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This paper investigates the possibility of using long-term analysis of the
zero-crossings of a speech signal for speaker identification. The applied method
of identification iz based on an analysis of the signal in measuring windows
of a duration which should ensure the stationarity of the statical distributions
of the time intervals between successive zero-crossings, in 16 pre-get time channels.

An objective method of defining the minimum length of the measuring
window for a selected set of parameters is presented. It is based on the statio-
narity test and the ergodic theorem for stochastic processes, as is the transfor-
mation of the speech signal mentioned above.. An experiment in speaker identi-
fication for 10 speakers with 10 repetitions for each speaker has been performed.
The results obtained, in well exeeeding 90 9, correet identification for 30- and 40
sécond samples of the speech signal, have confirmed the practicality of the met-
hod of zero-crossing analysis for speaker identification.

1. Introduction

* The problem of speaker identification on the basis of the analysis of a speech
signal still arouses the interest of scientists. The investigations in progress
[3, 4, 5, 9, 10] are aimed at using such parameters for voice recognition as would
be effective from the viewpoint of the storage of information on an individual,
and at the same time being suitable for digital processing without the costly
and complicated transformation of the speech signal.

Previous investigations [8] have shown that zero-crossing analysis is a me-
thod which can be used for speaker identification. It thus satisfies to some extent
the first of the above-mentioned postulates. :

In addition this method fully meets the other postulates. Its main advan-
tages, i.e. ease of extraction and subsequent digital processing of a selected set
of parameters, have determined that it, primarily, is used for speech analysis
and recognition [2, 6].

The purpose of this paper is the investigation and explanation of certain
problems that result from the use of the method of the analysis of the zero-
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-crossings of a speech signal for speaker identification with the aid of a long-term
analysis of this parameter.

Worthy of note is that the speaker identification methods can be divided
generally into the methods based on the analysis of a short-term and long-term
analysis of a speech signal. _

The methods of short-term analysis are based on the individual parameters
of the voice obtained from a established text in a time ranging from a fraction
of a second for single phonemes, up to several seconds for sentences.

The methods based on long-term analysis are characterized by the fact
that during the recognition process use is made of a set of parameters obtained
from the speech signal which is of such a duration that the parameters may
be considered to be stationary. :

Advantages of the long-term methods of analysis are thus their lack of
dependence on the text of a statement (i.e. utterance, pronouncement), the
elimination of the associated problem of time normalization and also a high
probability of correct speaker identification [4]. A real disadvantage, however,
is the comparatively long duration of speaker statement necessitated. The
problem of determining the minimum length of time for the long-term analysis
of a speech signal is of considerable practical importance and constitutes one
of the main aims of this paper.

2. The statistical distribution of the time intervals between the zero-crossings of a speech
signal

Let U (t) be the time function of a speech signal. If this signal is subjected
to some amplification and infinitive peak clipping, then the resulting funetion
V(t) (Fig. 1) can be written in the form

V(t) = sign [U(1)]. (1)

It can be seen from Fig. 1 that the positions of the zero-crossings after such
a transformation of a speech signal remain unchanged under the assumption
that the shaper does mot introduce any distortion noise which may change
the positions of the zeros.
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Fig. 1. The pulse shaper (I — amplifier, 2 — peak clipping cireuit) and the time presentation
of signals U (f) and V(f)
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For the signal V (f) it is possible to define a function R (t) giving the distri-
bution of the time intervals between successive zero-crossings in a given signal
segment of duration T

[_j“"

E(t) = } o(t—1T)), (2)

-

j=
where 6(z) is the Dirac delta function, j = 1, 2, ..., J (J is the number of zero-
crossings), T; denotes the interval between a pair j-1 and j of Zero-crossings in

J
the segment Ty, with Ty = >'T;.
i=1 ,
An example of the distribution of the function R(t) is shown in Fig. 2.
tq and 1, are the limiting values of the time intervals for a given signal V(1)
in the measuring segment Ty .
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Fig. 2. An example'of the distribution of the function R (t)

The adoption of the function R(t) as a starting point made it possible to
develop several techniques for recording the information contained in a speech
signal. A detailed description of these techniques is given elsewhere [6].

In this paper the information used for speaker identification is the statis-
tical distribution of the time intervals between successive ZeTro-Ccrossings in
4 measuring segment. If in the interval #; to ¢, the K —1 of the threshold values
are distributed, then one obtains K time intervals called subsequently time
channels, or more shortly, parameters. The signal representation mentioned
above in the form of the distribution of the zero-crossing in the K time channels
will be obtained by summing the number of intervals in suitably chosen ranges.

Let us denote these numbers by

Y (ta =to:t‘1_): Y@y tas)s  ony Ylloys )y sy Ylg_1,t =1g). (3)
Between these numbers and the function E(t) there the relationship
‘g
Yty t) = [ R(p)dt. (4)

tgK-1
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The inclusion of the interval of length T; in the k-th time channel agrees with
the dependence

Y1, t)+1  for T;e (b, 1),
Y (be—yy ) for T; ¢ (t_y, ).

The combined function of the distribution of time intervals in the K time
channels can be written in the form

—
[5) ]
—

Y1y ) =

= K
:2 (s 8L~ ) =1 (E=1)], (6)

where 1(t).= 0 for ¢t < 0 and 1(f) = 1 for { = 0.
Fig. 3 shows an example of the distribution of time intervals as expressed
by the function Y(t).
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Fig. 3. An example of the presentation of the funetion ¥ (f) for a male voice. Time analysis
Ts = 30s (the time axis is not graduated)

If the time representation V(f) of duration T, constitutes pattern (or.
a time segment of the pattern) of the m-th speaker and of the i-th repetition of
the speaker’s voice then after having obtained the distribution as a function
Y (t) this pattern can be represented in the form of a K-dimensional vector

?;n,i o GOI{ym,M Yma,29 = ym,i.k: vy ym,i,K}? (7)
where m = 1,2, ..., M (M denotes the number of the speakers), ¢ = 1,2,...,1
(I is the number of repetitions for a speaker and is the same for each of them),
k=1,2,..., K (K is the number of parameters, being equal to the number
of time channels).
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3. Phonetic material — the extraction of a set of parameters

The phonetic material for the experiments described in this paper
were statements by 10 male speakers in the age range from 20 to 35. The sta-
tements of the speakers were recorded in two sessions A and B spaced by a 3
~ month time interval. In the course of each session for each speaker about
15-20 min. of text were recorded. In session A a newspaper text was recorded,
and in session B the text from a popular scientific paper was recorded. The
recordings were effected in an audio-monitoring studio. The speech signal was
recorded on magnetic tape AN25 by means of microphone MDU26 and tape
recorder MP224, produced by ZRK. :

The extraction of parameters ‘jmz» was performed as shown in Fig. 4. In
this system a signal from the tape recorder at a level of about 40 dB is fed through
a band-pass filter (75-5000 Hz and 50 dB/octave) to the pulse shaper whence
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T'ig. 4. Block diagram of the system of the vector extraction of parameters ¥, ;

1 — tape recorder, 2 — band-pass filter, 3 — pulse shaper, 4 — analogue to digital convertor with memory, 5§ —
small-size¢ computer, ¢ — tape perforator, ¥ — control programme

it is passed to the analogue to digital convertor with a memory (the digital event
recorder type 7502 Bruel & Kjaer). Thence it is samyled and fed in portions
of 10 240 samples (the maximum storage size of the recorder) for programme
processing through a small computer (type 7504 Varian/Bruel & Kjaer). The

values of —y;‘: are read out of the computer onto paper tape (TP).

The calculation of the values of the vectors Zni is controlled by the program
SEGDIG (specially developed for this purpose) which can establish the number
K of time channels (parameters) at will, and also their limiting values. The
limiting values are given in the form of the numbers of the sampling pulses of
the analogue to digital convertor. In the experiments performed, the sampling
frequency was f, = 20 000 samples /s, permitting the single recording of a signal
over a time segment of length T, = 0.5 5. With a view to the need for the
extraction of 5;;: from time segments that are considerably longer (a subject that
will be dealt with in the next section) on automatic system of random readout
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from the magnetic tape of the signal in a segment of duration 7'y = 0.5 8 was
used. The sum of these windows gave the total time of analysis, 7°%.

Preliminary results of experimental investigations permitted the determi-
nation of the extreme values #; and {, for the band 75 to 5000 Hz. This interval
was then divided into 16 exponentially divided time channels with an accuracy
given by the sampling frequeney. Table 1 contains the data concerning the time |

Table 1. Parameters of time channels

K T
1 2 3 4 b 6 7 8 0110 [iLE i 12

|
t,_,[ms] |0.15| 0.2 (0.25/ 0.3 [0.4 | 0.5 [0.65 0.8 | 1.0 | 1.25/ 1.55/ 0.0 | 2.5 |3.15|3.9 [4.95
t [ms] [0.2 0.25[0.3 | 0.4 |0.5 |0.65/0.8 | 1.0 | 1.25/ 1.55 1.0;2.5 3.15| 3.9 | 4.95/6.22
Bottom 3 4 5 6 8 |10 |13 [ 16 | 20| 25 | 30 | 40 | 60 [ 63 | 78 | 99
Sampled

number
of impul-
ges

Top 4 5 6 8 10: | 1318 20| 25| 30| 40 | 50 | 63 | 78 | 99 | 124

13 | 14 | 15 | 16

limits chosen for the time channels and the numbers of sampling pulses corres-
ponding to these limits.

The vectors ¥, ;) obtained as a result of the extraction and preliminary
digital processing represent the distributions of the time intervals in the n-th
segment of length T',,. For T° = N T, this representation of the speech signal
for the m-th speaker and i-th repetition represents K discrete time functions
(Fig. 5).

-
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Fig. 5. Examples of the presentations of the function y i z(n)

k=1
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4. The choice of the time 7% for signal analysis

In many investigations the length of the total analysis time T° for speaker
identification was selected a priori by verifying only the correctness of the choice
on the basis of the results of the attempted identification [3, 4, 8]. Such a selection
is not, however, an optimal method. The assumption of too long a T%, i.e. longer
than is needed, unnecessarily extends the analygis time, while the selection
of too short a segment increases the probability of identification error.

In this paper it is assumed that the distribution of the time intervals bet-
ween successive zero-crossings of the speech signal measured in the total time
of analysis

T = g AT o), (8)

A
m, i,k

where T3, ; ;. is the minimum time of the stationarity of y,, ; (n),n =1,2,..., N,
is practically independent of the text and repetition for a given speaker,
and of random disturbances, but depends only on the individual features of
a speaker?!).

In order to determine the analysis time T° one should primarily test the
stationarity “of the discrete representations g, ;,(n) [1].

(a) Testing for stationarity. A single sequence ¥, ;. (® =1,2,..., N)
is grouped into R segments for which mutual independence is assumed. The
mean-square values in these segments were calculated and the following sequen-
ce obtained

Yeoiild)s Yaial2)s ooy RO Ly PR Ym,in(R). (9)

Then the median of the mean-square values was calcultated and the se-
quence (9) examined for the presence of the basic trend.

If the hypothesis concerning stationarity holds true, then changes in the
sequence (9) will be of a random nature and will exhibit no trend.

To verify the stationarity a non-parametric test was performed at a level
of significance of ¢ = 0.05. For the tested signals y,, ,,(n) it has been assumed
that Ty, = 0.5s, N = 100 and R = 20. From the table containing the value
of quantities i, of the order 1 —a of the distribution of the number of series
for the sequence T' = 2 p = 20 observations i,, , = 6 and ¢, , = 15 [1] were
read off. This series is the sequence of the values exceeding the median or pos-
sessing the values smaller than it which follows or precedes the other sequence.

For the assumption of the hypothesis of stationarity it is sufficient that

Ii’p,l—u = ise = ?‘/p'm_ (10)

N
(*) Refers to the independence, at a certain level of significance, at recording sessions
not too distant in time.
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- In Table 2 examples of the values of the median for cach time channel
and a number of series for one voice are presented.
In a test carried out for two randomly selected repetitions and for each
m and k the hypothesis of stationarity was confirmed.

Table 2. The value of the median and numbers of the series i, for the stationarity test

C | Sk i e
\\' 2134 516’7‘8%9{10'11’12‘13’14r15’16
1 FRPERA N )

Median | 250| 39 | 70 | 300|195 | 183 58 ‘217‘120 300| 405 870 500 450’372 19
= 709 |7 1|9 13|99 12|1414]20| 11| 10}s |0

(b) Definition of T;, ; ;.. In a comparatively simple manner it is possible to
define T, ;. for a random stationary ergodic signal. The necessary and suffi-
cient condition of ergodicity (in a broad sense) of a stationary random signal,
such as ¥, ;(n), is that [1]

Sm,i,k {
'ngf,i,k(l”% 0 for Jé’m f.k OOy (1])
m,i,k P
where | =1,2,...,8,,;, and O}/, ,(I) is the autocovariance function (see
Figs. 6 and 7). :
For practical application formula (11) can be re-written in the form
Sm’ji
0,01 < 502, 40), (12)
m,i,k =1 ; :

\ ‘
where 6 denotes the assumed coefficient of deviation from the value CJ7;, (0).

The fulfilment of condition (11) is sufficient for the ergodicity (in a broad
sense) of the process y,, ;,(n) and confirms the hypothesis with a level of confi-
dence dependent on the value of the coefficient §, that is accepted.

Since no experiment can be optionally long, the fulfilment of condition
(12) permits definition of the number of samples S, ; , for practical purposes.
This enables the calculation of a minimum time T, ; ;:

fnik =SmikTN- (13)

Fig. 6 shows the network of operations of the algorithm PESP for ealeula-
ting 8,n,1.c While Fig. 7 gives an example of a discrete autocovariance function.

Table 3 contains maximum values 75 ; ., selected according to formula
(8) from the population of 10 speakers, with 3 repetitions for each speaker and
with 16 time channels.

It should be noted that the maximum value, T, ; ., exhibits a considerable
variation with the different channels. It is highest for channels 12, 13, 14, i.e.
the ones corresponding to smaller frequencies.
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ig. 6. The flow-chart of the algorithm
PESP

Control data : N- given total number of samples
n=12,-N L-given number of samplas

of auto-covariance Function
{=1,2,4L" & -level of convergence of auto-

—covarianrce function

Reading of sequence: Ym,ik m’

Calculation of mean:4m,i k= ——2; Imyi, k(m)

Normalization of the mean equal tozerao

Yin, i, KO Y, (, kOOY- Y1, &

R
Cm‘cm’afmn of a’wcrefe Function of autoco

variance
CHatO=5 £ 4l gy 40

Ca[cue‘m‘mn

Derivation of values Sm ik
S i k mumber of panels of length T,
. for m-voice, { - repetition, k - channel
Fig. 7. An example of vhe presentation - ; -
of the discrete autocovariance function
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Table 3. The results results of measurements max {77, ;;} for

g 3ddds b & .6 8 L

e s gt | ,
¢ 8=005 |3 |3 ]| 45 6 6 5.5 5
i,k 5 % |
T 6 =002 | 7.5 7.5 11.25 I 13.75 | 125 |
[s] d=001 |16 |15 | 125° 30 | 30 27.5 | 25.0 }

5. Identification experiment

On the basis of the considerations and measurement results presented in
. previous sections four values of T°, equal to 10, 20, 30 and 40 s, were selected
for the experiment. Such a choice of analysis times was intended to check
the assumption discussed in section 4, in order to practically determine the
necessary length of the segment to be analyzed. The identification experiment
consisted of three stages.

Stage I. For m = 10 male speakers, I = 10 repetitions and for a signal
in the band 75 to 5000 Hz, an identification test was carried out in which the
learning sequence was formed by the vectors y,; (m =1,2,...,10, i =
=1,2,...,10) obtained from the signals V(t) for the 4 durations of signal
mentioned above. ’ :

All repetitions of the learning sequence came from recording session A (see
section 3). For identification one of the simplest heuristic algorithms NM (nea-
rest mean) — was used, in which the criterion of decision was the minimum
distance in Euclidean and Hamming space [4, 5].

The sequence to be identified consisted of 100 individual statements (10
speakers x 10 repetitions) included in the learning sequence.

Stage II. In the second stage the difference consisted only in that spea-
kers were identified on the basis of individual statements, not included in the
learning sequence, the identification sequences being 50 statements (10 spea-
kers x 5 repetitions) coming from recording sessions A and B.

Stage III. In the third stage the population of speakers was increased
to 20 persons, with an analysis time 7® = 40 s. The number of statements for
each speaker was the same as in the second stage.

The NM identification programme was realized on a Varian 7504 compu-
ter using the language BASIC the subprogramme SEGDIG being written in
the internal language. The results of identification are presented in
Table 4.

Additionally, for T° = 30 s an evaluation of the effectiveness for accuracy
of recognition, of the individual parameters (time channels) was made. The
coefficient F (k) was assumed as a criterion of the content of individual informa-
tion. F'(k) is, for a given k, the quotient of the variance of the mean values
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N =100, L = 25, f, = 20000 samples/s and for three walues of §

ol ke e e e e B 14 30 1e

5.5 7 6.5 7 85 | 85 9 8 >
| 1375 | 175 | 1625 | 175 | 21.%5 ' 21.25 | 225 100 | 175
| 276 | 350 | 325 | 350 | 425 | 425 | 45.0 40.0 | 35.0

obtained for the individual M speakers, and the mean variance for all the/ M x I
voices and as given by the formula

I M
e | 2 (Yo, — Vi)
. F(]};) = m=1 i (14)
7 M
T 2 W~ maa)

Table 4. The results of speaker identific-&\tiﬂn (in percent of correct decisions)

o Distance measures
§';n % % s !Eue]i:i;a; B Hamming
& ZE = session | session :i::aezi’fg:s:i- session | session t}?:etl:ﬁesg:-
2 . : sions a - sions
T° = 10s| 60 — 60 58 . 58
I| 10 [T® =208 89 = 89 90 = 90
TS —30s| 97 &g 97 R PR 96
7% = 40s| 98 - 98 97 % 97
I | 10 [T°=10s| 48 | 40 44 52 44 48
! T =208 76 68 72 76 68 72
J T —30s| 96 92 94 96 92 g2l o
I | 20 |7° = 40s| 96 96 96 98 " 96 97
T® — 40s| 88 80 84 92 86 89

where y,, ;. is defined by formula (7) as

M
5
5 . Y= % i Zym,k'
m=1

Table 5 presents coefficients F (k) caleulated for recording session A for
M =10 and 1 = 10, :
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Tt can be seen from Table 5 that the differences in the values of F (k) are
not too high and this gives evidence, to some extent, of an even distribution of
individual information in selected time channels.

Table 5. The values of ability coefficients of paramefers

HEEEe 3‘4|5%617[8'9'10‘11‘12‘]%]7 | | 16

!473 I543 112.1 Ibsn‘

250'40;049 ‘%06‘187’ 36.0 ﬁn4\952|431] 91.9

6. Discussion of results and conclusions

The results obtained of the identification (Table 4), although concerning
not too numerous a population of speakers, confirm practicability of long-term
analysis of the zero-crossings of a speech signal as a method for speaker identifi-
cation. Espeelally promising are the results obtained for analysis times of 30
and 40 s which give considerably better than 90 % correct identification for
M = 10, and are comparable to the results of other tests which use much
more complicated methods.

An inereased population of speakers (M = 20) brought about some decre-
ase in the probability of correct identification.

Comparison of the results of identification achieved for various lengths
of analysis times permits formulation of the thesis that 30 to 40 s of continuous
speech signal from a newspaper text cam be accepted as the minimum time of
long-term analysis for the calculation of an eventual distribution of time inter-
vals between successive zero-crossings to be used for speaker identification.

In the case of essential differences from the number of time channels assu-
med in this paper, and the method of their division, differences from the requi-
red stated values T° = 30-40 s may arise. :

Comparing the values given in Table 3 with those in Table 4 a practical
conclusion can be drawn that to determine the lengths of the time for analysis
according to the method described in section 4 it is necessary to accept 4 < 0. 02.
If the condition for the stationarity of the distribution of time intervals is
satisfied then there should be no essential difference in the results of identifi-
cation of a partxcﬂar sequence and whether or not it forms part of the learning
sequence.

The results of Table 4 are in agreement with this theorem although to some
extent the effect of the time lapse between recording sessions A and B can be
geen. This is obvious because the individual features of the voice are not con-
stant and. change with time.

For a more comprehensive estimation of the practicality of the method
of speaker identification presented consideration should be given to the restri-
ctions assumed by the authors:
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1. The experiment was carried out in laboratory conditions and thus the
results of identification are independent of the influence of the technical condi-
tions of the recording [7].

2. The extraction of parameters was performed over a frequency band
of speech signal from 75 to 5000 Hz. Neither the number of the channels nor
the limit of the time channels were optimized, an exponentfal division within the
interval #; to ¢, being assumed a priori.

3. The experlment was carried out with the cooperation of the speakers,
i.e. the speakers did not try during the reeordmgs to change the manner of
their pronunciation or to imitate the voices of other speakers.
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GENERALIZED MODEL OF AN AXIAL DYNAMIC GENERATOR*

ANDRZEJ PUCH

Department of Acoustic of the Institute of Physics, Pedagogical University
(35-310 Rzeszéw, ul. Rejtana 16a)

This paper present a model of the theoretical acoustic system of a dynamic
axial generator with a horn and pressure chamber common fo all channels of
the stator. The model has been developed on the basis of electroacoustic ana-
logies. This permits formulation of the wave phenomena encountered in the
acoustic system of the generator.

Experimental investigations have shown that the model is correct within
the range of conditions assumed during its formation.

Postulates have also been formulated which, when gsatisfied, will pérmit
the optimal working of the generator over a wider frequency range.

1. Introduction

The development of experimental investigations in the non-linear acoustics
of gas media still faces difficulties resulting from the lack of satisfactorily effi-
cient and stable sound sources of high acoustic power. Such a situation also
limits the use on an industrial scale of the acoustic coagulation of aerosols
and of other ultrasonic technology. This particularly applies to the so-called
“flow generators”. The main reason for their limited use is their comparatively
low acoustic efficiency and thus resulting high operational costs. Another
essential reason is the lack of a complete theoretical formulation of the pheno-
mena found within the acoustic system of the generator in the process of trans-
forming the energy of the compressed air into acoustic energy. Thus it is impos-
sible to design a generator of given acoustic parameters and recourse has to
be made to the duplication of certainly non-optimal solutions obtained by way
of experiment.

Much progress has recently been made in the investigation of static gene-
rators in terms of the explanation of their mechanism of operation [7].

* The paper is written under the supervision of prof. Roman Wyrzykowski.
i
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Dynamic generators may claim a more advanced theoretical description.
However, they require further studies, both theoretical and experimental,
the aim of which is the description of the generator’s properties over the full
range of its working conditions.

JoNEs [4], ALLEN and WATTERS [2, 3] and WYRZYKOWSKI [13, 14] have
developed a theoretical foundation for the operation of a dynamic generator.
A physical model of the dynamic generator developed by them, in view of the
accepted simplifying assumptions, should be in agreement with experiment
over a range of comparatively low frequencies for the sound wave produced
by the generator, i.e. up to several hundred of Hz. This has been confirmed by
experiment both by JonNgs, and by ALLEN and WATTERS. LESNTAK, while making
measurements of the acoustic parameters of the siren KRW [14] observed a sud-
den drop in the sound power of this generator at higher frequencies, which until
now is not explained.

2. The electrical equivalent diagram of the generator and its mathematical description

The acoustic system of a dynamic axial generator (Fig. 1) consists of a pres-
sure chamber, 7, of which one wall is a flat stator, 2, with passages arranged
evenly on the circumference. The stator passages enter into a chain-type horn
of annular cross-section, 3. In the chamber in front the stator there is a flat
rotor, 4, of small thickness and with holes corresponding to the passages in

r

< -

Fig. 1. The acoustic system of the axial dynamic generator with a horn and pressure chamber
common to all the stator passages
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the stator. The formation of a sound wave takes place in the elementary fun-
ctional unit of the acoustic system of the generator, composed of the pressure
chamber, the hole arrangement of the rotor and stator, the stator passage, and
the horn. The number of such units in the acoustic system of the generator
ranges from a few to several hundred. They are usually identical, with the pres-
sure chamber and the horn being common to all stator passages.
Compressed air is forced into the pressure chamber in such a quantity that
the thermodynamic parameters of the air in the chamber should not undergo
any changes caused by the escape of air from the chamber (via the passages and
the horn) into the atmosphere. The mass air flow in the acoustic system of the
generator, with the rotor stopped, can be described [8] by the relationship

AM i a382 ]/291 AP’ (1)
where
1

0 = ———
V1—m?

is the flow ratio, and

2 Pt s o L RS PR R L
8:[ w—1P DLy 1—mwm]

is the expansion coefficient for isentropic air flow out of the pressure chamber,
with .
A.P =P1—P2, : :‘P2/P1! mz.lgg]’.sl.

For sufficiently small values (when compared with unity) of m ratio of the
cross-sectional area of the stator passage S, to the surface of the pressure cham-
ber §;, and of the pressure differences AP of the air in the pressure chamber,
Py, and in the stator passage P, (i.e. smaller than 0.2 x10° N/m® Fig. 2)
then « = ¢ =1 [2, 4, 13] can be accepted in expression (1).

3 When revolving the rotor periodically opens and closes the inlet holé

of the stator passage, so that the active surface for air flow is a periodic
function of times S(t). The range of variation of this function is from zero to
8,,, with §,, being the area of the wholly open stator passage. The mass air
flow thus contains, in addition to the constant component M,, a component
varying with time M(f):

M = M,+M(t). (2)

The latter causes the dependence of the acoustic impedance Z, in the inlet
hole of the stator passage, on the acoustic pressure p(t). The pressure drop AP
now equals

AP =P, —[Py+p(t)] = AP —p(t), (3)
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Fig. 2. The relation between the expansion coefficient and the quantities r and m

According to (1), (2) and (3) we thus have

My +M(t)

S{t) = —m——.
e V20,[4P —p(1)]

(4)

In the acoustic impedance Z of the inlet hole of the stator passage we can
distinguish its two components as the output impedances:
(i) of the pressure chamber

Zl A S =X1+jY1’ (5)

Zy = —— = -Xa+jY2: (6)

where p,, p, and V,, ¥V, are the root mean square values of the acoustic pressure
and the volume velocity of the air at the inlet, of the pressure chamber (for index
1) and of the stator passage (for index 2).

For convenience and generalization we shall in future consider the pres-
sure chamber and the stator, including the horn, as acoustic four-terminal net-
works the input impedances of which are respectively Z, and Z,. Let us assume
that Z = Z,+Z,. This thus requires a connection in series of the inputs of
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these four-terminal networks. An external source of compressed air maintains
the upper terminals of the four-terminal network, which represents the pressure
chamber, under a constant (in time) pressure P,. The lower terminals of this
four-terminal network are under ambient pressure P,. Assuming that the only
loss of energy of the wave propagating in both four-terminal networks is the
loss connected with its outward radiation, which for obvious reasons is equal
to zero at zero frequency, it can be accepted that:

(i) the values of the constant component of the air pressure in the pres-
sure chamber P, and in the stator passage P, do not depend on the position in
the air flow path of air of these elements,

(ii) the constant component of the air pressure in the stator passage P,
is equal to the ambient pressure P,.

The inlet hole arrangement of the stator passage and of the revolving rotor
can be looked upon as the periodically variable (in time) flow resistance, @,
the value of which varies between the minimum value when the inlet hole of
the stator passages is wholly opened, and infinit when the hole is completely
closed.

Figure 3 represents the equivalent electrical circuit diagram of the acoustic
system of a dynamic acoustic generator with a horn and pressure chamber
common to all the passages.

g4 % iy
@-- <— PB| |Passage? 2,y
% AP I ] ]
jt ! 1 i ke
W Ex il Ly
‘z gggggf ok ] r:-*—- 7| |Passage2 _c%, pzf/' Hord
?*N - - : i Ap 1 ; : : i zw=.90c
ﬁh H : : ! 1 PR |
!\ by G; 1 - V?_ J
o s -"TP; n,| |Passagen t%’
= 1 '_L

A'fma-sp/rere

Fig. 3. Electric equivalent circuit of the axial dynamie generator

Let us assume.that as a result of the modulating action of the flow resistan-
ce G, the instantaneous values of the variable component of the mass air flow,
and of the acoustic pressure in the inlet holes of the stator passage are given
by the formulae

M(t) = M, coswt, (7)

p(t) = pycosot, (8)
M, and p, being the complex amplitudes of the above-mentioned quantities.
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Taking advantage of the equation for the continuity of mass air flow (V, e,
= V,p0,), from Fig. 3 we can write

.Ilfa === l/2_92 V2 T Vggg &, (9)
Zy
—V2 Yy 02 4, : i
Pa =V2(P1+D2)=V2p, 1+—7 ; (10)
€1 2
Substituting (5)-(10) into (4) we obtain p
8{t) =
— X ¥ ]
Mo+ V2 0,9, m coswt—jng:Yg smwt]
i p. 3. Pa T b . B B T :
seap—vap (1 & DT T g & BTET )
]/ 91{ 18 gl o il 21 bda

(11)

For convenience in further calculations we shall make a transformation
of the components of the combined input impedance of the stator passage and
horn Z, = X,+jY,, connected in series, into their equivalent Z, = R, jM,,
connected in parallel, according to the relations

XZ 172
By =1t (12)
2
LA
M, = —%, & (13)
2

Denoting by ¥ the root mean square value of the active component of the
volume velocity of air at the inlet of the stator passage and horn, the numerator

of (11) can be written in the form i

1 RN 1

M,+ I@—QZV ]/1+ il sin (mt-{—arctan IT)’ (14)

2 2

where
M X P
 SppscL g V===,
:= R | v, and R,

The function §(f), according to the previous assumptions, should satisfy
the following conditions:

S min = 0, (15)
S(t)max = 8,. (16)
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Thus, according to (11), (14) and (15), we can write

: 1
8in (mt—l—arctan k_) 2R ] (am
2
- 1
Mo—;/292]/1+-i§ V =0. (18)
2
Assuming that (16) occurs at ¢ = 0, on the basis of (11), we have
My+Ve,
o o+V 92VXX+YY . (19)
20,| AP—V2 R V(1+ﬁ —1—"#)]
Vo] 1 ey
Writing

Vg Vol e
ks X,

=1 = 21
o ey e 5
from (18) and (19) we obtain -
My = l/ggz'yV (22)
and
AP
=—F(y) (23)
V2 uly ;
with
V1i4+2y —1
F ) ottt (24)
¥
AP 149 P
QISm #Rz

The sound power radiated outwards by the generator is equal to the active
power generated at the resistance R, of the inlet of the stator passage and horn:

N, = V'R, (26)

The power to be needed for generation of the acoustic power, will be
calculated as a product of the constant component of the mass air flow
M, (22) and the work performed in the compression of air from a pressure

P, to a pressure P, by means of an adiabatic compressor with a reversible wor-
king cycle [8],

N = nl, I, (27)

where n is the number of the stator passages.
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Work of compression

R a [(Pl)x_”x 1] (28)
R ey R RN

For sufficiently small pressure drops AP = P, —P,, i.e. not higher than
0.2 x10° N/m?, in the expansion

(Pl)"‘”" e AP)"‘”" ¥ el AP e
P, . P = St o B e
consideration need be given only to two terms. Then
AP
Lp =-— (30)
Q2

and the supply power [4, 13]
N =nV, 4P, (31)

where V, = M,/o, is the constant component of the volume air flow in the stator
passage. The acoustic efficiency of the generator

Y, = Na|N. (31a)
3. The internal structure of the four-terminal networks

WyrzykowskI [13] has proved that the optimal catenary horn to be used
in conjunction with dynamic generators is one whose profile describes the equa-
tion

A= Socoshzwz—, (32)
g
where 8 is the cross-sectional area of the horn at a distance z from its inlet,
S, is the area of the horn inlet and z, is the opening coefficient.

The horn with a catenary profile and annular cross-section is formed of two
Jigid surfaces resulting from the rotation about the axis Oz of the two curves
described by the equation (Fig. 1)

(i) upper
1 8 2
Jo(#) = —|do+ Ry cosh—|, (33)
2 2
(ii) lower
; 1k 2
fa(2) = — (do — hycosh -——) 3 (34)
2 2y
The equation of the profile (32) of such a horn takes the form
h = hycosh? —, (35)
%y

Wi:lere h = f,(z)—fa(2).
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For z = L we have f;(2) = 0 and usually f,(2) = r,, with r,, being the ra-
dius of the horn outlet. From (34) we have

: L
2y = (36)

da
arccosh e
ko

The wave equation [16] of the wave propagating in a catenoidal horn
of annular cross-section has so far been solved for the propagation of a tan-
~gential wave mode of zero order (i.e. for a plane wave) and this occur above
the cut-off frequency [15].

¢

fu T3 (37)

2mz,

The impedance of the horn inlet as regards the range of propagation of
the above-mentioned mode when neglecting the wave reflection from the horn
outlet, is given by the relation

el ET"

whereas the transmission coefficient for acoustic pressure takes the form (Fig. 3)

o eXPl—J]/ f., o z—U]

y: M y
Pz
cosh —_—
2

(39)

e

where p, and p,
horn, respectively.

It results from those relationships that a catenoidal horn for the propaga-
tion range of the tangential wave mode of zero order represents, for the stator
passage, a mere resistance load. At the cut-off frequency the impedance of
the horn inlet is infinitely great, while below this frequency it has a pure ima-
ginary value [15]. Thus it can be concluded that below the cut-off frequency
of the horn the generator should not produce a sound wave. Only an infinitely
long horn can exhibit such properties. The assumption of a boundary condition
at the horn outlet of finite length for describing the conditions of radiation of
the horn outlet implies that for the cut-off frequency the impedance of the
horn outlet must assume a finite value while below this frequency it has a real
part, but with values considerably smaller than is the case above the limiting
~ frequency [17]. This is in agreement with experiment since the generator does

produce a sound wave below the cut-off frequency of the horn.

are the acoustic pressures at the inlet and outlet of the
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With increasing frequency the impedance of the horn inlet tends to the
agymptotic value

[ iy oy iy (40)

A drawback of this discussion is the lack of a statement at which frequency
range, in a catenoidal horn, the propagation of an exclusively tangential wave
mode of zero order is possible. This is tantamount to the lack of a definition
of the range of application the argument presented here. The solution of this
problem can only be obtained empirically.

The passage of the generator stator represents a length of acoustic wave-
-guide, loaded at the outlet with the impedance of the horn inlet, which is com-
mon for all stator passages. According to Fig. 3 we can write the impedance
loading the outlet of each of the stator passages as

P P2
Lyro=: v m =0l (41)
In practice each stator passage satisfies the condition for plane wave pro-
pagation i.e. that the diameter d, < 1/2, where 1 is the wavelength. Neglecting
loss of the wave energy which is associated with propagation in the passage an
is caused by the viscosity and thermal conductivity of the air, and assuming
an ideal boundary condition on the walls of the horn, that the normal component
of the vibration velocity amplitude of the medium should there be zero, the
acoustic properties of the stator passage can be described by the following
relations [18]:
(i) the acoustic impedance of the inlet of the stator passage is equal to

Zy+iZ s tan ki
B, L A, (42)
Zos+j2, tan ki,
(ii) the transmission coefficient for the acoustic pressure
iz 1 :
X }; ; (43)

st
? cos oly +j —2 sin kl,
Zy

where & = w/e is the wave number, [, is the length of the stator passage, and
Zgs = 05 ¢[8, is the wave impedance of the passage.

Here it should be noted that above the cut-off frequency of the horn
Zys > Z,, implying the occurence of wave reflection at the place of connection
of the passage outlet and the horn inlet. For this reason the inlet impedance of
the passage Z, possesses a non-zero imaginary part and both components are
strongly frequency dependent. The maximum values of Z, correspond to the
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quarter-wave resonances of the stator passage, and the minimum values to the
half-wave resonances.

The reflection of the wave at the place of the connection of the stator and
the horn becomes weaker as the number of passages in the stator increases
(41). However, it is not possible to completely eliminate this phenomenon without
basic changes in the acoustic system of the generator in the form of individual
horns for each stator passage [14]. Although the construction of such a genera-
tor is possible in practice, in view of the practical possibility of using only several
horns, the attainment of the satisfactorily high sound powers with the generator
at higher frequencies remains a problem.

The pressure chamber, usually annular in cross-section is, like the horn
also common to all the stator passages. According to Fig. 3 the input impe-
dance of the pressure chamber, loading each of the inlets of the stator passages
is equal to

P Y4
Z, = v, = V;/% = MLy (44)
where Z,, is the input impedance of the pressure chamber.

The pressure chamber of the generator (Fig. 1) can be regarded as a wave-
-guide with one end closed by a rigid partition. In the frequency range for which
the condition for plane wave propagation is satisfied for the pressure chamber,
i.e. for h, < 2/2, analogous assumptions have been made to those for the sta-
tor passage. Thus the input impedance of the pressure chamber is described
[18] by the relation

Zyy = — jZ, cotankl,, (45)

where [, is the length of the chamber, and Z,, = g, ¢/8, is its wave impedance.

In view of the previous assumption 8, > 8,, and Z;; € Z,;. The resonance
properties of the pressure chamber found at the higher frequencies advesely
affect the sound power characteristic of the generator. This particularly applies
to the anti-resonance frequency of the chamber for which Z;,= oo, and thus
Z, = oco. For these frequencies the generator does not radiate sound power
as results from relations (21) and (23)-(25) with g = oc.

In this situation it is neeessary to attenuate the free vibrations of the pres-
sure chamber. This is feasible through the use of an intensively absorbing
end. This solution has the advantage that it does not change the conditions
of flow through the chamber of the constant component of the mass air flow.
The input impedance of the pressure chamber of the generator attenuated in
this manner, is equal to the wave impedance Z,,;.

In the range of higher frequencies the impedance Z; loading the inlet of
the stator passages with the pressure chamber attenuated in this manner can
assume its lowest values for various designs of the chamber [1, 2, 4] while
m (1) and n (44) are still not too large.
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4. Subject of investigations and its characteristics

In order to provide experimental verification of the theoretical arguments
measurements have been carried out.on the sound power of an axial dynamic
generator detailed characteristics have been given previously [10]. Here only
the basic dimensions specified in Fig. 1 are repeated: d, = 100 mm, d,, = 200 mm,
hy = dy = 1.5 mm, h; ~ 15mm, |, ~ 30 mm, !, = 10 mm, L = 150 mm, n = b0.
From these dimensions the following values for the characteristic frequencies
of this generator may be calculated.

(i) the cut-off frequency of the horn f, = 1790 Hz

(ii) the frequency of the first resonance of the stator passage f,, = 8600 Hz,

(iii) the frequency of the first anti-resonance of the pressure chamber f,,
~ 6000 Hz.

In view of the rather complicated construction of the pressure chamber
of the tested generator, the definition of the third of the above-mentioned fre-
quencies could only be approximate.

In view of the fact that for the tested generator §, » 8, it has been assumed
that except for those frequencies near to the anti-resonance frequencies of the
pressure chamber, u = 1.

5. Method of measurement of the sound power of the generator

The sound power of the generator is defined by the experimentally measu-
red distribution of the root mean square value of the acoustic pressure at
a constant distance r, from the horn outlet in the far field of the generator,
using the relation

a2

2
ais: f P2(F)s8in (¥ ad (46)

estimated in the calculations by
%
N, = — D 'p(0) 48, (47)

where S; = 2rrisin(9;) A9 is the surface area of a spherical ring of height Ah,
= rosin(d;) 49 (Fig. 4), and g, ¢ is the specific resistance of air.

If A8; = A8 = const, and this occurs when Ah; = Ah = const, expression
(47) takes a form which is convenient for calculation

Ny el 3 40 (48)
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£

Fig. 4. Geometrical illustration of the determi-
nation method of the generator sound power

Acoustic baffle

The angles ¢; at which the measurements of the acoustic pressure should
be made are defined by the relation

¥; =-arccos(l—i/m), (49)

where ¢ =0,1,...,m.

Measurements of the sound power of the generator have been carried out
in an anechoic chamber 70 (Fig. 5) using an apparatus composed of a 1/4" —
condenser microphone 7, an analyser 2, and a digital voltmeter 3. The microphone
was placed a distance of 0.9 m from the horn outlet of the generator and fixed
to the arm. The latter permits rotation of the microphone, from the outside:
of the chamber, in a plane passing through the main axis of the generator
through an angle of =/2 rd. The _analog to digital convertor being coupled to
the axis of rotation of the arm while cooperating with the reversion counter
4, enables digital measurement of the angle of the microphone with a resolu-

70

144
/

E 4 3 ] 74

Compressed air

Fig. 5. The diagram of the measuring system for the determination of the sound power of
the generator
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tion equal to 0.01 rd. The frequency of the wave produced by the generator
has been measured by means of a digital frequency meter 5, while its shape
as also that of harmonics produced by the generator was observed on the oscillos-
cope 6. The recording of the results of the measurements was done by means
of the line printer 7 and the tape perforator 8.

The error in the determination of the value of the sound power of the gene-
rator depends mainly on the accuracy of the calibration of the apparatus used
for the measurement of the root mean square value of the acoustic pressure.
The second largest error occurs in the approximate numerical method for de-
termining the value of the definite integral which occurs in the formula for the
sound power of the generator (46). The magnitude of this error depends mainly
on the length of the integration increment Ah. In the measurements earried out
with a confidence level of 0.95, the relative error with which the value of the
sound power of the generator could be determined did not exceed 19 %.

The results of the measurements of the sound power of the generator as
a function of frequency for the excess pressures of the generator air supply of
0.2 and 0.5 x10° N /m are shown in Figs. 6 and 7. In these figures a continuous
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Fig. 6. The dependence of the sound power Fig. 7. The dependence of the sound
of the generator on the frequency, with the power of the generator on frequency with
excess pressure of the .air supplying the the excess pressure of the air supplying
generator equal to 0.2 x10° N/m?2 the generator equal to 0.5x105 N/m?

line marks the results of the calculations obtained on the basis of the equiva-
lent electric diagram of the generator used for the experimental investigations,
with the assumption that u = 1. The broken line is used where the properties
of the horn and the pressure chamber deviate from the previously accepted
assumptions.
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In coneclusion, it can be stated that it is not actually possible to compare
the supply power of the generator because of the lack of an experimental method
permitting definition of the share in the mass air flow (taken by the generator
from the compressor supplying it) of the component corresponding to only the
first harmonic of the acoustic pressure [8]. ;

6. Transmission properties of the horn

In view of the lack of definition of the range of application of relevant the-
oretical considerations, as has already been indicated in the theoretical part,
experimental investigations have been carried out regarding the transmission
properties of the horn of the generator. Their main aim was the determination
of the range in which it is possible to propagate exclusively a tangential wave
mode of the zero order in the horn of the generator. It has been assumed that
the plane wave propagates in the horn over the frequency range in which the
following criteria are simultaneously satisfied:

(i) the impedance of the radiation of the horn outlet as a function of fre-
quency is that described by RAYLEIGH [15],

(ii) the distribution of the amplitude of the acoustic pressure on the surface
of the horn outlet does not depend on position,

(iii) the modulus of the transmission coefficient of the horn (39) does not
depend on the frequency

The investigations were carried out in an anechoic chamber, with the horn
outlet placed in a plane acoustic baffle. A sound wave was radiated into the
horn by means of a loudspeaker coupled to the horn inlet through the strongly
sound-proofed chamber. The loudspeaker was driven by a beat generator
whose compression system for the output voltage was used to maintain a
constant value of the acoustic pressure at the horn outlet as a function of fre-
quency. This permitted direct recording of the transn1}3310n coefficient of the
horn as a function of frequency.

Similarly measurements were made on the distributation of the amplitude
of the acoustic pressure along the radius of the horn outlet. The real part of the
characteristic radiation impedance of the horn outlet of the generator was
determined using [11] the relation

k“S
0 =

f RY(9)sin (#)d9, : (50)

where & is the wave number, 8, is the surface area of the horn outlet, and R(9)
is the radiation directivity coefficient of the horn outlet [15].

The distribution of the amplitude of the acoustic pressure in the far field,
at a constant distance from the horn outlet, was determined by means of the
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apparatus used previously for the determination of the sound power of the ge-
nerator. The value of the definite integral in expression (50) was calculated by
SmvpsoN’s method on a digital computer. Each of the results of the caleula-
tions was ‘based on 76 measurements of the acoustic pressure. .
Figs. 8, 9 and 10 show in succession the results of the measurements of the
real part of the characteristic radiation impedance of the horn outlet as a fun-
ction of frequency, the amplitude distribution of the acoustic pressure along the
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Fig. 8. The dependence of the real part Fig. 9. The distribution of the amplitude
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radius of the horn outlet, and the the transmission coefficient of the horn as
a function of frequency.

On the basis of the criteria accepted previously, and the results of the mea-
surements it can be said that the propagation of a plane wave at frequencies
up to 8 kHz is possible in the horn of the dynamie generator. Above this fre-
quency wave modes of higher orders are produced in the horn.

7. Conclusions

On the basis of the measurement results it can be said that the model of
the dynamic generator used for the theoretical considerations is correct for the
limited range of conditions accepted at its formation, i.e. for small values of
the air pressure in the pressure chamber (smaller than 0.2 %x10° N'/m?), and for
the frequency range in which only plane wave propagation is possible in the
acoustic system of the generator. The reason for the observed drop in sound
power should be looked for in the resonance properties of the pressure chamber,
and the stator passage, as well as in the formation of higher wave modes in
the horn and pressure chamber of the generator.

The influence of the above-mentioned factors on the acoustic parameters
can be reduced by the use of

(i) the largest number of passages in the stator,
(ii) stator passages as short as possible,

(iii) a strongly absorbing end to the pressure chamber,

(iv) slightly opened horns of.

The satisfaction of the above-mentioned criteria in the construction of
a dynamic generator permits the optimal operation of the generator over a wide
frequency range.
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The paper presents the results of measurements of the shear impedance for
samples of synthetie oil with different length of molecules for the shear frequen-
cies 10, 30 and 450 MHz over a range of temperatures from —100° C do 50° C.
It was found that the results of measurements of the shear impedance are well
described by Lawms’s liquid model with the high- freqummv approximation for
the DavipsoN-CoLE term

I 2KJ
JoT, ) (jeo Tm)ﬂ ;

5 7J°°(1+

It has been shown that the eoefficient 2K in this term is a funetion of the
viscosity of the examined liquid. The results obtained have been interpreted
as the superposition of two relaxation processes, one of high-frequency visco-
clastie relaxation and one of low-frequency retardation related to the three-
dimensional orientation of the molecules. The values of the individual relaxation
times have been determined with the aid of Rouse’s theory.

1. Introduction

In recent years a number of lubricating liquids have been commonly used.
These are mostly either oils with an addition of polymers which modifies their
temperature viscosity characteristics, or completely synthetic oils. Amongst
the latter are the most popular silicone liquids due to their small temperature
viscosity coefficient and the comparatively low temperature of tr&n31t1on into
a glassy state.

In order to know more closely the behaviour of oils as a function of the stra-
in frequency the viscoelastic properties of a selected silicone oil (trifluoropro-
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pylmethylsiloxane) were investigated using ultrasonic shear strain. For these
investigations oil samples with different lengths of macromolecular chain have
been used to determine the influence of the chain length on the rheological
properties of the oil. 1

Similar measurements of the viscoelastic properties have been made with
polydimethylsiloxane oils [1]. However, because of the occurrence of crystal-
lization during the cooling of the samples, neither the measurement of their
limiting shear elasticity nor the investigation of the high-frequency part of the
viscoelatic relaxation process was possible. Instead, the full range of the visco-
elastic relaxation in poly-n-butylacrylates and poly-ethylacrylates has been
examined. It was found in these liquids that at high frequencies the process of
the viscoelastic relaxation can be described by means of a phenomenological
formula for.the compliance of the liquid to shear Jj,, in the form

9KJ,,

jo,)’

i 8
Gl e A ®
where Jj, is a complex compliance at an angular frequency o = 2anf, J
(=1/G,) is the limiting high frequency shear compliance, and 7, is the Max-
well relaxation time, equal to 5J,, with 5 being the static viscosity of the liquid.
The coefficients f and K are numerical parameters.

Equation (1) was proposed by LAMB and others [3] for the purpose of
describing the results of measurements of the shear compliance of plain liquids
(K =1 and g = 0.5) and liquid mixtures (K % 1 and g = 0.5). Subsequent
‘measurements made on polymer liquids have shown that the parameter f
is a function of the distribution of the liquid relaxation times and may vary
from 0 to 1 [4, 6]. )

The last term of (1) is a modification of the empirical high frequency equa-
tion stated by DAviDsoN-CoLE [5] who have made measurements of the dielec-
tric permittivity of a liquid &, as a function of the frequency w. They described
the results of their measurements by an equation of the form

€0 €x

(1+jwr)’ 5

Ejy—8p =
where ¢, is the value of the static dielectric constant of the liquid, ¢, is the limi-
ting value at very low frequencies, v is the dielectric relaxation time, f is the
selected numerical parameter and o is the angular frequency.

If the stress induced in a liquid does not come from an electric field as in
the measurements by Davidson-Cole, but instead is caused by mechanical shear
waves, the mechanical compliance of the liquid J7, can be described in a si-
milar manner,

J,

o —_— e —————— e ———
| it i

(3)
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where 7, is the time of rétardation related to the reconstruction of the space
orientation of the liquid molecules, and J, is the retardation susceptibility.

The mechanical shear stress, in addition to the space reorientation of mole-
cules also compels them to perform translational motion. If we describe this
motion by the Newtonian susceptibility, Eq. (3) takes the form

1 i
jon = (1+jor,)’

i = e+ (4)

For the majority of the examined polymer liquids, with medium and large
viscosity coefficients, 7, > 7,,. This permits the value of unity to be neglected
in relation to the value wz,. Equation (4) thus reduces to equation (1), with

B
J, = 2K, (’—) : (5)

m

2. The method of measurement

The method of measurement consist in defining the mechanical shear im-
pedance of the liquid using transversel ultrasonic vibrations of frequency w.
The relation between the impedance Z;, and the complex modulus of elasticity
of the liquid at this frequency Gj, is of the form

Z;w e QG;'CU! (6)

where g is the density of the liquid. :

The mechanical shear impedance is preferably determined by the measu-
rement of the amplitude refraction coefficient ¥ and of the phase 0 of the ultra-
sonic wave at the interface of two media, i.e. of a solid and a liquid. With a plane
wave normally incident onto the interface, the mechanical shear impedance of
a liquid is equal to

1—k*+ j2ksin0

e
e Q11 k21 2kcosh’

(7)

where Z, is the impedance of the solid. .

For most of the liquids the phase shift of a wave related to the reflection
is small since the impedance of a liquid Z < 0.1 Z,. Thus it can be assumed that
‘cos 0 = 1. Equation (7) then takes the form "

Z;, = R+jo = Z,

1—Fke _2ksin6). =

atip T aTRp

The error caused by assuming cosf = 1 is smaller than 1%. Equation (8)
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permits the evaluation of the real part of the impedance knowing only the ampli-
tude reflection coefficient:

R_ZQ(l_k).

¢
14k (9)

Knowing the values B and X of _the components of the shear modulus of
elasticity of the liquid G}, can be evaluated from (6):

S P
G, = ; (10)
0
n 2RX
G = ; (11)
1]

-

In this paper measurements were made at frequencies of 10, 30 and
450 MHz. The measuring system and more particulars related to the measur-
~ ements at the frequencies 10 and 30 MHz can be found in a previous paper [7],
while those for the frequency 450 MHz elsewhere [8].

3. Sileci[ication of the samples investigated

The oil to be tested was trifluorpropylmethylsiloxane (I'S 1265), a product
of Midland Silicone Limited (U.K.) with a structural formula (CH,),Si0
(CH,SiO(H),CF,),Si(CH,),. This liquid is a linear polymer, free of main chain
branches. The measurement involved four samples of this oil which differed
only in their chain lengths (i.e. the value of » in the structural formula).

The static viscosity at room temperature (20°C), then mean numerical
molecular mass i, and the ratio M, /M, , of the individual oil samples were

sample | n[P] t M, |M,/M,
A 1.72 1720 1.12
B B 300 | 9050 | ° 1.19
C 179.0 20000 1.41
D 8120.0 72600 1.84

A mixture comprising samples B and C in the ratio 0.3 B -+0.7 C was also
tested. The viscosity of this sample at room temperature was BC 113.0 poises.

The measurement of the molecular mass and its distribution in the four
main liquid samples was performed by the Rubber and Plastics Research Asso-
ciation (RAPRA) at Screwbury in Great Britain. The spectra of the distribu-
tion of the molecular mass of the individual samples as obtained by RAPRA
are shown in Fig. 1.
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Flg 1. The spectrum of the distribution of the molecular mass M of the samples A, B, BC,
C and D of the tested oil

4. Experimental results

i

4.1. Measurements of the density as a function of temperature. These were
made using a picnometer. It was found that there was a linear relationship
of the density changes of the tested samples over a temperature range from
—70°C to 50°C in agreement with the equation :

oy = 0oL —ay(T—T,)]. (12)

The values of g, «, and T, for particular oil samples are given in Table 1.

Table 1

Jl]

Sample | ay(x10%) a : b [ﬁsiﬂm] d T,[K]
A 1.3515 7.4 —6.03 932.1 0.2 o2 151.6
B 1.8707  5.83| 458 1100.4 0.154 0.125 156.0
C 1.3945 6.02| —2.62 1016.1 0.297 0.0627 163.0

BC 1.391 6.04| —3.45 1116.7 0.118 0.1523 156.6
D 1.4315 6.99| —1.12 997.6 0.331 0.057 166.6

4.2. Measurements of the viscosily as a function of temperature. The measure-
ments were made with the aid of a capillary viscosimeter over a temperature
range from —50°C to 50°C. It was found that that changes in the viscosity of
the tested samples as a function of temperature can be described using the equa-
tion

: :
i Tl 13
Inp =a+ T, (13)
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The values of the constants a, b and 7', for the individual samples are given
in Table 1. They were calculated by means of a computer, The results of the me-
asurements and calculations are shown in Fig. 2.

log 4

(Al

1 1 A X -
-50 0 50 7[°C]

Fig. 2. The results of measurements and calculations (continuous line) of the viscosity n of
the tested oil samples as a function of temperature

4.3. Measurement of the limiting shear compliance as a function of tempera-
ture. With satisfactorily high frequencies the reaction of a liquid to shear strain
is purely elastic, whereas the shear modulus of elasticity (known as the limiting
modulus) is comparable with the modulus of elasticity of a solid. This area is
accessible for measurement over a temperature range in which the liquid is
super cooled state i.e. between the temperature of the transition into a glassy
state and the temperature at which the viscoelastic relaxation becomes predo-
minant. :

The limiting value of shear elasticity ¢, and strictly speaking the inverse
of this magnitude, the limiting shear compliance J,, was defined from ultra-



VISCOELASTIC RELAXATION 41

sonic measurements at frequencies of 30 and 450 MHz over a temperature
range from —100 to 0°C. The particulars related to the measurement of this magni-
tude can be found in a separate publication [7].

On the basis of these measurements it has been assumed that the limiting
shear susceptibility of the tested samples is a linear function of temperature,
according to the formula

Joo = Joo+d(T—T,). (14)

The validity of the linear relationship for the changes of J as a function
of temperature is confirmed by the complementary results of the measurement
of the shear impedance obtained at various temperatures and frequencies as
shown in Fig. 3. :

The values J°,, d and T, for the tested oil samples are given in Table 1.

R

Voo

oo

10F k=0

2K=175
B=0.55

o= 10 MHz
o=30MHz
a=450MHz

e el od ] 7 2 3 7 5 6 gfidon]
Fig. 3. Comparison of the results of the real impedance Rz in a normalized scale. Conti-
nuous and broken lines are plotted from equation (1). Notation can be found in the text

4.4. Measurement of the real component of the impedance. The measurement
of the real component of the acoustic shear impedance was made at frequencies
of 10, 30 and 450 MHz over a temperature range from —50°C to 50°C. For each
temperature two measurements of the refraction coefficient & were made, the
first for a quartz bar with a free end and the second with the end of the bar
immersed in a liquid sample. The difference in attenuation of the first ten pulses
that are echoes of repeated reflections in the bar are defined by comparison with
a standard pulse of controlled amplitude. The values of the resistance were then
defined from formula (9). The accuracy of measurement of R was - 400 [g/s em?]
for a frequency of 450 MHz and 2400 [g/s cm?®] for the frequencies 10 and
30 MHz.
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The results of these measurements are shown in Fig. 3. For the purpose of
an orderly presentation of the results use has been made of the method of the
replacement of variables [9]. This makes it possible to present the results
of measurements made at various frequencies and temperatures in the form
of one eurve as a function of frequency normalized to the relaxation frequency
of the Maxwell model (1/w, = 5J,). Thus changes in the impedance of a liquid
over a wide frequency range and easy comparison of the results obtained for
various liquids can be presented.

Also for this reason the values of the component of the impedance R on
the wvertical axis have been referred to the acoustic impedance in the limit of

infinitely large frequencies (i.e. equal to Vp@.). The continuous lines that
approximate the results of measurements have been caleulated from formmla
(1) by selecting on the computer the corresponding values of k and g for the indi-
vidual oil samples. These values are given in Table 2.

In Fig. 3 a dotted line shows for comparison the graph of the the component
of the impedance R for the simple Maxwell model, and a dashed line shows
that for a simple liquid.

5. Discussion of the results of the investigations

Fig. 3 shows that the relaxation range of the individual liquid samples
comprises more than 7 decades of frequency. In deviates considerably from the
relaxation process curve of a simple Maxwell system which is represented by
a dotted line, as also from the relaxation process of a plain liquid (dashed line).
The relaxation curves of the tested oil samples are shifted to the right along
the frequency axis. Parallel displacements of the curve are the greater with
higher values of the static viscosity of the tested sample. The shape of the rela-
xation curve, being similar to that of a plain liquid, and its displacement, show
that in addition to the relaxation process characteristic of a simple liquid there
also oceurs and additional factor which causes the displacement of the measuring
points to the right on the frequency scale. The amount of this displacement is
defined by the coeficient 2K in formula (1). A good approximation to the value
of this coefficient, when f is near to 0.5, is given by equation (15) [13]

log 2K = kn*'*, (15)

where 7 is the static viscosity in centipoise, & is a constant coefficient equal
to one third for the oil samples tested. It was found that the relationship (15)
is also valid for polybutane polymers [10] when k = 1/8, and for polyacrylate
polymers [2] when k is near to.1/6. This is shown in Fig. 4. The point E2 for
a sample of polyacrylate polymer is beyond the straight line, probably because
of its large molecular mass (M, = 22 000) and because of some entanglement
resulting from this. This consideration also applies to sample D of the tested
oils (M, = 72 600).

/
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Tig. 4. The relation between the coefficient 2K and the viscosity of some tested liquids. A-D

trifluorpropylmethylsiloxane, B1-B3 polybutylacrylate [2], E1-E2 polyethylacrylate [2],
a-¢ polybutane [10] :

Since the value 2K is related to the viscosity by equation (15), expression
(5) for the retardation susceptibility, in its dependence on the viscosity of the
tested oil, can be written in the form

logd, = logd -+ % n" 1%L flog j[’ _ (16)
. m
¢, can be defined on the basis of RoUSE’s theory.

With the measured values of the real component of the impedance as a fun-
ction of temperature and frequency, and with the value of imaginary component
of the impedance it is possible to calculate the dependence of the components
of the modulus of elasticity @' and G’ as funetions of frequency. The results
for the particular samples are shown in succession in Figs. 5-8. On the vertical
axis are values of the moduli normalized by means of the coefficient b, while
on the horizontal axis are values of frequency which have been normalized by
means of the coefficient a. Practieal reasons support the use of such normaliza-
~ tion which was introduced by FERrY [9]. The normalization coefficients are

q ]
e ab oo (17)

B Q*T* ’ s

b
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Fig. 5-8. The dynamic modulus G’ and the loss modulus ¢'” of the individual oil samples
as functions of frequency. The continuous line is the curve of equations (1) and (6 a and b
are normalization coefficients

where g, T and 7 are the density, the temperature (in deg. Kelvin) and the visco-
sity respectively, while the magnitudes with an asterisk are the values at the
reference temperature. It has been assumed that this is a temperature of 20°C
(293.1 K). For this temperature the coefficients ¢ and b are equal to unity.
Figs. 5-8 show that the values of the conservative modulus G increase
asymptotically with increasing frequency up to 10° N/em?, whereas the loss
modulus G attains a maximum. The highest value of the loss modulus is one
order of magnitude smaller than the limiting of the conservative modulus. The
intersection of the curves, at which the values of both moduli become equal
(tan & = 1) shifts towards lower frequencies with increasing viscosity of the
tested sample. This is probably attributable to the increase in retardation when
the length of a molecule increases.
The behaviour of a molecule in the ra,nge of retamdatlon relaxation can be
represented in a similar way to that accepted for the prevmusly tested polydime-
~ thylsiloxane oil [1]. To describe the results use was made there of ROUSE’s

’
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theory. Making similar approximate calculations we can evaluate the retarda-
tion times of the tested oil samples. .

The Rouse theory assumes that the polymer chain can be divided into N
equal segments, each of which comprises a certain number g of units of a mono-
mer. At the same time the motions of all the segments are described by coordi-
nate transformation as a sum of a series of coupled modes of vibration. Each
mode corresponds to a separate discrete relaxation time 7, (p=1,2,..., N).
This theory assumes a summation of the moduli @, of the individual modes of
the motion. Thus it can be accepted that G* = Gy +G}, Gy = Gy +6Goy,
N =g+

The indices H and L represent low and high frequency relaxation processes
respectively. Since the shape of the experimental curves in Fig. 3 corresponds
to the shape of the curve of a relaxation process in a simple liquid (2 K =1)
it can be accepted that 7, is a certain part of total viscosity », which in conjun-
ction with G participates in the high frequency viscoelastic relaxation and is
similar to that of relaxation processes found in simple liquids. Then #; will be the
viscosity which participates in the low frequency process and is responsible for
the shift of the relaxation curves along the frequency axis. From the shift
of the curves it is possible to determine easily the relative shares of the viscosi-
ties in both low and high frequency processes. These are given for the indivi-
dual liquids in Table 2. Assuming that the share of viscosity %[y is the result
of the existence of p RoOUSE modes, it is possible to determine the value of p
for the individual oil samples. The values of p have been calculated on a computer
and are also given in Table 2.

Table 2
Sample 1 2 K | p | P 1L NL/n nH
A 5 0.525 2 1.23 0.716 0.49
B 10.5 0.53 7 27.6 0.92 2.4
C 24 0.56 30 175.4 0.98 3.58
BC 20 0.55 20 109.8 0.9717 3.14
D 175 0.565 - 500 8115.5 0.99944 4.5

" The values stated in Table 2 permit to evaluation of the high frequency
relaxation times 7, and the low frequency relaxation times 7, for the individual
liquid samples, as well as the value of the retardation compliance J,. The
values of 7, have been calculated from formula (11),

m? 0,
N N AN

& (19)
2
) i ke _1_ oyl PX M"’)
ok ;’pz e 2N+1(JE

n
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for liquid samples A and B, while for the other samples in view of the satisfac-

torily large number, N, of the Rousk modes, use has been made of the simpli-

fied formula ~
69.M;

To = T (20)

% m2p2RT (M, | M;)

In both cases M, = XM, W, is the mean (by weight) molecular mass of the
polymer, o is the density of liquid, R is the gas constant, T' i§_the temperature
in degrees of Kelvin, and N = pq. {

In the computations it has been assumed that the number of monomer
units ¢ = 5 corresponding to 7 atoms of silicon in a segment. This value is
assumed for the bonds Si-O which exhibit an exceptionally high susceptibility
to bending [12]. However, it can be proved that the value of ¢ is not ecritical
in the computations.

The values of the relaxation times and of the conpliance calculated from
formulae (19) and (20) are given in Table 3. Since the spectrum of the RoUSE
modes is a diserete spectrum, and the speetrum of LAMB liguid model is a conti-

Table 3
Sample | gg(x109) Pr, 1 Prp (% 109) 1 FAT 4 ‘ X @ [Pm
A 0.165 1.1x1077 | 140 110 ‘ 3.7 X108 196
B 0.677 7.8 x107° 240 410 1.2 x1077 925
C 0.977 5.1 x10—% 57 900 2.5 31077 1000
BC 0.88 2.0 x10~% 49 852 - 2.83%x1077 667
D 1.22 1.4x1073 8 5900 2.8 x10~% 640

nuous spectrum [10], it is difficult to illustrate the superposition of both spectra.
However, it can be noticed that in each case the relaxation times of the RoUsE
modes are considerably lower than the high frequency relaxation times.

The identical shape of the curve in the range of viscoelastic relaxation in
simple liquids (i.e. with comparatively short molecules) can be explained by the
fact that at high frequencies the only motions likely to occur in the long mo-
lecule are vibrations of the side groups of a polymer chain.

Thus it seems to be justified to accept that the retardation time 7, corres-
ponds to the longest time of relaxation (zz,) in the Rouse modes of vibration
since in this case all of the molecule pamt101pa.tes in the proeess of reorientation.

It should also be noticed that as the length of the polymer chain increases
there is also an increase in the polymer susceptibility to bending and the ratio
J,lJ., (Fig. 9). This is physically substantiated. The limiting compliance
J, is determined by the high frequency properties of liquid and is a chara-
cteristic magnitude for a given liquid, whereas the retardation compliance
J, is defined by the depth of the potential barier between polymer molecules.

This potential barrier depends on the léngth of the polymer chain and reduces
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Fig. 9. The relation between the ratio J,/J and the viscosity of the tested oil samples

with the increasing chain length. Consequently, o/, is higher for longer polymer
chains. The character of the changes in J, with increasing viscosity is defined
directly by the coefficient 2 K which is related to the viscosity of the tested
samples by equation (15) since both the limiting compliance J, and the ratio
of the time of retardation to the time of relaxation differ only a little for the
individual oil samples.

The execution of the above-decsribed measurements in the ultrasonic la-
boratory of the University of Glasgow (G. Britain) was made possible with the
agsistance of prof. J. LAMB for which one of the authors (R. P.) would like to
express his sincere gratitude.

-
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INVESTIGATION OF THE RELATION BETWEEN THE SOUND VELOCITY IN LIQUIDS
AND THE MEAN VELOCITY OF THE THERMAL MOTION OF THEIR MOLECULES

FRANCISZEK KUCZERA

Institute of Physics, Silesian Technical Universty (44-100 Gliwice, ul. B. Krzywoustego 2)

It is shown in this paper that in assuming a rectangular potential well
we also assume |that the intermolecular compressibility of a liquid consists
of a kinetic and a potential part. It was accepted that the kinetic part — as
for a perfect gas — is independent of temperature at constant pressure. Hence,
it can be concluded that the temperature coefficients of both the compressibi-
lity and the sound velocity depend almost exclusively on the space filling.

In considering the propagation of acoustic waves in gases attention hag long
been drawn to the close similarity of the expressions for the acoustic velocity and
the mean velocity of the thermal translatory motion of the molecules

il RT : )
o M
and
RT
il e (1a)

where w denotes the propagation velocity of acoustic waves in a gas, ¢ is the
mean velocity of thermal motions, and r is a constant coefficient whose value
depends on the method of averaging used. Thus there is a close relationship
between the propagation velocity of the acoustic waves and the velocity of the
“thermal motion although the relationship between r and y in formulae (1) and
(1a) has not yet been reported. (The solution to this problem will be presented
in section 1). In this situation there arises an obvious an interesting question
as to whether and in what manner the velocities of the thermal motion of mo-
lecules in liquids are related to the velocity of propagation of acoustic waves in
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liquids(*). This paper contains remarks and obgervations concerning this prob-
lem. In the first place attention will be drawn to the relation between the pro-
pagation velocity of acoustic waves in perfect gases and the thermal velocity
(s. 1). Then after a brief recapitulation of some essential problems concerning
the propagation of acoustic waves in solids (s. 2) attention is turned to the pro-
pagation of acoustic waves in liquids (s. 3).

1. In first considering the propagation of an acoustic wave in a per-
fect gas from a microscopic point of view it can be seen that within a system
of hard, non-interacting molecules a continuous wave cannot propagate. An
acoustic wave propagates in gas as a result of the volume elasticity which in this
case is of a purely kinetic and static nature.

Consideration must thus be given to the volumes of such size that statisti-
cal quantities become meaningful. (This is in contrast to the analogous problem
in solids where it is possible to start with a model confined to one molecule and
its nearest environment). We thus have

L a_p Ag gﬁi ;
" = (3e), = (el ®

where y = ¢,/¢,, and w is the velocity of acoustic waves in the gas. The other
letters have their commonly accepted meanings. The gas pressure p can be ex-
pressed by the formula

1 R ) - 3)
P 3 3 ecs,
where n denotes the number of molecules per cubic centimetre, m is the mass of

one molecule, and ¢? is the mean square velocity of the thermal motion of the
molecules. From (2) and (3) it ecan be seen that

S =
W =p—a = -g[c"+(y~1)o2]- (4)

If the acoustic disturbance is an isothermal process then the velocity of
propagation w, of such a disturbance will be given by
L)

Fioghasih b oo (e
wy =50 = S (1 +d) = ddtd. (

Jt
~—

(1) In using the term “liquid” we ghall always mean simple liquids as we hold that the .
properties essential for the liquid state occur in a simple liquid in an undisturbed form.
By taking into consideration various side-effects such,as association, solvation, hydrogen
binding ete., we unnecessarily complicate the problem if we are only interested in the es-
sence of the liquid state.
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The isothérmal disturbance thus propagates at a speed whose square is
equal to the mean square of the component of the velocity of the thermal motion
in the direction of propagation of the acoustic waves.

In the case of an adiabatic disturbance the mean square velocity increa-
ses. We then have

o) - S 3 e
5 e CR L e Qae)s A e Qavsae“]' &)

In this expression we do not know the change in the mean square of the

velocity during the adiabatic deformations (d¢®/0v),. It can however be determi-
ned by the following considerations.

It is known that the internal energy of one mole of a perfect gas is given
by the expression

1 me?
Uizt Nfa—kT = Nf—-ﬁ ’

()

where f denotes the number of degrees of freeddm. We thus have

(aU s :
W)S—ﬁp- (8)

From (7) and (8) we obtain

i il TR 2
5 BV( )s Tk
and thus
d : 2¢? >
aV ( 8 fV & ( ,
Substituting (9) into (6) we obtain
FISTO. [Ecuﬁ] = 155[2 +1] Loggiasds b (10)
, S 7 s i e Y

2. There is a widely held view that the liquid state is more similar to the
solid state than to the gaseous state. At the same time it is stressed that ligquids
and solids have very similar densities. Furthermore, it is considered that:

(a) the ghort-range order in liquids is a remnant of the long-range order
in erystals,

(b) the thermal motion of the molecules in liquids is similar to the thermal
motion of the molecules in solids.

As we shall subsequently discuss these assumptions, and particularly
their acoustic aspects, in section 3, some short remarks on the problem of the
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thermal motion of molecules (a one element solid) and the propagation of acous-
tic waves are needed.

It is generally- considered that this problem is covered by the theory of
the specific heats of a one element solid. It is assumed in this theory that a mo-
del of a lattice of coupled harmonic oscillators (one per atom) correctly descri-
bes the thermal motion. The internal energy is obtained accordingly by summing
the quantized energies at all frequencies. An actual solution of the problem is
obtained by the use of either Debye’s method or the Bern-Kédrmén method.

Having reviewed briefly these well-known facts it should be stressed that —

_independent of the fundamental importance of both the acoustic theories of
the specific heat — their significance for the problem of the velocity of acoustic
waves and thermal motion should not be overestimated. The limitation arise
for, among others, the following reasons:

(a) Using Debye’s method we proceed from the assumption of an elastlc
continuum. In such a manner we thus immediately preclude the possibility of
considering the elementary (molecular) mechanism of the transmission of an
acoustic pulse.

(b) Using the Born-Karmén method we neglect the finite volume of the
atoms. This leads consistently to an erroneous representation of the mtermole
cular forces, as may be seen from the following argument.

Let the volume of a solid be V, of this V,, accounts for the proper volume
of the molecules themselves. Let‘us call V; = V —17,,, the free volume. We then
have

a¥ . 0Y, Wy tend OE o T 0 . Vi 10V,

" p op’ Vop VV,op V Vyop’
that is

ﬁ ﬁs hﬁiﬂ (ll)

From formula (11) it is evident that the measured (effective) compressibi-
lity f,, differs considerably from the “real” intermolecular compressibility f,.
The second term on the right-hand side of the equation can usually be neglected.

3. A relation between the velocity of propagation of acoustic waves in
liguids and the thermal motion of the molecules should be based on the informa-
tion already available on the thermal motion of molecules in liquids. Unfortu-
nately, such information is very scarce and thus no theory of the specific heat
of a one element liquid has so far been elaborated.

Following FRENKEL [3] it has been suggested that the similar values of the
specific heat c¢,, of liquids and relevant solids in the neighbourhood of the soli-
dification temperature, give evidence for the similarity of the thermal motion
in both states. This information is too general for the present purpose since it
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conveys no clear idea as to whether the molecules are moving at a uniform speed
while reflected from the walls of the cells formed by the closest molecules, or
are vibrating sensu stricto, and are thus under the action of, for example harmo-
nie, forces. However, the molecular mechanism of the propagation of acoustic
waves in liquids depends on the nature of these motions. In the former case
the propagation of an acoustic wave can to some extent be explained by
reference to the “gas model”, i.e. to the state presented in section 1. How-
ever, in the latter case use shoulds be made of the quasi-crystalline model.

Thus it can be clearly seen that even qualitative considerations concerning
the elementary mechanism of the propagation of acoustic waves in liquids must
be based on reliable information on the nature of the thermal motion of the
molecules. It has been suggested that the existence of short range order in
liquids points explicitly to the fact that an explanation of the manner in which
acoustic waves propagate in liquids should be based on the quasi-crystalline
model, the short range order being interpreted as an expression of the tendency
of the intermolecular forces to develop crystalline structures. However, as
long ago as 1922 GANS [4] showed that in systems of non-interacting rigid
balls there is a distinet probability of finding the molecules at a definite distance
from each other. This probability depends on amongst other factors the ratio
V¢/V. From expression (11) it can be seen that the intermolecular “real”
compressibility is considerably higher than the effective (measured) compres-
sibility, than the assumption of a flat bottomed potential for the interacting
forces of the molecules cannot be regarded as a course approximation. In
assuming a flat potential bottom, i.e. assuming that the liquid molecules are
moving freely from collision to collision, it can be supposed that the relations-
hip between the wave propagation velocity and the mean velocity of thermal
motion, substantiated in section 1, can also be used for a liquid [5].

However, this description is not satisfactory. If the liquid compressibility
is considered to be exclusively of a kinetic nature, derived from the energy in
a manner similar to that of the gas molecules, then by considerations of space
filling, the relation

Ve
ﬁ=?ﬁar

should be satisfied, as can be seen from formula (11). Now the ratio V,/V va-
ries from approximately 1/5 to 1/10, and the liquid compressibility should
thus be from 1/5 to 1/10 that of the gas compressibility. This obviously does
not oceur and it is therefore evident that even under the assumption of a flat po-
tential well, the relationships derived in section 1 cannot be used for liquids.
The main reason for this can be seen in the fact that the flat potential bottom
lies below the axis of the abcissae, while the depth of the well depends also
(under the condition of constant pressure that we are considering), on the tem-
perature. s
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The physical conditions, represented by means of a geometrically simple
potential are very complicated. It must be taken into consideration that it
is not possible, in this case, to use the equipartition principle. The application
of this principle requires that the energy of a molecule should be a linear homo-
geneous function of the squares of the position coordinates and of the momenta.
It can be seen from the model that the liquid compressibility is both kinetie
and potential. However, we do not know the way in which these two compouents
combine to form the resultant compressibility. We can only make an estimate
for subsequent use. We are of the opinion that the kinetic component of the
intermolecular compressibility is considerably higher than the potential compo-
nent, although the temperature dependence of the intermolecular compressibi-
lity is defined by the temperature dependence of the potential component.
We thus can write

'KS = Ksk+Ksp! (12)

where K, and K, denote the moduli of the kinetic and potential intermolecular
compressibility, respectively. :

Neglecting the compressibility of the molecules themselves, the measured
compressibility g can, using formula (11), take the form

VB,
il 13
B=—3 | (13)
The question arises as to the relation of the change of the ratio V,/V to
the change in the compressibility 8, and the dependence of this effect on tem-
perature at constant pressure. It can be seen that

BoPpeds ige gEvelsy, PReLa g

Bor T V,9T VvV or " B, oT

or, by neglecting the third term on the right-hand side of the above equation,

L8 (1 _1) a (14)
BT _\V

s

where a denotes the volume expansion coefficient.

From formula (14) it is evident that the temperature dependence of
the change in the measured compressibility g is defined almost exclusively by
a change in the space filling. Table 1 contains numerical data of the relevant
coefficients. From the table -it can be seen, that for benzene, for example,
B (8B /0T, x a '~ 6, in agreement with the values obtained by other methods ().

(2) The values of the volumes of the actual molecules determined by various methods
differ slightly from one to another because it is evident that the quantity to be measured. is
defined by the method of measurement. In this interpretation we consider that, for example,
two values of the ratio Vg/V equal to 1/6 and 1/7, respectively, are in agreement.
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Table 1. Thermal coefficients of some normal liquids

1 HﬁT) 1 (BW) 1 BT/') 1 (8;})
—— 104 | —(——) x10% —|—]| x10%| —|— 104
Name of liquid i ( arT px w\ dT /» ¥ val'ip y \oT px
[deg—1] [deg—1] [deg—1] [deg—1]
—7.4 [10]
Benzene +74.6 [6] —36.6 [7] 12.2 [8,9] —6.6*
Carbon
tolsaskionide +173.0 [6] —33.7 [7] 12.2 [8,9] —6.1  [10]
+ 2.5%
Ethyl ether +99.2 [6] —46.3 [7] 16.4 [8,9] —0.5 [10]
10.8 10
Carbon disulphide +77.4 [6] —27.9 [7] 12.0 [8,9] ++ 9.2% [10]
Ethylo-benzene +57.8 [11] | —28.4 [T7] 10.1 [8,9] <o g
Chloro-benzene +57.3 [6] —28.8 [7] 9.8 [8,9] —8.6 [10]
_3.8*
Cyeclohexane +78.1 [9] —36.0 [7] 12.0 [8,9] 9.8 [12]
: e e gy
Aminobenzene +50.0 [6] —24.4 [7] 8.5 [8,9] _1.5%
Ethyl acetate +88.5 [9] 383 "[7] 13.6 [8,9] —2.4 [8,9]
n-pentane +99.2 [9],113] —44.5 [7] 16.2 (18] —b5.4*
Nitrobenzene +66.2 [11] | —224 [7] 8.3 [8] FER T
m-xylene +67.3 [11] —30.6 [T7] 10.1 [8] —1.8 [11]

#* Author's calculations

The temperature coefficient of the velocity of sound,

1 (0w _(2 V) 1
wlor), —\"" 1,]%2’

is, as can be seen, expressed exclusively by a change in the volume. This fact
should be stressed since, from a formal computation of the value

olor), =15l 12

(see Table 1), some workers conclude that a change in the coefficient of compres-
sibility primarily accounts for the temperature change of the sound velocity.
If the intermolecular compressibility is to be considered as a real measure
of the elastic properties, it can be easily seen that almost the only reason for
a temperature dependent sound velocity at a constant pressure is the change
in volume.

4. In conclusion it can be said that if we consider only the effect of the
temperature dependent change in volume at constant pressure, then we obtain:

(a) good agreement, as regards the sign and the absolute value, of the
“measured” temperature coefficient of the liquid compressibility (3),

(3) In view of the slight difference in the numerical values of the ratio V4/V obtained
by different various methods the estimates presented above do not at present permit the
isothermal and adiabatic compressibilities (cf. Table 1) to be descerned.
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(b) good agreement, as regards the sign and the absolute value, of the tem-
perature coetficient of the sound velocity, and that

(¢) it can be accepted to a good approximation over the whole range of
the liquid state that the intermolecular compressibility changes only very
glightly with temperature, at constant pressure. The change in the “measured”
compressibility is simulated by a change of volume.

The conclusions (a), (b) and (¢) result from the assumption that the inter-
molecular compressibility of a liquid consists of a kinetic compressibility,
which is independent of temperature at constant pressure, and of a potential
compressibility which is considerably lower than the kinetic compressibility.

The relation between the velocity of the thermal translational motion of
the molecules in a liquid and the sound velocity is more complex than the similar
relation for perfect gases. The considerations presented in this paper are thus
the first approximation of the dependenues between these quantities which as
yet are undetermined.
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ON AN ACOUSTIC METHOD FOR THE DETERMINATION OF THE DENSITY OF A LIQUID
AS A FUNCTION OF PRESSURE

JOACHIM GMYREK

Institute of Physics, Silesian Technical University (44-100 Gliwice ul. Bol. Krzywoustego 2)

On the basis of Schaaffs paper and Griineisen’s theory it has been shown
that the Rao expression at constant temperature does not depend on the pres-
sure. It results from the stability of the Rao-Schaaffs expression that it is possible
to determine the density of a liquid as a function of pressure by the intermediary
of quantities measured exclusively under normal pressure. The method provides
a better agreement of the calculated values with experimental ones than do
other methods.

1. Introduction

A precise determination of the density of a liquid as a function of the tem-
perature T and the pressure p can be reduced to the hitherto unsolved problem
of the liquid state equation. Although there exist many empirical or semi-em-
pirical liquid state equations, none of these permits determination of the volu-
me (or the density) with satisfactory accuracy over broad intervals of pressures
and temperatures. In addition, these equations are predominantly specific
rather than universal. : '

The generally valid thermodynamical différential equations do not help
in solving the problem since the values of the partial derivatives of the parame-
ters of the liquid state are unknown. Thus resort must be made, with the pre-
sent state of knowlegde, to the semi-empirical equations. The choice of an
equation is purely arbitrary and depends, for example, on the kind of liquid
and the relevant interval of temperatures and pressures. The determination
of the relationship V = V(p, T) in extreme conditions now assumes a special
importance with a view to the operating conditions of engine fuels and lubri-
cants in aviation and rocket technology.

It should be noted that WEHR [1] and SzACHNOWSKI [2] have, for a long
time been engaged in the problem of the determination of the density of a li-
quid as a function of the pressure. For various aviation fuels and oils they have
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succeeded in achieving satisfactory agreement with experimental results by
assuming that the ratio of the specific heats in pressure intervals of the order
of several hundred atmospheres is constant. Such an assumption is not valid
for greater pressure changes and thus the continuation of the work started
by WEHR is not possible. The theoretical solution of the problem of the dependen-
ce of » on the pressure is not possible with the knowledge available(!), while
the experimental material regarding this problem is very poor.

In this situation it has been decided to resume work on the determination
of the density of a liquid as a function of pressure, but with an acoustic method,
because of the high®efficiency and accuracy of present-day ultrasonic measu-
rement techniques. The starting point is the empirical fact stated recently by
SCHAAFTS that the so-called Rao expression — which has so far been investigated
at constant atmospheric pressure as a function of temperature — has proved
to be independent of the pressure for a constant temperature.

2. The independence of Rao’s formulation from the pressure

Using the results of measurements of sound velocity and density made by
RAJAGOPALAN, CARNEVAL and Lrrovirz for n-heptane, n-octane, n-nonane,
n-decane and n-dodecane, and for methyl, ¢thyl, propyl and n-butyl alcohols, as
well as the results obtained by VEpAm and Hovrow for water, SCHAAFFS has
stated that the so-called Rao expression is essentially independent of pressure,
especially for pressures above 1000 atm.

Some results of his calculations are given in Table 1. The measurements
were made at a temperature of 20°C. '

Table 1
o —%

Substance P Bax 1072 Subst P Fedilo
[atm] | [em!®35—13mol—1] e eey [atm] [[em!®%—13mol1]

n-heptane 1 Teaa n-dodecane 1 11.50

- N85 7.32 785 11.80

1370 * 7.36 1370 11.90

Methyl alcohol 1 1.943 ethyl 1 2.85

. 1000 2.012 aleohol 1000 2.95

2000 2.022 [ 2000 2.96

n-propyl aleohol 3 3.670 n-octane ' 1 8.00

3000 3.870
8000 3.915 785 8.21
10000 3.925 | 1370 8.28

(1) Thermodynamiecs provides no temperature and pressure dependence of the specifie
heat and no such relation should be expected to be stated since the material constants are
a consideration of importance. The situation is identical to that for the problem of the liquid
state equation. Thermodynamies is not eapable of providing such an equation (C. SCHAFER,
Introduction to theoretical physics, vol. II).
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SCHAAFTS [3] was investigating the expression

M
%t o)

where w is the sound velocity, ¢ is the liquid density and M is the
molar mass. i

However, it is known that in the range of variable temperatures and con-
stant pressures more exact results are obtained by using, for the determination
of various molecular quantities, the individual power exponent according to
KuczerA [4, 5, 6]. An attempt has therefore been made to investigate the
dependence of the Rao expression by using the individual value of the power
exponent determined for normal pressure.

In the caleulations use has been made of the results of measurements
of the sound velocity and the density for n-pentane over a pressure range from
1 to 8000 atm, contained in the papers by IKrRAMOW and BIELINSKI [7].

The results of these calculations are presented in Table 2.

Table 2
Ap [atm] | B, 10+t : Remarks
|
0 ‘ 3¢
500 13.8 1. Measurements were made at a temperature of 20°C
1000 13.8
1500 13.7 2. The maximum error B, is +1.5 %
2000 13.8
2500 13.8 3. In the caleulations the individual power exponent has
3000 | 13.8 been used
3500 13.8 q = 2.83
4000 13.9 1 ( Bw)
4500 13.8 E b
ar
5000 13.9 § = Pt TL
5500 13.8 l(i”)
6000 . 138 v \oTIm
6500 13.8 p; = normal pressure
7000 13.8
8000 13.9

‘

It can be seen that the application of an individual exponent gives a bet-
ter stability of the expression B, = w"?( M [0) with changing pressure and con-
stant - temperature.

Accidental deviations are the result of errors made during the measurement.
Worthy of note, although so far unexplained, is the fact that for all high pres-
sures the exponent ¢ has remained unchanged.
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L]

3. An attempt to explain the independence of the Rao expression from the pressure

Let us consider, following GRUNEISEN [8] and others, the liquid molecules
as point sources of force arranged momentarily along a certain direction at
distances 7 and bonded by intermolecular forces. When a molecule is shifted
by &, then the force of the interaction of two nearest molecules is [~ 28 (7).
Let us assume that neighbouring molecules are distributed evenly on spheres
of radii §;7. The force of interaction from the neighbours distributed along
a certain considered direction is 2&3'(S;7). If we denote }cosp; =t;, where

@, are the a.ﬁgles to the chosen direction, then the force of interaction from all
the neighbours will be f = 28 3.1 (8,7).

The potential of the interaction is expressed by equation

plr) = —om o+ )

TR
.r!l

where # and y are constants (y > ), and « and g are individual constants.
In considering equation (1), the directing force D is

f 8 t R )
D=1 =2l L 3o o 2 D )

(Z g%)a =cq M ani (Zg—;)ﬁ = I

i )

We write

where p, is the nutﬁber of neighbours as a distance S, 7.
It should be noted that in the equilibrium state

ax by
R
Then
QX o i
D=2 m{(?o) (y+1) H”(y)*-(ft?le)‘f’(m)}, (3)
where
"ol g
QU 2 8e+?
)= @l Fle) = e
P [
T 8 T 8

Let us derive the GRUNEISEN factor y = dlny/dInv, which as GRUNEISEN
has proved experimentally, does not depend on the ‘temperature and pressure.
! |
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Sinee the frequency of vibration of the molecules », assuming a monochromatic
vibration spectrum, is : '

; Sty B8 T
PR S

“ex V¥V
we have =

1 ]
d(Iny) = ) d(InD) andv = const#,

where D is the directing force, and x the oscillator mass, so d(lnv) = 3 d(InF).
Consequently, ‘
d(Iny) 1 d(InD)
= g . 6 d(nh)

(4)

If we assume 7, ~ 7 (the increase of temperature will indeed cause an incre-
ment in 7, but the increase in pressure will reduce this inerement in #), it can
be shown that

_ 1 @)@ H)PE) — (@+2) (@ +1) ¥ (o)
6 (¥ +1)¥(y) — (2 +1) ¥(@) :

If we take into consideration the interaction of all the more distant neigh-
bours, then ¥(2) ~ 0 and ¥(y) ~ 1/9. Consequently,

(5)

1
B (y+2). (6)

According to BorN-KARMAN the velocity of wave propagation is expres-

sed by the formula .
D )
w = r]/—- = 27rv,,.(2) (7)
7

Y
ik AT

where v denotes the molar volume, % is the structural factor, which is indepen-
dent of pressure and temperature, and N , is the Avogadro number, hence after
logarithmic differentiation we obtain

d(Inw) = }d(Inv)+d(ln»,),

Since

i.e.
J d(Inw) $2 1

d(Inv,,)
d(lnv) 3

d(lnv) *

* (®)

(%) According to Eucken, for normal monochromatic body the limiting frequency of
the spectrum is », =~ ». !
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Substituting equation (6) into equation (8), we obtain

or

In integral form, expression (9) becomes

g M -5 ey
w (7) = R, = const. (10)

In this manner we obtain the analogue of Rao’s expression which is valid
for T = const, as distinct from the classical rule which can be applied for p; =
= const with a universal power exponent g = 3. Expression (10) is certainly an
approximate form of more complex, but as yet unknown relations between
the sound wvelocity and the liquid volume.

4. Consequences of the Rao-Schaaffs rule

It “‘fill be demonstrated that, from the stability of the Rao-Schaaffs ex-
pression, it is possible to determine the liquid density as a function of pressure
using quantities measured exclusively under normal conditions.

For this purpose we may observe that

hence

where p, denotes the density at pressure p,, and g, is the density at pressure p.

Since
M M '
W, = w}M(M) =yl (—), (10%)
1 e
the substitution of equation (10’) into equation (11) and subsequent integration
imply
2 2qg+1
p—p, = _wﬁ[(ﬁi) _1]_ (12)
2q+1 01
From (12) it is possible to determine the density g, as
2g+1 -
0p = 01 (2¢ 42 P, (13)

]
W) 01
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bl

It can be seen that in formula (13) there are only the quantities measured
at normal pressure.

When we assume ¢= 3 (*) a universal power exponent in expression (107),
equation (13) takes the form

SRR
0= ell/M "y (13a)

w; 0,
If we neglect the pressure p,, as being considerably smaller than p, then
equation (12) can be written in the form

l T
p = Zwies [(i) —1]- (12a)
0
Kirgwoon [9] obtained an analogous equation empirically in the form
— B(S) [(&) —~1], ! (14)
€1

where B(S) and n are constants for a given liquid.

Equation (14) applies well for water within the range of pressures from 1 to
25000 atm for n = 7.15.

Taking advantage of relation (13), the density has been calculated for
n-heptane and for diethyl ether over a broad range of pressures and at ambient
temperature. The results have been compared with experimental data. Results
of these calculations are shown in Tables 3 and 4.

Table 3. The caleculation of the density of m-pentane at a temperature of 20°C

Otabl TR R o ) PR g
p[atm] [gﬂ,;z;ls} Ec;_cﬁg;) tion ch &gl)i tion Remarks
[%] [ %]
1 0.6254 | — R - - 1.In formula (13a) the
500 | 0.6660 | 0.664 —0.30 0.665 —0.15 exponent ¢ = 3
1000 | 0.7044 0.693 —1.62 0.695 —1.28 has been used
1500 0.7300 0.715 —2.06 0.717 —1.79
2000 0.7468 0.734 —1.71 0.738 —1.18 2. In formula (13) the
2500 0.7630 0.751 —1.67 0.765 —1.05 individual exponent
3000 0.7774 0.765 —1.59 0.770 —0.95 ¢ = 2.832 is taken
3500 0.7910 0.778 —1.64 0.784 —0.88 according to the da-
4000 0.7996 0.790 —1.20 0.797 —0.33 ta from the tables
4500 0.8110 0.801 —1.23 0.808 ~0.37 of Landolt-Bornstein
5000 0.8195 0.811 —1.04 0.819 —0.06
5500 0.8300 0.821 —1.08 0.829 —0.12 3. Tabulated values of
6000 0.8385 0.829 —1.13 0.839 +0.06 the density are the
7000 0.85356 0.845 —=1.00 0.856 +0.29 average value of
8000 0.8669 0.860 . —0.80 0.871 +0.47 the measurements
by Bielinski and
Bridgeman

(®) The average value for liquid n-paraffins from O to U is 2.941, whereas the average
value for a series of homologieal paraffins, olefins as well as aromatic hydrocarbons is ¢ =2.963
[13].
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Table 4. Calculations of

n-heptane Deviation
Ap [bar] Qtable Qcalculated [%] Remarks
J [g/em?] [
0 0.6753 —_ &~ For the calculations the exponent
50 0.6803 0.6793 —0.15 ¢ = 2.953 is taken according to Landolt’s

100 0.6849 0.6831 —0.26 m

200 | 0.6933 0.6904 jilan | e & = ”13[?]

300 I 0.7010 0.6973 —0.53 it

500 0.7142 0.7100 —0.59 —_— = —4.-.14[ ]
1000 0.7406 0.7369 T 2 doj
1500 0.7612 0.7590 —0.29 | @ =12.60-107% [deg~] for a tempe-
2000 0.7783 0.7738 —0.08 rature + 30°C. '.I‘he values of density are
3000 0.8063 0.8090 104 | Tom Wargattik T12],
5000 0.8480 0.8558 +0.92

It can be seen from Table 3 that better agreement with the experiment is
obtained by using the individual exponent ¢ in formula (13), than — the uni-
versal exponent ¢ = 3 in formula (13a). In further calculations the former
will thus be used.

Obviously, in the first approximation it is possible by using the universal
exponent ¢ = 3, to determine the liquid density at higher pressures with an
accuracy of 2-3 %, and this requires knowlegde of the liquid density and the
sound velocity for only one measuring point, e.g. at room temperature and
normal pressure.

It should be added that even better agreement of the experimental results
with the values of the densities. calculated on the basis of formula (13) can be
obtained with the aid of experimental data on the liquid density and sound
velocity at a higher pressure than that of the normal pressure (13).

As an example, assuming as initial data for the calculations for diethyl
ether at a pressure of p = 500 atm ¢ = 0.7615 g/cm? (from BRIDGEMAN [11]),
and w = 1284 m/s (according to RIcHARDSON and TArr [10]), then the average
deviation of the results of the values of the densities calculated from experi-
mental data obtained by BRIDGEMAN [11] in the pressure range from 1000 to
12 000 atm is +0.25 %, compared to a deviation of 4-0.69 % for initial data taken
at normal pressure. Thus, it is possible in some cases to extrapolate the results
obtained at not too high pressures to considerably higher pressure ranges.

5. Results

The value of the so called Rao expression at constant temperature is almost
independent of the pressure, as was pointed out by ScHAAFFS. In this paper it
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density of n-heptane and diethyl ether

Diethyl

0 table ether Deviation
PIm] | rpjom®) | eenoutated | [%] L
[g/em?]
| 0.7138 —_ —

500 0.7615 0.755 —0.88 For the ealculations the exponent value
1000 0.7885 0.786 —0.30 ¢ = 2.840 has been taken accordlng to
1500 0.8117 0.8116 —0.01 Landolts'table
2000 0.8319 0.833 +0.16 w = 1006 [m/s]

2500 0.8498 0.852 +0.27 :—;: = 4.66 [m/[s deg]
3000 0.8658 0.869 + 0.35 a = 16.31 10—¢ [deg~!]
3500 0.8800 0.884 + 0.45 t = 20°C

4000 0.8928 0.898 +0.55

4500 0.9045 0.910 + 0.64

5000 0.9152 0.922 4 0.75

6000 0.9339 0.943 +0.99 Density data are taken from Brid-
7000 0.9508 0.962 +1.18 geman’s papers [11]
8000 0.9670 0.979 +1.23

9000 0.9826 0.994 +1.19

10000 0.9976 1.008 + 1.09

11000 1.0120 1.022 + 0.95

12000 1.0256 1.034 +0.80

has been shown that a somewhat better stability of this expression is obtained
by using individual liquid exponents and an a.ttempt has been made to prove
this fact theoretically.

From this a relation has been obtained from which it is possible to determine
the pressure dependence of the liquid density over a broad pressure interval.
This method is very simple since it requires only the knowledge of changes in
density and sound velocity as a function of temperature at normal pressure and
gives better agreement of the calculated densities with experimental values
than do the majority of known methods.
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THE VELOCITY OF PROPIAGATION AND ATTENUATION OF ULTRASOUND
IN METHYLPYRIDINES

_  BOGUMIL LINDE, ANTONI SLIWINSKI

Institute of Physiecs, Gdansk University (80-950 Gdansk, ul. Wita Stwosza 57)

The results of measurements of ¢ and a/f? as functions of temperature for
five methylpyridines: f- and y-picolines and 2.4, 2.5 and 3.5 lutidines are given.

1. Introduction

Investigations of the propagation velocity of an ultrasonic wave on a-pi-
coline as a function of temperature [1] have shown that the functional dependen-
ce ¢(T) is linear, but with two regions of linearity. Above 293 K the temperature
coetficient of the velocity of ultrasound is —4.9 m s~ 'deg™', but —3.9 below this
temperature. This gives evidence for the existance of an additional “phase”
transition (of an association-disassociation type or of a defreezing-freezing of
the internal motions of the molecules) between the melting and solidification
points.

Previous investigations indicated that in other methylpyridines similar
transitions should be observed. In the region of the transitions, the liquids
should exhibit relaxation properties.

The purpose of this paper is to describe measurements on a number of
methylsubstitute pyridines in which relaxation regions might have been found.
Measurements were made of the propagation velocity ¢ and the ultrasound
attenuation coefficient a as functions of temperature for five compounds:
f- and y-picolines and 2.4, 2.5 and 3.6 — lutidines.

2. Apparatus

The experimental results for ¢ and « were obtained using an ultrasonic phase
pulse interferometer type UILL2 [2] at a frequency of 12 MHz. Temperature
stabilization was maintained by means of a temperature regulator, type 650-UNI-
PAN with a platinum sensing device type 210 s 3 wire — 100 ohm, to an accu-
racy 40.06 K.
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3. Results of the measurements

Fig. 1 represents the relationship between the attenuation coefficient di-
vided by the frequency squared and the temperature, over the temperature
range 280-330 K for y-picoline. The value of this coefficient is initially constant
and then rises with increasing temperature. For the same liquid the relation
between the propagation velocity and the temperature ¥ shown in Fig. 2.

a 4
2| [10777sem™”
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Fig. 1. The dependence of a/f2 on temperature for y-picoline at a frequency of 12 MHz
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Fig. 2. The dependence of the ultrasonic propagation velocity ¢, on temperature for y-pico-
line at a frequency of 12 MHz (the corresponding temperature coefficients of the ultrasonic
velocity are given above the straight segments)

At about 315 K there is a region in which the curve has a marked change
of gradient. :
~ Similar results for the temperature dependencies of a/f* and ¢ for 2.5
lutidine are shown in Figs. 3 and 4. :
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Tig. 3. The dependence of «/f? on temperature for 2.5 lutidine at f = 12 MHz
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Fig. 4. The dependence of the ultrasonic propagation velocity on temperature for 2.5 lutidine
for f = 12 MHz (the corresponding temperature coefficients of the ultrasonic velocity are
given above the straight segments).

For the other liquids tested no changes in the inclination of the curve
¢(T) were observed; the velocity coefficients for p-picoline; 2.4 and 2.5 — lu-
tidine -being —3.8 ms~' deg™!, —3.7ms™' and —4.6 ms~' deg™', respectively.

The measurement errors for the velocity of ultrasound did not exceed 4 ms™"
while that for the attenuation coefficient was no more than 5 %. '

4. Discussion and results

For all the above-mentioned liquids the graphical representation of the
function a/f*(T) indicates the existence of a relaxation region (for y-picoline
and 2.5 lutidine the representations are shown in Figs. 1 and 3). These dependen-
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cies are thus worth considering in further investigations, particularly -over
a broader frequency range. ,

In y-picoline and 2.5 lutidine the function ¢(7') has two linear ranges, with
different temperature coefficients for the ultrasonic velocity (Figs. 2 and 4).

The temperatures of the discontinuities in the function ¢(7') are in the re-
gions where the function «/f*(7') increases and this suggests that the increase
of absorption is related to a loss of wave energy in the region of the relaxation,
corresponding to the “phase‘‘ transition which is indicated by the discontinuity
in the temperature coefficient of the ultrasonic velocity.
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PROFESSOR DR R.W.B. STEPHENS
AWARDED THE GOLD MEDAL OF THE AMERICAN ACOUSTIC SOCIETY

Prof. Raymond W. B. STEPHENS from Great Britain, a friend of Poland and of Polish
acousticians, was the first foreigner to receive the highest scientific distinetion of the Acousti-
cal Society of America presented every two years for outstanding achievements in the field
of acoustics.

He received this high honour for his mer 1ts as a physics teacher and experimentalist,
as an author and editor; as a founder and leader of acoustical societies, but avove all as a_
research supervisor who has taught and inspired a generation of acoustics students.

Prof. R. W. B. Steruens, who for many years had been in charge of an acoustic
group at the Imperial College in London, always took care of Polish acousticians of whom
a number worked in his group while many others visited it during their seientific stay in
Great Britain. On many occasions he had paid visit to Poland and was guest of Polish acousti-
cians. Little known is the fact that his contacts with Polish scientists date as far back as
the World War II. At that time he was befriended with prof. Jézef Mazur, the late leader
of the Institute of Low Temperatures in Wroclaw.

Over a period of 45 years R. W. B. STEPHENS was associated with the Imperial College.
Following his retirement in 1970 he retained a post as research fellow at Chelsea College.
As the editor and author STEPHENS has contributed to scientific literature in several journal
articles and a number of monographies on acoustics.

However, he is primarily known as a popular and valued teacher of the whole gene-
ration of acousticians now active in many countries throughout the world. He iz also a co-
-editor of Acoustica;, a European periodical enjoying a high recognition in the milieu of
acousticians. .

We are glad and congratulate Prof. Stephens in receiving this new award.

Jeray K. Zieniuk (Warszawa)

THE SECOND CONGRESS OF THE FEDERATION OF ACOUSTICAL SOCIETJES OF
EUROPE FASE—T78 :

Warszawa, 18—22, IX. 1978

The Federation of Acoustical Societies of Europe has decided that the Second FASE-
Congress will be held in Poland.

The Congress is to be organized by the Acoustical Committee of the Polish Academy
of Sciences and the Polish Acoustical Society in collaboration with the Institute of Funda-
mental Technological Research (IPPT —PAN).

The Congress will be held in the conference rooms of the Palace of Culture and Science
located in the centre of Warsaw. It will start on Monday 18th September 1978.

The seientific programme will cover the following subjects:
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1. Acoustic waves and the structure of matter
molecular acoustics of fluids
acoustical investigation of the physieal properties of solids
acoustics of inhomogeneous media

2. Ultrasonic methods of location and recognition

nondestructive testing
medical diagnostics 3
geological prospection
hydroacoustics

3. Objective and subjective evaluation of sound in a limited space

concert halls and auditoria
- industrial halls

urban areas
,There will be plenare sessions, round table discussions and three parallel technical

gesgions, with the following forms of paper presentation being foreseen: invited lectures,
contribution papers, verbal presentation, poster form presentation.

Authors willing to present their papers in poster form will have 5 minutes to present
their work during the session for contributed papers. Subsequently they will stay half-an.
-hour at their displays (booths of area about 4 m?) to present the paper and discuss details
with any interested participants. Thé materials for presentation may include figures,
diagrams, photographs, numerical data, fragments of text etc.

The manufacturers of research equipment will have good opportunities and facilities
for presenting their products. Companies interested in exhibiting are kindly requested to
write to the Organizing Committee.

Address for correspondence:
FASE—178 ORGANIZING COMMITTEE
IPPT —PAN, ul. Qwi@tokrzyska. 21
00-049 WARSZAWA, POLAND
TELEX: 815638 IPPT PL. .

President Secretary

~ Prof. dr hab. S’tefaﬂ Crarnecki dr Julian Deputal



