative, and tend to cancel when
integrated, while the direct term, H,S,;, is positive across the entire band.
As can be seen from Fig. 7, complete cancellation of the cross-spectral terms
occurs at bandwidths that are multiples of 50 Hz. Since the delay between
inputs is 20 msec, the fundamental frequency of the inputs is 8.333... Hz
(1/(6 x0.020)) and the cross-terms cancel at every bandwidth that is a multiple
of six times the fundamental frequency or every 50 Hz. This is analogous to
the examples in Figs. 5 and 6.

Example 2. Non-uniform delay belween inputs. In this example the time
delay between inputs 1 and 2, 3 and 4, 5 and 6 is 15 msec and the time delay
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between inputs 2 and 3, 3 and 4 and 6 and 1 is 25 msec, while the frequency
responses and the input spectral densities are the same as in Example 1. Figure 8§
shows the computed and actual bias error of H 1 for this example at 208 Hz

where it is again noted that equation (32) exactly predicts the actual bias
error. In this case, however, a bandwidth of zero bias error for both real and

imaginary parts of bi4 1 does not oceur until B, = 200 Hz, although the error
is quite small at 125 and 150 Hz.

A

400 -

300 | o Real Part

o Imag.Part

200 +

700 +

Bias Error(Per Cent)

=100 JJ
-200}

=300

=400

1 Il | 1 | L
0 50 700 150 200 250 Bg[Hz]

Fig. 8. Computed and theoretical bias error for Example 2

Example 3. Frequency dependent response Sfumctions. For this example H,
is the same as in the previous examples, but H 1-H, are chosen to be second-order
systems with the relation

Z‘i ¥
Hi(f)z t=2,3,...,6,

)

2 — Archives of Acoustics 3/78
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where Z; is as in the previous examples, the damping ratio ¢ = 0.1, and the
natural frequencies f; = 180, 200, 220, 240 and 260 Hz for ¢ =2,3,...,6.
The time delay between inputs was as in Example 1. Figure 9 shows the com-
puted and actual bias error for H . in a band centered at 208 Hz. It can be seen
from Fig. 9 that equation (32) has become inaccurate in predicting the bias
error, particularly at certain frequencies. This is a result of the violation of the
assumption that H,;8, is relatively constant across the bandwidth, since the
functions H,-H, are now frequency dependent.

A

400 to

300

o Real Part
° /mag.Part

200

100 |

Bias Error (Per Cent)

—300

—400 -nJ.

1 1 1 1 1 -
0 50 100 450 200 250 BelHz]

Fig. 9. Computed and theoretical bias error for Example 3

If the analysis band contains, or is near one or more of the natural frequen-
cies, the bias error will not be accurately predicted by equation (32), particularly
if the damping is low; the presence of natural modes in a band increases the
frequency dependence of the frequency response.

To predict a more accurate bias error than equation (32) one would expand
the estimates of the frequency responses in the Taylor series about the band
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center-frequency, place the series in equation (28), and proceed as before, omit-
ting the assumption that H;S; is constant. This would yield an expression
similar to equation (32), but including terms that would be functions of the
first and higher derivatives of the frequency responses. Thus, it would then
be necessary to have estimates of not only the frequency responses, but also
the derivatives of the frequency responses. The number of terms in the Taylor
series needed accurately to predict the error would depend on the variation
of the frequency responses within the bandwidth.

A

400 +
o -
300 | o Real Part
o Imag.Part
200 - '°
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Bias Error (Per Cent)
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—200
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1 1 1 1 1 -
0 50 100 150 200 250 Bp[HZ
Fig. 10. Computed and theoretical bias error for Example 4

Example 4. Deterministic inputs. In this example the time delays and
frequency responses are as in Example 1 while the inputs are delta functions
in time (constant spectrum level). The only difference from the first example
occurs in the analysis bandwidth; here bandwidth is restricted to a multiple
of the fundamental frequency 1/T, where T' = 120 msec is the fundamental

period of all inputs. Figure 10 is a plot of the computed bias error of H 1 (equa-
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tion (39)) and the actual error, showing that the error is accurately predicted
only at the bandwidths of zero bias error. The failure of equation (39) to predict
the bias is related to the difference in equations (26) and (36) where an integral
has been replaced by a summation of a finite number of terms. The integrand
8;y is composed of a set of cross-terms which are highly frequency dependent
(see equation (28)). Therefore, when the system inputs are deterministic and
8;, is estimated by smoothing in the frequency domain, severe bias can be
introduced since the raw spectrum is not a continuous function. When the band-
width is equal to a multiple of the fundamental frequency times, the number
of inputs of the bias will be zero, since the effect of the input cross-spectra
has been “averaged out” as demonstrated earlier in this paper.

Experimental results

The cross-spectral veetors in Figs. 5 and 6 can be demonstrated experimen-
tally for a physical process, such as the combustion of an internal combustion
engine. For a six-cylinder, V-type diesel engine, where the eylinder-bank angle
is 90°, the time delay between the combustion pressures of two cylinders firing
consecutively (one on each bank) is T'/8, a phase angle of 45°, where T is the
engine repetition period. Figure 11 shows several harmonics of the measured
cross-spectrum between these two cylinder combustion pressures, beginning
at 820 Hz. In this experiment the fundamental engine frequency was 20 Hz,
so that 820 Hz is the 41st harmonic: From Fig. 11 it can be seen that eross-
-spectrum harmonics maintain their phase relationship quite accurately, even
at high harmonic numbers.

This example is slightly different from the idealized cases shown in Fig.
5 and 6 since here the delay between two consecutive inputs is not a uniform
T|N due to the geometrical arrangement of a V-type internal combustion
engine; the delay is either T'/8 or 57'/24 depending on the two inputs being
considered (analogous to Example 3). Thus, frequency smoothing over N
harmonics will not result in complete cancellation of the cross-spectra in this
case. Another factor that will affect cancellation is the decreasing magnitude
of the cross-spectrum with frequency that is evident from Fig. 11. In the idealized
case the spectrum magnitude was assumed to be constant with frequency.

To see the effect of input cross-spectra on the estimates of frequency
response, the frequency response was computed between one of the eylinder
pressure inputs and the engine noise (at 1 m form one side), with and without
the cross-spectra. For the case where the input cross-spectra were included,
equation (1) was solved for the frequency response matrix. Equation (7) was
used to estimate the frequency response for the case where the input cross-
-spectra were neglected. Figure 12 shows one of the frequency responses com-
puted for both cases. The bandwidth used in the analysis was 140 Hz corres-
ponding to a frequency smoothing of seven harmonies in each band (20 Hz
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fundamental frequency). The bias error resulting from neglecting input cross-
-spectra can be seen to be quite small, even though only 7 frequency points
were used to determine the smoothed auto- and cross-spectra. In Example 2,
the time delays between inputs are the same fraction of the total time T as in
this experiment. From Fig. 8 it can be seen that a low bias error is predicted
at a bandwidth of 75 Hz, using 9 frequency points to smooth the spectra instead
of 7. However, in Example 2 the frequency response being estimated, H, was
much smaller in magnitude than the other frequency responses (H,-H,) so

that the percent bias error, b [ﬁ 1(f)1 X100 /H(f), is quite large for a given
bandwidth (see equation (32)) compared to a more realistic example where
the frequency responses have similar magnitudes. From experiment it was
found that the frequency responses of the diesel engine had similar magnitudes;
therefore the bandwidth for a given bias is somewhat less than for the theoretical
case in Example 3. This is fortunate since one would like to make the bandwidth
resolution as small as possible.

Summary

The characteristics of cerfain multiple input, single output systems have
been discussed. Specifically, it has been shown that frequency responses can be
determined from coherent inputs, when the inputs are delayed in time. It is
shown that there exists an optimum analysis bandwidth for which the analysis
is valid, and the bandwidth is related to the number of inputs and the time
delay between the inputs. Expressions for bias error when input cross-spectra
are neglected have been developed, both for stationary random and deterministic
inputs. Several theoretical examples have been cited to show the effect of
bandwidth, time delay between inputs and frequency response on the bias
error. The method has been applied to a physical system, a diesel engine, to
estimate the structural-acoustical response of the engine structure. It was
shown by experiment that the input cross-spectra could be neglected for this
application. Many other physical systems such as multicylinder pumps and
compressors have inputs of the fiype considered in the paper. Consequently,
the frequency response technique, along with the simplifications pointed out
in this paper, can be used to investigate the acoustical behavior of other ma-
chinery noise source.
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PROPERTIES OF SOME ACOUSTO-OPTICAL MATERIALS

ZYGMUNT KLESZCZEWSKI
The Institute of Physics, Silesian Technical University, 44-100 Gliwice, ul. B. Krzywoustego 2

The paper discusses the requirements to be met by the acousto-optical
materials. Utilizing the scattering of laser light by acoustic wave, the measure-
ments of the propagation velocity and absorption coefficients of acoustic waves
and the photoelastic constants for Bij,GeO,y, Bi;y8i0y, TiO, erystals and for
SF-14 flint glass were made. On the basis of the above measurements acousto-
-optical parameters of the examined erystals have been caleculated and subse-
quently discussed.

1. Introduction

A rapid development of laser techniques and the possibility to generate
acoustic waves over a wide frequency range have made the light —sound inter-
action the subject of significant practical importance. The experience acquired
in this field has enabled the development of devices operating on the prineciples
of this interaction, e.g. modulators and optical deflectors.

One of the basic problems in designing and developing the acousto-optical
devices is the choice of suitable acousto-optical materials.

In this paper the requirements to be met by acousto-optical materials
and the possibility to define their parameters on the basis of their physical
and chemical properties will be discussed. Subsequently the results of measu-
rements of acoustic and acousto-optical properties of some crystals available
on the market, which may be applicable in acousto-optics, will be presented.

2. Parameters of acousto-optical materials

The materials used in acousto-optics should feature a high efficiency of
light —sound interaction. This efficiency is described by the ratio of the intensity
light diffracted by the acoustic wave to the intensity of incident light.

For the Bragg diffraction the ratio takes [5] the form

I = afp P,L

t e A h - Tl (1)




176 Z. KLESZCZEWSKI

where I, is the intensity of incident light, I — the intensity of diffracted light,
n — the optical refraction index, p — the photoelastic constant, o — the density
of medium, 6 — the angle of difraction of laser beam, v — the velocity of
acoustic wave propagation, 4, — the wavelength of light in vacuum, P, — the
power of acoustic beam, I and H are the length of light path through acoustic
beam and the height of acoustic beam, respectively.

The expression n°p?/ev?, appearing in (1), contains only material constants
of the erystal. This expression will be denoted by M,, as it is generally accepted
in the literature [8].

Apart from high efficiency of light —sound interaction the acousto-optical
materials should operate at a given angle of diffraction 6 over as wide frequency
range of acoustic waves as possible. This is made feasible by the use of an acoustic
and laser beam with some divergence. It follows from theoretical calculations
[2] that the best conditions of such an operation exist when divergencies of these
beams are equal. It can be demonstrated that in this case the product of the
efficiency of interaction 7, the fundamental frequency f, and the band width
Af agsumes the form

wpt\ =*P,
nfodf = ( ov )AﬁHcosB ;
where Af is the frequency range of the acoustic wave in which the intensity
of diffracted light is reduced by 3 dB, f, — the fundamental frequency at which
the intensity of diffracted light attains its maximum.
The expression n'p?/ov is denoted by M, [3].
Frequently the third quantity

"?fo='“'2( )

is introduced which, unlike expressions (1) and (2), does not vary with the size
of the acoustic beam. Material constant n’p?/ev? is denoted by M, [1].

It can be concluded that acousto-optical crystals should exhibit high
values of the optical refraction index and photoelastic constants as well as
a possibly low density and velocity of acoustic wave. It is also essential that the
absorption of acoustic wave should be low. Furthermore, the crystals should
meet several other requirements, the most important being:

1. high optical quality,

2. high chemical resistance and mechanical strength,

3. small temperature coefficients of physical constants.

(2)

np*\ P, ( 3
ov? | 25cos 6

3. Physico-chemical properties and acoustical parameters of crystals

Before the decision on growing a particular erystal can be made it is often
desirable to gain some insight as regards the applicability of the crystals in
acousto-optics, i.e. to be able to estimate the values of the velocity of acoustic
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wave, photoelastic constants and optical refraction index. In the sequel a brief
description will be given of the relationship between the physico-chemical
properties of crystals and the velocity of acoustic wave and photoelastic con-
stants.

A. Velocity of sound. For estimating the velocity of sound [7] the empirical
formula

log% s (4)

ig_ very often used, where b and d are constants for a given type of crystals,
M is the mean atomic weight, o — the density of crystal, » — the velocity
of acoustic wave.

VL v ~md

P [sxkg |

Fig. 1. Relation between V/g and M for
some acousto-optical erystals
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Tig. 1 presents the dependence v/8 on M for some substances. From this
dependence it can be concluded that small velocities of sound can be antici-
pated for crystals with a high M. The calculation of the velocity of sound —
according to formula (4) — agrees within 259, with the experimental values.
In estimating the velocity of sound we also use [7, 9] formula

1/ 0% 5
) l/oﬂﬁ_f’ (5)

where T, is the melting point, ¢ — the constant for a given type of crystals,
M — the mean atomic weight.

It seems that (5) is especially useful because it permits us to estimate
the velocity of acoustic wave from conditions in which acousto-optical erystals.
are grown. Fig. 2 shows the dependence of v on T,/ M for some crystals. Similarly
to the previous estimation, small velocities of acoustic wave can be anticipated
for the crystals with high mean atomic weight and a low melting temperature

at the same time.




178 Z. KLESZCZEWSKI

0 20 50 700 200 7 [deg ]
M| jma

Fig. 2. Relation between ¥V and the ratio Ty/M for some
acousto-optical crystals

B. Photoclastic constants. The applicability of materials in acousto-optics
can be evaluated by the introduction of the mean photoelastic constant. From

the Lorentz-Lorenz equation
n2—1
=4 ) Nya, (6)
i

n24+1

where 4 is a constant, @; — the polarizability of the i-th molecule, and N, —
the number of the i-th molecules per unit volume, it is possible to calculate
the sum Py, 4 P, + Py; of the photoelastic constants or the mean photoelastic

constant
A Pp+Pi+Pyy i (n*—1)(n%+2)

Pm 3 ety 3'”;4 , (1_‘/10)’ (7)

where
o da

0 =—

a do’
For all materials of interest for acousto-optics » > 1,5 and thus, to a good
approximation,
P, =035(1—4,). (8)

It follows that the value of photoelastic constants does not actually depend
on the optical refraction index but is determined by the change in polarizability
when the density of crystal is changed. These changes depend essentially on
the type of crystal bonds. In erystals with an ionic bonding the polarizability
increases with the increase of the atomic weight, since the outer electrons are
less strongly bound to nuclei, the polarizability of the positive ions being smaller
than that of the negative ones. If an ionic crystal is subjected to compression,
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the polarizability of the positive ion inereases and that of the negative ion de-

creases. Hence da/do << 0, and A,> 0.

Experimental data indicate that A, ~ 0.5 for the ionic crystals. If the
contribution of the covalent bonding in the erystal increases, then values of
the photoelastic constants are dependent on two competing processes: the
change of i)qla.riza.bility under pressure and the change of packing density.
On the other hand, in crystals with a purely covalent bonding, there can be
observed an intense decrease of the molecular polarizability due to the increased
packing density. Consequently, crystals with a purely covalent bonding have
a large 4, and, therefore, exhibit weak acousto-optical properties.

Concluding, good acousto-optical properties should be expected for crystals
with a very high mean atomic mass, low melting temperature and ionic or
ionic-covalent bondings.

4. Results of experiments and conclusions

Measurement of acousto-optical parameters of some crystals available
in the market, which can be used in acousto-optics, primarily in laser hight
modulators, were made. The tests involved the following crystals: Biy, GeO,,
(BGO), Bi;, 8i0,, (BSO), TiO,. Also certain types of glass were measured;
particular attention was devoted to the flint-glass having relatively good acousto-
-optical parameters. The measurements involved: velocity of sound propaga-
tion, absorption coefficients of acoustic waves and photoelastic constants.
The measurements were made using the Bragg diffraction of the laser light on
an acoustic wave over the frequency range 100- 700 MHz. The source generating
the longitudinal acoustic waves were transducers of quartz and lithium iodate,
glued directly to the examined crystal or to the fused quartz, the latter being
used as a reference substance.

The measuring system used is described in detail in [4].

The velocity of acoustic wave propagation was calculated from the measu-
rement of Bragg angle according to the formula

Ag¥

(9)

On the basis of the velocity of propagation, the elastic constants C;; of the
examined crystals were determined.

The elastic constants were determined by the measurement of the intensity
of diffracted light in the examined crystal and in the reference substance (fused
quartz) glued to the crystal.

It can be seen from relation (1) that the intensity of diffracted light is
proportional to P? and it is easy to show that
n(})a Q:r’u: (lelza')!m 1 _RO
‘nz Qo'vg 110120 1‘—R

P = —,
2n8in O

z, =P.,( : (10)

x
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where I,,, I,,, I,,, I,, are the intensities of light diffracted on the incident
wave and refracted in the tested crystal and in the reference material. The
subseript @ refers to the tested substance, the subscript 0 — to the reference

substance,
—1\? -1\
R, = s ’ R, = (ﬂz 4
Mo +1 Ny +1
For the fused quartz it was assumed that Py, = 0.12, P,;, = 0.27. Table 1

summarizes the results of measurements. The accuracy of the velocity measure-
ment is 0.2 9% and that of photoelastic constants — 10 %,.

Table 1. Velocity of the propagation of acoustic waves, elastic and photoelastic constants
of the examined substances

Direction
Substance, of the pro- . .
crystallo- 0 : v Elastic Photoelastic
B n - pagation
graphic 10°% [kg/m3] F aronstis [m/s] | constants constants
structure Lot
SF-14 Glass 1.76 4.54 — 3580 |Cy, =058 | Py = 0.14
P = 0.135
BGO
(cubic 23) 2.55 9.22 [100] 3740 |0y, =120 | P, =0.12
[110] 3398 | (), = 0.30
[111] 3276 |0y = 0.26 | P, = 0.04
BSO
(cubie 23) 2.55 9.21 [100] 3727 |0y =128 | P, =0.13
: [110] 3350 |0, = 0.27
TiO, [111] 3217 | Oy =025 | P, = 0.04
(tetragonal 2.58 4.23 [110] 7930 |0y = 2.72 | P, = 0.01
4/mmm) [010] 7930 |0y = 1.76 | P5 = 0.16
[110] 0827 |0 = 1956 | Py = 0.10

Also the measurements of the absorption coefficient of acoustic waves
for the examined crystals were made, since it is known that this coefficient
is essential in considering the application of a given material in acousto-opticla
devices. '

The measurements of the absorption coefficient were made using the method
of stationary waves, and also by the measurement of intensity of diffracted
light on the incident wave at different distances from the transducer.

In the former case, when the frequency of a continuous acoustic wave
changes insignificantly, the intensity of diffracted light varies periodically
between the maximum and the minimum values. The absorption coefficient
was determined from the relation '

Im.ln i
=

dB 8.686
a [—] . ar t&nh(
cm L

(11)
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where L is the length of crystal, I, and I ,. — the intensities of light at the
minimum and maximum, respectively.
In the latter case the absorption coefficient was caleulated according to

the formula dB 8.686 I(z,)
al] —— = ]-n- ? (12)
em 2(wy—wy) I(,)

where I(z,) and I(x,) are the intensities of diffracted light at distances x; and
z, from the transducer, respectively.

The results of measurements obtained for the absorption coefficient are
shown in Figs. 3-5. The accuracy of measurement of the absorption coefficient
is about 10 9.

2]

20

70 |

1 L 1 1 1 e
00 200 300 400 500 f[MHz]

Fig. 3. Absorption of longitudinal acoustic waves in SF-14 glass
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Fig. 4. Absorption of longitudinal acoustic waves in TiO, for the [110] direction
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Fig. 5. Absorption of longitudinal acoustic waves in BGO
for the [100] direction

Table 2. Acousto-optical parameters of tested substances

Direction | Direction
of the pro- | of the pro-
pagation of | pagation M, M, My
Substance lon_gitu- and polari- Ey m?s {1 L 101 ms?
dinal zation of kg kg kg
acoustio light
wave Ay = 6328
SF-14 = — 16.3 7.2 4.5
BGO [100] [0013, L, | 24.5 6.4 6.6
[110] | [001], L, | 27.1 9.3 8.0
BSO [100] [001], L 28.5 7.2 6.3
[110] [001], L 31.0 10.3 9.2
TiO, [010] [100], L 67.9 5.7 10.0
[110] [110], L 30 1.8 18.4
[001] [110], L 40 1.5 4.0
Fused quartz - - L 8.0 1.6 1.3
PbMoO, [001] 3 108 36.3 29.8
Te0, [001] L 138 34.5 32.8
As,8, —_ Il 762 433 293
Tl AsS, [001] ok 1040 800 480

|| or L — polarization of light parallel or normal to diffraction plane



ACOUSTO-OPTICAL MATERIALS 183

On the basis of these measurements the values of the parameters M,,
M, and M, (Table 2) for the examined crystals were calculated. For comparison
the values of these parameters for the fused quartz, which is frequently used
in acousto-optical measurements, are also enclosed. The data for these substances
were taken from paper [9]. It results from the comparison that the examined
crystals, especially BGO and BSO, exhibit quite good acousto-optical properties,
but are inferior to such crystals as PbMoO, or TeO,.
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THE ZERO-CROSSING ANALYSIS OF A SPEECH SIGNAL IN THE SHORT-TERM
METHOD OF AUTOMATIC SPEAKER IDENTIFICATION
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Institute of Telecommunication and Acousties, Technical University,
50-317 Wroclaw, ul. B. Prusa 53/556

The aim of this paper is to investigate the possihility of using the zero-
-crossing analygis of a speech signal in a short-term method of speaker identifi-
cation. Four sets of parameters obtained with the aid of the zero-crossing analy-
sis are presented which can find application in automatic speaker identification.
An experiment of speaker identification for 20 male speakers has been performed.
The obtained results have confirmed the applicability of the method of zero-
-crossing analysis for tracking individual features of voices.

1. Introduction

”

Thecom plex ityfo the speech process both as regards its mental and arti-
culatory aspect is manifested by the occurrence in a speech signal of a multitude
of extralinguistic information, including also that about individual features
of speaker’s voice. Practice has shown that individual features contained in
a speech signal enable the recognition of a speaker on the basis of his
statements.

The main stimulus for investigations on the automatic speaker identification
is the development of computer techniques and the availability of ecomputers
for the processing of the speech signal. Automatic speaker identification ean
be accomplished by using two identification models which differ primarily
by the kind and duration of statement text. i

The method based on the long-term analysis features some degree of inde-
pendence on the text and a relatively long duration of statement. The method
of the short-term analysis is based on the individual parameters of the voice
obtained from fixed text in a time ranging from a fraction of a second for single
phonems, up to several seconds for sentences. The short-term analysis method
necessitates the use of time normalization of the signals to be analyzed or of
vectors representing these signals in the adopted parameter space.
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The speaker identification method should give an adequate and invariant
description of the voices of speakers. The sets of parameters for the automatic
speaker identification should be [1]:

1° effective in representation of individual features of speakers,
2° easy to measure,

3° stable over the required period of time,

4° little sensitive to ambient conditions changes,

5° hard to imitate.

So far no such set of parameters, which would satisfactorily meet all these
requirements, has been found. In view of a complex structure of a speech signal
and the lack of explicit premises the choice of the parameters discriminating
the voices is dictated mostly by heuristic reasons based on the previous experi-
ments, the acquired knowledge, and even intuition [1, 3, 6].

After such a choice has been made, it is necessary to substantiate it theore-
tically and experimentally in order to verify the assumed hypothesis of the
practicability of the set of parameters used for the automatic speaker identi- -
fication.

The results of investigations obtained by many authors have convineingly
confirmed unquestionable advantages of the zero-crossing analysis of a speech
signal, e.g. for the speaker identification and speech analysis [2, 4, T].

The aim of this paper is to investigate the possibility of using the zero-
-crossing analysis of a speech signal for automatic speaker identification by
the short-term method.

2. Methods of investigations

2.1. Choice of the statement text. For the methods based on the short-term
analysis one chooses texts which are easy to pronounce, widely used and contain
phonetic elements which provide as much as possible information on the indi-
vidual features of speaker’s voice.

The investigations carried out by many authors indicate that vowels as
well as lateral, liquid and nasal consonants contribute most to the differentiation
of individual features. This results from the fact that the phonation of vowels
depends on the shape and size of the voeal tract of a speaker and the properties
of the source of his laryngeal tone. The spectra of nasal consonants, however,
are closely related to the nasal cavity and to its interaction with the mouth
cavity. The position of the tongue and teeth greatly affects the articulation
of the lateral consonants. In keeping with this consideration the word ALO has
been chosen as a text for a statement.

An additional motivation for the choice of this word is its wide use in
colloquial speech (as voiced part of the word HALO), especially when starting
a phone conversation.
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2.2. The sets of parameters used for the description of individual features of
speakers. The creation of a suitable parameter space is regarded to be one of the
most difficult stages in the process of the automatic speaker identification.
It should be stressed that the determination of the values of parameters such
as the fundamental frequency F, or the frequency of formants using the zero-
-crossing analysis (ZOA) is not accurate emough to justify the use of these
parameters for speaker identification. For this reason it seems advisable to
define, with the aid of the ZCA method, the other sets of parameters which
satisfy, to some extent, the requirements listed in the introduction.

The description of individual features of voice presented in this paper
has been based on the distribution of time intervals and parameters based on
the time dependence of the density of zero-crossings of a speech sgignal.

(a) The function of zero-crossings of a signal.

For the time-dependent signal U = U (t) the function P(U,t) of a zero-
-crossing has been defined,

P(U,t) = {1 if there exists U(t) satisfying conditions (i)-(iii),

0 if there is no U(t) satisfying conditions (i)- (iii), 1)
where
vpUu(t—r)<o, =2 1)
U =za  and |U(t—7)|>aq, (ii)
IU@)<a for t—r<a<i, (iii)

and a is a threshold level (a s 0) which prevents counting additional zero-
-erossings caused by disturbances [4].

The values t; for which P(U, #;) = 1 are the moments of the Zero-crossing
of the signal T (¢).

(b) Distributions of time intervals.

Using the function P(U,t) makes it possible to present the time dependence
of the signal U(t) in a simpler form by means of segments of lengths #; which
are equal to the intervals between successive zero-crossings of a speech signal.
For a given signal representing a selected text of a statement one can choose
the limiting values #; and 1, as extreme values of the time intervals between
zero-crossings. If in the interval (t4,1,) we distribute K —1 threshold values,
then we obtain K time channels. The values Y(t._q, &) represent the number
of intervals #; contained in the interval (f,_,, #,).

If the time dependent signal U,,i(t) of a duration T, ; constitutes a pat-
tern of the m-th speaker and of the i-th repetition of the speaker’s voice, then
this pattern can be represented in the form of a K-dimensional vector

Yni = {ym,i,u Ymyioy ooes ym,i,.‘fc’ Sy ym,i,K}' (2)
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An example of the distribution of time intervals is shown in Fig. 1.

(e) Time dependence of the density of zero-crossings.

The results presented in paper [7] suggest that it is possible to use the
time dependence of the density function of zero-crossings for voice diserimina-
tion. The measurement of the density o (kty) = o[ U(kiy)] from a speech signal
in discrete form U, is made according to the relation

N
1
[0 (n)] = = P (U, (b=1)tyt ), )
N asi

pr

where k is the index of the signal segment of duration #,, N — the number
of signal samples in a given segment, f, — the sampling frequency, and i,
= N/fp.-
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Fig. 1. The averaged distributions of time intervalg for 4 speakers (averaging from 5 repetitions
of statements)

The function g(kty) for the m-th speaker and the i-th repetition ¢an be
presented in the form of the vector

Pmi = {Qm,i(l)r O ¢ (2)5 oty 9m,i(Km.i)}' (4)
The dimension K,, ; of the vector depends on the speaker, as also on the

given repetition of the statement (especially as regards its rate) and this neces-
sitates the use of time normalization [5].
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(d) Parameters defined on the basis of the total time during which the
points remain in given sectors of the phase plane {o[U(#)1, ¢'[U ()]}

The time dependence of the zero-crossing density changes can be represen-
ted by the zero-crossing derivative. A speech signal can be described by a set
of points with coordinates
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belonging to the phase plane being a discrete representation of the plane
{[UM®)], ¢'[UMI.

A given signal ean also be characterized by the numbers P (1) corresponding
to the total time during which the points with indices 1,2, ..., K, ; remain
in definite sectors of the phase plane (Fig. 2). By selecting a point 8 with co-
ordinates 8, and 8, as a centre of the set of these points and assuming it as
a central point of partition, it is possible to divide the phase plane into I sectors.

It is convenient to define the coordinates S, and 8, as arithmetical means
of the coordinates of the points for a given speaker.

The principle of determining the values of the parameters P (1) is as follows:

P(l) is the number of points with coordinates {o[U(kty)], o' [U(kty)]}
which satisfy the condition

@1y < Arg{o[U(kty)]— 8, o' [U(kty)1—8,} < ¢y (5)

where angles ¢, (1 =0,1,..., L) define the boundaries of the sectors of the
phase plane.

The values P(I), obtained according to this method and complemented
by the coordinates 8, and: 8,, form the vector P, ; which represents the i-th
statement of the m-th speaker:

Pm,i 53 {Pm,i(l)s ij,-(2), ---7Pm,i(L)5 Sa:

mi? St (6)

(e) The parameters defined on the basis of the total time during which
the points remain in particular sectors of the phase plane {o[U(#)], o[U "(1)1}.

Similarly as in (d) it is possible to construct a phase plane in which one of
the axes will serve for discrete presentation of the time dependence of the
zero-crossing density and the other one for the similar presentation of the time
dependence of the zero-crossing density of the derivative of a speech signal
(Fig. 3).

The measurement of the zero-crossing density of the derivative of the signal
is performed according to the relation

A i ; n
e[U' (kty)] = —ZP(UR! (k—l)tN+T ) (7)

=1 pr

with the n-th sample U, of the function U’ being defined as
U;. = (Un+1““ Uty
where k is the number of the segment of a signal with N samples and of dura-
tion .
The position of the point 8 has been defined similarly as in (d) and the

values of @(I) have been obtained, Q(l) being the number of points with the
coordinates {o[U(kty)], o[U’(kty)]} which satisfy the condition

Py < Arg {o[U (kty)]—8,, o[U’ (kty)1—8,} < @15 (8)
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where angles ¢; (I =0,1,..., L) define the boundaries of the sectors of the
phase plane.

For the above-defined parameters a speech signal of i-th repetition of
the m-th speaker can be presented as

Qm.i = {Qm,i(l), Qm,f(2): ey Qm,i(L)’ Szm’p Sym,5}° (9)
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2.3. Algorithm of identification. The main purpose of this paper is to verify
the sets of parameters obtained by the ZCA method. For this reason the simplest
heuristic algorithm of identification NM (the nearest mean) has been used in the
experiment.

Under the assumption that the probability of occurrence of the voices of
individual speakers is the same, the decision rule resulting from this algorithm
can thus be expressed as

x, belongs to the class m it d, , < d,; 1=1,2,...,m—1,m+1, ..., M), (10)
where d,, ,, and d, ; are distances (in the sense of the adopted measure) of the
n-th examined vector from the n-th (I-th) reference vector formed by the ave-
raging of the coordinates of vectors belonging to the m-th (I-th) class.

As a measure of the distance the Mahalanobis distance dX:A was used
(this distance accounts for possible correlations between individual parameters),

dﬂ{#{ 30 (mn_ym)w—l(mn_ym)'ny (11)

where y,, is the averaged reference vector, Tr — the sign of vector transposition,
W — the averaged matrix of covariance given by the relation

M I
i i
igfer -E Z 2 (ym,i,k i ym.k)Tr (ym,i,k g ym,k) ’ (12)

m=1 i=1

Y,z denoting the k-th parameter of the i-th repetition of the m-th speaker, and

¥
i
Yok = F D, It (13)

i=1

2.4. Ewperiment. The strategy of the performed experiment is shown in Fig. 4.
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The speech material for the experiments was provided by statements
made by 20 male speakers of age 19-30. The statement of the speakers were
recorded in two sessions 4 and B separated by a 3-month time interval. In
the course of each session 5 repetitions of the key word were recorded. The
speech signal was recorded on magnetic tape AN-25 by means of MDU-26
microphone and MP-224 tape recorder. The signal used for further processing
had a S§/N ratio of about 40 dB and frequency range 75-5000 Hz. For the
conversion of the signal into a digital form enabling the extraction of parameters
the recorder 7502 was used. The adopted threshold level was —35 dB in relation
to the peak value of the signal and the sampling frequency was 10 kHz. The
distributions of intervals y,, ; were determined by means of the SEGDIG pro-
gram [2]. _

The extraction of parameters obtained on the basis of the density of zero-
-crossings was realized in two stages.

The first stage involved the preliminary processing of data to determine
the instant values (coordinates) of the density o[U(kty)] and o[ U’ (kty)] with
iy = 20 ms.

The second stage comprised the “curtailment” of the sequence e[U(kty)]
to K =25 elements, the time normalization of o[U(kty)] and e[U’ (Fty)]
for K = 25 (cf. [5]) and the formation of vectors P, ;and Q,, ; for L = 4 and 8.
The extreme values of the angles ¢, were selected in the following manner:

2n

@ = —-'n:—i—Tl, 1=0,1, cuogdes (14)

All sets of parameters described in this paper provide the basis for the
formation of reference sequences and sequences to be identified. The reference
sequences were obtained from statements recorded in session A ; the sequences
to be identified were obtained in both sessions A and B.

The results of voice identification with account for the technical data of
parameters and the type of the sequence to be identified are shown in Table 1.

The results of voice identification indicate that the accuracy of the recogni-
tion depends considerably on the method used for the description of individual
features. '

The best results were obtained for the distribution of time intervals Ym,i-
In view of a not too large dimension K of this vector and no need for the time
normalization, the priority should be given to this approach as being convenient
and effective for the description of the reference pattern of voice obtained by
the ZCA-method. The worse results were obtained for the sets Pmi a0nd Q,, ;.
Furthermore, prior to the formation of reference patterns and the patterns
to be identified, the dimension of the set p,, ; must be reduced to the constant
value K by normalization of “curtailment”. The set Q,,,: for the adopted two
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Table 1. Summary of the results of correet voice
identification (in 9%)

Vector of Identified sequence
parameters from session from session
A | B
Ym,i 92 78
K =18
P‘m,i 90 72
K =20
(normalized)
ﬁm,‘t‘- 89 I 68
K =20
(unnormalized)
Pm,i 60 39
Lt+2 =6
Pon,g 63 49
L4+2 =10
Qm,i {7 48
L+2 =6 i
Qm,i 84 61
L+2 =10

dimensions of the vector L2 is less efficient; for L+2 = 10 a considerably
higher probability of correct identification was obtained and this gives evidence
of the influence of the number of sectors of the phase plane on the results of
identification for this set of parameters. Similar relations apply to the set P, ;
for which the least accurate results of identification were obtained.

For all sets of parameters a considerably smaller probability of correct
identification in the case of sequences to be identified taken from session B
was obtained, thus supporting the hypothesis of a pronounced effect of time
lapse upon individual features of voices [1, 3].

On the basis of the results obtained it can be concluded that the ZCA-
-method can be effectively used for the formation of the sets of parameters
diseriminating the speakers in a short term analysis, provided a suitable method
for the description of individual features of voice is used.
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HYPOTHESIS OF COINCIDENCE OF SHEAR STRESSES IN THE EXCITATION OF HAIR
CELLS

ANTONI JAROSZEWSKI

Laboratory of Musical Acoustics, Academy of Music, 00-368 Warszawa, Oké6lnik 2

A new hypothesis of neuromechanical “sharpening” in the cochlea in-
ferred from the available morphological data and from the geometry of the
distribution of stereocilia in OHC in relation to the distribution of shear stresses
as determined by Tonndorf and by the author on cochlear models is presented.

Introduction

An idea of lateral suppression or “sharpening” in the perception of pitch
was created in its simple form as a result of discrepancy between Helmholtz’s
theory [15] and the experimental observations. Helmholtz, investigating the
perception of transients in musical sounds, reasoned that the mechanical fre-
quency analyzing system in the form of basilar membrane must be damped
in quite a significant degree. There was hence obvious contradiction arising
from the necessity to assume high selectivity of the analyser to tally with its
high pitch discrimination and from the observations which indicated its
considerable damping. ;

A concept, well known as Gray’s theory [12], introduced important modi-
fication of the Helmholtz theory and by the assumption that only these hair
cells which receive the strongest excitation determine the pitch perception,
was undoubtedly the first approach to what is presently termed as “sharpening”
or lateral suppression. Almost 50 years later Hartline [13] discovered the pheno-
menon of inhibition of activity in visual receptors in the Limulus eye. This
discovery was successfully used by Békésy [3] to refine earlier hypotheses
pertinent to the nature of sharpening in the perception of pitch and based
on the well-known observations by Mach.

Over the last decade or so the operation of lateral suppression or neural
gharpening was considered as a logical consequence of data disparity resulting
from the comparison of travelling wave envelopes in the BM with values of
DL for frequency (Nordmark [31], Rakowski [32], Verschuure [42]) or with
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selectivity of tuning curves representing the bioelectrical activity in single
fibers of the eighth nerve (Kiang [25]), though in the latter case the differences
are smaller.

It can be observed that travelling wave envelopes obtained by Békésy [1],
which are frequently referred to, represent nothing but.a first approximation
of the true pattern because of the limits imposed by the method he used, i.e.
direct visual examination with the use of an optical microscope with relatively
low resolving power. For that reason he had had to use sound pressure levels
reaching 140 dB, delivered to the tympanic membrane, to obtain sufficiently
large amplitudes in the basilar membrane. At such pressure levels nonlinear
processes are likely to oceur at least in the region of the top of the travelling
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Fig. 1. Tuning curve of basilar membrane, after [33]

wave pattern (Fig. 1) which leads to its flattening (Rhode [33]). The possibility
of occurrence of this artefact was also raised by Johnstone and Taylor [21]).
They also point out that additional artefacts could have been involved as a re-
sult of observation of BM through the Reissner membrane practiced by
Békésy and also from the use of post-mortem or proximatus post-mortem
samples. However, similar comparisons with the newer results of the investi-
gations of hydrodynamieal tuning curves by Kohllsffel [26], which were obtained
at excitation levels of approx. 70 dB SPL and using laser light, or of investiga-
tions by Rhode [33], Johnstone and Boyle [20] and Johnstone and Taylor [21],
in which Méssbaner method (absorption of gamma irradiation) was used at
abt. 70 to 90 dB SPL, also show considerable discrepancies with neurophysiolo-
gical tuning curves and hence call for retaining of the assumption of locus of
sharpening to some degree at cochlear level.
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Aside of these considerations it can be observed that direct comparison
between the envelopes of travelling wave in BM and neurophysiological tuning
curves or else a search for direct correspondence between the selectivity of
the travelling wave envelopes and the DL for frequency or the selectivity of
psychoacoustical tuning curves can be regarded only as exaggerated simplifica-
tion or misrepresentation. This understanding, however, was fairly widely
accepted, e.g. after Davis [7] “each fibre has its “best” frequency but optimum
is not sharp. The region of activity, as can be expected, corresponds with the
travelling wave envelope”. This simplification is likely to result from the un-
certainty with regard to the mechanism of excitation or stimulation of hair
cells, which leads to their depolarization. For this very reason the comparison
of the travelling wave envelope normal to the BM surface and along its long axis
with the tuning curves (neural) can be acceptable only as a first approximation.

As it can be learned from the literature a number of various concepts per-
taining to the “sharpening” of cochlear selectivity on mechanical or hydro-
mechanical basis or else on the assumption of both neural and hydromechanical
processes in “sharpening” have been proposed (Tonndorf [40], [41], Zwicker
[46]). There were also attempts to assign the neural “sharpening” to the multiple
differentiation at various levels of auditory pathway (Huggins, Licklider [17],
Dolatowski [8], Engstrom [9]). Ideas of different kind, presented by Zwislocki
[47, 48], are based on the assumption of phase opposition in the activity of the
populations of inner and outer hair cells. This phase opposition in bioelectrical
activity of THC and OHC was found by Zwislocki in the kanamyecine-treated
samples. This drug has a destructive influence mostly on THC in the basal
turn of the cochlea and mostly on OHO in the apical turn. The neural tuning
curve obtained from these experiments at frequency of 5 kHz (a result of subtrac-
tion of tuning curves for THC and OHC populations) is in its top eomparable
with that determined by Rhode [33] (flat top) and outside this region close to
the tuning curves obtained by Kiang [25]. It is like an equivalent of Kiang’s
tuning curves particularly with respect to the slopes of the upper and lower
flank, though delivered from the different experimental method. However,
Zwislocki’s theory of phase opposition, at least presently, does not seem to be
fully and sufficiently documented, especially with regard to the kanamyein
influence on both populations of hair cells.

Hydrodynamics of the cochlea

The stapes movement in the oval window results in a travelling wave in
cochlea. From Tonndorf [40, 41] experimental works on cochlear models or
works by Lesser and Berkley [28] it appears that the travelling wave is tro-
choidal in its nature, i.e. such a wave in which particles of the liguid medium
move along elliptical or circular orbits. Closer examination reveals that particle
tracks under certain conditions are even more complicated.

4 — Archives of Acoustics 3/78
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It can be observed that the trochoidal wave field is vectorial and three-
-dimensional generally, for instance for the case of a surface radial wave. Tonndorf
[41], in his considerations pertaining to the hydrodynamics of cochlear models,
agsumes the two-dimensional field only and concludes that the existence of a
trochoidal wave, the similarity of waves in the medium and in BM and also
the decrease of the field vector perpendicular to the BM surface with distance,
seem to indicate that the movement of liquid medium in the cochlea accom-
panied byy the BM deformations well resembles Lambs surface waves. It seems
likely that this simplification assumed for elarity of dynamical representation
of the system behaviour is not pertinent in regard to Tonndorf’s observations
of the distribution of shear stresses in BM (or between the tectorial and basilar
membranes) performed on cochlear models. These observations seem to indicate
for the existence of a three-dimensional vectorial field in the cochlear medium.

The latter observations are extremely interesting from the point of view
of Tonndorf’s [41] and Zwicker’s [46] concepts about the mechanical or hydro-
mechanical nature of the “sharpening” process. The envelope of a travelling
wave, longitudinal shear stresses and radial shear stresses, as measured by
Tonndorf [41] on cochlear models, are presented in Fig. 2. Tonndorfs tates
that “these mechanical transformations may be dominant if not the only factors
determining the “sharpening” observed in neurophysiological activity”, though
he does mnot disregard the possibility of neural processing.
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Fig. 2. Shear stresses in the cochlear model, after [41]

It must be, however, stressed in that context that the envelopes of both
longitudinal and radial shear stresses, though characterized by better selecti-
vity with respeet to the normal deflection travelling wave, are far from the
selectivity of mneurophysiological tuning curves, particularly their portions
close to CF’s. Nevertheless, Tonndorf’s data [41] on shear stresses in the cochlear
models and their redetermination by the autor are, as it seems, the only data
available.
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Neurophysiological data

The available data practically rule out the possibility of execitation of hair
cells through axial stresses, i.e. along the axis of stereocilia exerted by the normal
pressure as it was necessary in the so-called “heavy beam theory” by Huggins
and Licklider [17]. Békésy’s data [2] from the early simple experiments using
vibrating needle show that evidently hair cells are mostly sensitive for the
stimulation tangential to the BM surface. Hence it is postulated [9] that stereoci-
lia rather perform like levers and behave passively transferring the energy of
shear stresses from the tectorial membrane to the basal body. Basal body, accor-
ding to Engstrom, should be identified as main element which under stimul-
ation leads to the depolarization of the hair cell.

Basgic morphological data concerning both hair cells populations are derived
from Held [14] and Kolmer [27]. More recent data by Flock et al. [11], Engstrom et
al. [9] and, particularly, these by Spoendlin [36, 37] supply a vast amount of mor-
phological information; with respect to the mechanism of hair cells stimulation,
however, the ideas revealed by these authors seem to have comparatively
little in common. Thus Flock et al. postulate radial shear stresses as leading
to the depolarization of hair cells, whereas Engstrom et al. maintain that radial
shear can be regarded as the main stimulating factor only with respect to the
inner hair cells because of the simple isotropic geometrical configuration of
stereocilia of these cells. Again Flock et al. pointa out very characteristic
configuration of stereocilia in the outer hair cells in all the three rows resembling
“W?” to some extent (Fig. 3). This very special arrangement according to
Flock et al. (1962) indicates that the sensitivity of OHC is increased in some
priviliged directions. These directions of increased sensitivity should correspond

L
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Fig. 3. Arrangement of stereocilia in OHC, after [11]
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with oblique radial and longitudinal shear stresses or, in other words, the
OHO should demonstrate some degree of directional sengitivity.

Spoendlin [36, 37], by inference from his morphological studies of Cortis’
organ using an electron microscope, seems to deny the role of the basal body in the
stimulation and eventually depolarization of hair cells since he was unable to
find this structure in his samples except in very young animals and guinea
pigs [11]. He also argues that the cuticular plate, in which stereocilia are an-
chored, is so stiff a structure that its deformation under lever action of stereo-
cilia does not seem to be possible. Hence, the deformation of cuticular plate
and the resulting stimulation of the basal body seems to be open to question.

A very interesting hypothesis with reference to the initiation of the me-
chano-electrical transformation process was reported by Vistrup and Jensen
[43] and Christiansen [5]. This hypothesis follows the observation of muco-
polisaccharides which, under mechanical shear stresses, develop surface electric
potentials. Mucopolisaccharides showing even some sort of regular structures
were found in between the stereocilia spaces by Spoendlin [35]. The shear
stresses which are present between the stereocilia, following stimulation
of BM [41], could possibly lead to the initiation of such a reaction [36, 3T].
The mechano-electrical transformation of that nature seems also to be in agre-
ement with the observations by Tasaki and Spyropoulos [38] and Butler [4]
from which it follows that Cortis’ organ space without stimulation is isopotential.

Morphological data are also available which indicate the possibility of
synaptic transition from the hair cell to the afferent nerve endings on the
principle of the chemical process [36]. As a result of such a synaptic process,
gradually growing postsynaptic potential is developed in nerve endings. This
potential, characterised by the absence of the threshold values, may very
likely be of uttermost importance in the explanation of the time summation
process in all dendrites of the OHC population [6]. Electronically conducted
postsynaptic potentials can thus undergo summation when they reach the
initial segment of afferent dendrites and, if the resulting potential approaches
the threshold value in that system, can lead to the nerve spike firing [36].

The presented mechanism which is conceptually derived mainly from
experimental work and inferrences by Engstrém [9], Vistrup and Jensen [43],
Christiansen [5], Spoendlin [35-37] and by Davis [6] is applied to the further
considerations of the present work, even though some particulars of that eon-
cept may well seem to be still open to question. A point that can be argued
concerns the basal body whose presence is disregarded, though Flock [11] found
this structure in all samples he examined. Also questioning the mechanism
of stimulation, in which the deformation of cuticular plate is needed [9], only
on the basis of the morphological evidence [36] does not seem to be quite con-
vineing, the more so as observations by Flock [11] and Engstrém [9] and
their coneclusions pertaining to the rigidity of stereocilia were not questioned,
though it could well have been of advantage for Spoendlin’s [36] hypotheses.
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It can be learned that mucopolisaccharides were found by Spoendlin
between the stereocilia, if not along the whole length, then at least at some
definite length. Hence, with the assumption of considerable rigidity of both,
the stereocilia and the cuticular plate, it appears to be rather difficult to explain
in what a way the shear stresses between the stereocilia can be developed,
necessary for the graded potential to appear. Once the complete rigidity of
cuticular plate is assumed, the shear stresses between the stereocilia can develop
only if the latter undergo bending. However, this concept seems to be contra-
dictory with respect to Spoendlin’s finding which indicates that mucopolisac-
charides occupy probably some considerable length of the stereocilia space.
From classical mechanics it is known that a bending of stereocilia, anchored in
the rigid cuticular plate, would take place chiefly if not only in the vicinity
of anchored ends. In such a case the presence of mucopolisaccharides outside
this small fraction of stereocilia length would appear to be rather a sort of
unfounded. Therefore it seems not to be improbable that Spoendlin’s inferren-
ces with regard to the rigidity of cuticular plate, which are in contrast with
Engstrom’s [9] implications, are wrong. If that was true, and assuming a consi-
derable degree of stiffness in stereocilia, shear stresses would ocecur at
the whole or at the large part of stereocilia length. On the other hand, the
assumption of elastic cuticular plate seems to make Spoendlin’s argument
with regard to Flock [11] and Engstrom [9] unsound. Summing up it appears
that the available empirical data are inconsistent, as are the theories built
up thereupon.

Psychoacoustical data and locus of sharpening

A comparison between the neurophysiological tuning curves obtained at
the 8-th nerve level and the envelopes of travelling wave in BM or the envelopes
of radial or longitudinal shear stresses may lead to reasoning that the sharpening
at this level takes place in the cochlea. Hypotheses pertaining to the hydro-
mechanical sharpening in the cochlea were given after all by Tonndorf [40]
and Zwicker [46] and they are not new in the general sense. Tonndorf indicates
the possibility of sharpening resulting from mechanical transformations
of normal deflection of BM to the radial and longitudinal shear stresses and
suggests after Lowenstein and WerSall [29] that most probably only radial
stresses are engaged in the stimulation of hair cells. However, the envelopes
of both radial and longitudinal shear stresses, as determined by Tonndorf,
diverge significantly from the neurophysiological tuning curves [25], particu-
larly, as it was already pointed out, in the top region. It can be shown that
with respect to neurophysiological tuning curves [22-25] the selectivity of
hydrodynamical tuning curves [20, 21, 26, 33], expressed by the slopes of the
flanks of TC, is worse by the ratio of 1:2 to 1 : 4 and still worse in the top of
the curve region.
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The results of investigations of psychoacoustical tuning curves [18, 19, 44],
which show that the slopes of the upper flank of tuning curves in the top region
reach from 103 to 2.5-10% dB/oct, seem to point out quite soundly that the
process of “sharpening?” is not completed at the primary neurons level because
the slopes of neurophysiological tuning curves at the eighth nerve level are
considerably lower [10, 25, 45].

Hypothesis of coincidence of shear in hydrodynamical sharpening

According to Engstrom et al. [9] the izotropic distribution of stereicilia
in THC suggests that THC are stimulated only by radial shear stresses. On the
contrary, Tonndorf [41] by the analysis of the role of tectorial membrane comes
to the conclusion that THC can be stimulated but only by longitudinal shear
stresses. Similar implications were formulated also by Spoendlin [36]. In spite
of the lack of sufficient and convineing experimental data it seems likely that
IHC at any rate may demonstrate either unidirectional characteristic of sensi-
tivity or, which seems even more probable, have the same sensitivity for shear
stresses from any direction (tangential shear). This is not quite in agreement
with findings by Spoendlin [36, 37] who was able to show some anizotropic
arrangement also in THC. :

The very peculiar distribution of stereocilia in OHC does not seem to permit
for the assumption of the analogical hypothesis because in nature rarely struc-
tures can be found in which complication would be purposeless. If the structure
of OHC and, particularly, the distribution of stereocilia very close in shape
to the letter “W?” with low tooth in the middle and limbs at approximately 45°
to the length of BM is estimated, it seems very likely that the priviledged di-
rections of stimulation may be oblique. In that case OHC would be particularly
gensitive or sensitive only for shear stresses oblique with respeect to the direction
of travelling wave propagation.

Spoendlin [36], discussing the nature of the graded postsynaptic potential
development, states that the deformation of the inter-stereocilia mucopolisac-
charide molecular structures (and hence the accompanying electrical reaction)
is the largest if the rows of stereocilia are parallel to the direction of bending
and the smallest if the rows of stereocilia are perpendicular to that direction.
Even with the assumption that stereocilia do not undergo bending (as Spoendlin
did assume) but only deflection near their place of anchorage, i.e. cuticular
plate — which depends, as discussed above, on the relative stiffness of both
stereocilia and cuticular plate which can not be determined yet with the suf-
ficient certainty — the principle of directional sensitivity of OHC with their
anizotropic stereocilia configuration can well seem true. In case of rather stiff
stereocilia and relatively elastic cuticular plate, possibly only over the portion
close to the anchorage of hairs, the graded potentials would develop in the whole
interstereocilia mucopolisaccharide molecular structures. In spite of the ob-
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vious possibility of this reasoning, Spoendlin [35, 36] does not cease from the
well accepted and popular assumption that the priviledged directions in sensi-
tivity characteristics of OHC and THC are radial and longitudinal, respectively.

It is easy to observe that oblique shear stresses appear solely in the region
of coincidence of both longitudinal and radial shear stresses, as they were
determined by Tonndorf [41] and by the author (this report). There is only
a relatively limited region, in terms of BM length in which these two kinds
of shear occur together. This region that has been termed the “region of coinei-
dence” is, contrary to the envelopes of travelling wave, longitudinal shear
stresses and radial shear stresses, comparatively narrow in the frequency domain.
So, if the presented hypotheses and reasoning would gain more experimental
evidence and support, particularly by the determination of directional charac-
teristics of OHC sensitivity, then they could be significant in the understanding
of the sharpening phenomena at cochlear level and of the pitch perception as
well. Thus, assuming that the depolarization of the basal body or the growth of
graded potential at the initial dendrites of afferent fibers takes place only for
the oblique shear stresses, then this activity would result from the shear de-
termined by the difference of vectors R(x) and L(z). Functions R(x)—L(x),
derived from Tonndorf’s [41] data and from the own data obtained on 10:1
scale cochlear model, are presented in Figs. 4 and 5. The quantitative differences
between the two sets of data do not seem to be alarming as obtained from the
seemingly different models and most probably also procedures. An important
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detail in the concept of coincidence of shear stresses in the stimulation of hair
cell is that within one full period of stimulation, in the top region of the R (z)—
— L(z) curve, i.e. where scalar values of both vectors are equal, the phase of
R(x) vector changes by 180°. Hence, the stereocilia in the limbs of “W-like?”
configuration are subjected to the shear forces F(x) of equal amplitude but
inclined 45° and —45° with respect to the BM length.

Now then the next or second degree of coincidence occurs which can be
considered as the proper coincidence and which results from the action of equal
amplitude but directed along the rows of stereocilia in OHC vectors of shear
stresses (i.e. 90° aside one from the other). It can be that only and solely that
coincidence, which can be found nowhere but at the top of R(«) — L(z) function,
is associated with the depolarization of the basal body or assuming different me-
chanism, the growth of the graded potential in the initial dendrites of afferent
network, eventually resulting in firing of the nerve spike if the characteristic
threshold value was reached.

Approval of the mechanical transformations after Tonndorf [41] and as-
sumption of the operation of sharpening according to the principle of the hypo-
thesis of coincidence may include, in their nature, explanation for the existence
of excitatory and inhibitory areas. Namely, if the envelopes of shear stresses
overlap each other, some kind of blocking of at least a fraction of OHC popula-
tion is likely to occur on both sides of R(x)— L(2) maximum. Such blocking
could be expected as a result of prevalence of the radial shear vector on one side
and the longitudinal shear vector on the other side of excitatory area. In that
way on both sides of E(2)— L(2) maximum shear stresses would differ from
those most effective for excitation exertion or, in other words, the aforediscussed
second degree of coincidence would not come to effect.

Innervation of the cochlea and neurophysiological tuning curves

1t is known that the number of hair cells in man is comparatively small
(relative to the number of receptors in other sense organs) and, according to
various authors, ranges from about 15000 (Spoendlin [41]) to about 40000
(caleulated from data by Teas [39]). Of that number less than 25 9% refers to
the inner hair cells. Each of OHC is equipped with about 100-140 hairs (stereo-
cilia) arranged in the three rows forming together a very characteristic W-like
anizotropic structure described above. THC are equipped with only about
40-50 hairs and the arrangement of them is either izotropic or their anizotropy
is unidirectional [9, 11, 36, 37, 39].

Nothing more but the relative number of OHC and their comparatively
complicated anizotropy could lead to the suspicion that just this population
should demonstrate higher discriminatory ability relative to the THC population.
Contradictory argumentation could be performed using morphological data
pertinent to the number of the afferent links; only about 3000-4000 of those
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innervate the whole population of OHC whereas the most afferents, i.e. about
50000, carry information from the IHC.

Aditionally the THC have afferent connections almost entirely with the
radial fibers whilst the connections of OHC dendrites with afferent network
are accomplished by the external spiral fibers, which connects with groups
of OHC, covering some considerable space. These reasons seem to have led
Spoendlin [36] to the assumption that inner hair cells are dominant in the
diserimination of pitch.

It seems that this assumption can be regarded as quite logical from the
point of view of morphological evidence but there are also some other aspects
which may indicate that it as well can be recognized as doubtful and formulated
without sufficient ingight into functional evidence.

One of the doubtless facts, which can be used in this argument, follows
from the relative number of afferent neurons associated with the OHC and THC.
As it was mentioned, only about 5%, of neurons within the eighth nerve are
afferents carrying information from OHOC. Hence, it well can be that practically
all the records of bioelectrical activity, as obtained by Kiang [25] and others,
could be pertinent to the radial fibers belonging to THC population. From that
point of view it may seem probable that the neurophysiological tuning curves,
obtained by Kiang at the 8-th nerve level and widely accepted as the determi-
nant of the frequency selectivity of the auditory pathway at that level, may
turn out not to be actually “true” tuning curves as they may reflect the activity
of only THC population. Whatever we will learn about the activity of OHC
and their role, it must be admitted that with regard to facts we know very
little at present. However, if nothing more is possible now but speculations,
it can be also observed that the hypothesis of coincidence presented implies
some possibility to judge that at least equally well the “true” tuning curves
at the eight nerve level can be represented by the activity in the considerably
less accessible neurons from the spiral fibers innervating OHC population.

Conclusion

The presented and quoted experimental data and the hypothesis conecerning
the mechanism of neuromechanical sharpening are close to the popular and
rather widely accepted, at least up to the beginning of the last decade, agsum-
ption that the process of sharpening takes place mainly or even is completed
at the cochlear level.

It seems worthy to observe that these concepts were in a way similar to
those by Helmholtz [15] who declared that BM and Cortis’ organ have basic
role in the perception of pitch, though his ideas pertaining to the nature of
analysis at that level were quite naturally very simple.

The presented in this report hypothesis of coincidence of longitudinal
and radial vectors of the field of shear stresses in the travelling wave demonstra-
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tes still further effort to explain the unbelievably high selectivity of the ear
analyzer, even as low as at the cochlear level. Assuming that Kiang’s [25]
tuning curves (in spite of the former criticism) reflect that selectivity to some
degree at least, it comes to about 200 dB oct at 1 kHz as expressed by the upper
flank slope [10, 456]. Nevertheless it is by an order of magnitude lower than the
selectivity in the psychoacoustical tuning curves reported in the papers cited
[18, 19, 44].

The presented data seem to support the place theory. However, it should
be stressed that essentially the spatial data do not contradict the temporal
data (time theory) and to prove such contradiction was by no means intended
by the author. It can also be noticed that the travelling wave theory, though
it cannot be questioned in the face of the available experimental data both
hydrodynamical and neurophysiological, still offers many problems yet unsolved
in detail.

Undoubtedly the data by Hind et al. [16] and also by Rose and al. [34],
which show that the regions of activity in terms of frequenecy at the eighth
nerve level evoked by sine signals at from 20 to 100 dB SPL, correspond with
considerable regions (dimensionally) in the bagilar membrane add to the com-
plexity of pitch perception process. On the other hand, it may seem possible,
particularly with morphological data and inferrences by Spoendlin [37] at
hand, that the mentioned apparent complications result from the misleading
interpretation of the up-to-date available neurophysiological data. In one of his
papers Spoendlin expressed his doubts in the statement that “Kiang probably
recorded mainly from the neurons associated with THC and his results reflect
the mechanism of IHC coding system”.

Tt is also probable that similar objections may apply equally to the data
by Hind [16] and Rose [34]. For that reason, with lack of the sufficiently do-
cumented data pertaining to the activity of OHC, any comparison between
the slopes of neurophysiological tuning curves obtained heretofore and the
slopes of psychoacoustical (or hydrodynamical) tuning curves can evoke quite
substantial criticism. Nevertheless such comparisons are evidently popular
[10, 30] in spite of that, as it was mentioned, there is actually very little known
about the bioelectrical activity and the role which OHC population plays in
the perception of piteh.

In this context, the presented hypothetical model of neuromechanical
sharpening, working on the principle of common effect of both radial and
longitudinal shear on the OHC with the assumption of directional sensitivity
characteristics in this population, is an attempt to determine potential possi-
bilities of OHC with respect to the diserimination of pitech. Some aspects of
this hypothetical model are in agreement with Evans’ [10] inferrences concer-
ning the “second filter hypothesis”, who wrote that it is highly probable that
“each hair cell is equipped with a sepamte “private” second filter”.
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IMPEDANCE OF THE UNBAFFLED CYLINDRICAL PIPE OUTLET
FOR THE PLANE WAVE INCIDENT AT THE OUTLET*

ANNA SNAKOWSKA

Institute of Physies, Higher Pedagogical School
35-959 Rzeszéow, ul. Rejtana 16a

The paper presents formulae for the impedance of the outlet of semi-
infinite eylindrical wave-guide derived by considering the propagation of a plane
wave and accounting for the generafion of higher Bessel modes due to the
diffraction at the opened end of the wave-guide. For this purpose expressions
for the refraction and transformation coefficients of the basic mode were derived
by solving exactly the wave equations with suitable boundary conditions using
Wiener-Hopf factorization.

1. Introduction

In the practical applications of acoustics an important role is played by
the phenomena occurring at the opened ends of wave-guides, e.g. of meaguring
pipes and acoustic horns. The first attempt to describe these phenomena was
presented by Rayleigh [1]who had assumed uniform distribution of the velocity
of vibrations at the outlet provided additionally with an infinitely rigid aco-
ustic baffle. A further step towards the definition of the acoustic field inside
the semi-infinite unbaffled cylindrical waveguide was made by Levine and
Schwinger [2]. They assumed, however, that a basic mode plane wave propa-
gates in the direction of the outlet and that because of diffraction at the opened
end of the wave-guide only the plane wave with an amplitude described by
the complex coefficient of reflection propagates. The impedance of the outlet
calculated on the basis of the value of this coefficient is given, among others,
by Zyszkowski ([3], p. 218). However, it is known, e.g. from the theory of the
infinite ¢ylindrical wave-quide (cf. [4]), that such assumptions are valid only
when the diffraction parameter of the wave-guide, i.e. the product of the wave
number and the pipe radius is smaller than the value of the zero-crossing of

* This paper is a contribution to the interdisciplinary problem MR.I.24
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the Bessel function of the first order, equal to 3,8317... This model has thus
a limited application to higher frequencies and larger diameters of the wave-
-guides.

In 1949 Wajnsztejn [6] developed an analytical theory of the acoustic
field of a semi-infinite unbaffled eylindrical wave-guide utilizing the method
of solution of a similar problem for electromagnetic waves [b]. Basing on his
results the author of the present paper has calculated the impedance of the
outlet of the unbaffled eylindrical wave-guide for the plane wave incident
at the outlet with the aid of an exact solution of the wave equation for any
value of the diffraction parameter. The result obtained can also be interpreted
as an impedance of a circular sound source located at the bottom of a semi-infi-
nite, rigid cylinder of the identical radius.

2, Solution of wave equation

Let us consider a cylindrieal wave-guide with an infinite, thin and rigid
wall and select a cylindrical coordinate system in which the Z-axis coincides
with the symmetry axis of the wave-guide. The wave-guide wall X' is given
by the equation of the side-wall of the semi-infinite cylinder with a radius a:

2 =f(r,2):r=a,220}

Let us assume further that the acoustic potential @(r, z) does not depend
on angle ¢ and its dependence on time is described by the factor expressed
in the form exp(—imt). The wave equation for the potential has thus the fol-

lowing from:
1( 0@ 0*P
] b Y, VSR

- (r 6r)+ Py +k*d = 0. (1.1)

The assumption that the wave-guide is perfectly rigid leads to the boundary
condition

09 |

—t =0, y 1.2
oar |z (18

This means that the normal component of velocity vanishes at the wave-
guide wall. The second boundary condition requires that the potential should
be continuous at the surface extention in the negative direction of the Z-axis:

lim &(r,2) =1lim &(r,2), =2<0. (1.3)

r—a + r—a

The solution of the problem of acoustic field of the wave-guide consists
in finding the function @(r, 2) which satisfies equation (1.1) for the boundary
conditions (1.2) and (1.3) and the Sommerfeld condition of radiation (cf. [4]).
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Let us assume that the partial solution of this problem, depending additio-
nally on a parameter w and modified by a function F(w) is the solution obtained
for the infinite wave-guide [5], [6]

¥
To o =)t
O(r,z,w) = i2n20 F(w)e™ (1.4)

oo 7 (v ),

where
v = V(ka)®—w?. (1.5)

The upper product of cylindrical functions in braces refers to the interior
of the cylinder described by X whereas the lower one to the outside of this
cylinder, i.e. for » > a [4].

The required potential ®(r, z) is assumed to be a superposition of the above
partial solutions [5], [6],

D(r,2) = [B(r,z,w)dw, , (1.6)
C

where € is a contour which is selected so that the obtained solution satisfies
the imposed boundary conditions. In particular, the boundary condition (1.2)
now takes the form

[ L(w) F(w)dw =0, 2>0, (1.7)
(8]

where

By I‘n:Vz

I3 (o), H{(v). (1.8)

By calculating then the potential step on the surface r = a,
D(a,, 2, w)—D(a_,z, w) = 4nF (w)e"*™°, (1.9)

it is possible to write the boundary condition (1.3) in the form
[ e e F(w)dw =0, 2<0. (1.10)
C

Finding the potential &(r, 2) is thus reduced to the determination of such
a function F(w) and a contour that equations (1.7) and (1.10) are satisfied.
The solution of these equations can be obtained by the Wiener-Hopf method,
by factorizing analytically integrands L(w) and F(w) into factors L, (w) and
L_(w) in the and lower half-plane of the complex variable w, respectively,
as this permits to make use of the convolution theorem [7].
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A further development of the factorization method, described extensively,
among others, in papers [6] and [6], leads to the following expression for the
acoustic potential of the wave-guide under consideration:

:
o5 = e Fim it ), 0
W=l 0\ n

where R, is the coefficient of transformation of the incident wave info the n-th
wave mode with a wave number y,/a, with

Va = V(ka)—ul, (L12)
and u, is the n-th zero-crossing of the Besel function of the first order

Jl(Juﬂ) =0.

The first component in square brackets represents the plane wave which,
according to the assumption, propagates in the direction of the wawve-guide
outlet and is transformed there into an infinite number of waves with a Bessel
distribution which propagate in the opposite direction. Analyzing carefully
the exponential expressions under the sum sign we see that for a fixed diffraction
parameter only a certain number of components will represent the waves
which can propagate along the wave-guide, since, if the condition

ko = x> pu, : (1.13)

is satisfied, the exponent of the exponential funection will be an imaginary
number. Starting, however, from a certain N such that

By < %< BNy (1.14)

the exponents will be negative real numbers and thus the corresponding com-
ponents of the sum will represent a disturbance, attenunated exponentially
with increasing coordinate Z. Since these disturbances are not the energy.
carrying waves, they will be ignored in further considerations of impedance.

3. Reflection and transformations of impedance

It follows from (1.11) that the determination of the acoustic field inside
the wave-guide is now reduced to the problem of explicit caleulation of the
coefficients of reflection and transformation of the incident wave. According
to paper [6] these coefficients have the following form:

reflection coefficient

R, = : (2.1)
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transformation coefficient

& 2xL (%)
e %2 —pn) L (7,) 22
The factors L (w) and L_(w) are defined as
Va
L, (w) = ]/l:fw vy (w), (2.3)
.4
Va
L_(w) = V:; — v (), (2.4)
where
N d
V4 (0) = ]/:r(x+w)H‘1"(o)J1(v) [] heﬂ“””*, - (25
N
p_(w) = ]/ (e —w0)HO(0) Iy (0) [ [ L2 g0 (2.6)

Yitw

=1

X is an index of the highest mode capable of propagating freely in the wave-guide
(ef. (1.17)), S8(w) is the complex funection

8(w) = X (w)+i¥ (w). (2.7)

For real values of w that satisfy inequality |w| < x the real and imaginary
parts of the function 8(w) equal respectively to

.Q(v)dw

X = [ -
M YM

p(w) = ———.Q(V)-{-—-— hm[ 2 1n”"+"’ f s ")d'w ] (2.9)
e ol P -4 —¥ur

2(v) is the argument of Hankel function of the first kind of the first order
increased by =/2:
N, (v) 7
Livke: 3
Substituting (2.3) and (2.4) into (2.1) and making use of (2.5) and (2.6)
we get expression for the reflection coefficient of plane wave:

Q(v) = ArgH‘"(v)Jr— = aretg

(2.10)

PRRGRE ¥ B k2 S (2.11)

5 — Archives of Acoustics 3/78
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The calculation of the transformation coefficients R, is a little more com-
plicated, primarily because of the occurrence of the derivative of the function
L_(w) in the denominator of formula (2.2). The derivative of the function
L_(w) in (2.4) equals

Bl = S [ S ”"“("”’]w-(w), (2.12)
Voo 12— T y_(@)

where the second component in brackets can be caleulated by means of the
logarithmic derivative [6]:

«t:((:g)) s mev) dww +Zwiw. (2.13)

i=1 ¥Y§-1 =1

At the point w = y,, in which the function v (w) vanishes, its logarithmic
derivative assumes an indefinite value, Hence, L _ (w) will exist in the sense
of a limit. Direct calculation leads to the following expression:

L. (pe) = —— ) —4 H i L L AL (2.14)
thn Yit¥n

f=1
i#n

On the other hand, the factor L (x) in the nominator of (2.2) can be writ-
ten as

L) =iVa ]/—1, Xit* osen (2.15)

=0
koo 1

where use was made of the asymptotic formulae for the special functions at
small values of the argument [9]:

' k
e e

I(k+1
: ety gy (2.16)
Aiphe __1({)'(?) -

Finally, we can write the expression for the transformation coefficient of
plane wave into the n-th wave mode

]/H Yi o3 Yn Vi + % G[S(-yﬂ)+8(x)]]l2 : (217)

— ¥
i e ?{
i#n

Effective calculations of the values of coefficients as functions of diffrac-
tion parameter are only possible by numerical methods, since the integrals
in the definition of the function S (w) cannot be expressed by analytic funetions.
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The graphs in Figs. 1 and 2 represent respectively the moduli and phases
of the reflection coefficient R, and the transformation coefficients R, of plane
wave for all the allowed wave modes because of their values within the range
[0,20] except for B, appearing as late as for » = 19.62. Numerical computations

have been made starting from the point » = 0 with a step 0.1.

In the calculations use has been made of the generally accepted definition

of modulus and phase of wave reflection coefficient

R, = —|R,|¢".
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4. Outlet impedance

The acoustic impedance of the outlet of the wave-guide will be calculated
from the formula of apparent power [8],

P = [ V*pdo, (3.1)
K
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where k is the surface of the outlet, ¥ — normal component of the velocity
of vibrations, p — aeoustic pressure,
The required impedance is related to the appacrent power by the formula

i
7 =——P 3.2
where ¥, is the mean square of the velocity at the outlet. Knowing the acoustic
potential, we can calculate the acoustic pressure and normal velocity at the

outlet, that is for z = 6:

P = —iwpe?, (3.3)
0D oD
i 25 e | 4
on oz o
After simple calculations we get
00 Jo(i;ir)
=44 1 s 3.5
% we[ +§ " Jo(p) ’] e
Hon
1 A[ 1+ 'z Ju(“’ )] (3.6)
o T (e . .
a ﬂyﬂ Jl](.lun)

Hence, from definition (3.2) we have immediately

= -, e
fdwaZ(HR D(%)))(-—l—I—Rm#_‘:l:))ymrdr. (3.7)
& gl Jolpin Bm

In integrating we make use of the orthogonality of the weighted Bessel
function set [9]:

f I (*;" 'r)I (ﬁa’i‘. r) rdr = 6nma2J‘§ O (3.8)
0
Utilizing this property we have
1 0
7 =yl Pane| = 3 IR,7+ x(2iT (R +1)] 39)

Similarly we can calculate the mean square velocity

"
- fVV*da 2
K

ol 7l + 2 (1 —2 Re(Ro))]. (3.10)
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Acoustical impedance at the outlet is thus equal to

> —ya B+ %(2iIm(Ry) +1)

Z = woa "::: # (311)
Z;!Rnlzly,.lz+x(1 —2Re(R,)) '
n=

We now separate the real and imaginary part of the impedance.
If N is the highest index of the wave for which  is a real number, then
we have equalities

_{ ve, When a< N,
=\ _y* when n> N,

and this leads to the following expressions for the real and imaginary parts
of the impedance referred to the a specific impedance of environment:

N
o z' In |Rnl2+”
Re(Z) = x— a0 : (3.12)
> IR lyal® + #2(1 —2Re(Ry))
n=0
D lyal IRy +22Im(R,)
Im(Z) = % — 2t X (3.13)

Eﬂ R, lyal* + %2 (1 —2Re (Ry))

According to the remark concluding section 2, we can neglect the compo-
nents of sums with an index # > N. Thus we finally get

o
¥ = 2{ Yn |Rn|2
Re(Z) = » ot \ (3.14)

N 2
2 By lyal* 4 (1 —2Re(R,))

n=0

Im(Z) = — s o oL : (3.15)

> IR, Hlyal + 27 (L —2Re(Ry))

n=0

Putting N = 0 in (3.14) and (3.15), we shall confine ourselves to the case
considered in [1], where it has been assumed that only the plane wave is reflected
from the outlet and the wave modes of higher orders have been neglected.

Then these formulae take the well-known form of the expression for im-
pedance

1+ R,

Z =
i T

y (3.16)
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Fig. 3 shows the graph of the real and imaginary parts of the impedance
at the outlet. In addition, in Fig. 4, a comparison has been made of the real
part of impedance Z, in (3.16) to the real part of impedance at the outlet Z
over the range, where these quantities differ from one another, that is for
%> .

On the other hand, the comparison of the respective imaginary parts of
both functions is not given since the difference between them does not exceed
the value of 6:107° less than 2% of absolute value in the above range. This
is of the order of the assumed error of computer calculations. The discontinuities
of the first derivative occurring in Figs. 1-3 appear for the value of the dii-
fraction parameter equal to the successive roots of the Bessel function of the
first order J,(x), that is to say at the points, where the successive wave modes
are excited.

5. Conclusions

The previous calculations of the impedance at the outlet of the eylindrieal
wave-guide, excited by the basic mode, did not account for the appearance of
higher wave modes due to the phenomena occurring at the open end of the
wave-guide. The application of the factorization in solving the wave equation
and further development of the Wajnsztejn theory [6] permitted us to obtain
the useful expression for the transformation coefficients of the basic mode
into other modes, which are allowed for given values of the diffraction para-
meter. The plots of these coefficients, shown in Figs. 1 and 2, represent an
exact description of the acoustic field inside the wave-guide, being a super-
position of incident mode and refracted modes (ef. (1.11)). The calculations of
the impedance, made on the basis of accurate knowledge of acoustic field,
can be applied in two types of problems of great practical importance. They
are: properties of the outlet of unbaffled cylindrical or cylinder-like wave-
guides and the radiation of transducers located on the bottom (base) of a rela-
tively long cylinder.

Commenting on the results obtained, it can be concluded that accounting
for the higher modes resulting from the diffraction at the opened end of the
wave-guide has only little influence on the magnitude of impedance if a plane
wave is an incident at the outlet, although the values of the transformation coef-
ficients of this wave into others attain considerable values even for the highest
permisgible modes. This means that in these problems for which only the ma-
gnitude of impedance is interesting, the assumption of the non-excitation of
these modes is a quite good approximation, which is the more accurate the
greater is the diffraction parameter of the wave-guide. However, one should
keep in mind that the condition of the applicability of this approximation is
the propagation of a “pure” basic mode in the direction of the outlet.
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It is known that practically the generation of an ideal plane wave is very
diffienlt, especially for wave-guide diameter large in comparison with the wave-
length. Preliminary calculations indicate, however, that the contribution of
higher modes in a wave incident at the outlet leads to the values of impedance
quite different from those presented in Fig. 3. This problem will be eonsidered
in a separate paper.

References

[1] Lord RAaYLeiGH, Theory of sound, MacMillan, London 1929.

[2] H. LEviNE and J. SCHEWINGER, On the radiation of sound from an unflanged circular pipe,
Phys. Rev. 73, 4, 383-406 (1948).

[3] Z. Zyszrowskl, Foundations of eleclroacoustics, WNT, Warszawa 1966 (in Polish).

[4] W. RpzaNEK and R. WYRZYROWSKI, The acoustic field of a eylinder WSP Rzeszéw 1975
(in Polish). .

[6] L. A. WaJsnszrrsN, ZTF, 18, 10, 1543 (1948).

[6]1 — Teoria diffrakeji @ metod falkiorizacji, Sowietskoje Radio, Moscow 1966.

[7] P. M. Morse and H. FesaBacH, Methods of theorelical physics, MoGraw-Hill, New York
1953, chap. 8. 5. :

[8] E. SKUDRZYK, Die Grundlagen der Akustik, Springer Verlag, Wien 1964.

[9] G. N. WarsoN, A treatise on the theory of Bessel functions, Cambridge University Press,
London 1946.

Received on 20th September 1977




7-TH WINTER SCHOOL ON MOLECULAR AND QUANTUM ACOUSTICS AND
SONOCHEMISTRY :

Ustronie — Brzegi, February 1978

The seventh Winter School on Molecular and Quantum Acoustics and Sonochemistry,
organized by the Institute of Physics of Silesian Technical University in Gliwice and the
Molecular and Quantum Physics Section of the Polish Acoustical Society with the participa-
tion of the coordinator of the interdiseciplinary problem MR.I.24, was held on February
21-26, 1978, at Ustronie-Brzegi. Dr. Stanislaw Szyma (Institute of Physics, Silesian Technical
University in Gliwice) was the chairman of the Organizing Committee.

The School was attended by some 60 participants, i.e. twice as many as last year.
They came from over 10 national scientific centres, sponsored by the Polish Academy of
Seciences, the Ministry of Higher Education and Technology and by other ministries. Six ses-
sions were held at which 37 lectures and reports were delivered giving a general description
of investigations carried out in Poland in the field of quantum acoustics, acoustoelectronics
and acoustooptics, ultrasound spectroscopy and sonochemistry and providing the informa-
tion on the current trends in the world science. In comparison with the last year there could
be observed a growing interest in the problems of acoustooptics and quagtum acoustics.

List of lectures
Session 1 (Chairman prof. A. Sliwiiski, Institute of Physics, Gdaisk University)

B. Zar16r — Molecular acoustics and modern sonochemistry.

A. Juszriewioz — Investigations of the hydration of electrolytes and nonelectrolytes
with the aid of the “sing around” method of the measurement of the velocity of ultrasound.

R. Prowinc — Comparison of rheological properties of mineral and synthetic oils by
acoustical methods.

Z. Kaczrowskl — Influence of the magnetic polarization on the piezomagnetic impe-
dance of the water loaded alfer transducers.

Z. Toczyskr — Measurements of acoustic velocities in ultrasonic wave-guides.

Session 2(Chairman prof. J. Ranachowski, Institute of Fundamental Technological Research, Polish Academy
R of Sciences)

L. OrprLska, A. Orinskl — The determination of the energy gaps in semiconductors
by acoustic method.

J. FINAK, A. KrzEMINSKI — Technology of thin-film ZnO based transducers at giga-
hertz frequencies.

M. SzanEwskr — Excitation of surface waves with the aid of diffusion transducers
and investigations of convolution using LiNb 03 and Li J 03 erystals.

P. Kiermasz — The technology and properties of SbSY ceramics.

W. PasEwskr — Properties of transverse surface waves, \
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T. PusteLNy — Technology of the preparation of the semiconductor-piezoelectric
system and investigations of elestron — phonon interaction.

P. Kwiek, A. Surwikskr, J. Woscmcmowskr — Use of the holographie interfero-
metry for the investigation of the characteristics of transducer radiation.

M. ALEksieJUE, M. M. DoBRrzANSETI — Electron — phonon interaction at gigahertz
frequencies.

G. GACEKOWSEA — Measurements of the distribution of the field of surface waves
on 8i0, LiNb O, crystals using laser and electrostatic probe.

Session 3 (Chairman prof. W. Pajewski, Institute of Fundamental Technological Research, Polish Aeademy of
Seiences)

M. SzusTAKOWSKL — Acoustooptical devices in integrated optics.

A. Byszewskl — Measurements of acoustic parameters of surface waves using optical
methods.

M. DrzewieckA — The visualization of acoustic surface wave.

J. FrRYDRYCHOWICZ — The application of X-ray methods to the diagnostics of acoustic
field. :
J. MErTA — Acoustooptical light modulator for the synchronous modulation of the
quality factor of laser resonator.

R. Le¢ — The elastooptical effect in Li J O, crystals.

J. FiLipiaxk — Analysis of the interdigital transducer of acoustic surface waves.

J. Ostrowskr — The surface wave resonator.

Session 4 (Chairman prof. B. Zapiér, Institute of Chemistry, Jagellonian University)

Z. KLrszCzEWSE1l — Application of acoustooptical interaction for the investigation
of the elasticity of non-linear erystals.

J. BERDOWSK1, M. 8TROZIE — The analysis of the field of acoustic surface wave using
the method of the point deflection of light.

Z. Cerowskr, A. OpmLskl — The effect of transverse drift field on the propagation
of a surface wave in the piezoelectric semiconductor system.

Z. KuBik, J. Kapryan, M. Burek — Investigations of the acoustoelectric effect
in the piezoelectric semiconductor system.

M. UrBaXczYK — The acoustic resonator of the Raleigh surface wave.

M. BranuTr — The application of Green’s function theory to the investigation of the
crystal lattice of thin films. :

R. Bukowskr — The effect of point defects on the propagation of ultrasonic waves.

Z. JAGODZINSKI — Side sonar-properties and investigation of a model.

Session 5 (Chairman dr R. Plowiec, Institute of Fundamental Technological Research, Polish Academy of Sciences)

A. Surwifski — Some investigations carried out in the Institute of Physies, Gdaisk
University, in the field of molecular acoustics.

P. Kwiek — Experimental corroboration of Leroy’s theory of light diffraction on
two parallel ultrasonie beams in liquid.

C. Lewa — Rotational phase transitions in liquids.

J. Krzaxk — Rontgenograms of liquids, the interaction potential in the light of new
trends. .

R. RespoNDOWSKI — On the so-called nonlinear factor in the theory of liquids.

W. SzacENowsKl — Standardization of measurement ressels operating in the “sing
around” systems.

8. S8zymA — On the possibility of increasing the accuracy of results of the analysis
of acoustic sedimentation curve.
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Session 6 (Chairman prof. A. Opilski, Institute of Physics, Silesian Technical University, Gliwice)

A. FiLipczYNSKA — Wave propagation along the surface of a solid and liquid.

J. Lozikskl — Investigations of the dynamiec distribution of thermal emission in
polycarbonate during ultrasonic welding.

P. Mieoznik — Ultrasonic and hypersonic investigation of the oscillating relaxation
in liquid thiophene.

K. KunNerT — Ultrasonic investigations of the cross-linked polyethylene.

According to the postulate advanced during the session held in 1977, a seminar acoep-
tance of papers presented under the subject “Quantum acoustics and acoustoelectronics”
for the interdisciplinary problem MR.I.24 took place on the second day of the School to
evaluate the subject matter of papers.

On the fourth day the 2-nd general meeting of the Molecular and Quantum Acousties,
Section of the Polish Acoustical Society, took place under the chairmanship of its president
prof. A. Opilski (Institute of Physics, Silesium Technical University, Gliwice). At this
meeting the growing importance of the Winter School was stressed and problems arising
from this discussed. A twofold increase of the number of participants, as well as a substantial
increase of the number of papers submitted (649 more than last year) set before the
Organizing Committee a new and difficult task. A demand was put forward to increase the
number of lectures to be delivered by outstanding specialists (including also those from
abroad) at the expense of the number and durakion of the reports

Also the proposal was presented of the coordinator of the problem MR.I.24 concerning
the publication in print of more interesting and already complete materials, especially those
which are the result of works realized in the frames of this problem. On the same day the
participants made an excursion to Gliwice, where they acquainted themselves with the scien-
tific and research activities of the Institute of Physics of the Silesian Technical University.

According to the opinion of the participants, the 7-th Winter School was at a good
scientific level. The possibility of stimulating direct discussion and consultations in the couloirs
was of great value. The Organizing Committee managed to ensure a friendly and even cordial
climate which contributed to the establishment of close intellectual contacts and the exchange
of views. As the seminar activities were held in the afternoon, this enabled the participants
of the School to enjoy sun-bath and skiing while the daily portion of inoffensive, but apt
epigrams reviewed in the shortest way the afternoon lectures.

Dr. M. M. Dobrzanski




