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In industrial plants noise is a major threat to the mental and physical health of employees. The risk increases
more due to the presence of high noise sources and the presence of too many employees in textile industry
plants. This paper aims to predict the consequences of variables that may arise in the plants for acoustic
improvement in textile industry plants. For this purpose, scenario plants have been created according to archi-
tectural properties and source-transmission path-receiver characteristics. The acoustic analyses of the scenario
plants were performed in the ODEON Auditorium, and A-weighted sound pressure level (LA), noise reduc-
tion (NR), and reverberation time (RT) were determined. From the data, prediction equations were created
with a multiple linear regression (MLR) model. To test the prediction equations, acoustic measurements were
made, and acoustics improvements were carried out at a textile industry plant located in Türkiye. When the
obtained results, the success, validity, and reliability of the prediction method are provided. In conclusion,
the effect of architectural properties and the surface absorption on acoustic improvements in the textile in-
dustry was revealed. It was emphasized that prediction methods can be used to determine the effectiveness of
interventions that can be applied in different facilities and can be improved in future studies.

Keywords: industrial noise control; acoustics simulation; multiple linear regression; prediction methods; textile
industry; ODEON Auditorium; noise reduction; reverberation time.

Copyright © 2024 The Author(s).

This work is licensed under the Creative Commons Attribution 4.0 International CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Noise is one of the physical environmental fac-
tors that affect our mental and physical health in to-
day’s world. Noise is generally defined as unpleasant
sounds that disturb people physically and physiolog-
ically and cause environmental pollution by disrupt-
ing environmental values (Job, 1996; Kurra, 2020;
Durán del Amor et al., 2022). Noise has not only
physical and psychological effects on individuals but
also many negative effects on employee productivity

(Reinhold, Tint, 2009; Fredriksson et al., 2015;
Baker, 2015). Industrial plants with intensive work-
ing areas pose a risk to many employees as areas with
high noise levels. By eliminating the risks, the health
of the employees should be created by occupational
safety (Leather et al., 2003; Themann, Master-
son, 2019; Masullo et al., 2022). For this purpose,
regulations have been made to limit the noise expo-
sure of industry employees in many countries (Are-
nas, Suter, 2014). For example, the Occupational
Noise Exposure Regulation in the USA states that the
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noise exposure level of employees should be limited to
90 dB(A) for 8 hours (Occupational Safety and Health
Administration, 1995). In Türkiye, in line with the di-
rective of the European Parliament and the Council of
the European Union (2003), the exposure limit value is
LEX,8h = 87 dB(A); ppeak = 200 Pa. The relevant limit
values applied by different countries vary.
The textile industry has developed to a great extent

with its close to raw materials and high export rates
in Türkiye. Recently, thanks to this development and
employment opportunities, the number of employees in
textile industry plants has been increasing. High noise
in textile industry plants affects employees negatively.
Research studies on sound pressure level measurements
and noise exposure level measurements are carried out
in textile industry plants. Abbasi et al. (2020) found
that in a textile industry plant, 42.1 % (77) of the em-
ployees were exposed to noise below the limit value
of 85 dB(A), and 57.9 % (106) of them were exposed
to noise above 85 dB(A). In the acoustics measure-
ments they made at the textile industry plant, Ya-
man Turan and Öney (2021) determined that the
noise level in the area where the weaving machines
are placed varies between 92 dB(A)–97 dB(A), and the
noise level in other areas decreases to approximately
82 dB(A). Zaw et al. (2020) stated that 66.4 % of the
employees in the textile industry plant were exposed to
noise above 85 dB(A) and determined the prevalence
of hearing loss among the employees as 25.7 % with
hearing tests. Atmaca et al. (2005) determined that
the employees in the textile and cement factory were
exposed to very high noise levels with the acoustic mea-
surements they applied in different plants. In particu-
lar, they determined that 60 % of those working in the
textile industry were exposed to noise at a maximum
level of 106 dB(A). Ejigu (2019) determined that the
noise exposure level is over 90 dB(A) in the acoustics
measurements. Studies have revealed that there are
high sound pressure levels in textile industry plants,
and this may have negative effects on employees.
Noise, created in textile industry plants, adversely

affects the health and task performance of employees.
Ali (2011) determined that 47.1 % of the employees
of different industrial plants are highly annoyed by
noise. It has been determined that there is a significant
and positive relationship between noise level and the
percentage of employees’ noise annoyance. In a study
conducted in Pakistan, it was determined that 79 %
of textile industry plant employees had hearing loss
at levels of 25 dB and above (Shahid et al., 2018).
Similarly, in the study, hearing loss in employees ex-
posed to high noise levels increases approximately four
times compared to normal conditions. Additionally, it
has been determined that hearing loss increases as the
noise exposure in the plants increases, and the em-
ployment time increases (Shakhatreh et al., 2000).
Al-Dosky (2014) determined that textile industry

plant employees had a high level of noise annoyance
and determined that there was a significant relation-
ship between noise annoyance and employment time. It
has been observed in the studies that the employees in
the textile industry plants are greatly affected by the
noise; and as a result of this, the employees encounter
physiological and psychological problems. As a result
of the research, it has emerged that the noise prob-
lems in the plants should be eliminated, and the ap-
propriate acoustical environments should be created.
Various acoustic improvement studies are carried out
with computer simulations and models. Monazzam
and Nazafat (2007) used acoustic barriers to reduce
spinning machine noise, compared the application and
mathematical methods, and obtained effective results
in noise reduction (NR). They evaluated the results
as related to the high internal absorption. Ilgürel
(2013) investigated the effect of total absorption on
NR in all industrial plants by a simulation method.
Jayawardana et al. (2014) conducted experimental
studies on noise control by constructing a mathemati-
cal prediction model of the noise determined by mea-
surements. It has been observed that noise can be re-
duced at high frequencies as a result of the use of sus-
pended ceilings through simulations. The reliability of
the model was determined by comparing the results ob-
tained from simulations and prediction models. Mon-
azzam-Esmaeelpour et al. (2014) investigated the
effect of the surface absorption on NR by computa-
tion in a textile industry plant. Effective results were
obtained in NR at high frequencies, and they recom-
mended the use of sound absorption materials with
an air gap and increasing the thickness of sound ab-
sorption materials for low frequencies. Studies indicate
the effective results of noise control measures to reduce
noise in textile industry plants.
Reducing noise in textile industry plants is achieved

by reducing the sound pressure level and controlling
the reverberation time – called RT (Chatillon, 2007).
For RTs, analysis was performed especially in the mid-
frequency bands, and prediction methods were created
on 500 Hz (Bistafa, Bradley, 2000; Yahya et al.,
2010; Nowoświat, 2023). Determining the interven-
tions that can be made for this purpose and estimat-
ing their effectiveness provides practical convenience.
Mathematical models, simulations, and prototypes
constitute the prediction methods used for this purpose
(Bistafa, Bradley, 2000; Probst, 2012; Fichera,
2020). In this paper, acoustic simulations were applied
in various textile industry plant scenarios, and predic-
tion models were created for the analysis of acoustical
and non-acoustical parameters (independent variables)
using multiple linear regression (MLR) analyses. Pre-
diction models include the testing of interventions and
analysis of their effectiveness and offer solutions to re-
duce noise for employees. It also provides a guide for
researchers, acousticians, and employers.
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2. Materials and methods

2.1. Acoustics scenarios

Scenario plants were created to make acoustic per-
formance evaluations in textile industry plants and
compare the effects of interventions. Scenario plants
were designed based on the textile industry plants lo-
cated in the Republic of Türkiye and identified
within the scope of the literature review. Indepen-
dent variables affecting indoor acoustic performance
were created through scenario plants. The indepen-
dent variables were designed as architectural proper-
ties (geometry-width-length-height), source character-
istics (number of machines, sound power level, fre-
quency spectrum), transmission path characteristics
(wall and ceiling sound absorption materials), and re-
ceiver characteristics. As a result of the crossover of
the independent variables, 480 different textile indus-
try plants were created. The dependent variables in-
vestigated were determined as the indoor A-weighted
sound pressure level (LA), NR, and RT, which are ef-
fective acoustic parameters for NR. For this purpose,
the effects of different independent variables on the
dependent variables were investigated. The improve-
ment of the acoustic performance approach is primar-
ily based on the implementation of engineering. En-
gineering controls that can be applied in textile in-
dustry plants and can provide high efficiency for the
purpose are examined, and the effects of the precau-
tions in a virtual environment (ODEON Acoustics) are
investigated.

 

Fig. 1. Formation of different scenario plants.

Table 1. Plan geometries in scenario plants.

Plan geometry code Length L [m] Width W [m] Height h [m] Area A [m2] Volume V [m3]

K1 (square) 40 40 5 1 600 8 000

K2 (square) 20 20 7 400 2 800

K3 (square) 40 40 7 1 600 11 200

K4 (square) 80 80 7 6 400 44 800

K5 (square) 40 40 9 1 600 14 400

D1 (rectangular) 64 25 5 1 600 8 000

D2 (rectangular) 32 12.5 7 400 2 800

D3 (rectangular) 64 25 7 1 600 11 200

D4 (rectangular) 128 50 7 6 400 44 800

D5 (rectangular) 64 25 9 1 600 14 400

Different scenario plants were created by crossover
architectural properties, source, transmission path,
and receiver characteristics to control noise distribu-
tion and mitigation in textile industrial plants. Ar-
chitectural properties (K1–D5), source characteristics
(Y1, Y2, F1, F2), transmission path characteristics
(S1–S12), and receiver characteristics (A1) compo-
nents were used in the crossover (independent vari-
ables). As a result of the crossovers, a total of 480
(240 square plans / 240 rectangular plans) different
simulation outputs were obtained (Fig. 1). The LA,
NR values, and RT values (dependent variables) were
investigated and analyzed in the scenario plants de-
fined as KX/DXYXFXSXA1.
Scenario plants, which are analyzed through square

(1:1) and rectangular plan schemes (2.5:1) as two ba-
sic geometry forms, can also be designed as more com-
plex structures. However, square/rectangular main ge-
ometries that can be divided into rational units are
prioritized in this research. Variables were created to
examine the effects of width, length, and height prop-
erties in square and rectangular plans. To compare the
square and rectangular plans with each other, their
areas [m2] and volumes [m3] were kept at equal val-
ues (Table 1). The plants with square and rectangular
plans represent five variable plants each. In the analy-
sis of architectural properties in the created scenario
plants, evaluations were made depending on the in-
crease in the main area by taking the height constant
(K2-K3-K4/D2-D3-D4); with a similar situation, eval-
uations were made depending on the increase in height
within the same main area (K1-K3-K5/D1-D3-D5).
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Weaving and spinning machines (open-end and
ring spinning) were taken as the basis for examin-
ing the acoustic performance in textile industry plants
within the scope of source characteristics. Weaving and
spinning machines constitute the series of machines
that produce the highest noise level in textile indus-
try plants. Two different variables are considered for
source characteristics:
– less dense (infrequent) layouts and more dense
(frequent) layouts of sources;
– using sources with high frequency and sources
with flat frequency distribution in terms of sound
power levels.
The layouts of noise sources (more and less dense)

in textile industry plants were created based on the
number of machines per area of textile industry plants
located in the Republic of Türkiye and determined
within the scope of the literature review (more dense:
approximate values: area/25-frequent placement; less
dense: area/50-infrequent placement). From the val-
ues, the highest number of machines and the lowest
number of machines were analyzed through two vari-
ables as machine layout variables (Table 2).

Table 2. Number of weaving and spinning machines.

Number of sources code

Number of machines
h

[m]
A

[m2]
V

[m3]Less lense (Y1)
– infrequent layout

Mean
More dense (Y2)
– frequent layout

K1, D1 36 50 64 5 1 600 8 000

K2, D2 9 12.5 16 7 400 2 800

K3, D3 36 50 64 7 1 600 11 200

K4, D4 144 192 256 7 6 400 44 800

K5, D5 36 50 64 9 1 600 14 400

Table 3. Frequency distribution of the sound power levels of the sources.

Frequency spectrum code 63 Hz 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz 8000 Hz Overall sound power level

F1 Flat frequency 93 93 93 93 93 93 93 93 102

F2 High frequency 78 81 84 87 90 93 96 99 102

Table 4. Weighted sound absorption coefficients of building components in scenario plants∗.

Sound absorption coefficients code Description Floor
Walls

Ceiling
Lower part Upper part

S1 Live room (high sound reflection) 0.05 0.1 0.1 0.1

S2 Ceiling with medium absorption 0.05 0.1 0.1 0.5

S3 Ceiling with medium absorption (planar) 0.05 0.1 0.1 0.5

S4 Ceiling with medium absorption (baffle) 0.05 0.1 0.1 0.5

S5 Ceiling with medium absorption (canopi) 0.05 0.1 0.1 0.5

S6 Ceiling with high absorption 0.05 0.1 0.1 0.9

S7 Walls with medium absorption 0.05 0.5 0.5 0.1

S8 Walls with medium absorption (lower) 0.05 0.5 0.1 0.1

S9 Walls with medium absorption (upper) 0.05 0.1 0.5 0.1

S10 Walls with high absorption 0.05 0.9 0.9 0.1

S11 Ceiling and walls with medium absorption 0.05 0.5 0.5 0.5

S12 Dead room (high sound absorption) 0.05 0.9 0.9 0.9

*ODEON codes were used to define the sound absorption coefficients of materials: 10 for 0.1; 50 for 0.5; 90 for 0.9.

Two different frequency spectrum distributions
were accepted in the sound power level distributions of
noise sources in scenario plants. These are general hy-
pothetical sound power level spectra obtained from
the researched machine catalogues. Two variables were
created according to the use of sources with a high fre-
quency spectrum distribution and sources with a flat
frequency spectrum distribution (Table 3).
In acoustic performance in textile industry plants,

the effect of the surface absorption on dependent vari-
ables within the scope of transmission path properties
was investigated. In the investigation of the effects of
the surface absorption on indoor NR, floor, wall, and
ceiling were examined. Due to the industrial floor in
the plants, a finish material with high sound reflectiv-
ity properties (which cannot be changed) was defined
(ODEON Code: 100). A constant sound absorption
coefficient was assumed for the floors in all scenario
plants (Table 4).
In the analysis of transmission path properties,

scenarios allowing the comparison of ceiling and wall
were created separately. The effect of sound absorption
materials used in the lower (S8) and upper (S9) parts
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of the walls on the indoor acoustic performance was
analyzed. Additionally, by using the same amount of
materials on the ceiling (planar-S3, baffle-S4, canopy-
S5 scenarios), the effect of the differentiation of sound
absorption materials due to shaping on the indoor
acoustic performance was investigated. The fact that
the materials are in the same quantities reveals the
effect values of the sound absorption materials on
the LA, NR, and RT (dependent variables) according
to their formal properties.
In the examination of acoustic performance in the

textile industry, a homogeneous layout of receivers
within the scope of employee characteristics was taken
as a basis. Employees have been assigned to each ma-
chine to use the machines specified according to Ta-
ble 2. Analyses were carried out in the form of point
receiver calculations to determine the general distribu-
tion within the main area in determining sound pres-
sure level distributions and RTs. In point receiver cal-
culations, 150 cm was taken as the ear height of the
standing individuals from the floor. Point receiver cal-
culations were based on the homogeneous distribu-
tion (A1) to represent individuals standing at different
points.

2.2. Prediction models

The relationships between dependent and indepen-
dent variables in the scenario plants were investigated
by regression analysis. Four different plant types were
categorized by crossing the components of square and
rectangular plan layouts and machine sound power
level frequency distributions. The four different plants
selected were created using nominal (categorical) vari-
ables. The MLR method was used to explain the ef-
fects of independent variables on the dependent vari-
ables. With the regression equations created to predict
the dependent variables, a prediction model for acous-
tic performance improvement in textile industry plants
was created. The recommendations are based on the
principle of obtaining appropriate dependent variables
by differentiating the independent variables.
The MLR is a statistical technique that uses sev-

eral explanatory variables to predict the outcome of
a response variable. The purpose of MLR is to model
the linear relationship between independent (explana-
tory) variables and dependent (response) variables.
Since MLR models include more than one independent
variable, they use the ordinary least squares (OLS)
method as a regression extension (McIntosh et al.,
2010). Studies on the prediction of variables in acous-
tic research can be carried out with regression analysis
(Kumar, Kumar, 2016; Baffoe, Duker 2018; Tang
et al., 2018; Yang, 2019):

γ = k + aX1 + bX2 + cX3 ... + error, (1)

where k is a constant, X1, X2, X3, etc., are the in-
dependent variables, a, b, c, etc., are the coefficient of

independent variables, and the error term is taken as
the difference between the observed and predicted val-
ues of the dependent variable (γ). The lower the error
term, the lower the difference between the predicted
value and the observed value. Depending on the unit
of the estimated dependent variable, the error term
may have different numerical magnitudes.
Two different analyses were conducted for the

square-plan plants, with flat frequency sound power
levels and the plants with high frequency sound
power levels. In the analyses, the area, the height, the
number of machines, the weighted sound absorption
coefficient of the walls, and the weighted sound absorp-
tion coefficient of the ceiling were found to be effective
for the LA; the height, the weighted sound absorption
coefficient of the walls, and the weighted sound absorp-
tion coefficient of the ceiling were found to be effec-
tive for NR; the width, the height, the weighted sound
absorption coefficient of the walls, and the weighted
sound absorption coefficient of the ceiling were found
to be effective for RT. The coefficient of determination
(R2) values equal to the square of the linear correlation
coefficient between the dependent variables and the in-
dependent variables were determined (Eqs. (2)–(7)).
Plants with a square plan and flat frequency of ma-

chine sound power levels-1:

LA1 = 96.48 − 0.001A − 0.22h + 0.034n

−3.65wαw
− 4.97cαw

, (2)

R2 = 0.795 and p < 0.01,
NR1 = 2.36 − 0.12h + 2.66wαw

+ 3.98cαw
,
(3)

R2 = 0.871 and p < 0.01,
RT500Hz1 = 1.86 + 0.015d + 0.25h − 2.52wα500Hz

−2.07cαw500Hz
, (4)

R2 = 0.804 and p < 0.01.
Plants with a square plan and high frequency of

machine sound power levels-2:

LA2 = 96.78 − 0.001A − 0.21h + 0.034n

−2.92wαw
− 4.14cαw

, (5)

R2 = 0.769 and p < 0.01,
NR2 = 2.23 − 0.12h + 2.21wαw

+ 3.43cαw
,
(6)

R2 = 0.870 and p < 0.01,
RT500Hz2 = 1.83 + 0.015d + 0.25h − 2.52wα500Hz

−2.07cα500Hz
, (7)

R2 = 0.803 and p < 0.01.
LAX is the A-weighted sound pressure level [dB]
of the plant-x characteristics; NRX is the NR [dB] of
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the plant-x characteristics; RT500HzX is the RT [s]
of the plant-x characteristics (500 Hz); A is the plan
area [m2]; d is the width/depth length [m]; h is the
height [m], n is the number of machines; wα is the sound
absorption coefficient of the walls (500 Hz at RT); cα is
the sound absorption coefficient of the ceiling (500 Hz
at RT).
For rectangular plants, machine sound power lev-

els were analyzed in two different analyses, flat dis-
tributed and high frequency plants. In the analyses,
the area, the height, the number of machines, the
weighted sound absorption coefficient of the walls, and
the weighted sound absorption coefficient of the ceil-
ing were found to be effective for LA; the height, the
weighted sound absorption coefficient of the walls and
the weighted sound absorption coefficient of the ceil-
ing were found to be effective for NR; the width, the
height, the weighted sound absorption coefficient of
the walls, and the weighted sound absorption coef-
ficient of the ceiling were found to be effective for
RT. The R2 values equal to the square of the lin-
ear correlation coefficient between the dependent vari-
ables and the independent variables were determined
(Eqs. (8)–(13)).
Plants with the rectangular plan and flat frequency

of machine sound power levels-3:

LA3 = 94.48 − 0.002A + 0.13dk − 0.22h + 0.035n

−3.82wαw
− 4.72cαw

, (8)

R2 = 0.804 and p < 0.01,
NR3 = 2.36 − 0.12h + 2.84wαw

+ 3.74cαw
,

(9)
R2 = 0.884 and p < 0.01,

RT500Hz3 = 1.54 + 0.046dk + 0.21h − 2.52wα500Hz

−1.95cα500Hz
, (10)

R2 = 0.825 and p < 0.01.
Plants with the rectangular plan and high fre-

quency of machine sound power levels-4:

LA4 = 95.30 − 0.002A + 0.10dk − 0.22h + 0.035n

−3.13wαw
− 3.94cαw

, (11)

R2 = 0.778 and p < 0.01,
NR4 = 2.26 − 0.15h + 2.35wαw

+ 3.17cαw
,
(12)

R2 = 0.875 and p < 0.01,
RT500Hz4 = 1.52 + 0.046dk + 0.21h − 2.51wα500Hz

−1.95cα500Hz
, (13)

R2 = 0.824 and p < 0.01,
where dk is the short side length [m].

The presence of very different production processes
in textile industry plants causes very different sound
pressure levels in indoor acoustic performance. In this
case, it should be known that the constant term in
the calculation estimates used to determine the sound
pressure levels in regression models can be taken as
the sound pressure level of the measured existing situ-
ation. In the scenario plants, the LA in the high reflec-
tivity scenarios (KX/DXYXFX’S1’A1) are in line with
the sound pressure levels in the textile industry plants
before the retrofit. According to the results of MLR
analysis, the R2 ranges between 0.769–0.804 for LA,
0.870–0.884 for NR, and 0.803–0.825 for RT. It is de-
termined that the regression prediction models are at
a level that can be applied for the acoustic performance
improvement approach in textile industry plants.

3. Case study and test of prediction model

A textile industry plant examined as a case study
includes open-end and ring spinning, knitting, and
dyed yarn and dyed fabric. The department of open-
end yarn spinning has an area of 13 000 m2 and
12 Schlafhorst (Saurer) open-end machines. The de-
partment of ring spinning has 20 Rieter G-33 ring ma-
chines in an area of 16 700 m2. The textile industry
plant is planned as the main production areas, stor-
age units, technical rooms, and administrative depart-
ments. Production is carried out in the industrial plant
with a daily three-shift system. The surface elements
of the production area are formed with a lean concrete
floor, partition walls made of metal, glass, and brick,
and PVC suspended ceiling. It was observed that the
finish materials of components were designed with high
sound reflectivity properties. This increases the indoor
sound pressure level and creates a noisy environment.

3.1. Acoustics measurements

Investigations were carried out to analyze the in-
door acoustic performance in the textile industrial
plant selected as a case study. The plant process ma-
chines in the indoor environment have high levels of
sound power levels. Machines with high sound power
levels (spinning ring machine – Rieter G-33 – has
103 dB sound power level) and surface elements with
low sound absorption coefficients have caused high
sound pressure levels. Testo 816-1 sound level me-
ter (IEC 61672-1 Class 2) and occupational health
and safety services dosimeters were used for acous-
tics measurements. Acoustic measurements in accor-
dance with ISO 9612:2009 standard were carried out in
the textile industry plant. The measurements revealed
varying minimum-maximum sound pressure levels and
the equivalent continuous sound level in different sec-
tions (Table 5). It was determined that the highest
noise level in the plant was in the ring spinning and
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Table 5. Acoustic measurements results in textile industry plant.

Measure no.
Acoustic measurements

Departments of the plant
Lmin dB(A) Lmax dB(A) LC,peak Leq dB(A)

1 74.9 90.5 102.7 79.2 Blowroom-carding

2 73.6 85.5 100.3 76.1 Draw frame

3 72.2 82.5 96.0 76.5 Combing

4 76.3 85.8 97.7 80.1 Flyer

5 80.5 91.9 103.8 83.6 Ring yarn

6 77.9 82.3 96.7 79.8 Bobbin

7 71.3 76.2 89.4 74.3 Knitting

8 79.9 91.8 102.9 88.2 Open-end yarn

9 63.4 66.5 81.4 64.6 Sanforizing

10 70.9 80.5 92.3 72.9 Drying

11 71.7 74.1 87.8 72.8 HT 400 Boiler (painting)

12 77.5 84.4 96.8 80.8 Dry reversal

13 76.2 77.7 91.4 77.1 Yarn transfer

open-end spinning production departments. Noise ex-
posure levels were found to be at high levels in parallel
with the determined LA. Noise exposure levels in the
range of 88.8 dB(A)–90.1 dB(A) (LEX,8h) in the de-
partment of ring spinning and 86.9 dB(A)–92.8 dB(A)
(LEX,8h) in the department of open-end spinning were
calculated.
There are 20 Rieter G-33 ring machines in the

ring-spinning section which is accepted as the cross-
sectional area. The cross-sectional area is 53.3 m×
44.4 m, and 4 m in height. The section is approximate-
ly 10 412 m3 (Fig. 3). The section has a suspended ceil-
ing covering the air conditioning ducts. Reinforced con-
crete prefabricated vertical supports divide the work-
ing area into two systems. The section area is located
after the flyer section. The ring spinning section is sep-

 
 Fig. 2. Ring spinning section of the case study, cross-sectional study.

arated from the bobbin, knitting, and control rooms
by dividing structural elements and operates indepen-
dently. There are dividing walls (brick and plaster) on
the long sides of the production area. Glass partitions
separate the production area from the bobbin section
(Fig. 2).
The production area was modeled in three di-

mensions in the SketchUp. Room acoustic modeling
requirements were taken as the basis for modeling the
in-plant properties. The necessary surface definitions
were made in the 3D model, and the acoustic model
was transferred to the acoustic computer simula-
tion program (ODEON Auditorium) via the plugin
(SU2Odeon). The acoustic performance of the current
situation (digital acoustic twin) was created with the
model transferred to ODEON Auditorium. The mate-
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rials and surface absorptions used in the model were
prepared following acoustic measurements. The build-
ing component separating the flyer and ring spinning
sections obtained by zoning is defined as glass.
While creating the digital acoustic twin of the pro-

duction area, acoustic calculations made indoors were
utilized. The LAs obtained in acoustic measurements
were checked, and acoustic performance values were
obtained in real situations. In the acoustic measure-
ments, the highest noise level among the ring-spinning
machines in the indoor environment was determined as
91.9 dB(A). Digital acoustic twin indoor sound pres-
sure levels were created as a minimum of 91.5 dB(A),
maximum of 92.1 dB(A), and average of 91.9 dB(A).
Due to the high levels of noise exposure in the tex-

tile industry plant examined, the need for improvement
of acoustic performance in the indoor environment has
emerged. Indoor LA, NR, and RT were analyzed by
changing the parameters affecting indoor acoustic per-
formance on the digital acoustic twin. As a result
of the analysis, acoustic improvements that are easy
to implement and provide high efficiency were priori-
tized. The improvements, materials, and applications
are presented, and acoustic performance values are de-
termined. In the textile industrial plant, a composite
material with a trapezoidal sheet on one side, a per-
forated sheet on the other side, and a rockwool-filled

Table 6. Sound absorption coefficients of materials used in acoustic improvements.

Materials 63 Hz 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz 8000 Hz αw

Floor (industrial floor-concrete) 0.02 0.02 0.03 0.03 0.03 0.04 0.07 0.07 0.05

Vertical structural elements (prefabricate concrete) 0.01 0.01 0.01 0.02 0.02 0.02 0.05 0.05 0.05

Walls∗ (rockwool panel) 0.12 0.47 0.47 0.85 0.84 0.64 0.62 0.62 0.70

Separators between sections∗ (rockwool panel) 0.12 0.47 0.47 0.85 0.84 0.64 0.62 0.62 0.70

Zoning – separator∗ (rockwool panel) 0.12 0.47 0.47 0.85 0.84 0.64 0.62 0.62 0.70

Transition between sections (plastic curtain) 0.8 0.8 0.9 0.9 0.9 0.9 0.1 0.1 0.1

Ceiling∗ (composite panel) 0.3 0.55 0.8 1 1 0.9 0.9 0.9 1

Ceiling (air conditioner ducts) 0.8 0.8 0.9 0.9 0.9 0.9 0.1 0.1 0.1
∗It indicates new materials used in acoustic improvement phase.

[dB] Selected energy parameter (simulated) [dB] Selected energy parameter (simulated) 

Fig. 3. Average sound pressure level before improvement (left), and after improvement (right).

core (interlayer) was selected for the suspended ceiling.
The fact that the composite material is lightweight,
applicable, and cheap has proven to be effective. Addi-
tionally, the selected material is non-combustible (A2–
s1, d0) and resistant to impacts and pressure. The ceil-
ing material was not used in air conditioning duct lines.
On the walls, special sound absorption systems consist-
ing of rock wool panels covered with aluminium-vinyl
materials were used. The fact that the materials are
lightweight, easy to install and have high sound absorp-
tion properties has been effective. Additionally, the
special sound absorption system is a non-combustible
material (A2–s1, d0) and is resistant to impacts and
pressure (Table 6).
As a result of acoustic improvements in the ring-

spinning section of the textile industry plant as a case
study, the indoor minimum LA was determined as
82.7 dB(A), the maximum LA as 83.4 dB(A), and the
average sound pressure level as 83.1 dB(A) (Fig. 3).
As a result of acoustic improvements, the indoor RT
(T30) was calculated as 0.54 s at 500 Hz, and 0.54 s at
1000 Hz (Fig. 3). The difference between the LA (NR)
obtained as a result of acoustic improvements and the
existing situation in the ring-spinning section selected
for the case study was calculated as 8.7 dB. The val-
ues were found following the reference values in the
regulation.
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Table 7. Comparison of acoustic simulation and prediction model results.

Acoustics measurement
Acoustics improvements

(acoustics simulation / ODEON)
Acoustics improvements
(prediction model)

Average sound
pressure level

Daily noise
exposure level

LA NR
RT

(500 Hz)
LA NR

RT
(500 Hz)

LA LEX,8h LA NR
RT500Hz

(T30)
LA1 NR1

RT500Hz1

(T30)

91.9 90.1 83.4 8.7 0.54 82.64 7.05 0.28

To test the validity of the prediction model, com-
parative research was carried out on the case study
used in problem identification. In the comparative re-
search, in the first phase, the existing situation of the
plant was calibrated through the simulation program;
a digital acoustic twin was created; and then acous-
tic improvements were made. In the second phase of
the comparative research, acoustic improvements were
organized in the existing textile industry plant accord-
ing to the prediction model created (Eqs. (14)–(16)).
For both phases, independent variables were investi-
gated in the same method, and dependent variables
were transferred. In the acoustic improvements, the
limit values determined by the regulation were taken
as the basis. In the prediction model, depending on
the characteristics of the case study, the equations for
square planned plants with flat frequency of machine
sound power levels-1 were used (Table 7);

LA1 = 91.9 − 0.001A − 0.22h + 0.034n

−3.65wαw
− 4.97cαw

,

LA1 = 91.9 − 0.001 ⋅ 2.389.63 − 0.22 ⋅ 4 (14)

+0.034 ⋅ 20 − 3.65 ⋅ 0.6 − 4.97 ⋅ 0.9,

LA1 = 82.64 dB(A),
NR1 = 2.36 − 0.12h + 2.66wαw

+ 3.98cαw
,

NR1 = 2.36 − 0.12 ⋅ 4 + 2.66 ⋅ 0.6 + 3.98 ⋅ 0.9, (15)

NR1 = 7.05 dB,

RT500Hz1 = 1.86 + 0.015d + 0.25h

−2.52wα500Hz
− 2.07cα500Hz

,

RT500Hz1 = 1.86 + 0.015 ⋅ 53.34 + 0.25 ⋅ 4 (16)

−2.52 ⋅ 0.6 − 2.07 ⋅ 0.9,

RT500Hz1 = 0.28 s.

It was found that the difference between the result
values of the prediction model prepared to be applied
in the textile industry plants and the result values of
the digital acoustic twin is at acceptable levels. The
differences can be explained by the fact that for the
digital acoustic twin, the data can be entered into
the computer simulation program in detail, while in the
prediction model setup, descriptive data are obtained

by calculations. Additionally, the coefficients of deter-
mination (R2) in the equations used in the calculation
estimations for the accepted independent variables also
reveal the success of the prediction model. It is envis-
aged that the prediction model construct can be used
in textile industry plants as well as in textile industry
plants in the design and planning phase.

4. Results and discussion

In the research, scenario plants were created to ana-
lyze acoustic improvements in textile industrial plants.
In the scenario plants, architectural properties, and
source-transmission path-receiver characteristics were
defined as independent variables (input data); LA, NR,
and RT500 Hz were defined as dependent variables (out-
put data). As a result of the research, the findings were
obtained through MLR models and comparative analy-
ses of the scenario plants for acoustic improvements.
Textile machines with high sound power levels have

been identified in textile industry plants. Due to the
identification of sound sources, indoor LAs were ob-
tained at high levels (above 85 dB(A)) following real
situations. Moreover, the plan geometry (square or
rectangular) of the main production area in the sce-
nario plant did not have a decisive influence on the
analysis and improvement of the acoustic performance.
The LAs were found to be low in a relatively small

area and volumes provided that the number of ma-
chines per area [m2] in the main production areas re-
mained constant. This situation is considered to be
related to the reduction of sound sources. For this pur-
pose, it is necessary to make small divisions within the
main space for the function of textile industry plants,
and then subdivisions/zoning should be created within
the divisions. Approximately 2.5 dB NR in sound
pressure levels was achieved with each sub-division
(1/2 ratio). However, for indoor acoustic performance
improvements in textile industry plants, frequency
spectrum distributions of sound sources should be
determined, and noise control measures should be de-
veloped. In the scenario plants, the reverberant sound
field is intervened in the NR based on increasing the to-
tal absorption of the environment by using the surface
absorption, and the A-weighted sound pressure lev-
els of the indoor environment are reduced. In the sce-
nario of textile industry plants, depending on the vari-
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Fig. 4. NR on sound absorption in KX/DXY1F1SXA1 scenarios.

ables, a maximum NR of 8 dB was achieved based on
the surface absorption (example of comparative analy-
sis: K1–D5 / difference between S2–S12 and S1 – see
Fig. 4).
In NR with the indoor surface absorption, the

effect of the ceiling on NR in plants with large areas
and volumes is greater than that of the wall (K4–D4
scenarios). In the total absorption, the use of materials
with the same weighted sound absorption coefficient in
the ceiling (1600 m2) and walls (total of 2240 m2) was
investigated separately. In the analysis, based on the
medium absorption (αw: 0.5) in the S2–S7 scenarios,
absorption values of 800 m2 Sabine for the ceiling, and
1120 m2 Sabine for the walls were created separately.

Fig. 5. Effect of ceiling-walls on NR in K4/D4Y2F2SXA1 scenarios.

As a result of the analysis, it was concluded that the
ceiling is more effective in NR than the walls. It was
determined that the difference in NR values in the ceil-
ing and walls was between 1.5 dB–2.5 dB (example of
comparative analysis: K4/D4Y2F2SXA1 / difference
between S2–S12 and S1 – see Fig. 5). While less sound
absorptive material was used in the ceiling than in
the walls, ceilings were more effective in total NR.
In contrast to this situation, in plants with small areas
and volumes, the effect of walls in NR is more effective
than the ceiling. While fewer sound-absorptive ma-
terials were used on the walls than on the ceiling,
the walls were more effective in total NR. With the
increase in volume, the distances between the sound
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source and the building components affect the distri-
bution of sound pressure levels and NR. This analysis
limits the use of the NR equation based on the sound
absorption (Eq. 17):

NR = 10 log A2

A1

, (17)

where NR is the noise reduction in the room [dB],
A2 is the total volume absorption after improvements
(Sabine), and A1 is the total absorption before im-
provements (Sabine).
The height as architectural properties in the sce-

nario plants is decisive for the indoor acoustic envi-
ronment. As the height increases in the plants, indoor
LAs decrease. The increase in height allows the sound
waves to propagate in a larger area and volume, which
leads to a decrease in the sound energy reaching the
receiver. Increasing the ceiling height within the scope
of acoustic improvements gives effective results in NR.
In the scenarios examined (scenarios with medium ar-
eas and scenarios with large areas), it was found that
the ceiling was more effective than the walls in NR
(example of comparative analysis: K1–K3–K5 scenar-
ios / difference between S2–S12 and S1 – see Fig. 6).
In the scenarios examined (scenarios with medium

areas and scenarios with large areas), it was found that
the ceiling was more effective than the walls in NR.
Additionally, the use of canopy absorbers in the ceil-
ing (S4 scenarios) provides the best performance in
NR (S3–S5 scenarios). Moreover, the effect of different
positioning of sound absorptive materials used in the
walls in textile industrial plants (lower-upper section)
on LAs and NR was found to be very low.

Fig. 6. Effect of height on NR in K1/K3/K5/Y2F2SXA1 scenarios.

In the scenario plants, RT analyses were performed
at medium frequencies (500 Hz and 1000 Hz). The
RT as a property of the interior space does not de-
pend on the sources (more precisely, the sources have
a minimal impact due to their sound absorption and
as acoustic barriers). In the RT analyses, the live room
(S1 – high sound reflection), the scenario with medium
absorption of ceiling and walls (S11), and the dead
room (S12 – high sound absorption) were evaluated
(Table 4). Very high RTs (in the range of 3 s–6 s)
were detected in the live room scenarios. In scenar-
ios where the ceiling and wall planes were designed
with medium absorption (αw: 0.5), RTs were calcu-
lated at 0.5 s–2 s levels. Low RTs (0.5 s–1 s) were found
in dead room scenarios (Fig. 7). The high RTs lead to
an increase in sound pressure levels in the plants.
As a result of MLR analyses, the area and height of

the plant, the number of machines, and the weighted
sound absorption coefficients of the walls and ceilings
were effective in determining the indoor LAs. Addi-
tionally, the short edge length of the plant was also
effective in determining the LA in rectangular plants.
The height of the plant and the average wall and ceiling
weighted sound absorption coefficients were effective
in NR. In RTs, the depth and height of the plant and
the average wall and ceiling weighted sound absorp-
tion coefficients were effective. The length of the plant
refers to the length of one edge in square-planned
plants, while it refers to the length of the short edge
in rectangular-planned plants. Acoustic improvement
prediction models and acoustic simulations were com-
paratively tested in the case study, and the prediction
model was found to be successful.



14 Archives of Acoustics – Volume 50, Number 1, 2025

Fig. 7. RT analysis on KX/DXY1F1SXA1 scenarios.

5. Conclusion

This study is part of a wide research involving
acoustic improvements for the reduction of high noise
levels in textile industry plants. To develop this aim, it
should be supported by different noise control mecha-
nisms and detailed with the textile machine design.
The study was carried out with scenario plants lo-
cated in the Republic of Türkiye and determined in
the literature review. Different scenario plants created
depending on the architecture properties and source-
transmission-receiver characteristics were analyzed in
the ODEON Auditorium, and LAs, NR, and RTs were
analyzed.
In the scenario plant analysis, it has been determined

that the plant geometry does not affect A-weighted
sound pressure levels and NR. Depending on the num-
ber of machines per place in the plants, the larger
the plant, the more cumulative sound sources, and the
higher the indoor sound pressure level. For this pur-
pose, it is necessary to divide the plants into small
parts and make zoning. In the acoustic analysis of the
plants, a NR of up to 8 dB was achieved by using
the surface absorbers. However, the wall and ceiling ef-
fectiveness of NR varies. In NR, the ceiling is effective
in spaces with a large plan and volume, while the walls
are effective in spaces with a relatively small plan and
volume. However, as the height increases in the main
production area, the decreases are seen in the LA, and
as an effect of this situation, effective results are ob-
tained in NR. The lower and upper positioning of the
sound absorptive materials used in the walls (facade
lighting and ventilation requirement) do not have a de-
cisive variable for the indoor acoustic environment. It is

important to control the RT depending on the surface
absorption in textile industry plants. However, it was
not found appropriate to be evaluated as an acoustic
parameter in industrial plants. As a result of the re-
gression analysis, calculation equations were created
to predict the LA, NR, and RT at 500 Hz (dependent
variables). The prediction model has been compara-
tively tested with the application of acoustic simula-
tions and calculations over the case study, and its reli-
ability and validity have been provided. In the model,
LAs, NR, and RTS can be estimated with the improve-
ments made in textile industry plants and optimum
acoustic comfort conditions are created for employees.
This paper represents a starting point for several

future works. It would be appropriate to take noise
control precautions for machine designs that are not
included in the research, construct vibration isolation,
and detail the noise control precautions that can be
taken at the design phase in future studies to develop
the topic. Moreover, preferring different room acoustics
simulation programs, using optimization methods and
information technologies, and developing methodologi-
cal tools based on machine learning will also contribute
to the research topic.
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1. Introduction

Undesirable or harmful outside sounds, produced
primarily by mechanical equipment, daily activities,
and industrial processes, have a significant impact on
both human and equipment performance. Designing
sound-absorbing materials for real-world applications
is one of the most frequent issues faced by acoustic
engineers (Attenborough, Vér, 2006). Along this
path, man-made materials (e.g., cellular foams, fibrous
structures, particle-packed media) are showing their
great potential for various acoustic applications in
civil, automotive and aerospace engineering (Arenas,
Crocker, 2010). Due to the small size of the inter-
connected pores in porous media, the sound absorption
performance of these materials is governed by the ther-
mal and viscous dissipations occurring inside the
pores (Allard, Atalla, 2009). The relationship be-
tween the microstructure and the properties of porous

absorbers can be characterized by different approaches
(Sagartzazu et al., 2008), which can guide the design
of the required sound absorption coefficients (SAC).
The most popular models for characterizing sound-

absorbing materials fall into three main groups: semi-
empirical, semi-phenomenological, and phenomenolog-
ical ones (Sagartzazu et al., 2008; Allard, Atalla,
2009). With the help of analytical, numerical and ex-
perimental advances, our understanding of the ma-
terial behavior is improving. A porous medium with
a rigid skeleton is represented by two frequency-
independent factors, namely the complex density and
complex bulk modulus (known as the equivalent fluid
method (Allard, Atalla, 2009)). Based on this
powerful framework, the functional properties of the
acoustic materials can be well modeled and charac-
terized. The effective macro-scale properties are then
numerically determined by finite element analysis us-
ing three alternative methods (Zieliński et al., 2020):

https://acoustics.ippt.pan.pl/index.php/aa/index
mailto:mu.he@foxmail.com
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direct numerical simulations, direct multiscale homog-
enization, and hybrid multiscale homogenization. In
the first framework, acoustic properties can be esti-
mated from the solution of the uncoupled (thermovis-
cous) linearised Navier–Stokes equations. In the sec-
ond technique, the macro-scale complex characteris-
tics are defined from dynamic viscous and thermal
permeability functions computed directly by a mul-
tiscale model (see (Gasser et al., 2005; Lee et al.,
2009)), while the third approach allows comput-
ing a set of transport properties (i.e., characteris-
tic lengths, permeabilities, tortuosities) to derive the
final acoustic absorption, (see (Park et al., 2017;
Trinh et al., 2022b)). From these known macro-
scopic transports, the above complex factors can also
be calculated by the semi-phenomenological models,
such as the Johnson–Champoux–Allard–Pride–Lafarge
(JCAPL) model, known as the 8-parameter model.
Based on the standard tube testing, acoustical and
non-acoustical parameters of sound absorbing mate-
rials can be determined directly or indirectly (Pan-
neton, Olny, 2006; Olny, Panneton, 2008; Salis-
sou, Panneton, 2010). With the help of advanced
computing tools, the development of optimized prop-
erties of sound-absorbing materials can now be done
through machine learning and artificial intelligence ap-
proaches, where the computational cost can be sig-
nificantly reduced by generating new data from the
limited computational or experimental data (Zhang
et al., 2021; Trinh et al., 2022a).
Owning to the high sound absorption, foam-based

absorbers have been widely developed based on the
theoretical understanding, simulation knowledge or ex-
perimental evidence (Yang et al., 2015; Park et al.,
2017; Langlois et al., 2020). For single foam lay-
ers at different pore scales (Trinh et al., 2019; Lan-
glois et al., 2020), various local morphologies ranging
from open-cell (Langlois et al., 2020; Trinh et al.,
2022b) to membrane (Trinh et al., 2019) structures
have been designed by either the typical foaming pro-
cess (Park et al., 2017; Trinh et al., 2019) or the
3D-printing technique (Zieliński et al., 2022). On
the other hand, several references have demonstrated
a great improvement (e.g., low-frequency or high av-
erage absorption) in the absorption capacity by us-
ing multi-layer (Boulvert et al., 2019) or compos-
ite (Trinh et al., 2022b; Borelli, Schenone, 2021)
absorbers filled with foams or fibers, and perforated
plates can be employed as the potential sub-layers in
composite absorbers for tuning the overall system re-
sponse (Liu et al., 2017; Duan et al., 2019).
The noise control engineering often requires spe-

cific acoustic properties for a wide frequency range
(Boulvert et al., 2019) and other functions, e.g.,
anti-flaming, high strength, and high heat conduction
(Gasser et al., 2005; Jafari et al., 2020; Kosała,
2024). For this reason, a systematic investigation of

the sound absorption of composite absorbers based on
solid foam and perforated plate should be addressed.
In this respect, the inner components of the composite
absorbers (CA) considered in this study are membrane
foams with controlled cell size and some configurations
of perforated facings, and the absorption peaks as the
quarter-wavelength resonances of the foam layer are
modified by the presence of perforated facing.

2. Materials and experiments

Figure 1 illustrates the structure of the composite
absorber, which includes a membrane foam layer and
a facing perforated plate.
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Fig. 1. Illustration of the sound absorber configuration
and the foam characteristics.

Table 1. Geometrical parameters of the perforated plates.

Plate
Hole diameter

d [mm]
Hole spacing

b [mm]
Perforation ratio

p [–]

PP1 0.5 4.0 0.012

PP2 1.0 4.0 0.049

PP3 0.5 2.0 0.049

PP4 1.5 4.0 0.110

PP5 1.0 2.0 0.196

The monodisperse foam material is fabricated as
follows (Trinh et al., 2019):

1) a precursor aqueous foam and a gelatin solution
are prepared: the precursor foam within a con-
trolled bubble size ∼810 (±30) µm and a constant
liquid fraction of 0.99 is generated in a glass col-
umn by tuning the flow rates of nitrogen and
foaming liquid (i.e., Tetradecyltrimethylammo-
nium bromide (TTAB) at 3 g/L). On the other
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hand, the aqueous gelatin solution, within a tuned
mass concentration from 12 % to 18 %, is prepared
and maintained at T ∼ 60 ○C (above the sol–gel
transition temperature ∼30 ○C);

2) then, the precursor foam is mixed with the hot
gelatin solution, and their flow rates are adjusted
to get the gas fraction of 0.8. The foaming mixture
is filled into a 40 mm-diameter cylindrical cell with
a length of 40 mm. To avoid gravity effects during
the decreasing temperature process, the material
cell is rotated (∼50 rpm) around its axis;

3) the cell is stored in a climatic chamber for one
hour at 5 ○C then one week at T = 20 ○C and
RH = 30 % for water evaporating. Finally, after
unmolding, a 20 mm-thick specimen for acoustic
tests is cut from the central region along the cell
axis.

The density and the air flow resistance of the mem-
brane foam samples are defined as follows. For the
density, with the specific gravity of the dried gelatin
measured to be gg = 1.36, the density of the cut
foam sample (diameter – D = 40 mm, and thickness –
L = 20 mm) was calculated from the the sample mass
ms as ρs = 10−6ms/Vs with Vs = πD2

4
L. This gives

the density and the open porosity of the foam sam-
ples as ρs = 27.1 (±2.3) kg/m3 and ϕ = 0.98 (±0.003).
The air flow resistance can be estimated from the air
flow resistivity σ of the sample through the formula
Rs = σL. For the foam with low air flow resistivity, we
have σ = A∆P /Q, where A is the sample cross-section
area and ∆P is the measured pressure drop, and Q is
the air flow rate. For the sample with high air flow
resistivity, the value of σ can be inversely character-
ized as σ = limω→0[I(ωρeq)], where ρeq is the effective
density measured from the impedance tube test (see
(Panneton, Olny, 2006)). Among the two test foam
samples, only sample F1 allows for direct measurement
of resistivity σ = 10700 Nsm−4 which is very similar to
the characterized value shown in Table 2.
The cell size of the final foam layers measured

from SEM images is 810 µm within the monodisperse
structure. The membranes range from open to closed
cells depending on the gelatin concentration used. Two
specimens are selected, namely F1 and F2, within
a moderate membrane fraction. As illustrated in the
bottom part of Fig. 1, morphological characteriza-
tions can be undertaken to measure the membrane
fractions of fully open or fully closed faces and the
ratio of closure membrane (i.e., aperture/face area)
in partially open ones, a detailed description of the

Table 2. Characterized macroscopic transport parameters of the foam samples.

Sample Λ′ [µm] Λ [µm] σ [Nsm−4] k′0 [×10
−10 m2] α∞ [–]

F1 220 (±36) 73 (±14) 11560 (±750) 109 (±25) 2.48 (±0.26)

F2 180 (±30) 55 (±8) 17500 (±1200) 93 (±19) 4.05 (±0.33)

foam characterization can be found in (Trinh et al.,
2019).
Five stainless steel perforated plates (PP) with dif-

ferent configurations are manufactured. The geometri-
cal parameters of the PP (Fig. 1, see the top part) are
detailed in Table 1. For a square array, the perfora-
tion ratio is given as p = πd2/(4b2). These plates have
a thickness of t = 1 mm and a diameter of 40 mm. It
should be noted that this diameter matches the size of
the cut cylindrical foam samples to fit the inner diam-
eter of the impedance tube for acoustic experiments.
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Fig. 2. Experimental setup of three-microphone impedance
tube (length – 1 m, diameter – 40 mm).

Acoustic properties are measured using a three-
microphone impedance tube (Salissou, Panneton,
2010) in the frequency range of f ∈ [4, 4500] Hz with
a step of 4 Hz; see Fig. 2. Note that the perforated
plate is placed adjacent to the foam layer without
any bonding layers or membranes. Here, a steel ring
(with an internal diameter of 39 mm and a square wire
size of 1 mm) is used to hold the two material lay-
ers in the horizontal test tube. The SAC at normal
incidence α is measured through the pressure trans-
fer function H12 between microphones 1 and 2. An-
other function H23 between microphones 2 and 3 is
used for direct evaluations of the equivalent proper-
ties (i.e., density ρeq and bulk modulus Keq) and in-
verse estimations of the macroscopic transports (i.e.,
thermal characteristic length Λ′, viscous characteris-
tic length Λ, static air flow resistivity σ, thermal per-
meability k′0, and tortuosity α∞ (Panneton, Olny,
2006;Olny, Panneton, 2008)). Based on the data ob-
tained from the impedance tube experiment, the char-
acterized transport properties of the two foam samples
are estimated, see Table 2. In the next section, the re-
sults of the absorption properties of the foam layers
and the composite absorbers are evaluated.
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3. Results and discussion

The SAC curves of the single-layer foams and the
perforated plates backed by an air gap of 7 mm are pro-
vided in Fig. 3. In terms of the acoustic properties of
porous materials with membrane structures, a compar-
ison between the measured data (solid line) the charac-
terized absorption values (dashed line with circle mark-
ers) shows a high degree of agreement, as depicted in
Fig. 3a. Note that computed sound absorption curves
are defined from the semi-phenomenological model
(i.e., Johnson–Champoux–Allard–Lafarge model). The
results of the transport properties demonstrate con-
sistency with previously obtained results for monodis-
perse foams with a thin solid membrane (Trinh et al.,
2019) as well as foam materials with a high polydisper-
sity of the pore size (Nguyen et al., 2024). Both foam
layers show a quarter-wavelength resonance behavior
with α ∼ 1 at the central frequency of the first peak,
f̂1 (Fig. 3a). The results f̂1 = 2132 Hz (∆f = 1888 Hz)
and f̂1 = 1392 Hz (∆f = 884 Hz) are, respectively, for
F1 and F2, where ∆f is the peak width at α = 0.8.
It is clear that the high membrane foam F2 provides
broadband performance (i.e., an absorption peak at
lower frequencies) compared with the foam F1. How-
ever, when the membrane ratio in the foam sample is
too high, causing the cell faces to be nearly closed,
the absorption capability of the foam layer decreases
because airborne waves cannot easily propagate into
the foam structure (Trinh et al., 2019). The foam
thickness of 20 mm is much smaller than the opti-
mal thickness of granular-packed layers (>100 mm) to
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Fig. 3. Normal incidence sound absorption coefficients of
(a) foam layers and (b) perforated plates backed by an air

gap of 7 mm.

achieve the above peaks, see Eq. (42) in (Viet Dung
et al., 2019). As depicted in Fig. 3b, the effect of per-
foration ratios on the sound absorption indicates that
reducing the ratio p leads to an increase in the absorp-
tion, which is consistent with the findings in (Liu et al.,
2017), while the plates PP2 and PP3 have the same
perforation rate, they have different airflow resistiv-
ity (i.e., viscous permeability) and viscous characteris-
tic lengths (due to different hole diameters) and these
properties are responsible for different sound absorp-
tion performances. It should be noted that to clearly
illustrate the absorption characteristics of perforated
plates within different perforation ratios in the test
frequency range, an air gap of 7 mm was chosen as an
example within the range of 2 mm to 8 mm, as used in
(Liu et al., 2017).
As shown in Fig. 4, thin perforated plates change

significantly the acoustic behavior of the base foams.
Herein, the configuration CAij denotes the combina-
tion of the foam Fi with the perforated plate PPj
with i = {1,2} and j = {1, ...,5}. The original absorp-
tion curves are generally shifted towards lower frequen-
cies by combining PPs within a low ratio p, and the
shift distance depends on the original peak or com-
plex wavelength λe = √Keq/ρeq/f . In detail, the fre-
quency f̂1 of the foam F1 is significantly reduced to
1316 Hz (e.g., CA11 in Fig. 4a), whereas it can be
challenging to reduce that of the high-membrane foam
F2 (i.e., f̂1 = 1252 Hz for CA23, Fig. 4b). In contrast,
the use of PPs with a high perforation ratio can im-
prove the absorption capacity of the composite panels
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in the high frequency range (see CAi3 to CAi5 for both
foams). These observations confirm the link between
the absorption property of CA and the imposed PP
structure described in (Duan et al., 2019). Further-
more, the stably high absorption of CA14 and CA15
(Fig. 4a) behaves like a thick fibrous layer (Soltani,
Norouzi, 2020). In terms of modeling the structure
studied (i.e., the perforated plate combined with an air
layer or a foam layer), the assumption of rigid-frame
porous models can be used with the necessary tortu-
osity correction (Atalla, Sgard, 2007).
In order to rate the sound absorption performance

of the test absorbers, the sound absorption coefficients
on a set of 1/3 octaves from 200 Hz to 2500 Hz are
used for evaluation. According to the (ASTM C423-23,
2023), two rating index numbers (i.e., the sound ab-
sorption average (SAA) and the noise reduction coeffi-
cient (NRC)) are calculated. Noted that the SAA and
NRC are, respectively, calculated over the twelve 1/3
octave bands (from 200 Hz to 2500 Hz) and four fre-
quencies (i.e., 250 Hz, 500 Hz, 1000 Hz, and 2000 Hz),
and two rating results are approximately estimated
from the field induced by normal incidence. As shown
in Table 3, most of the composite absorbers based on
foam F1 show a clear improvement in the rating in-
dex number (i.e., SAA = 0.49 and NRC = 0.50), while
only the configuration CA23 shows the same behavior
due to the peak occurring at the frequency of 1275 Hz.
It can be said that by using a foam layer with a low
membrane ratio (i.e., foam F1), we can easily shift the
peak of the absorption curve to a lower frequency band.

Table 3. Rating of sound absorption of the test samples.

Test absorbers
Rating index

SAA [–] NRC [–]

F1 0.41 0.45

CA11 0.49 0.50

CA12 0.44 0.45

CA13 0.45 0.45

CA14 0.43 0.45

CA15 0.41 0.45

F2 0.47 0.50

CA21 0.45 0.45

CA22 0.44 0.45

CA23 0.49 0.50

CA24 0.42 0.45

CA25 0.42 0.45

The absorption coefficients are next averaged as

α = (1/N) N

∑
i=1

α(fi) over N discrete frequencies fi in
[200, 1500] Hz for the low range and [1500, 4000] Hz
for the high range (Boulvert et al., 2019; Trinh
et al., 2021). With a test frequency step of 4 Hz,
N takes the values of 325 and 625, corresponding to
the low-frequency range and high-frequency range, re-

spectively. By lowering the value of f̂1, the average
sound absorption of CA11 to CA14 (Fig. 5a) shows an
improvement in the low frequency range. The absorp-
tion α of CA11 increases approximately 1.5 times to
reach ∼0.6 (see the highest bar in low group in Fig. 5a),
which could be the limit for all composite panels based
on the foam F2 (low group in Fig. 5b). In high groups,
the values α averaging from configurations CAi3 to
CAi5 are 0.934 for i = 1 (foam F1) and 0.840 for i = 2
(foam F2); the ratios between the value α of the two-
layer composite panels and that of the foam layer are
calculated as 1.06 and 1.29, respectively. These obser-
vations provide quantitative evidence of the absorption
performance of composite panels. Based on PP3 with
a medium perforation ratio and small holes, both CAi3
configurations exhibit improved sound absorption over
the whole frequency range of interest.
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Fig. 5. Bar graphs of the average sound absorption of
(a) foam F1 + plates PPj and (b) foam F2 + plates PPj.

4. Conclusions

In this paper, the sound absorption of foam layers
covered by perforated plates has been experimentally
characterized. The experimental evidence reveals the
effects of the membrane level and the perforation pa-
rameters on the local absorption resonances (i.e., mod-
ified quarter-wavelength resonances of the foam layer
within the influence of the facing perforated plate).
The absorption behavior of a given foam material
can be effectively tailored to the desired performance
by adding appropriate perforated facings. Perforated
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plates with a low perforation ratio are advantageous
for low-frequency sound absorption applications and
vice versa. In addition, good sound absorption over
the full frequency range can be achieved by using com-
posite layers with a fixed thickness of about ∼20 mm.
Based on the present framework, further works can be
designed for the systematic characterization of com-
posite absorbers developed for real applications.
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The paper presents the characteristics of the sound field in two pairs of coupled reverberation rooms,
designed in accordance with International Organization for Standardization [ISO] (2021c). The analyses are
based on the results of the following studies. Firstly, the acoustic airborne sound insulation of selected test
samples was measured in the reverberation rooms without using any sound diffusing nor sound absorbing
elements. In the second step, the tests were repeated successively with an increasing number of diffusers
installed in the rooms. The last stage of the research involved measurements with additional absorbers mounted
in the rooms. The results show that although the geometry and construction of the reverberation rooms are in
line with the standard guidelines, in most situations it was necessary to use diffusing and absorbing elements
to improve the acoustic field in the rooms. Such elements, however, are very undesirable as they significantly
limit the usable space of the rooms, making it more difficult to assemble samples and distribute sources and
measurement points in the measurement space. Later in the article, the authors prove that even using typically
available design tools, i.e., 1st and 2nd Bonello criterions, numerical simulations with the image-source method
and the finite element method, or more advanced research methods, such as measurements using scaled samples,
it seems impossible to prevent at the design stage the future necessity of using additional diffusing and absorbing
elements in the reverberation rooms. Only via verification by measurements performed in the completed rooms
provides the assessment if such additional elements are required.

Keywords: reverberation chambers; transmission loss; acoustic field; small scale model.

Copyright © 2025 The Author(s).

This work is licensed under the Creative Commons Attribution 4.0 International CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

1. Introduction

The test bench for measuring the airborne sounds
insulation of building partitions consists of two cou-
pled reverberation rooms (according to (ISO, 2021a)).
In order to achieve adequate repeatability and repro-
ducibility of measurements (based on (ISO, 2014)), the
test stand must follow strict guidelines. These guide-
lines are applicable to the geometry and construction
of the reverberation rooms described in (ISO, 2021c) as
well as to the measurement equipment and procedure
described in (ISO, 2021b). While the requirements for
the selection of appropriate equipment and the imple-

mentation of the correct measurement procedure are
precise and unambiguous, the guidelines for the con-
struction and, in particular, the geometry of the re-
verberation rooms are very general (they relate only
to the volume of the rooms and the area of the mea-
surement window). Therefore, coupled reverberation
rooms in various laboratories may be constructed dif-
ferently (for example: (Uris et al., 2007; Zhu, 2022;
Oliazadeh et al., 2022)). As a consequence, the dis-
tribution of the sound field in these rooms and its
influence on the measurement results will also vary
as shown in (Dijckmans, Vermeir, 2013). Accord-
ing to (ISO, 2021c), the sound field in reverberation
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rooms should be as diffused as possible. If sufficient
sound diffusion is not ensured by the interior geome-
try alone, additional diffusing elements are required.
To quote the standard: “the position and number of
diffusing elements should be arranged in such a way
that the sound reduction index is not influenced when
further diffusion elements are installed” (ISO, 2021c,
p. 2). However, at the design stage, it is difficult to ac-
curately model the acoustic field inside the reverbera-
tion rooms which was studied by Chazot et al. (2016),
Schmal et al. (2021) or Bork (2000), let alone its ef-
fect on the measurement results. In practice, the qual-
ification procedure is carried out only after the rooms
have been constructed. For qualification, sound dif-
fusers (Zhu, 2022; Bradley et al., 2014; Mleczko,
Wszołek, 2019) as well as sound absorbing elements
(Fuchs et al., 2000; Yao et al., 2020) are installed
in the rooms to unify the sound field inside. Unfor-
tunately, such measures involve additional costs and
also obstruct work in the laboratory until the rooms
are adapted for testing. Furthermore, additional sound
absorbing and diffusing elements significantly limit the
usable space of the rooms, making it more difficult to
assemble samples and distribute sources and measure-
ment points in the measurement space.
This paper presents the characteristics of the sound

field in two pairs of coupled reverberation rooms, de-
signed following the guidelines and the requirements of
(ISO, 2021c). The need for additional design guidelines
to achieve satisfactory acoustic field characteristics in
reverberation rooms is demonstrated. Such procedures
would target the spaces used to measure the acous-
tic insulation of samples without the need to install
any sound diffusing and absorbing elements in their
interiors.

2. Subject of study

The research presented in this paper was carried
out on two original test benches. The former was
an available in the laboratory coupled reverberation
rooms made in a small scale (hereinafter named: small
reverberation rooms), the latter was a full-size room
designed in accordance with the restrictions of the
future user (hereinafter named: large reverberation
rooms). The first stand, allowed for pilot studies to be
carried out on smaller samples. This approach, which
is often used in scientific research (Balmori et al.,
2024; Djambova et al., 2022) was far more econom-
ical and quicker to implement at the initial stage of
research. The pilot studies were aimed at verifying the
adopted research methodology and determining pre-
liminary conclusions regarding the impact of sound dif-
fusing and sound absorbing elements on the acoustic
field in exemplary reverberation rooms. At the second
stand, the target case was studied, i.e., the acoustic
field inside the individually designed full-size rooms.

These results directly reflected reality without the risk
of scale influence on the results obtained. A detailed
description of these two stands is provided in Sub-
secs. 2.1 and 2.2, respectively.

2.1. Small reverberation rooms

Tests on small-scale samples were conducted in
small, coupled reverberation rooms (see Fig. 1) which
replicated the full-size reverberation rooms located at
the Department of Mechanics and Vibroacoustics of
AGH University of Science and Technology. Quoting
Szeląg et al. (2021), Fig. 2 shows the detailed dimen-
sions of this measurement stand. Both rooms, source
and receiving, had a volume of about 0.35 m3 (which is
almost 180 m3 at 1:1 scale). As described in the afore-
mentioned article, the rooms were effectively vibration-
isolated from each other and from the ground. More-
over, due to the fact that for the purposes of acoustic
insulation tests there is no need to scale the parameters
of the gas filling the rooms, the interiors could remain
filled with atmospheric air. During individual measure-

Fig. 1. Small reverberation rooms made of 20 mm-thick
plexiglass panels.
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ment sessions, only the consistency of air parameters
such as pressure, temperature and air humidity was
monitored, and finally, based on the results of rever-
beration time (RT) measurement in receiving room,
the influence of acoustic absorption of the interior on
measured sound pressure levels (SPLs) was removed.
During the subsequent test stages shown in this

paper, in the reverberation rooms, diffusors made
of sound-reflecting plexiglass panels were installed.
In the source room, eight pieces with dimensions
of 100 m× 150 m× 2 mm and two with dimensions of
150 m× 150 m× 2 mm were ultimately mounted. In
the receiving room, seven pieces with dimensions of
100 m× 150 m× 2 mm and three with dimensions
of 150 m× 150 m× 2 mm were ultimately mounted.
The plexiglass panels were pre-curved to provide bet-
ter sound diffusion properties. In addition, on the floor
of both reverberation rooms, one slotted sound absorb-
ing structure was placed. This absorber was made of
15 mm-thick foam covered with 3 mm-thick aluminum
plate with 1 mm-wide slots incised at 10 mm inter-
vals. The overall dimensions of each absorber were
310 m× 220 mm.
The measurement stand consisted of the following

components: two custom made high-frequency sound
sources, two 1/4′′ 46BE G.R.A.S. microphone sets, two
12AL G.R.A.S. amplifiers, UMC204HD BEHRINGER
U-PHORIA measurement card and a dedicated com-
puter script in the MATLAB environment for process-
ing measurement results (for the detail description of
the measurement stand see (Szeląg et al., 2021)). This
article also proves that both the scaled measurement
stand, and the measurement methodology meet the re-
quirements of (ISO, 2021a; 2021b; 2021c) adapted to
the scale factor as well as that the uncertainty of mea-
surements on the tested stand meets the requirements
of (ISO, 2014) for maximum uncertainty values. There-
fore, the reliability and repeatability of measurement
results obtained on this stand was confirmed.

2.2. Large reverberation rooms

For the full-size tests, two coupled reverberation
rooms (see Fig. 3) located in the laboratory Mo-
bilne Laboratorium Techniki Budowlanej Sp. z o.o.
in Wałbrzych were used. These rooms were designed
and made in accordance with the standard require-
ments (ISO, 2021b; 2021c), taking into account cer-
tain architectural limitations. The detailed dimen-
sions of the source and receiving rooms are shown
in Fig. 4. The volumes of the source and receiving
rooms were 77 m3 and 57 m3, respectively. The re-
verberation rooms were constructed of reinforced con-
crete structure with a wall thickness of 30 cm. The
rooms were divided by a reinforced concrete frame with
a cross section of 100 cm× 100 cm. The rooms and the
frame were decoupled and vibration-isolated from each

a)

b)

Fig. 3. Exterior view of the large reverberation rooms from
the side of the source room (a) and interior view of the

source room (b).
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other and from the surroundings. Each room was ac-
cessed via a dedicated acoustic sluice equipped with
two doors. The acoustic sluice structure was decou-
pled and vibration-isolated from the rooms and from
the surroundings. A single-wing door was fitted in the
receiving room, while a double-wing door was used in
the source room for technological reasons, i.e., to allow
large measurement samples to be brought in.
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During the subsequent test stages shown in this pa-
per, in both reverberation rooms, diffusers made of
sound-reflecting plexiglass panels were installed. Ul-
timately, three diffusers of dimensions 3000 mm×
1000 mm× 6 mm and three of dimensions 2000 mm×
1000 mm× 6 mm were installed in the source room as
well as in the receiving room. The panels suspended
from the ceiling and on the walls were bent due to
their own weight, resulting in an even better sound
diffusion effect. In addition, in both rooms, one slotted
sound absorbing structure was mounted on the wall.
This absorber was made of 100 mm-thick wool covered
with 21 mm-thick board with 4 mm-wide slots incised
at 65 mm intervals. The overall dimensions of each ab-
sorber were 1850 mm× 1050 mm.
The measurement stand consisted of the following

components: an omni-directional sound source B&K
4292-L-001, a power amplifier B&K 2734, two measure-
ment microphones B&K 4189 together with preampli-
fiers B&K ZC0032, a two-channel sound analyser B&K
2270A and a computer program for building acoustics
B&K 7830.

3. Methodology

The studies presented in this paper were carried
out in three stages at each of the measurement stand.
In stage 1, the acoustic airborne sound insulation of
selected test samples was measured in reverberation
rooms, without using any additional sound diffusing
nor sound absorbing elements. In the small rever-
beration rooms, a plexiglass sample with dimensions
of 12.5 mm× 25.0 mm and a thickness of 1 mm was
tested, while in the large reverberation rooms, a door
with an area of 2.47 m2 was tested. The following cri-
teria guided the selection of measurement samples.
Firstly, the scale and full-size samples were supposed to
have similar dimensions after taking into account their
scaling, and this was achieved. Secondly, the samples
had to have low sound insulation so that the test re-
sults were not dependent on the flanking sound trans-
mission. At this point it is worth noting that it is
not important whether the scale sample has a full-size
equivalent or the samples tested at both measurement
stands are the same. The aim of the research was to de-
termine the acoustic field in the rooms and its impact
on the measurement results, and not to verify the insu-
lation of the samples themselves or to check the mea-
surement capabilities and validate the test stands.
Measurements were taken in accordance with the

guidelines of (ISO, 2021a). In both source and receiv-
ing rooms, the SPL was recorded at ten different mea-
surement points, five for each of the two sound source
positions. The averaging time for a single measure-
ment was 15 seconds. The RT was measured in both
the source and receiving rooms. For the measurement
in small reverberation rooms the impulse response in-

tegration method based on the swept sine signal was
used, while in the large rooms the intermittent noise
method was adopted. The tests carried out at the sub-
sequent stages followed the same path as in stage 1,
except that in stage 2 in the reverberation rooms
additional sound diffusing elements were installed in
batches, while in stage 3, a sound absorbing structure
was placed in each reverberation room. All measured
sound insulation indicators were supplemented with
measurement uncertainty values U95 determined in ac-
cordance with ISO (2020a) assuming the measurement
situations C (standard uncertainty of measurement re-
peatability) – appropriate values read from Tables 2
and 3 in the standard (Wittstock, 2015).

4. Measurement results and discussion

4.1. Measurements in small reverberation rooms

Figure 5 shows the results of the acoustic insu-
lation measurement for a sample tested in the small
reverberation rooms in four different variants of in-
terior acoustic adaptation, i.e., for different numbers
of sound diffusing elements and with or without the
sound absorbing structure. The results, after scaling
them to actual measurement frequencies (Sonin, 2001)
are presented in the full frequency range typical for
such tests, i.e., 50 Hz–5000 Hz. The graph also pro-
vides information on the values of the sound insulation
single-number quantities of the sample, Rw, Rw + C,
Rw + C50−3150, Rw + Ctr, and Rw + Ctr,50−3150 calcu-
lated according to (ISO, 2020b), for each of the al-
ternatives tested. All indicators presented in Fig. 5
are supplemented with measurement uncertainty val-
ues U95 determined in accordance with (ISO, 2020a).
The conclusions from the analysis of the data con-
tained in Fig. 5 are as follows. After introducing a large
number of sound diffusing elements, that is 10 pieces
into each reverberation room, a decrease in R-values
in the low-frequency bands (50 Hz–125 Hz) can be ob-
served. In addition, the acoustic insulation character-
istics in the 160 Hz band evened out after the installa-
tion of sound absorbing structures in the rooms. The
observed deviations between test results for individual
measurement variants are of statistical significance, as
in most bands in the indicated frequency range they
are higher than standardised values. In the other fre-
quency bands, i.e., from 200 Hz upwards, the diffusing
and sound absorbing elements had no significant im-
pact on the sound insulation characteristics. The no-
ticeable decrease in sound insulation in the 3150 Hz–
5000 Hz bands for the variant with sound absorbing
elements occurred due to a reduction in the SPL in the
source room because of the interior damping, and con-
sequently an insufficient separation between the signal
and the background noise in the receiving room. The
sound insulation values in these frequency bands are
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Fig. 5. Acoustic insulation of the sample tested in the small reverberation rooms in four different variants of interior
acoustic adaptation: 0R – no diffusing elements in the reverberation rooms; 5R – five diffusing elements in each room;
10R – ten diffusing elements in each room; 10R+1P – ten diffusing elements and one sound absorbing element in each

room. The results from the small rooms are scaled to actual measurement frequencies.

therefore underestimated. It is worth mentioning that
the variation in the sound insulation values in the low-
frequency bands were not strongly reflected in the val-
ues of the single-number quantities. Differences in the
values of individual indicators are smaller than their
measurement uncertainty.

50

60

70

80

90

100

110

50 63 80 10
0

12
5

16
0

20
0

25
0

31
5

40
0

50
0

63
0

80
0

10
00

12
50

16
00

20
00

25
00

31
50

40
00

50
00

SP
L [

dB
]

Frequency [Hz]

Source room

20

30

40

50

60

70

80

50 63 80 10
0

12
5

16
0

20
0

25
0

31
5

40
0

50
0

63
0

80
0

10
00

12
50

16
00

20
00

25
00

31
50

40
00

50
00

SP
L [

dB
]

Receiving room

0

5

10

15

20

25

30

50 63 80 10
0

12
5

16
0

20
0

25
0

31
5

40
0

50
0

63
0

80
0

10
00

12
50

16
00

20
00

25
00

31
50

40
00

50
00

SP
L m

ax
–S

PL
m

in
 [d

B]

0R 5R 10R 10R+1P

0

5

10

15

20

25

30

50 63 80 10
0

12
5

16
0

20
0

25
0

31
5

40
0

50
0

63
0

80
0

10
00

12
50

16
00

20
00

25
00

31
50

40
00

50
00

SP
L m

ax
–S

PL
m

in
 [d

B]

0R 5R 10R 10R+1P

Frequency [Hz]

Frequency [Hz]Frequency [Hz]

Fig. 6. Equivalent SPL and scatter of the results between individual measurement points in the small source and receiving
rooms in four different variants of interior acoustic adaptation: 0R – no diffusing elements in the reverberation rooms;
5R – five diffusing elements in each room; 10R – ten diffusing elements in each room; 10R+1P – ten diffusing elements and
one sound absorbing element in each room. The results from the small rooms are scaled to actual measurement frequencies.

In order to verify the acoustic field in the source
and receiving rooms, the SPL spectra in the rooms
were plotted in Fig. 6 for all analysed measurement
variants. The graphs also show the scatter of the
results as a difference of the maximum and minimum
SPL obtained in a given frequency band between in-
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dividual measurement points. An analogous compar-
isons are presented in Fig. 7 for the values of RT in
the rooms.
Based on Fig. 6, it can be stated that the equivalent

SPLs in both the source and receiving rooms do not
differ significantly for interiors with different numbers
of diffusing elements. Only the addition of sound ab-
sorbing structures reduces the SPL in the rooms, which
is obviously due to the partial absorption of sound by
such elements. Moreover, no significant trend can be
observed in the variation of SPLs values for the dif-
ferent measurement points depending on the number
of diffusing and absorbing elements in the rooms. At
most, an improved homogeneity of the results in the
63 Hz band may be noticed in the receiving room after
installing the sound absorber. This band was charac-
terised previously by the greatest inhomogeneity of the
sound field. It can also be added that slightly greater
scatter of the results in the low-frequency bands is ob-
tained for the receiving room. However, for the high-
est frequency bands the results scatter in this room
decreases due to the overlap between the signal value
and the background sound level generated by the mea-
surement path itself.
Figure 7 shows that with the increasing number

of sound diffusing elements and adding a sound ab-
sorbing structure, the RT in both source and receiv-
ing rooms decreases. In the case of the diffusing el-
ements, it should be noted that this is not a result
of sound absorption by this type of elements, as they
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Fig. 7. RT and the scatter of the results between individual measurement points in the small source and receiving rooms
in four different variants of interior acoustic adaptation: 0R – no diffusing elements in the reverberation rooms; 5R – five
diffusing elements in each room; 10R – ten diffusing elements in each room; 10R+1P – ten diffusing elements and one
sound absorbing element in each room. In the RT diagrams, the grey colour indicates the RT ranges recommended by ISO
(2021c) standard for the respective room. The results from the small rooms are scaled to actual measurement frequencies.

were made of sound-reflecting plexiglass. This occurs
due to the improved diffusion of the sound field in the
rooms, the shortening of the path between reflections
and the increase in the number of reflecting planes.
Importantly, the use of sound diffusing elements only
is not sufficient to achieve the RT recommended by
ISO (2021c). Additional sound absorbing elements are
required. Such structures installed in the tested rooms
made it possible to meet the standard requirements in
the basic frequency range of 100 Hz–3150 Hz, except
for 100 Hz in the receiving room. In order to meet the
standard requirement in the full frequency range (from
50 Hz), it would be necessary to add a low-frequency
sound absorbing structure tuned to frequency 80 Hz,
for which the measured values of RT are the highest.
Based on the plots showing the scatter of the RT val-
ues between the individual measurement points, it can
be concluded that the increase of the number of sound
diffusing elements and addition of a sound absorbing
structure reduces this scatter, however, some devia-
tions from this rule are noticeable in selected frequency
bands. Nevertheless, the obtained scatter of the results
is not high in all measurement cases, which indicates
a quite good diffusion of the sound field inside the small
reverberation rooms.
In summary, the following conclusions can be

drawn from the tests carried out in the small reverber-
ation rooms. The sound fields in terms of spatial uni-
formity are similar in both reverberation rooms. Even
without diffusing and absorbing elements, a quite good



A. Szeląg, M. Zastawnik – Issues in the Design and Validation of Coupled Reverberation Rooms. . . 31

homogeneity of the results for both the rooms was ob-
tained, i.e., the scatter in SPLs and values of RT in in-
dividual measurement points did not deviate from typ-
ical values obtained in other laboratories (compared
to (Nutter et al., 2007) and (Vallis et al., 2015)).
Nevertheless, in order to achieve the recommended RT
in the rooms, it was necessary to add sound diffusing
and sound absorbing elements. However, the results
presented in Fig. 5 show that the use of sound diffus-
ing elements in the context of the correct value of the
sample sound insulation was necessary only in the low-
frequency bands. Further reduction of the RT to the
recommended values by installing the absorber had no
effect on the sound insulation value of the samples. In
conclusion, the analysed small reverberation rooms are
characterised by a quite good spatial homogeneity of
the sound field, nonetheless they require the use of ad-
ditional diffusers in order to obtain the correct sound
insulation values.

4.2. Measurements in large reverberation rooms

Figure 8 shows the results of the acoustic insulation
measurement for a sample tested in the large reverber-
ation rooms in five different variants of interior acoustic
adaptation, i.e., for different numbers of sound diffus-
ing elements and with or without the sound absorbing
structure. The graph also provides information on the
values of the sound insulation single-number quantities
of the sample, Rw, Rw+C, Rw+C50−3150, Rw+Ctr, and
Rw +Ctr,50−3150 calculated according to (ISO, 2020b),
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Fig. 8. Acoustic insulation of the sample tested in the large reverberation rooms in five different variants of interior acoustic
adaptation: 0R – no diffusing elements in the reverberation rooms; 0R/1R – no diffusing elements in the source room
and one diffusing element in the receiving room; 4R/3R – four diffusing elements in the source room and three diffusing
elements in the receiving room; 6R – six diffusing elements in each room; 6R+1P – six diffusing elements and one sound

absorption element in each room.

for each of the alternatives tested. All indicators pre-
sented in Fig. 8 are supplemented with measurement
uncertainty values U95 determined in accordance with
ISO (2020a). The conclusions from the analysis of the
data contained in Fig. 8 are as follows: a decreasing
trend of R-values in the low-frequency bands (50 Hz–
315 Hz) can be observed with more sound diffusing
elements being introduced into the rooms. The ob-
served deviations between test results for individual
measurement variants are of statistical significance,
as in all bands in the indicated frequency range they
are higher than standardised values. In the other fre-
quency bands, i.e., above 315 Hz, sound diffusing and
sound absorbing elements had no significant effect on
the sound insulation characteristics of the sample. It is
worth mentioning that the variation in the sound in-
sulation values in the low-frequency bands were also
reflected in the values of the single-number quanti-
ties. Differences in the values of most indicators, only
except Rw, are larger than their measurement uncer-
tainty, so they are of statistical significance.
Similarly, as for the case of the small reverber-

ation rooms, in order to verify the acoustic field
in the source and receiving rooms, the SPL spectra in
the rooms were plotted in Fig. 9 for all analysed mea-
surement variants. The graphs also show the scatter of
the results as a difference of the maximum and mini-
mum SPL obtained in a given frequency band between
individual measurement points. An analogous compar-
isons are presented in Fig. 10 for the values of RT in
the rooms.
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Fig. 9. Equivalent SPL and scatter of the results between individual measurement points in the large reverberation rooms
in five different variants of interior acoustic adaptation: 0R – no diffusing elements in the rooms; 0R/1R – no diffusing
elements in the source room and one diffusing element in the receiving room; 4R/3R – four diffusing elements in the source
room and three diffusing elements in the receiving room; 6R – six diffusing elements in each room; 6R+1P – six diffusing

elements and one sound absorbing system in each room.
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Fig. 10. RT and the scatter of the results between individual measurement points in the large source and receiving rooms
in five different variants of interior acoustic adaptation: 0R – no diffusing elements in the rooms, 0R/1R – no diffusing
elements in the source room and one diffusing element in the receiving room, 4R/3R – four diffusing elements in the source
room and three diffusing elements in the receiving room, 6R – six diffusing elements in each room, 6R+1P – six diffusing
elements in each room and additionally one sound absorbing system. In the RT diagrams, the grey colour indicates the

RT ranges recommended by ISO (2021c) standard for the respective room.
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Based on Fig. 9, it can be stated that the equivalent
sound levels in both the source and receiving rooms do
not differ significantly for interiors with different num-
bers of sound diffusing elements, except when there are
no such elements in the rooms. In the latter case, the
sound level in the low-frequency bands (below 100 Hz)
is slightly higher. Through the addition of sound ab-
sorbing structures, the sound level is reduced in the
rooms. Moreover, a certain dependency can be ob-
served between the number of sound diffusing and
absorbing elements and the scatter of measured values
in individual points. It is the most evident in the case
of receiving room at the frequency 80 Hz, for which the
scatter of the values is the highest.
The graphs shown in Fig. 10 illustrate a very in-

teresting phenomenon. On the one hand, in the source
room the RT does not depend on the number of dif-
fusing elements used, and the scatter in the results be-
tween the individual measurement points only slightly
decreases as the number of such elements increases.
The installation of the absorbing element in the source
room ultimately reduces the RT, allowing the standard
requirements to be met in the bands from 80 Hz up-
wards. In the receiving room, on the other hand, the
RT is extremely dependent on the number of sound dif-
fusing elements, especially in the low-frequency bands,
where the difference in values reaches up to 10 s in
the 100 Hz band. The situation is analogous for the
scatter in the results between the individual measure-
ment points. With a larger number of diffusing ele-
ments, these values decrease significantly. Of course,
even better results are obtained with the introduction
of the sound absorbing structure, both in terms of RT
values, where the standard requirements are met from
as low as 80 Hz, and in terms of scatter, which is rather
small for this situation. Interestingly, the initial values
of the RT for the situation where there were no diffus-
ing and absorbing elements in the rooms were signifi-
cantly higher in the receiving room than in the source
room, even though the receiving room has a smaller
volume than the source room, so theoretically the sit-
uation should be the opposite. In the source room, in
principle, the use of diffusing elements was unneces-
sary, as the initial results demonstrate the homogene-
ity of the sound field. Alternatively, a sound absorbing
structure could have been used to reduce the RT to the
value recommended by ISO (2021c) standard. How-
ever, this was not necessary, as the standard recom-
mends reducing the RT only if it can have a significant
effect on the sound insulation results, which is not rel-
evant to the analysed situation. The situation is quite
different in the case of the receiving room. Here, the
use of diffusing elements was necessary to control the
sound field inside the room. These elements signifi-
cantly reduced the RT in the room, but not because
they had sound absorbing properties, but because they
scattered the sound waves in the room and ensured

that the sound field was uniform. The additional sound
absorbing structure further improved the situation, es-
pecially in terms of the scatter of measurement results.
In summary, the results of measurements carried

out in the receiving room were extremely surprising.
In the absence of diffusing elements, the room was vir-
tually unsuitable for testing. The falsely inflated RT
values (significantly higher than in the larger source
room) significantly affected the final sound insulation
of the sample (see Fig. 8). A completely different situa-
tion concerns the source room. From the point of view
of the accuracy of the results, no additional sound dif-
fusing and absorbing elements could actually be used
in the source room. The presented measurement re-
sults raise the question as to why there are such unfa-
vorable acoustic conditions in the receiving room and
if this could have been avoided at the design stage.
As mentioned at the beginning of the article, the ISO
(2021b) standard gives quite a lot of freedom in choos-
ing the geometry of reverberation rooms and does not
impose the need for any procedure to verify the effect
of the geometry design on the acoustic parameters of
the interior at the design stage. It is only at the post-
construction stage of the reverberation rooms that the
acoustic field inside is verified and, if necessary, ad-
ditional sound diffusing or sound absorbing elements
are installed. The authors therefore intend to verify
whether it was possible to predict at the design stage
that the interior acoustic parameters of the receiving
room would not be satisfactory and thus introduced
a modification of the room geometry to avoid the need
to install sound diffusing or sound absorbing elements
undesirable by users.
The basic tools used in modeling of interior acous-

tics are computer programs based on the image-
source method, such as: CATT Acoustic, ODEON,
EASE. However, according to (Kuttruff, 2000) such
a method is reliable only in the frequency range above
the so-called Schroeder frequency. In the case of the
analysed receiving room, the Schroeder frequency is
496 Hz, and for the source room it is 430 Hz. It should
therefore be concluded that this is not a suitable
method for the present design case, as well as for
the design of other typical reverberation rooms. The
above conclusion is illustrated by the graph presented
in Fig. 11 which presents a comparison of the mea-
sured and simulated in CATT-Acoustic RT curves for
the studied receiving room. As can be seen, the sim-
ulated RT values coincide from 500 Hz onwards with
the measured values. Below 500 Hz, the curves diverge,
and the measured RT takes on significantly higher val-
ues than the simulated one.
In the next step, the correctness of the design of

the reverberation rooms was verified using the Bonello
criteria (Bonello, 1981). These criteria relate to the
distribution of the room’s intrinsic moduli, and their
fulfilment is intended to ensure the uniformity of the
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software in the large receiving reverberation room. The sim-
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consideration of air sound absorption, ray tracing for
4500 ms, three source positions and ten microphone po-

sitions.

acoustic field in the interior and the minimisation of
wave phenomena. The first criterion requires that the
number of modes per 1/3 octave frequency band is to
be a non-decreasing function. The second criterion re-
quires that there are no modes of overlapping frequen-
cies. Alternatively, overlapping modes are allowed in
these 1/3 octave bands where the number of modes
is minimum 5. In the analyses presented in this pa-
per, a distance between modes of less than 1 Hz was
adopted as the criterion for overlapping mods. The
number of reverberation room eigenmodes were deter-
mined in two ways. The first way assumed analytical
calculations using the equation proposed by Morse
and Bolt (1994):

N = 4πf3V

3c3
+
πf2S

4c2
+
fP

8c
, (1)

where N is the number of modes from 0 Hz up to
f Hz, f is the frequency [Hz], V is the room volume
[m3], S is the room surface area [m2], and P is the
total room perimeter [m]. In the second method a fi-
nite element method (FEM) modal analysis was car-
ried out in the ANSYS environment. In the simula-
tions, a mesh division into 10 cm finite elements was
adopted. Figure 12 presents the results of the anal-
yses for the 1st Bonello criterion carried out by both
the analytical method and using computer simulations.
Firstly, there is a very poor agreement between the re-
sults obtained by the analytical method and the FEM
simulation results. Nevertheless, all results show that
the 1st Bonello criterion is met in both the source
and receiving rooms. Next, the overlap of eigenmodes
in the different 1/3 bands was compared, as indicated
by the 2nd Bonello criterion. Although the overlapping
modes were identified, all of them occurred in the 1/3
bands with a minimum number of modes of 5, which
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Fig. 12. Results according to the 1st Bonello criterion:
eigenmodes of the source and receiving reverberation room
determined according to Morse and Bolt equation (M&B)

and modal analysis using FEM.

is permissible according to the given criterion. In sum-
mary, the Bonello criterion did not identify any irreg-
ularities in the receiving room geometry that could
cause such a large irregularity in the sound field inside.
Analysing the results of the research presented

above, it should be stated that a typical design ap-
proach based on theoretical criteria or computer sim-
ulations using the image-source method did not allow
for the detection of the problem of a very high irregu-
larity of the acoustic field in the receiving room, which
became apparent at the stage of experimental research.
Therefore, in the next step, the authors decided to take
more advanced actions, i.e., they conducted research
on a 1:7 scale model of the problematic receiving room
(Fig. 13). A 38 mm-thick chipboard was used to build
this model. The measurement stand was the same that
was used in earlier scale studies (see Subsec. 2.1).

a) b)

Fig. 13. 1:7 scale model of the problematic receiving room
along with measurement equipment: outside view (a), in-

side view (b).

Figure 14 shows the comparison of the mea-
sured RT values and their scatter between individ-
ual measurement points in the full-size receiving room
(1:1 scale room) and its 1:7 scale equivalent. Unfortu-
nately, the scale tests do not identify the problem of
inhomogeneous sound field in the low-frequency bands
(below 250 Hz). The RT at these frequencies does not
tend to be as high as it was in the full-sized room.
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Fig. 14. RT and the scatter of the results between indi-

vidual measurement points in the full-size receiving room

(1:1 scale room) and its 1:7 scale equivalent. In the RT

diagram, the grey colour indicates the RT ranges recom-

mended by ISO (2021c) standard.

The scatter of the results is also small in the case
of the 1:7 scale room. In the higher frequency bands,
the measurement results are much more similar for
both rooms. Small differences in the 315 Hz–1000 Hz
bands are probably due to the mismatch of the sur-
face sound absorption coefficients between scale and
full-size rooms. In the bands above 1600 Hz, the RT
in the scaled room is slightly understated because of
the significant absorption of sound by the air. It should
be remembered that in reality measurements were per-
formed in a frequency range seven times higher.

5. Summary

This paper presents the characteristics of the sound
field in the two pairs of coupled reverberation rooms,
designed following the guidelines and the requirements
of (ISO, 2021c). The results showed that only in one
room, i.e., the large source reverberation room, the
initial sound field was sufficiently homogeneous such
that the room did not require the use of any addi-
tional sound diffusing or absorbing elements. These el-
ements, however, were strongly recommended in the
other tested rooms. Moreover, in the large receiving re-
verberation room they were indispensable. The lack of
such elements resulted in large discrepancies between
measured quantities at individual points, and above
all, the recorded RT was significantly overestimated

in the low-frequency bands, where unfavourable wave
phenomena occurred. This had an impact on the values
of sample sound insulation. The obtained values were
falsely inflated. As expected, the situation was greatly
improved after introducing sound diffusing and absorb-
ing elements in accordance with the ISO (2021b) stan-
dard. Nevertheless, diffusing and absorbing elements
are not always the preferred option, since they signif-
icantly limit the usable space in the rooms and make
the installation of samples, sources and measurement
points more difficult. Therefore, a situation where the
presence of additional diffusing and absorbing elements
would not be necessary is desired. Unfortunately, fol-
lowing the design procedures described in the stan-
dards or using the typically available design tools, i.e.,
1st and 2nd Bonello criterions, numerical simulations
with the image-source method and the FEM, it seems
impossible to prevent at the design stage the future
necessity of using additional diffusing and absorbing
elements in the reverberation rooms. Even more ad-
vanced research methods, such as measurements using
scaled samples, turned out to be unhelpful. Only via
verification by measurements performed in the com-
pleted rooms provides the assessment if such additional
elements are required.
The authors believe that it is necessary to define

additional procedures and design guidelines to improve
the reverberation rooms design process. Ideally, the re-
sulting acoustic field in the reverberation rooms should
be satisfactory without installation of diffusing and ab-
sorbing elements. Firstly, the authors intend to carry
out more advanced finite element simulations as basic
simulations based on modal analysis failed to identify
the field problem experienced in a large receiving re-
verberation room. Secondly, it is planned to expand
the scope of research on scaled samples. The lack of
convergence of measurement results between a full-size
room and its 1:7 scale equivalent is very surprising and
requires further verification.
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Although noise and vibration measurements are widespread in the machine diagnostics, they are not used
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1. Introduction

In the automotive industry, vehicle noise and vi-
bration performance have become an important design
parameter, as in other technical fields. Sound quality is
one of the main factors that define the product itself,
making vibroacoustic control of motor vehicles a key
activity for automotive engineers. Furthermore, noise
and vibration pollution are regulated by standards,
making noise refinement during the predevelopment
stage essential to protect users from health problems
and other adverse effects. Malfunctions in the car’s mo-
tor and powertrain can increase overall noise levels,
and consequently, reduce good sound quality, leading
to a noisier and less refined auditory experience.
One of the most common problems in internal com-

bustion engines (ICEs) is an aged spark plug, which
causes weak ignition and results in misfiring. This issue
is particularly prevalent in older vehicles and results in
reduced fuel efficiency, and potentially causing serious
long-term engine damage. Nowadays, misfire detection
methods are built-in in every vehicle to comply with

environmental protection regulations. Some common
detection strategies include measuring cylinder pres-
sure or monitoring speed fluctuation in the crankshaft.
Unusual noises from a car can induce stress and feelings
of insecurity in drivers. However, this unwanted phe-
nomenon can also be utilized, since the vibration is sen-
sitive to all faults, whereas other physical parameters,
such as those monitored by onboard diagnostics sys-
tem (OBD), are sensitive only to specific faults. This
means that monitoring a vehicle’s vibration behavior
can identify potential failures.
Nevertheless, vibration diagnostics has its limita-

tions, as they depend on the product’s complexity, op-
eration mode, and the severity of the fault. Solely re-
lying on the overall sound pressure level (SPL) and
averaged vibration spectra does not give a sufficient
representation of sound quality. That is why the in-
troduction of psychoacoustic measurements is neces-
sary to gain a more comprehensive insight into human
sound perception. On the other hand, psychoacoustic
analysis can serve as a diagnostic tool for identifying
vehicle malfunctions since experienced mechanics can
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often diagnose certain malfunctions in cars by sound
alone. For example, at idle speed, a knocking noise
from beneath the valve cover may be clearly audible.
As the engine’s rotational speed increases the noise fre-
quency also increases, which indicates that the valve
clearance is too large.
At the Aachen University in Germany (Brecher

et al., 2011), a correlation analysis was conducted
between gear parameters and psychoacoustic values
based on noise measurements from different gear sets.
For the research, gear sets with different surface mi-
crostructure and pitch deviation were selected. The
study found that both the loudness and sharpness of
the noise increased with rotational speed. According
to the study’s findings, roughness proved to be the
most valuable parameter for identifying pitch devi-
ation failures in gears. Babu Devasenapati et al.
(2010) analyzed a four-stroke four-cylinder petrol en-
gine with a misfire problem. For problem identifica-
tion, they used statistical parameters of vibration sig-
nals, such as kurtosis, standard deviation, mean, etc.
A decision tree was developed that could extract the
most appropriate parameters for failure detection and
to classify various ICE misfire problems with 95 % ac-
curacy. Firmino et al. (2012) collected vibration and
acoustic data from a four-stroke spark ignition en-
gine with a misfire in one cylinder. After perform-
ing feature extraction using the fast Fourier transform
(FFT) algorithm, the data was used to feed different
artificial neural network (ANN) systems in order de-
tect the misfire failure. Both networks demonstrated
great results, achieving, accuracy of around 99 % in
misfire detection. Delvecchio et al. (2018) reviewed
the existing state-of-the-art vibroacoustic techniques
for diagnosing failures in ICEs, including misfires. Ac-
cording to this study, the most commonly used tech-
niques for ICE malfunctions are joint time-frequency
methods. However, these methods are mainly applied
to failure detection rather than condition monitoring
purposes.
Wojnar and Madej (2009) tested ICEs using vi-

broacoustic methods and concluded that relying only
on the FFT does not deliver sufficient results. They
emphasized the advantages of joint time-frequency
methods, particularly wavelet analysis. Wojnar and
Stanik (2010) compared vibration and acoustic sig-
nals for diagnosing car wheel bearings. Their investi-
gation revealed that bearing wear can be determined
through vibroacoustic methods. Szabó andDömötör
(2022) also investigated the wheel bearings of a passen-
ger vehicle with vibroacoustic methods, and confirmed
that these methods are effective for detecting bearing
faults.Wojnar et al. (2011) further investigated roller
bearing defects, focusing on non-dimensional factors
(e.g., impulse factor, crest factor, etc.). Their findings
showed that these parameters are sufficient for detect-
ing bearing faults.

Psychoacoustic quantities are not currently involved
in detection or monitoring actions. Analysis acoustic
data such as SPL obtained from a microphone, is
rarely used due to the masking effect of background
noise, making it unsuitable for detecting assembly
faults. However, joint techniques based on acoustic
signals remain useful for capturing and localizing
transient events in the time or angular domain,
especially when the noise characteristics cover a wide
frequency range and originate from different areas of
the engine. Such events in ICE could be knocking,
misfires, or injection problems. Using these methods,
more mechanical events that influence the vibroacous-
tic behavior of the engine can be captured in a single
measurement. On the other hand, misfires produce
structure-borne noise, which means that vibration
signals are effective for detecting such failures as well.
For purely airborne noise, the SPL signal is relevant
for: turbocharger, ventilation fan, or exhaust system;
however, for mechanical malfunctions, which are
structure-borne transmitted, the fault must be in
advanced stage to be detectable by acoustic signals.
Additionally, the use of transducers allows for targeted
examination of sub-components of the ICE, depending
on their positioning.
Time domain analysis focuses on observing the

shape of the time signal. The information that the time
domain contains can be described by the above men-
tioned statistical single values. While these values are
sufficient for detecting malfunctions, they are not ef-
fective for localizing failures. To use these values as
decision-making criteria in automated diagnostic sys-
tem, the time signal must be insensible to background
noise and should not contain unnecessary information.
The signal-to-noise ratio can be maximized by apply-
ing frequency band filters to the time signal.
The analysis can also be performed in the frequency

domain, where distinct frequency peaks and harmonics
correspond to different components. For this purpose,
FFT is applied, revealing the frequencies of various
events with different energy content. This algorithm
is effective only for cyclo-stationary signals, helping to
understand the cause of failure and providing reliable
information for condition monitoring and diagnostic
activities.
As a summary, the authors recommend performing

time-frequency analysis when the nature of the fault is
impulsive, with the consideration of the level of inves-
tigation and computational efforts required. For con-
dition monitoring and failure detection, it is common
practice to combine scalar parameters with 2D analy-
sis. In this case, the scalar parameter serves as input
for the decision-making algorithm, while the latter is
a visual representation for the user. It is important
to note that the scalar value must contain all the in-
formation stored in the 2D map to ensure accurate
diagnostics.
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2. Measurement arrangement

Based on our experience and the suggestions of the
above-mentioned authors, we performed a test series
on a real vehicle. The vehicle was a first-generation
Ford Focus passenger car (1998 model; front-wheel
drive, 5-speed manual transmission) with a 1.6 liter,
4-cylinder, four-stroke naturally aspirated petrol en-
gine. For data collection, a 4-channel Brüel & Kjaer
Photon+ DAQ system was connected through USB to
a notebook. The notebook itself was powered by its
built-in battery, which helped eliminate the potential
interference from the 50 Hz AC mains.
During the measurements, an easy installation of

the sensors (accelerometers and a microphone) without
dismantling the car was a key requirement. This was
based on the general requirement of workshop repair
personnel, to avoid excessive disassembly for a simple
test. To this end, one uniaxial acceleration sensor was
placed on the right front side of the car body, and an-
other was positioned on the connection bolt head be-
tween engine block and the gearbox housing (Fig. 1).
Additionally, a condenser microphone was placed at
the front passenger’s head level. The measurements
were repeated several times at idle speed with en-
gine speeds of 1000 rpm, 2000 rpm, 3000 rpm, and
4000 rpm, all without load. Furthermore, noise and vi-
bration were measured in accelerated mode under par-
tial open throttle (POT) conditions during a run-up
and run-down cycle from 1000 rpm to 5000 rpm and
back to 1000 rpm. The length of the run-up and run-
down time was controlled by the driver using the gas
pedal. During the measurements, the coolant temper-
ature was monitored via the onboard coolant tempera-
ture gauge, and it was kept around 90 ○C operat-
ing temperature during the tests. The acquired raw
time signal was later post-processed with the help of
Artemis Suite noise evaluation software.
To create a faulty condition in the engine, the op-

eration of one of the four cylinders was eliminated by

Fig. 2. Gearbox time history at ramp speed of 1500 rpm–4200 rpm.

Fig. 1. Sensor positions.

disabling the ignition in cylinder 1 (on the side of the
timing drive). The effect of the misfire was clearly no-
ticeable by ear in the immediate vicinity of the car. The
goal of the measurements was to analyze the vibration
behavior of the engine in the presence of a misfire fault.
Based on this analysis, the potential for detecting and
localizing failures should be investigated.

3. Analysis

In the course of the analysis, the raw time signals
were post-processed by the FFT algorithm. The pur-
pose of the analysis was to find acoustic patterns which
may refer to a malfunctioned part in spectrums and
spectrograms.
Initially, the time signals were analyzed. We can

state that the microphone signal recorded during the
run-up tests provided more promising outputs from
a diagnostic perspective, since time domain signal ob-
tained from the microphone’s measurement showed
better separation (Fig. 3) in sound pressure between
healthy (blue) and faulty (red) conditions, compared
to the acceleration signal recorded on the gearbox
(Fig. 2).
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Fig. 3. Microphone time history at ramp speed of 1500 rpm–5000 rpm (POT).

In Fig. 3, the form of the acoustic signal is charac-
terized by the components directed toward the passen-
ger’s seat, with different frequency-dependent damping
properties. The constant-speed measurements do not
seem to be very useful for distinguishing failure modes.
However, an interesting effect is observable, especially
at higher rotational speed and is evident only in the
microphone signal, see Fig. 4.
The shape of the time signal shows a very slow,

pure sinusoidal, strong modulation (1.5 Hz–2 Hz). This
modulation effect becomes stronger when the engine is
misfiring. In our opinion, it is caused by fluctuations
in the engine crankshaft’s rotational speed, as one can
see in Fig. 5. This effect can be explained by differ-
ent cylinder pressures caused by the misfire. However,
it is important to note that combustion engines have
a certain speed fluctuation, unlike electric motors. The
rpm signal (Fig. 5) was created with an rpm genera-
tor, which is a built-in function in the noise evaluator
software.

Fig. 4. Microphone time history at constant speed of 4000 rpm.

Fig. 5. Rpm curves at constant 4000 rpm derived from the microphone’s signal.

The time interval between the distinct peaks is
around 0.0075 seconds, which corresponds to a calcu-
lated frequency of 133.33 Hz. This is the ignition fre-
quency at 4000 rpm (Fig. 4), which can be calculated
for a 4-stroke internal combustion engine using the fol-
lowing formula:

fignition = 1

2
⋅
rpm

60
⋅ cylinders [Hz], (1)

where rpm is the motor crankshaft speed in [1/min],
and “cylinders” refers to the number of cylinders (four
in this case) and it is divided by two, since two ignition
is required to rotate the crankshaft 360○ as two cylin-
ders move together at the same time. As the engine
construction is fixed, this frequency depends only on
the rotational speed.
The motor frequency can be easily calculated as

fmotor = rpm

60
[Hz]. (2)
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The camshaft is connected to the crankshaft
through a belt drive. This shaft activates the cylinders’
intake and exhaust valves, thus controlling the com-
bustion process. The transmission ratio between the
shafts is usually 2:1, which means that the camshaft’s
rotation speed is half of the motor shaft. Therefore,
the camshaft frequency is

fcamshaft = rpm/2
60

[Hz], (3)

which is the same frequency as the motor 0.5th order.
It is observable in the spectrogram of every sensor,
but the best representation of the failure can be de-
rived from the microphone’s signal. Table 1 presents
the first-order fundamental frequencies of the motor
at different speeds for comparison in the analysis.

Table 1. Fundamental frequencies of the engine [Hz].

2000 rpm 3000 rpm 5000 rpm

Crank frequency 33.33 50 83.33

Camshaft frequency 16.66 25 41.66

Ignition frequency 66.67 100 166.67

The ignition frequency is recognizable in both
healthy and faulty cases. It means that even under
normal conditions, the ignition phenomena character-
ize the vibration behavior of the motor. Since the time
signal during the ramp speed measurements can visu-
alize the problem, single statistical values – such as
root mean square (RMS), crest factor, standard devia-
tion, kurtosis, etc., should show a high deviation factor
between the two conditions. The RMS value of a given
set of discrete data points can be calculated by the
following formula:

RMS =
√

x2
1 + x

2
2 + x

2
3 + ... + x

2
n

n
. (4)

First, the data points are squared, then the average
of all the squared values is taken. After that, the square
root of the average is calculated. This process tells us
how much energy is contained in the waveform.
The skewness shows the asymmetry of a distribu-

tion. If the skewness value is zero, the distribution is
symmetrical. A normal distribution has a zero skew.
The easiest method to check the skewness is to plot
the data on a histogram. If the distribution has right
(positive) skew, it means the distribution is shifted to
the right relative to the axis of symmetry. Conversely,
in the case of left (negative) skew, the distribution is
longer on the opposite side (Turney, 2022). The skew-
ness values obtained from the gearbox acceleration sen-
sor and the microphone signal show that the skewness
value is negative, while the sensors on the car body
yield positive values. The equation for skewness is as
follows:

Skewness = n(n − 1)(n − 2)∑(xi − x

s
)3 . (5)

The mean value was calculated with the following
equation:

Mean = x1 + x2 + x3 + ... + xn

n
. (6)

The standard deviation is a measure of the spread
around the mean value. A low standard deviation
means the data are clustered around the mean, while
a high standard deviation indicates data are more
spread out. The formula used to calculate standard
deviation is

Standard deviation =
√
∑(xi − x)2

n − 2
. (7)

The peak amplitude derived from the RMS is given by:

Peak = 2√
2
RMS. (8)

The peak-to-peak amplitude is the difference be-
tween the highest positive and the lowest negative am-
plitude in the waveform:

Peak to peak amp. =max{xi} −min{xi} . (9)

The crest factor gives the ratio of the peak values to
the effective value, showing how prominent the peaks
are in the waveform. A crest factor of 1 indicates no
peaks, while a higher crest factor indicates peaks. The
crest factor is calculated as

Crest factor = Peak

RMS
. (10)

The statistical parameter called kurtosis is a mea-
sure of the “peakedness” of a random signal:

Kurtosis = { n(n + 1)(n − 1)(n − 2)(n − 3)∑(xi − x

s
)4}

−
3(n − 1)2(n − 2)(n − 3) . (11)

Unfortunately, the statistical single values of the
microphone’s time signal do not provide adequate dif-
ference between the bad and good conditions (Fig. 6).
The same statement is true for the crest factor val-

ues: the failure shows no separation in this parame-
ter compared to the original condition (Fig. 7). How-
ever, in certain engine speed ranges (around 2700 rpm
and above 4000 rpm) the kurtosis parameter indicates
a small deviation between the conditions (Fig. 8).
Nevertheless, the result is not conclusive due to the

low distinction of the individual overall values. To bet-
ter understand the malfunction, joint time-frequency
(FFT vs. time) analysis was performed at both con-
stant and ramp speeds. Joint analysis is the repre-
sentation of series of Fourier transformations over dif-
ferent time periods (or at different rotation speeds),
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Fig. 6. Time domain statistical single values derived from the microphone’s signal on 4000 rpm.
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Fig. 7. Crest factor in the function of time derived from the microphone’s signal at 4000 rpm.
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Fig. 8. Kurtosis as a function of engine rotation speed derived from the microphone’s ramp signal.

mapping a 1D time domain into a 2D diagram that
shows energy (color scale) versus time (x-axis) and fre-
quency (y-axis). This analysis helps to understand how
the energy content of frequencies varies over time or
as a function of rotation speed. As shown in Fig. 9, it
is clear that the sound pressure level increases at spe-
cific motor frequencies. The sound pressure at the igni-
tion frequency is a dominant contributor to the overall
sound pressure level inside the car, even in healthy con-

dition, where only vibrations below 2000 Hz are signif-
icant. The dominance of the ignition frequency is ob-
servable at the other measurement points as well. The
motor subharmonics create abnormal colormap picture
in the case of a misfire issue. Among the topological
integer motor frequencies, the motor half-orders (sub-
harmonics) appear with higher energy. This leads to
the assumption that the motor 0.5th order (17.58 Hz)
causes modulation in the signal. One possible reason
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Fig. 9. Microphone spectrogram (10 Hz–2000 Hz) in healthy (left) and faulty (right)
conditions during ramp speed (1500 rpm–5000 rpm).

for this is that the engine crankshaft rotation becomes,
let us say, more unbalanced due to the misfire in cy-
linder 1.
Rather than stating that the crankshaft itself is

unbalanced, it is more accurate to say that, as a con-
sequence of the misfire, the shaft rotation speed fluctu-
ates, causing uneven running. This hypothesis is sup-
ported by Cavina et al. (2002), who claim that misfire
results in a sudden lack of torque on the crankshaft,
leading to damped torsional vibrations at representa-
tive frequencies of the engine.
The joint analysis of the acoustic signal made pos-

sible to determine the location of the malfunction, as
we were able identify frequencies that correspond to
the engine crankshaft 0.5th, 1st, 1.5th, 2.5th, and 3rd,
as well as other higher-orders. However, one can de-

Fig. 10. Microphone spectrogram (10 Hz–2000 Hz) in healthy (left) and faulty (right) conditions at 2000 rpm.

tect with a high degree of certainty that the failure
is coming from the motor by simply listening to the
sound of the car. Unfortunately, resonance appears in
the joint time-frequency analysis in a similar manner
to harmonic frequencies at constant speed. Due to this
fact, it is worth considering the spectrogram when the
rotation speed varies over time, e.g., in ramped speed
measurements.
One can see that there is a resonance at 50 Hz,

which increases the sound pressure level of the motor’s
first order, when it operates between 2400 rpm–
3100 rpm (Fig. 10). The order shapes demonstrate
how the motor speed changes over time: the motor
accelerates over 30 seconds, reaching a maximum
speed of 5000 rpm during the run-up, and then slows
down to 1500 rpm during the run-down phase. This
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Fig. 11. Microphone’s spectrum comparison at 3000 rpm (logarithmic abscissa).
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Fig. 12. Microphone’s modulation spectrum comparison at 3000 rpm.

method reveals the resonance frequencies without mis-
take based on excitation and helps to avoid misun-
derstandings during analysis. The time domain can be
transformed into the frequency domain with FFT. The
energy content of the microphone signal in terms of fre-
quencies is represented in the spectrum at 3000 rpm
motor speed, as shown in Fig. 11. This gives a slight
correlation with the fault, though the correlation is
even weaker at lower speeds below 3000 rpm. Based
on the spectrum, it is difficult to identify the problem.
There is a deviation in the frequency range of 1 kHz–
10 kHz, due to assumed amplitude modulations. While
the operation of the misfire is visible in the spectrum,
it is challenging to identify a specific frequency compo-
nent related to a particular part of the engine. Based
on the aforementioned analysis, we reasonably assume
that – based on the FFT vs. time analysis as well – that
there is amplitude modulation in the signal. Since the
FFT vs. time diagram shows that a wide frequency
range of the signal is affected, it makes sense to check
the modulation spectrum.
The modulation spectrum provides overview of the

modulation frequencies across the entire or a selected
frequency range. The modulation spectrum shown
in Fig. 12 includes the frequency range of 2.8 kHz–
5.6 kHz. The envelope low-pass frequency is 1000 Hz,
so the frequencies that modulate the signal appear up
to 1000 Hz. The analysis reveals that the half-order
motor frequency plays a significant role in the modu-
lation. Specifically, the modulation frequency is 25 Hz,
which is half of the crankshaft’s rotation frequency.

4. Discussion

In this paper, the misfire event in a motor vehi-
cle was studied with vibroacoustic methods. The mis-
fire caused an unbalanced, or more accurately, uneven
rotation of the crankshaft. By analyzing the micro-
phone’s time-domain signal, one can make a clear dis-
tinction between healthy and faulty conditions of the
engine. A short frequency calculation analysis showed
that the ignition plays a main role in the vibration be-
havior of both the car body and passenger area. The
FFT spectrum also indicates the presence of the fail-
ure, similarly to the time-domain signal, but tracking
the frequency components in the spectrum does not
allow for precise localization of the failure.
The most useful method was the FFT vs. time

analysis, where the topological integer and odd-order
engine showed increased energy in the faulty condi-
tion. The outcome of the modulation spectrum con-
firmed that there is subharmonic motor order modu-
lation in the spectra. This result allowed us to localize
the place of the noise problem inside the car. However,
even without advanced analysis, a trained ear could
identify that the issue likely originates from the engine.
In summary, with the help of vibroacoustic meth-

ods the noise problem could be spotted inside a ve-
hicle. However, with the current measurement points
and tools, it is possible to determine in which cylinder
the misfire occurs. This could be potentially achieved
by placing more acceleration sensors on the car body,
for example, on the left front side. Based on the re-
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sults, the possible location of the noise problem can be
narrowed down; however, the type of the malfunction
is not clearly identified.
The reason behind this is that we cannot be sure

that only a misfire failure causes the observed acoustic
patterns and changes in the spectrograms. It is not the
misfire itself, but rather its consequences or, more pre-
cisely, the complete absence of the stroke in cylinder 1
(resulting in uneven running of the crankshaft) that
determines the vibration behavior of the engine. The
shafts are statically and dynamically balanced dur-
ing manufacturing to account for the moving masses
in the crank mechanism, ensuring they do not gen-
erate significant radial vibrations. Due to the uneven
running of the shaft, torsional vibration occurs, but
these were not measured. However, vertical and hor-
izontal vibrations can originate from gas forces and
mass forces, although the cylinders were not modi-
fied. At this point, the unevenness of the gas forces
must be considered, because in the first cylinder only
the maximum pressure (2 MPa–3 MPa) ,correspond-
ing to the compression cycle, prevails at the end of
the combustion cycle. In contrast, in the other three
cylinders, a higher pressure (8 MPa–10 MPa) derived
from ignition, is present at the beginning of work cycle.
This difference in cylinder pressure causes ab-

normal torque behavior, which is why orders with
odd numbers and subharmonic orders are present in
the result. Practically, the tested engine operates as
a 3-cylinder engine where odd orders such as the 1.5th,
3rd, etc., and subharmonics appear. However, despite
of this, the four pistons are moving, so integer order
numbers (1st, 2nd, 4th, etc.) are also present in the
spectrograms. The acoustical pattern of this failure is
not unique; other malfunctions that affect crankshaft
rotation can trigger the same vibroacoustic behavior.
This means that joint analysis alone is not capable
to identify the misfire; other non-vibroacoustic mea-
surements are essential for exclusively detecting the
problem.

5. Further plans

The low-frequency motor modulation can be linked
to psychoacoustical parameters such as fluctuation
strength and roughness. These parameters could possi-
bly serve as good indicators of this type of failure, but
to justify the relevance of this idea further investiga-
tion is necessary. As a continuation of the research, it
would be worth to examine how the vibration behavior
of the vehicle changes when more than one cylinder is
misfiring. Furthermore, we are interested in examining

other malfunctions, e.g., valve clearance defect. The
ultimate goal is to pinpoint the misfiring cylinder and
distinguish this failure mode from other malfunctions
using only vibroacoustic tools.
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1. Introduction

Vehicle noise is generated by three main sources:
powertrain noise, tyre/road noise, and aerodynamic
noise. The first source depends on factors related to
the load and speed of the engine. The noise level varies
with the road gradient, vehicle, speed, and the type of
vehicle. Driving style also has a significant influence.
Similarly, tyre/road noise is influenced by different fac-
tors. In this case, the noise level depends mainly on
the type of road surface and tyres. Tyre/road noise in-
creases with vehicle speed (Berge, 2023; Sandberg,
Ejsmont, 2002). It is the dominant source of noise at
higher speeds, but can still be heard at lower speeds.

This is demonstrated by research on the Swiss model
sonROAD18 (Heutschi, Locher, 2018), as presented
in Table 1. Aerodynamic noise, created by airflow dis-

Table 1. Contribution of tyre/road noise at different

vehicle speeds (Heutschi, Locher, 2018).

Speed [km/h] Percentage of tyre/road noise [%]

30 62.5

40 78.5

50 86.6

60 90.9

80 94.8

100 96.1
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turbance, is also a significant component of traffic road
noise at higher speeds.
Tyre/road noise is the most significant contrib-

utor to traffic noise, making low-noise surfaces one
of the most effective noise reduction measures (Bo-
hatkiewicz, Hałucha, 2017; Bohatkiewicz et al.,
2022). This noise can also be effectively reduced by
using low-noise tyres on vehicles. The proportion of
tyre/road noise will increase as the number of electric
vehicles increases in traffic flow, as powertrain noise
is extremely low at low speeds in electric cars, making
tyre/road noise the dominant source. This will be espe-
cially important in urban conditions (Hałucha et al.,
2023).
The combination of quieter tyres and quieter pave-

ments is the most effective measure to reduce noise
in road surroundings (Berge et al., 2022; Berge,
2023). To make such solutions feasible, it is neces-
sary to ensure that consumers have access to infor-
mation on the noise levels of car tyres. Tyre labels
could serve as a valuable tool for this purpose. The
European Parliament and the Council introduced Di-
rective on tyre labelling (European Union, 2009) aimed
at increasing consumer awareness of car tyres in terms
of three main parameters: wet grip, rolling resistance
and rolling sound. The new directive (European Union,
2020) introduced several changes, including the cur-
rent form of the label. The method used to determine
the noise level subsequently put on the tyre label is
described in Regulation No. 117 (United Nations Eco-
nomic Commission for Europe [UN/ECE], 2011). This
method involves measuring noise during a controlled
pass-by of a test vehicle equipped with the test tyres.
These tests are conducted on a specially designed sur-
face defined in (International Standard Organisation
[ISO], 2021).
Although tyre labels have been on the market

for several years, there remains significant uncertainty
in the results of tyre labelling (Sandberg, Mio-
duszewski, 2022). This uncertainty is mainly influ-
enced by the test tyres themselves, variations in the
noise properties of ISO surfaces, and the influence of
the test vehicle and meteorological conditions, among
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Fig. 1. Importance of specific information on tyre labels for consumers – percentage of respondents who consider

the information very important or important (Bühlmann et al., 2022; Viegand, 2016).

others. This issue is described in the STEER project
(strengthening the effect of quieter tyres on European
roads), which was commissioned by CEDR in 2020
and finalised in 2022 (Bühlmann et al., 2022). The
project estimated that the uncertainty for C1 (pas-
senger car tyres) and C2 (van and light truck tyres)
ranges from 1.4 dB to 2.0 dB, expressed as standard
deviations. Such large uncertainties make the labelled
data unreliable.
Despite these uncertainties, the tyre labelling sys-

tem remains an important tool for consumers to select
the best tyres. It should be emphasised that external
noise is not the decisive criterion for drivers, but it is
one of the factors considered (Bühlmann et al., 2022).
A survey conducted among consumers in Finland,
France, Germany, Italy, Sweden, and the UK (Vie-
gand, 2016) confirmed this fact. The results of this
survey are shown in Fig. 1.
Rolling noise is the fourth most important criterion

for consumers. The most important criteria for them
are wet grip and price. This is also confirmed by the
results of survey conducted by Sandberg (2008), in
which consumers indicated that wet grip was the most
important factor in selecting tyres. It is also worth not-
ing that the price of tyres is not correlated with their
noise level (Dittrich et al., 2015; Sandberg, 2008).
Therefore, the decision to choose quieter tyres does
not directly involve additional costs for consumers.
This is an important argument in favour of select-
ing lower-noise tyres. Additionally, quieter tyres con-
tribute to lower noise levels inside the vehicle, although
the correlation in this case is not so high (Bühlmann
et al., 2022).
Reducing traffic noise through the use of low-noise

tyres can be an effective protection measure. However,
this requires ongoing and consistent awareness of the
harmful impact of tyre/road noise on the population of
the European Union. This awareness is closely linked
to the efforts of non-governmental organizations
(NGOs) and legislative actions taken by governments
and road authorities. These measures could include:
reduction or elimination of taxes on the purchase of
the quietest tyres, allowing only vehicles equipped with
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quieter tyres to enter selected urban areas (using ap-
propriate chips) or requiring the use of quiet tyres in
public administration fleets (Bühlmann et al., 2022).
The tyre industry is also one of the major stake-

holders in influencing the use of quieter tyres by con-
sumers. Achieving this would require car tyre manu-
facturers to enter into an agreement or letter of in-
tent to promote the sale of increasingly quieter tyres,
while gradually withdrawing noisier tyres from sale.
The STEER project (Bühlmann et al., 2022) pro-
poses that such an agreement should aim to ensure
that the total noise level of of all tyres sold does not
exceed a predetermined threshold noise limit. Addi-
tionally, possible scenarios for reducing environmental
noise were proposed in the ELANORE project (Bo-
hatkiewicz et al., 2024).

2. Methodology and input data

First, sound exposure level (SEL) measurements
were conducted on both the ISO test track and traf-
ficked sections of roads. A class 1 sound level meter
was used, with the FAST time constant and a type
A-weighting filter. Test results were stored in the in-
strument’s memory at 1 s intervals. The sound level
meter was calibrated with a class 1 acoustic calibra-
tor before and after the measurements. The range
of measurements covered four selected car tyres with
theoretically different noise levels – their label data
were: 67 dB(A), 69 dB(A), 71 dB(A), and 74 dB(A).

Table 2. Traffic volume, composition, and vehicle speed on various types of roads based on NORD 2000 model
assumptions (Kragh et al., 2006).

Traffic scenario Description Traffic volume [V/d]
Composition [%] Speed [km/h]

Cat. 1 Cat. 2 Cat. 3 Cat. 1 Cat. 2 Cat. 3

A Motorway 20 000 85 5 10 120 90 90

B Urban motorway 30 000 85 5 10 90 85 85

C Main road 15 000 85 10 5 85 75 75

D Urban road 20 000 90 5 5 70 65 65

E Feeder road in residential area 10 000 95 5 0 50 50 50

F Residential road 5000 100 0 0 35 35 35

Table 3. Ranking of summer tyres approved for sale in 2021 in Switzerland (Bühlmann et al., 2022).

Group
Sound level
range [dB(A)]

Percentage share of tyres
on the market [%]

Noise level
on the label [dB(A)]

Total number
of tyres (n)

Group 1 66–67 2.6
66 11

67 168

Group 2 68–69 19.7
68 425

69 967

Group 3 70–72 69.4

70 1881

71 1695

72 1326

Group 4 73–75 8.3

73 451

74 57

75 81

Source of data: Touring Club Switzerland, financed by the FOEN, https://www.bafu.admin.ch/bafu/en/home.html.

By comparing these values and the results obtained on
the ISO tracks and trafficked roads, it was possible to
identify the weaknesses of the procedure described in
Regulation No. 117 (UN/ECE, 2011), in relation to en-
vironmental noise. To visualise these variabilities, the
equivalent sound level (Leq) for a sample road section
was calculated.
The next step was to calculate the traffic noise

level, with a focus on tyre/road noise. This was
done using the CNOSSOS-EU model, which was cal-
ibrated using the measurement results, as described
in detail in the later part of this section (see Eqs. (3)
and (4)). Subsequently, traffic noise was calculated for
different types of roads and road surroundings.
To determine the environmental impact of tyre

noise (based on labelled data), calculations were made
for selected traffic scenarios, using the information pro-
vided in the Nordic calculation model NORD 2000
(Kragh et al., 2006). Three vehicle categories are as-
sumed in this model: light – cat. 1, medium – cat. 2,
and heavy – cat. 3. Six scenarios were selected for fur-
ther analysis, as shown in Table 2.
Then, an attempt was made to estimate the noise

levels of the tyres currently used by drivers. For this
purpose, the data presented in the STEER project re-
port (Bühlmann et al., 2022) were used, with the per-
mission of the Swiss Federal Office for the Environment
(FOEN). This is a database containing the C1 tyres
approved for sale in Switzerland in 2021. Table 3 shows
the number of tyres with a given sound level on the
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label that were approved for sale. It should be empha-
sised that these figures relate to summer tyres only.
The data were aggregated into four groups with differ-
ent noise levels.
With the data presented in Table 3, the average

sound level was calculated using weighted logarithmic
averaging:

Lavg = 10 ⋅ log
n∑
i=1

(100.1⋅Li ⋅ ni)
n

[dB(A)], (1)

where Lavg – weighted average sound level [dB(A)],
i – sound level value marked on the tyre label [dB(A)],
Li – sound level determined for a tyre with noise value
i on the label [dB(A)], ni – number of tyres with noise
values i on the label, n – total number of tyres.
Under these assumptions, the calculated average

sound level was 70.8 dB(A). This value was used as
the reference level. Then, four different scenarios for
improving the acoustic conditions in the road sur-
roundings were identified. One of these scenarios in-
volves withdrawing the noisiest tyres from the market.
It is worth noting that some tyres currently available
have sound levels that are above or equal to the limits
(Bühlmann et al., 2022). To determine the impact of
this measure, the weighted average sound level was re-
calculated, considering only those tyres with a sound
level that does not exceed the permissible limits. In this
case, the sound level is reduced from 70.8 dB(A) to
70.3 dB(A).
A greater reduction in traffic road noise could be

achieved if tyres with noise levels equal to the existing
limits were also withdrawn from the market. However,
this could be resisted by manufacturers and the auto-
motive industry. After recalculating the weighted av-
erage sound level, a value of 69.7 dB(A) was obtained,
indicating a noise reduction of 1.1 dB compared to the
current situation.
To achieve a greater reduction, it is necessary to

take measures to promote quieter tyres among vehi-
cle owners. It was assumed that tyres with noise lev-
els above or equal to the limits would be withdrawn
from sale, and the percentage of quieter tyres would
increase at the expense of noisier tyres. Two scenarios
were assumed. The first was referred to as the sustain-
able scenario, and the second, the optimistic scenario.
The percentages of the individual tyre groups in these
scenarios are shown in Table 4.
In the first scenario (sustainable), the weighted av-

erage sound level was 69.1 dB(A), resulting in a noise
reduction of 1.7 dB. In the optimistic scenario, the av-
erage level was 68.5 dB(A). In this case, a reduction in
noise level was 2.4 dB.
It should be emphasised that these results were

based on sound level calculations, which show the ef-
fect of the noise reduction, but do not account for the
variability in traffic parameters (such as traffic vol-

Table 4. Percentage of tyres for each group under the sus-
tainable and optimistic scenarios.

Group

Percentage share
of tyres

in sustainable
scenario [%]

Percentage share
of tyres

in optimistic
scenario [%]

Group 1
[66 dB(A) – 67 dB(A)]

10 15

Group 2
[68 dB(A) – 69 dB(A)]

55 65

Group 3
[70 dB(A) – 72 dB(A)]

35 20

Group 4
[73 dB(A) – 75 dB(A)]

0 0

ume, vehicle speeds, and traffic composition), which
affect noise levels. The impact of these parameters
was considered in the noise modeling carried out with
the CNOSSOS-EU model. In the first step, a cali-
bration of the model was performed for light vehicles
(cat. 1) by incorporating an additional factor. Calibra-
tion was not conducted for the other vehicle categories
(medium and heavy vehicles), because they were not
the object of the study.
To calibrate the model to account for the influence

of tyre noise, the CNOSSOS-EU relationship for rolling
sound power level calculations was used. For this pur-
pose, light vehicles were assumed to move at a speed
vm of 80 km/h (the reference speed for determining
the labelled sound level for C1 tyres). An additional
correction factor ∆Ltyre was included in the equation,
which determines the effect of the noise level of the car
tyres, as shown in the equation:

LWR,i,m = AR,i,m +BR,i,m ⋅ log ( vm
vref
)

+∆LWR,i,m +∆Ltyre [dB(A)], (2)

where LWR,i,m – rolling sound power level [dB(A)],
AR,i,m and BR,i,m – coefficients given in the fre-
quency bands for each vehicle category and reference
speed [–], vm – average speed of vehicles in category m
(equal to 80 km/h) [km/h], vref – reference speed,
equal to 70 km/h, ∆LWR,i,m – sum of the correction
factors for rolling noise emissions in specific road condi-
tions or for specific vehicles (influence of road sur-
face, studded tyres, traffic lights or junction, tempera-
ture) [dB(A)],∆Ltyre – correction factor for the impact
of tyre noise [dB(A)].
The ∆Ltyre factor in the CNOSSOS-EU model can

be assumed for each 1/1 octave frequency band sepa-
rately (from 63 Hz to 8000 Hz). In this study, the same
value is used for each sound frequency. This assump-
tion does not significantly affect the calculation results.
Tyre noise measurements (made using the proce-

dure defined in Regulation No. 117 (UN/ECE, 2011))
and CNOSSOS-EU algorithms consider two sources of
noise: rolling noise and powertrain noise. At speeds
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of 70 km/h to 90 km/h, at which the C1 tyre tests are
conducted, the contribution from powertrain noise is
small (see Table 1), but it is still present. Therefore, the
measurement results include both tyre/road noise and
powertrain noise. Similarly, the CNOSSOS-EU model
includes both sound sources, as expressed in the fol-
lowing model algorithm:

LW,i,m(vm) = 10 ⋅ log (10LWR,i,m (vm)

10

+10
LWP,i,m (vm)

10 ) [dB(A)/m], (3)

where LW,i,m – directional sound power of one vehi-
cle in category m in the frequency range i (125 Hz to
4 kHz) [dB(A)], LWR,i,m – rolling sound power level
[dB(A)], LWP,i,m – sound power level of the propul-
sion unit noise [dB(A)], vm – average speed of vehicles
in category m [km/h].
The calibration of the CNOSSOS-EU model in-

volved adjusting the correction factor ∆Ltyre in such
a way that the directional sound power for cat. 1 ve-
hicles across the entire frequency range changed by ex-
actly the amount indicated by the results of the Reg-
ulation No. 117 tests (UN/ECE, 2011). This relation-
ship was calculated by regression analysis and is as
follows:

∆LW,1(vm=80 km/h) = 0.70⋅∆Ltyre+0.06 [dB(A)], (4)
where ∆LW,1 – variation in the sound power of cat. 1
vehicles across the entire frequency range [dB(A)], vm –
average speed of cat. 1 vehicles, equal to 80 km/h,
∆Ltyre – correction factor for the impact of tyre
noise [dB(A)].
These relationships were obtained using the

CNOSSOS-EU method, but they can also be cal-
culated using other methods. The results obtained
with contemporary models do not differ significantly
(Hałucha, 2023), so the ∆Ltyre factor from the
CNOSSOS-EU model can also be used directly for
other models.
Next, a cost-benefit analysis for selected EU coun-

tries was conducted. Noise exposure data for the pop-
ulation, derived from the strategic noise maps, were
used for the analyses. These data were taken from (Eu-
ropean Environment Agency [EEA], 2024).
First, the number of people exposed to day-

evening-night noise (LDEN) levels greater than
55 dB(A) was calculated. The data reported by EU
member states after the 2016 strategic noise mapping
was used as the baseline scenario. Next, it was calcu-
lated how many people would be exposed to the same
noise level after the introduction of the previously de-
scribed scenarios. It should be noted that the data pro-
vided by the EEA is divided into 5 dB intervals. The
first interval identifies the number of people exposed
to noise levels between 55 dB(A) – 59 dB(A), and the

last interval to noise levels greater than 75 dB(A). To
calculate the number of people exposed to noise within
each range after implementing the successive scenarios,
it was necessary to approximate the data to narrower
0.1 dB intervals. This approximation was done as ac-
curately as possible, however, the lack of knowledge
about the original distribution of people across the
0.1 dB ranges introduces additional uncertainty into
the analyses. Nevertheless, this uncertainty is assumed
to be negligible.
The number of people exposed to LDEN levels

greater than 55 dB(A) was calculated, and the finan-
cial benefits of reducing the population exposed to
noise were then determined. For this purpose, the en-
vironmental costs described in the Handbook on the
External Costs of Transport (European Commission,
2020) were used. These costs are related to the annoy-
ance experienced by people exposed to specific noise
ranges and the associated health effects. The costs were
estimated for 2016, so it is expected that the financial
results will be slightly underestimated considering the
current situation (2024), particularly due to the high
inflation experienced in most EU countries.

3. Impact of surface on tyre labelling

in the environmental noise context

One of the main sources of uncertainty in the re-
sults of tyre labelling (and often a reason the data
on labels may be unrealistic) is the surface on which
the tests are conducted as specified in accordance
with Regulation No. 117 (Sandberg,Mioduszewski,
2022). It is a specific surface (very smooth) meeting the
requirements of the ISO (2021) standard. This issue be-
comes evident when comparing measurement results
for four selected car tyres. First, the results of tests
on the ISO test tracks are presented and compared
with the data on the labels, which is shown in Table 5.
Measurements were taken on four different test

tracks, with tyres 1 and 2 being tested on only
two tracks due to unfavourable meteorological condi-
tions that prevented additional tests. The procedure
used was described in Regulation No. 117 (UN/ECE,
2011), with all requirements met. The test car was
driven at speeds ranging from 70 km/h to 90 km/h.
All pass-by noise levels were measured using a sound
analyser, two microphones with preamplifiers, a lap-
top computer, an external radar and a light barrier,
all of which held valid calibration certificates.
The average sound level calculated using the data

on the labels differs from the sound level derived from
real measurements on the ISO test tracks by just
0.3 dB, which is not significant. However, the variabil-
ity between individual tyres is much more substantial,
with differences of up to 3.0 dB for tyres 1, 2, and 4.
This shows how unrealistic the data on the labels are.
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Table 5. Comparison of the A-weighted average sound level calculated from the label data and the results of measurements
on the ISO test tracks.

Tyre
Label values
[dB(A)]

Sound level measured
on the ISO test tracks

[dB(A)]

Calculated
label value
[dB(A)]

Difference between label
and calculated values

[dB]

Tyre 1 67 71.4 70 3

Tyre 2 69 73.6 72 3

Tyre 3 71 73.3 72 1

Tyre 4 74 72.9 71 −3

Weighted average
sound level

71.0 72.9 71.3 0.3

When using this labelled data for acoustic calculations,
it is important to be aware of the significant inaccu-
racies. This is shown in Fig. 2, which illustrates the
results of calculations based on both label data and
test data. The calculations were made for an example
motorway section (traffic scenario A) and expressed by
an equivalent sound level of 60 dB(A).

Fig. 2. Results of acoustic calculations using label data
(green) and measurement values (red).

These differences reflect the results of measure-
ments conducted strictly according to the Regulation
No. 117 procedure on a surface that meets the re-
quirements of ISO 10844 (UN/ECE, 2011). This sur-
face has significantly different acoustic characteristics
from those found on trafficked roads. As a result, this
differences also impact the sound levels in the envi-
ronment. This can be observed by comparing the re-
sults of measurements made for the same tyres on
ISO tracks and typical road surfaces used on trafficked
roads (MA11, SMA8, SMA11, SMA16, EACC). These
data are shown in Table 6.
The variability range of weighted average sound

level from 2.1 dB to 4.2 dB is very high. This can be
also seen in Fig. 3, which shows the results of equiv-
alent sound level calculations for the same section of
motorway.

Table 6. Comparison of noise levels measured on ISO
and typical road surfaces.

Tyre
Sound level measured according
to Regulation No. 117 [dB(A)]

ISO MA11 SMA8 SMA11 SMA16 EACC

Tyre 1 71.4 74.6 75.0 76.5 77.7 76.7

Tyre 2 73.6 75.2 76.0 77.0 76.5 75.8

Tyre 3 73.3 75.3 76.4 77.0 76.4 76.3

Tyre 4 72.9 75.0 75.6 76.9 77.8 77.0

Weighted
average
sound level

72.9 75.0 75.8 76.9 77.1 76.5

Explanations:

– ISO: surface meeting the requirements of the ISO 10844
(UN/ECE, 2011);

– MA11: a Norwegian term for a “soft asphalt” / dense
surface with an 11 mm maximum chipping size designed
for low traffic volume;

– SMA8, SMA11, SMA16: stone mastic asphalt with max-
imum chipping sizes of 8 mm, 11 mm, and 16 mm, re-
spectively;

– EACC: exposed aggregate cement concrete.

Fig. 3. Comparison of noise levels measured on ISO surfaces
and typical road surfaces (black line – ISO, blue line –
MA11, green line – SMA8, red line – EACC, black dashed

line – SMA11, blue dash line – SMA16).

The sound level calculated for the ISO surface is
significantly lower than that for all other real surfaces.
The lowest variability is observed for MA11, though it
is not widely used (it is used in Norway on roads with
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very low traffic). Noise levels for the other surfaces,
especially for the SMA surfaces (used in many Euro-
pean countries), are much higher than those of the ISO
surface currently used for tyre labelling.
An additional problem is the varying ranking of

tyres depending on the road surface on which the tests
are conducted. For example, tyre 1 is quieter than
tyre 2 on the smoother surfaces (such as MA11, SMA8,
and SMA11), but noisier on rougher ones (such as
SMA16 and EACC) – see Table 6. For this reason, it
can be very difficult to choose tyres that consistently
produce the lowest noise levels on all surfaces. This
challenge would also arise if the reference surface for
tyre labelling were changed from the current ISO sur-
face to one of the real-world surfaces.

4. Results of acoustic calculations

and cost-benefit analyses for different noise

mitigation scenarios

First, it was calculated how the noise levels in the
surroundings of different road sections (A – motor-
ways, B – urban motorways, C – main roads, D – urban
roads, E – feeder roads, F – residential roads) would
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Fig. 5. Reduction in the equivalent sound level considering the promotion of quiet tyres in both the sustainable
and optimistic scenarios.

be affected by the withdrawal of tyres with noise levels
above the legal limit. The noise reduction varied from
0.1 dB up to 0.4 dB depending on the traffic scenario
(with the greatest reduction observed on motorways).
A greater improvement (from 0.3 dB up to 0.9 dB) was
found when tyres with noise levels equal to or above
the limit were withdrawn from the market. The results
of the calculations are shown in Fig. 4.
Further noise calculations considered the effects of

promotional activities aimed at encouraging vehicle
owners to choose quieter tyres (see Table 4). The re-
sults of these calculations are presented in Fig. 5.
These findings are also illustrated in Fig. 6, which

show the results of calculations for individual traffic
scenarios on selected road sections in Poland. It shows
the differences between the most optimistic scenario
(in purple) and the current situation where no actions
have been taken (depicted in red). For graphical repre-
sentation, an isophone of 60 dB(A) was used for traffic
scenarios A–E and 55 dB(A) for traffic scenarios F,
where the noise level in the road vicinity was below
60 dB(A).
The greatest reduction in noise is observed on mo-

torways, where vehicles travel at the highest speeds.
For other types of roads, the improvement is smaller
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a) b)

c) d)

e) f)

Fig. 6. Reduction in the equivalent sound level for traffic: a) case A – motorway; b) case B – urban motorway;
c) case C – main road; d) case D – urban road; e) case E – feeder road; f) case F – residential road.

and it depends on the speed of light vehicles and traf-
fic composition. While the reductions are generally
smaller than the measurement uncertainty of ±1.2 dB,
they still demonstrate the potential impact these mea-
sures can have on environmental noise.

A greater improvement is observed when tyres with
sound levels exceeding or equal to the permissible lim-
its are withdrawn from the market. In the case of mo-
torways, this reduction was almost 1 dB. From an
environmental point of view, this is a noticeable im-
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provement. For other types of roads, excluding resi-
dential roads, the noise reduction ranges from 0.5 dB
to 0.7 dB.
To achieve better results in reducing noise in the

road vicinity, further efforts are needed to promote
the use of quiet tyres by consumers. In an optimistic
scenario, the noise reduction could be significant (over
1.8 dB for motorways). For other roads, the noise re-
duction is significant, but still noticeable for those liv-
ing nearby. In all cases, except residential roads, the
noise reduction would be greater than 1.0 dB.
Based on the results of noise calculations and

the population exposed to noise levels greater than
55 dB(A), it was calculated how the tyre/road noise
reduction scenarios would improve the acoustic con-
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ditions in the road environment. These improvements
are shown in Fig. 7 for main roads in selected EU coun-
tries.
The most effective measures are those outlined

in the strategies, which include the withdrawal of the
noisiest tyres and the promotion of the quietest tyres.
In these cases, the reduction in the number of people
exposed to noise is significant and noticeable. The in-
troduction of the other strategies also yields a desired
effect, although not so high, but still measurable.
The financial benefits were calculated based on the

variability of the environmental costs in the baseline
scenario and the noise reduction scenarios. These ben-
efits are presented in Fig. 8 showing the gains for the
country concerned over a one-year period.
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The introduction of the analysed scenarios can
bring significant financial benefits. For the selected
countries, these benefits could amount, in optimistic
scenario, to almost e50 million for France, almost e40
million for Italy and more than e15 million for Poland.
It should be highlighted that these are benefits for
a one-year period, which will be proportionally mul-
tiplied in the long term.
The financial benefits were calculated for major

roads outside urban agglomerations. No less important
are the roads within cities, which were not included in
these analyses. In these cases, the noise reduction as-
sociated with the use of quiet tyres will be lower due
to the lower speeds of cars. However, an improvement
in acoustic conditions will still be observed in the sur-
roundings of main roads and motorways in cities. In the
ELANORE technical report (Bohatkiewicz et al.,
2024), financial benefits were also estimated for se-
lected cities. For example, the annual benefit for Rome
is almost e6 million, for Budapest it is more than e4.5
million, and for Prague it is more than e4 million per
one year.
Promoting quiet tyres to consumers also incurs

costs. At present, it is not possible to make a precise
estimate of these costs, because measures to promote
low-noise tyres can be implemented on different scales.
The necessary financial effort will depend on the scale
of the measures taken; however, the costs will certainly
be far lower than the financial benefits.

5. Summary

Decreasing the noise level of vehicle tyres is an
effective measure to improve environmental acoustic
conditions. This is especially important because there
is the increasing number of electric vehicles on the
road, for which tyre/road noise is the most important
source of sound. Encouraging consumers to use low-
noise tyres can lead to a considerable reduction in envi-
ronmental noise. However, it is essential that the data
on the labels must be accurate and reflect the noise
characteristics of tyres on surfaces commonly used on
roads.
The procedure described in Regulation No. 117

(UN/ECE, 2011) is currently used for tyre labelling.
However, it is characterised by high uncertainties due
to, e.g., the influence of the road surface on which the
tyres are tested (along with other factors not stud-
ied in the article, including variations in test tyres,
the influence of the test vehicle, meteorological condi-
tions, and more). The results of testing four selected
car tyres using this procedure indicated differences be-
tween the label data and the calculated values based
on measurements from the ISO test track. The vari-
ability of the weighted average sound level was 0.3 dB,
which is not a large difference. More importantly, the
differences for individual tyres, in some cases, reached

up to 3.0 dB. This shows the inaccuracy of the current
label data, which very often fail to reflect the real noise
level of the tyres.
The results of measurements and calculations show

that tyre noise levels vary according to the road sur-
face. First, it should be emphasised that the ISO
surface used for the labelling has acoustic character-
istics that differ significantly from those of other sur-
faces used on trafficked roads. The weighted average
sound level calculated for the four tested tyres tested
on the ISO surface differs from that on the other pave-
ments by from 2.1 dB to 4.2 dB. In each case, the sound
level measured on the test track is lower than that
measured on the real road sections. The smallest vari-
ability was observed for the MA11 pavement (a very
smooth asphalt surface), which is not widely used on
roads in European countries. The variability between
the sound level measured on the ISO and rougher pave-
ments (e.g., SMA11 or SMA16) is more than 4.0 dB.
From an environmental perspective, this is a very large
discrepancy.
More important is the fact that the same tyres

produce different noise levels on different real sur-
faces. The maximum variability of the weighted aver-
age sound level is 2.1 dB (between MA11 and SMA16).
The ranking of tyres also varies depending on the road
pavement. For example, tyre 1 is quieter than tyre 2
on smoother surfaces (MA11, SMA8, and SMA11) but
noisier on rougher ones (SMA16 and EACC). This
has a direct impact on the precision of environmental
noise calculations. These results indicate that vehicle
tyre labels are biased by additional inaccuracies due
to the varying characteristics of typical road surfaces.
The same tyre may be quieter on one road surface and
noisier on another.
It is not possible to eliminate most of the uncer-

tainty components of the current procedure. Therefore,
replacing it with another measurement method should
be considered. For example, a laboratory method using
drums equipped with a replica of the road surface ap-
pears to be a promising direction. Similar methods are
already used to measure tyre rolling resistance. Consid-
eration should also be given to equipping these drums
with replicas of real pavements (e.g., SMA11 or AC11),
which are widely used in most EU countries.
Despite these differences, efforts should be made to

reduce the noise level of tyres and to promote those
with low noise on the most widely used surfaces. The
results of equivalent sound level calculations for se-
lected road sections, varying traffic parameters (from
motorway to residential road), showed that this is an
effective noise reduction measure. Withdrawing vehi-
cle tyres from the market with sound levels above the
permissible limits can reduce noise by 0.4 dB on mo-
torways to 0.1 dB on residential roads. This reduction
could be significantly increased by lowering the per-
missible limits and promoting low-noise tyres to con-
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sumers. In this case (optimistic scenario) environmen-
tal noise could be reduced by 1.8 dB on motorways to
0.5 dB on residential roads. For all other road cate-
gories in this scenario, the noise reduction is greater
than 1.0 dB. This is a significant improvement in the
acoustic conditions around roads. In addition, it is
a source-based action, which is always characterised
by high efficiency.
Decreasing environmental noise exposure also re-

sults in a reduction in the number of affected people.
Based on data taken from the strategic noise maps, it
was calculated how many fewer people would be ex-
posed to noise levels in the 55 dB(A) noise range after
the introduction of the measures described in the arti-
cle. For the countries with the largest populations ex-
posed to adverse noise impacts (among those selected
for the analyses), highly beneficial effects were ob-
served with the implementation of the different strate-
gies. The most prominent examples are France and
Italy, where the number of people exposed to noise
above 55 dB(A) can be reduced by almost one million
people. Reducing the exposure of the population to ex-
cessive noise brings significant financial benefits. These
are estimated at nearly e50 million for France, almost
e40 million for Italy, and more than e15 million for
Poland. These benefits are for a one-year period, which
will be multiplied proportionally in the long term. Re-
ducing the noise of car tyres is thus justified from an
economic point of view as well.
The use of low-noise tyres is very important in

terms of environmental protection. Withdrawing the
noisiest tyres from the market and promoting low-noise
tyres can significantly reduce environmental noise.
A necessary condition for achieving this is to improve
the labelling system for car tyres so that the data pre-
sented on the labels are as realistic as possible.
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The voiced parts of the speech signal are shaped by glottal pulse excitation, the vocal tract, and the
speaker’s lips. Semantic information contained in speech is shaped mainly by the vocal tract. Unfortunately,
the quasiperiodicity of the glottal excitation, in the case of the HFCC parameterization, is one of the factors
affecting the significant scatter of the feature vector values by introducing ripples into the amplitude spectrum.
This paper proposes a method to reduce the effect of quasiperiodicity of the excitation on the feature vector.
For this purpose, blind deconvolution was used to determine the vocal tract transfer function estimator and the
corrective function of the amplitude spectrum. Subsequently, on the basis of the obtained HFCC parameters,
statistical models of individual Polish speech phonemes were developed in the form of mixtures of Gaussian
distributions, and the influence of the correction on the quality of classification of speech frames containing
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1. Introduction

In automatic speech recognition (ASR) systems,
there is a need to compensate for the influence of
many factors, such as recording conditions, interper-
sonal variability, contextuality, etc., which negatively
affect the performance of the system. The most widely
used compensation methods are (Makowski, 2011):
1) clustering with developing independent statistical
models for speakers with similar personal charac-
teristics (Hossa, Makowski, 2016);

2) normalisation, which involves modifying the val-
ues of parametrization coefficients (Prasad,
Umesh, 2013);

3) adaptation, involving changing the parameter val-
ues of statistical models (Zambrzycka, 2021);

4) robust parametrization (Mrówka, Makowski,
2008), which should make the parameter vector

robust to the factors mentioned above or at least
reduce their impact.

The present work stands for the robust parametriza-
tion.
Among at least a dozen different parametrization

methods available in the literature (Sharma et al.,
2020), the most commonly used and effective solu-
tions in practical applications include methods that use
short time-frequency transformations and cepstral rep-
resentations of the resulting coefficients. To this group
of solutions we can include the algorithms:

– Mel-frequency cepstral coefficients, MFCC
(Davis, Mermelstein, 1980);
– human factor cepstral coefficients, HFCC
(Skowronski, Harris, 2003);
– the basilar-membrane frequency-band cepstral co-
efficient, BFCC (Kuan et al., 2016);

https://acoustics.ippt.pan.pl/index.php/aa/index
mailto:stanislaw.gmyrek@pwr.edu.pl
https://creativecommons.org/licenses/by/4.0/
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– the gammatone cepstral coefficient, GTCC
(Yin et al., 2011).

On the other hand, the second group of solutions are
algorithms using linear prediction methods and exam-
ples of their implementations are the parametrizations:

– linear prediction cepstral coefficients, LPCC
(Rabiner Juang, 1993);
– the perceptual linear prediction, PLP
(Hermansky, 1990).

Most of the aforementioned parametrizations natu-
rally have mechanisms for robustness against small
noise interference, which can be further enhanced by
supplementing the method with the relative spec-
tral (RASTA) algorithm to suppress those of the
components that are not related to speech artic-
ulation. Based on such an idea, the RASTA-PLP
hybrid algorithm (Koehler et al., 1994) and the
multi-resolution RASTA filtering solution (Herman-
sky, Fousek, 2005) were developed. Another equiv-
alent representation in the form of the amplitude
modulation filter bank (AMFB) has been considered
in (Moritz, Kollmeier, 2015). Among the robust
parametrization algorithms, we can also distinguish al-
gorithms based on the minimum variance distortionless
response (MVDR) the estimator proposed in (Murthi,
Rao, 2000) and further developed into the MVDR-
MFCC algorithm in (Dharanipragada, Rao, 2001).
In general, the voiced parts of the speech signal

are shaped by linear cascade without interactions of
the glottal pulse excitation, the vocal tract, and the
speaker’s lips (Quatieri, 2002). Hence a widely ac-
cepted source-filter model of speech production is of
the form

s(n) = x(n) ⋆ h(n) ⋆ r(n), (1)

where x(n) is the excitation, h(n) is the impulse re-
sponse of the vocal tract, r(n) is the impulse response
characterizing the sound emission by the lips, n is the
discrete time, and ⋆ is the discrete time convolution
operator.
The semantic information contained in speech is

mainly shaped by the vocal tract. Unfortunately, the
quasiperiodicity of the glottal excitation, in the case
of parametrizations based on different time-frequency
representations, e.g., MFCC or HFCC, is one of the
factors affecting the significant scatter of the fea-
ture vector values, by introducing ripples into the
amplitude spectrum (see Sec. 2). Furthermore, in
(Skowronski, Harris, 2003) it was shown that the
HFCC parametrization is characterized by greater ro-
bustness to noise than the MFCC and studies have
shown differences in recognition performance of up
to 30 %. As a result, the classical solution, i.e., the
HFCC parametrization, was selected as the represen-
tative for further research on ripple reduction.
The paper proposes an algorithm to reduce the im-

pact of glottal flow excitation through its filtering op-

eration. The first step is to estimate the glottal exci-
tation signal x(n) and then determine the HFCC co-
efficients based on the magnitude of the vocal tract
transfer function. The estimation of the excitation sig-
nal is one of the most important problems in speech
signal processing, and in practical applications it is
used, among others, for speaker recognition (Plumpe
et al., 1999), analysis of the speaker’s emotional state
(Waarama et al., 2010) or speech synthesis (Raitio
et al., 2011). Inverse filtering algorithms are most com-
monly used in the literature to filter out the influence
of the components h(n) and r(n) of the speech signal
model form (Eq. (1)) based on their parametric models
determined by the LPC analysis. In this approach, it
is important to determine a reliable vocal tract model,
which is possible in several ways (Walker, Murphy,
2005). Among them, it is worth mentioning:
1) closed phase inverse filtering, CPIF, the algorithm
(Wong et al., 1979) with the closed phase of the
vocal cord vibration cycle analysis only;

2) algorithms that use an iterative approach and
synchronization mechanisms, e.g., iterative adap-
tive inverse filtering – IAIF (Alku, 1991; Raitio
et al., 2011), and pitch synchronous iterative
adaptive inverse filtering – PSIAIF (Alku, 1992).

In addition to inverse filtering, there are also paramet-
ric methods (Quereshi, Syed, 2011) and algorithms
based on a mixed-phase model of the speech signal.
They assume that the impulse response of the vocal
tract and the part of the excitation corresponding to
the return phase are treated as causal components,
while the part of the excitation representing the open-
ing phase in the vocal cord cycle is treated as a non-
causal component. Separation of these components can
be done using the zeros of the Z-transform (ZZT) algo-
rithm (Bozkurt et al., 2005) or the complex cepstrum
decomposition (CCD) algorithm (Drugman et al.,
2009). In the present work, as starting point in our
research, the IAIF algorithm was used. The elimina-
tion of excitation influence are performed for each
of the speech frames containing vowels. The HFCC
parametrization is then performed, resulting in the
cepstral coefficient vectors c(t,m), that is
c(t,m) = J∑

j=1

Yl(t, j)cos(m(j − 1

2
) π
J
) , m = 1, ...,M,

(2)
where Yl(t, j) is the logarithm of the ERB-scaled
spectrum Y (t, j) obtained from the amplitude spec-
trum S(t, f) under correction multiplied by a bank of
Mel filters whose widths were determined according
to the equivalent rectangular bandwidth (ERB) scale,
t is the frame number, j is the Mel band number, J is
the number of Mel bands, and M is the number of
HFCC coefficients. The use of a Mel scale of frequen-
cies and a nonlinear function on the values of the spec-
trum allows a better representation of the performance
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of the human auditory system by taking into account
the nonlinearity of the perception of frequency and
intensity of sound. The expected purpose of the am-
plitude spectrum correction was to narrow the GMM
distributions and reduce classification errors. The ef-
fectiveness of the proposed solution was evaluated on
the basis of the distance between individual GMM dis-
tributions and FER measure before and after the cor-
rection.

2. The influence of fundamental frequency

on HFCC coefficients

Figures 1 shows the amplitude spectra of consecu-
tive frames of phoneme a selected from longer utter-
ances by the same speaker, recorded under identical
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Fig. 1. Amplitude spectra of consecutive frames of phoneme a with applied ERB-scale filterbank; the fundamental frequency
is about 130 Hz (a) and about 195 Hz (b).
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Fig. 2. Spectra of consecutive ERB-scaled frames of the phoneme a; the fundamental frequency is about 130 Hz (a)
and about 195 Hz (b).

conditions, differing in fundamental frequencies (fre-
quency f0), e.g., for Fig. 1a this is f0 ≈ 130 Hz, and for
Fig. 1b – f0 ≈ 195 Hz.
The main difference between these spectra is in the

other positions of the local maxima, which are multi-
ples of the frequency f0. Furthermore due to the pres-
ence of ripples, the formants are not clearly visible,
although their frequencies are approximately: 800 Hz,
1.3 kHz, 2.4 kHz, and 4.0 kHz. In these figures, filters
with centre frequencies corresponding to the Mel scale
(as in the HFCC parametrization) are also indicated by
dotted lines. The consequence of the different positions
of the local maxima of the spectrum is the different
energy per successive Mel filter band, which leads to
different ERB-scaled spectra at different f0. This can
be observed on the plots presented in Fig. 2. Especially
large differences are found for the fourth band.
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Fig. 3. HFCC coefficients of the phoneme a frames; the fundamental frequency is about 130 Hz (a) and about 195 Hz (b).

In turn, Fig. 3 shows plots of HFCC coefficient
values for the amplitude spectra presented in Fig. 1.
Significant differences can be observed in these figures
and the presented examples show the strong influence
of the frequency f0 on the final values of the HFCC
coefficients.

3. Glottal excitation signal estimation,

correction implementation

In consequence of the experiments analyzed in de-
tail in Sec. 2, the aim of the proposed method is to
minimize the effect of excitation signal periodicity on
the values of the HFCC coefficients. Theoretically, the
excitation signal, for each voiced frame, can be deter-
mined using the IAIF (Raitio, 2011; Drugman et al.,
2011), i.e.:

x(n) = s(n) ⋆ (h(n) ⋆ r(n))−1 , (3)

where (.)−1 denotes the inverse in the convolution
sense. Introducing w(n) = x(n) ⋆ r(n), i.e., as the con-
volution of the excitation signal x(n) and the function
r(n) describing the lips radiation, the quantity w(n)
can be determined from the equation

w̃(n) = s(n) ⋆ h̃(n)−1. (4)

Equation (4) presents a case of the blind deconvolu-
tion problem. This operation requires the estimation

Pitch synchronized LPC inverse filtering

Speech 
signal s(n)

Signal 
framing 

with current 
lenght of T0

Calculation
of T0

G1(z) G2(z)Hv1(z) Hv2(z)
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order 1

Inverse 
filtering, 
LPC of 

order 10

Inverse 
filtering, 
LPC of 
order 8

Inverse 
filtering, 

integration, 
LPC of 
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Inverse 
filtering, 

integration

HFCCa1 
algorithm

Fig. 4. Block diagram of the applied inverse filtering algorithm (PS-IAIF).

of the h(n) and then the determination of its inverse in
the convolution sense. In the considered situation, the
problem of stability can arise, but, this property is
guaranteed if the h(n) is a minimum phase or an algo-
rithm, enforcing this minimum phase property, is used.
The most popular solution in the case is mean-square
filtering (Quatieri, 2002) and is used in the applied
pitch synchronized IAIF (PS-IAIF) filtering.
The PS-IAIF block diagram, modified for the pur-

poses of the work, is presented in Fig. 4. In the
preprocessing step the estimator YIN (Cheveigné,
Kawahara, 2002) for the fundamental frequency f0 of
the input voiced speech is calculated. This algorithm
is widely applied in the literature and is known as an
effective solution. An input signal s(n) is partitioned,
based on the YIN estimator, into frames with length
equal to current values of the fundamental period
T0 = 1/f0. Next, for each input frame, in the first step
of PS-IAIF, a preliminary estimator of the filter is
determined that models the combination of glottal
excitation and the lip radiation using an LPC filter
of the order the 1. In the second step, after compen-
sating for the influence of G1(z) on the signal s(n),
a preliminary estimator Hv1(z) of the vocal tract
is determined with LPC filter of the order 10. The
resulting estimator Hv1(z), in the third step, is used to
filter out the influence of the vocal tract from the sig-
nal s(n). In this step, the influence of the lip emission
properties is also eliminated by integration, and a more
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accurate parametric model G2(z) is determined with
the LPC filter of the order 8. In the fourth step, using
G2(z), by means of inverse filtering, integration, and
LPC analysis, the parameters of the Hv2(z) model of
the vocal tract of the order 8 are determined. Given
Hv2(z), the frequency domain transfer function is of
the form

Hv2(f) = 1

1 − 7∑
p=1

ape−j2πfp/fs
. (5)

The result of this operation is used to determine the
HFCC coefficients after compensating for the influ-
ence of the glottal excitation (the HFCCa1 algorithm).
Since the phase of the signal spectrum is not taken into
account in the HFCC parametrization, we assume here
that modelling using the LPC techique will yield min-
imum phase property of all elements of Eq. (1).

4. Correction quality measures

In order to evaluate the effectiveness of the pro-
posed methods of modifying the HFCC parametriza-
tion, numerical tests were carried out on Polish speech
vowels occurring in the recording database described in
Subsec. 5.1. Performing experiments required the prior
development of acoustic models of these vowels in the
form of GMM probability distributions, two measures
were used to evaluate the effectiveness of the compen-
sation:

1) the Kullback–Leibler distance between the proba-
bility distributions (Kullback, 1968) – the KL(⋅)
measure;

2) the single frame error recognition – the FER mea-
sure (Makowski, 2011).

4.1. Probabilistic acoustic model of phonemes

The acoustic GMMmodels used in the frame recog-
nition process are a mixture of K = 7 multidimen-
sional normal probability distributions with a diago-
nal covariance matrices Σp,i determined based on the
expectation-maximization (EM) algorithm (Demp-
ster et al., 1977), i.e.:

pf(o) = K∑
i=1

wfiN (o,mf,i,Σf,i), (6)

where

N (o,mf,i,Σf,i) = ΠN
n=1

1√
2πσf,i,n

e
−

1

2σ2

f,i,n

[on−mf,i,n]
2

.

(7)

4.2. Distances between GMM distributions

In general, a typical measure to calculate the dis-
tance between two probability density distributions

ph(o) and pg(o) for a N -dimensional vector of random
variables o is the Kullback–Leibler divergence defined
as follows (Kullback, 1968):

KL(ph ∥ pq) = ∫
O

ph(o) log(ph(o)
pg(o))do. (8)

Unfortunately, for the case of distributions represented
by a mixture of Gaussian GMM distributions of the
form

ph(o) = K∑
i=1

wh,iN(o,mh,i,Σh,i) = K∑
i=1

wh,iph,i(o),
pg(o) = K∑

i=1

wg,iN(o,mg,i,Σg,i) = K∑
i=1

wg,ipg,i(o),
(9)

where mh,i and mg,i are the mean value vectors and
Σh,i and Σg,i the autocovariance matrices of the com-
ponents of the Gaussian distributions in the mixtures,
there is no closed form formula of the KL(⋅) measure
determination. However, we can use a deterministic ap-
proximation of Eq. (8) based on the unscented trans-
form (UT) transformation (Julier, Uhlmann, 2004).
Under the assumption that the distributions ph(o) and
pg(o) are of the GMM form (Eq. (9)) with diago-
nal covariance matrices, i.e., Σh,i = diag{σ2

h,i,k} and
Σg,i = diag{σ2

g,i,k} for k = 1,2, ...,N , we can write that
KL(ph ∥ pq) = ∫

O

ph(o) log(ph(o)
pg(o))do

= E
ph

[log ph(o)] − E
ph

[log pg(o)]
= K∑

i=1

wh,i E
ph,i

[log ph(o)]
−

K∑
i=1

wh,i E
ph,i

[log pg(o)]. (10)

According to the UT method, for each of the
K component distributions of the GMM mixture
ph,i(o) = N (o,mh,i,Σh,i) with diagonal matrices
Σh,i = diag{σ2

h,i,k}, we generate a set of 2N “sigma”
points of the form

oi,k =mh,i −
√

Nσ2
h,i,kek,

oi,k+N =mh,i +
√

Nσ2
h,i,kek,

(11)

where ek for k = 1,2, ...,N are basis vectors in the N
dimensional Cartesian coordinate system and we deter-
mine the approximation of the integral E

ph,i

[log pg(o)]
based on the formula (Goldberger, Aronowitz,
2005)

E
ph,i

[log pg(o)] = ∫
O

ph,i(o) log pg(o)do

≈ 1

2N

2N∑
k=1

log pg(oi,k). (12)
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We include all the partial results of the calculations
into Eq. (10) and obtain the approximation of the
distance value KL(⋅) between the considered distribu-
tions. To satisfy the symmetry property of the distance
measure KL(⋅) between the GMM distributions pg(o)
and ph(o), the final form

d(pg, ph) = 1

2
(KL(ph ∥ pq) +KL(pg ∥ ph)) (13)

was applied in numerical experiments.

4.3. Frame error rate

The frame error rate (FER) is typically used to
evaluate the quality of speech recognition at the indi-
vidual frame level and is defined as

m = Terr

T
⋅ 100 %, (14)

where T is the number of all frames to be recognised
and Terr is the number of frames incorrectly recognised.

5. Correction results

5.1. Speech recordings

The set of recordings that constitute the database
for the experiments consists of 36 male adult voices
recorded in different Polish cities. For each speaker,
150 words of Polish were recorded and speech frag-
ments containing vowels from preliminary chosen
43 words were used in the experiment. The sampling
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Fig. 5. Example results of the HFCCa1 algorithm for three consecutive frames of the phoneme a: a) moduli of the
preliminary estimator G1(f); b) transfer function moduli of the preliminary estimator Hv1(f); c) moduli of the estimator
G2(f); d) transfer function moduli of the estimator Hv2(f); e) amplitude spectra of the signal frames; f) amplitude spectra

of the frames after correction.

rate of the signals was 12 kHz. The results obtained
from numerical experiments are for noisy signals with
a signal-to-noise ratio of 35 dB. All of these recordings
were manually segmented and labelled, and the pho-
netic unit in the labelling process was the phoneme.
The frame length was 30 ms with the frame shift
10 ms and the number of cepstral coefficients was
N = 14.

5.2. Examples of algorithm results

The section presents example results of the
HFCCa1 algorithm for three consecutive frames of the
a phoneme, whose statistics are presented in Figs. 1–3.
Figure 5 presents successively:

a) the magnitude of the preliminary estimator
G1(f);

b) the magnitude of the transfer function of the pre-
liminary estimator Hv1(f);

c) the magnitude of the estimator G2(f);
d) the magnitude of a transfer function of the esti-
mator Hv2(f);

e) the amplitude spectra of the signal frames;
f) the amplitude spectra of the frames after correc-
tion.

The cepstral coefficients in the HFCCa1 method
are calculated based on the results, examples of which
are presented in Fig. 5d. Comparison of plots from
Figs. 5d and 5e shows the effectiveness of the pro-
posed algorithms to eliminate ripples caused by the
quasiperiodicity of the glottal excitation.
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5.3. Global results of compensation quality assessment

In Fig. 6, in the form of a table, the KL differences
after and before correction between the GMM distri-
butions of the six Polish vowels are presented. Fur-
thermore, the red colour indicates a decrease in the
distance after correction and the green colour an in-
crease.

i

i

y

y

e

e

a

a

o

o

u

u

Fig. 6. Differences in KLD distances after and before cor-
rection between the six vowels of Polish speech. The red
colour indicates a decrease in distance and the green colour

an increase.

It is easily observed that in most cases of compar-
isons an increase in these distances is observed, and the
differences are largest for the phonemes i and u. Simul-
taneously, significant decreases in distance are noticed
between the phonemes y and a. Presenting the results
more synthetically, by summing the distances between
a given GMM distribution and the other distributions,
i.e., determining the values

Df = F∑
i=1

d(pf , pi) (15)

we obtain global KLD distances for individual pho-
nemes before and after correction. These measures are
presented in Fig. 7, where it can be seen that an in-
crease in KLD distances occurred for all vowels.

Phoneme
i y e a o u

Before correction
After correction

Fig. 7. Global KLD distances for vowels.

In turn, the results of the FER measure in one-to-
one recognition for Polish speech vowels are presented

in the form of a table in Fig. 8. The upper values in
the table elements indicate the FER before correction
and the lower values after correction. Furthermore, the
green colour indicates situations for which there was
a decrease in FER, and the red colour indicates an
increase.

i y e a o u

i

y

e

a

o

u

Fig. 8. FER values for Polish speech vowels.

The results presented in Fig. 8 imply that in most
cases there was a reduction in single frame recognition
errors. On the other hand, Fig. 9 shows plots of the
FER sum following the table rows of Fig. 8.

Phoneme

Frame error rate

i y e a o u

Before correction
After correction

Fig. 9. Global FER values for Polish speech vowels.

This form of obtained data analysis shown in Fig. 9
also confirms that the proposed correction results in
a reduction in FER errors.

6. Conclusions

The modification of the HFCC parametrization
proposed in this paper meets the predicted expecta-
tions. Through estimation and inverse filtering it is
possible to minimise the influence of the quasiperiod-
icity of the source of voiced speech, in the function
of the amplitude spectrum ∣Hv2

(f)∣ used to determine
the HFCC coefficients. Consequently, the area of fluc-
tuations of the feature vector values is reduced. This
form of the conclusion is confirmed by the obtained
results of the Kullback–Leibler distances between the
GMM distributions of Polish speech vowels, which are
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larger after the correction. Simultaneously, the classi-
fication errors of individual frames evaluated by the
frame-error-rate measure are also reduced. As a result,
the proposed modification of the HFCC parametri-
zation should result in an increase in the efficiency of
the complete ASR system. Finally, it should be kept in
mind that, in general, the variability of the components
of the feature vector, in addition to the considered in-
fluence of the quasiperiodicity of the glottal excitation,
is affected by a number of other factors such as inter-
and intrapersonal variability, contextual variability, in-
fluence of recording conditions, etc.
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Obstructive sleep apnea hypopnea syndrome (OSAHS) is a prevalent and detrimental chronic condition.
The conventional diagnostic approach for OSAHS is intricate and costly. Snoring is one of the most typical
and easily obtained symptom of OSAHS patients. In this study, a series of acoustic features are extracted
from snoring sounds. A fused model that integrates a deep neural network, K-nearest neighbors (KNN), and
a random under sampling boost algorithm is proposed to classify snoring sounds of simple snorers (SSSS),
simple snoring sounds of OSAHS patients (SSSP), and apnea-hypopnea snoring sounds of OSAHS patients
(APSP). The ReliefF algorithm is employed to select features with high relevance in each classification model.
A hard voting strategy is implemented to obtain an optimal fused model. Results show that the proposed fused
model achieves commendable performance with an accuracy rate of 85.76 %. It demonstrates the effectiveness
and validity of assisting in diagnosing OSAHS patients based on the analysis of snoring sounds.
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1. Introduction

Obstructive sleep apnea hypopnea syndrome (OS-
AHS) is a chronic sleep-related disease with the high
incidence and great harm that is characterized by par-
tial or complete collapse of the upper airway during
sleep (Eckert et al., 2007; Friedman et al., 2004;
Izci, Douglas, 2012; Osman et al., 2018). There are
many contributors to the collapse, including an ineffec-
tive pharyngeal dilator muscle function during sleep,
a low threshold for arousal to airway narrowing during
sleep, and unstable control of breathing, which may
be caused by a narrow, crowded, or collapsible up-
per airway of OSAHS patients (Osman et al., 2018).
OSAHS not only adversely influences the sleep qual-

ity of patients, but also leads to hypertension, coro-
nary heart disease, diabetes, cerebrovascular disease,
other complications, and even causes sudden death at
night (Redline et al., 2010; White, 2005). The re-
cent epidemiological survey has found that the preva-
lence of OSAHS among the global population ranged
from 9 % to 38 % (Caron et al., 2017). The elderly
are the high incidence group that the prevalence rate
of OSAHS is as high as 90 % for older males and 78 %
for older females (Castillo-Escario et al., 2019).
Polysomnography (PSG) is the gold standard for di-
agnosing OSAHS by detecting respiratory disturbance
events that mainly include apnea and hypopnea events
(Minaritzoglou et al., 2008). The apnea-hypopnea-
index (AHI) is obtained by PSG to measure the aver-
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age number of respiratory disturbance events per hour
during sleep. According to the American Academy of
Sleep Medicine (AASM), subjects can be diagnosed as
a simple snorer, mild, moderate, and severe OSAHS
patient based on AHI ≤ 5, 5 < AHI ≤ 15, 15 < AHI ≤ 30,
and AHI > 30, respectively (Berry et al., 2012).
The PSG requires more than 15 sensors connected to
the patients that needs to be operated and checked by
professional doctors in the hospital to monitor multiple
biological signals of the test subject during sleep. The
expensive cost, inconvenient device, and complex pro-
cess limit the wide use of PSG that cause OSAHS to
be a serious disease with a low diagnostic rate (Got-
tlieb, Punjabi, 2020; Osman et al., 2018). The high
prevalence and low diagnostic rate make the OSAHS
be a public health problem that greatly influences the
life quality of patients. With the increasing concern
about sleep problems, researchers have been focused
on studying various physiological signals during sleep-
ing to assist in monitoring apnea and hypopnea events.
The AASM indicates that one or more physiological
signals, including oxygen, nasal airflow, electrocardio-
gram, electroencephalography, and snoring sound can
be applied to detect apnea and hypopnea events to
diagnose OSAHS (Berry et al., 2012).
Snoring is the most prominent symptom of OSAHS

patients that caused by the vibration of the upper
airway (Gislason, Benediktsdottir, 1995; Pev-
ernagie et al., 2010; Sowho et al., 2020; Ulualp,
2010). The acoustic features of snoring sounds can re-
flect the specific structure of the upper airway (Lu-
garesi et al., 1988). Studies have indicated that there
are obviously anatomical and non-anatomical struc-
tural differences of the upper airway between simple
snorers and OSAHS patients (Azarbarzin, Mous-
savi, 2013; Fiz et al., 1996;Markandeya et al., 2018;
Herzog et al., 2008). Early studies have indicated that
palatal snoring mainly occurs in simple snorers with-
out any obstruction of the upper airways, while non-
palatal snoring can be an indicator for OSAHS pa-
tients (Qian et al., 2021). Recent work by Sun et al.
(2023) has revealed that snoring sounds of OSAHS
patients exhibit higher formant frequencies. Perez-
Padilla et al. (1993) found that there was different
energy distribution around 800 Hz of snoring sounds
between simple snoring and those of OSAHS patients.
Based on this condition, studies have been focused
on identifying simple snorers and OSAHS patients.
Solà-Soler et al. (2007) classified simple snorers and
OSAHS patients based on AHI = 10, which yielded
93 % precision. Sun et al. (2023) applied two Gaus-
sian mixture models to explore the acoustic charac-
teristics of snoring sounds throughout the whole night
to classify simple snorers and OSAHS patients with
90.0 % accuracy. Ding et al. (2024) applied a fused
model obtained from different domain to classify snor-
ing sounds during the whole night of simple snorers

and OSAHS patients, which could exactly identify
OSAHS patients. Furthermore, researchers (Lee, El-
lis, 2012; Hou et al., 2019; Alshaer et al., 2019;
Cheng et al., 2022; Ding et al., 2023) have explored
the characteristics of snoring sounds obtained by differ-
ent sleep stages during the whole sleep to diagnose the
severity of OSAHS patients. Lee et al. (2012) showed
that there was different energy distribution of snor-
ing sounds during apnea-hypopnea events and simple
sleeping. Ding et al. (2023) proposed VGG19-LSTM
model to classify snoring sounds of simple snores and
OSAHS patients with 99.31 % accuracy and 99.13 %
sensitivity. A long short-term memory (LSTM) neu-
ral network was proposed to classify three-category
snoring sounds related to the severity of OSAHS with
81.6 % accuracy (Cheng et al., 2022). These studies
have demonstrated the effectiveness and convenience of
diagnosing OSAHS patients based on analysis of snor-
ing sound.
The aforementioned classification results of snor-

ing sounds have clearly demonstrated that the struc-
ture of the upper airway of OSAHS patients is obvi-
ously different from that of simple snorer. The abnor-
mal structure could cause the occurrence of apnea and
hypopnea respiratory events, as well as abnormal snor-
ing sounds, which provided a strong basis for the diag-
nosis of OSAHS based on snoring sounds. Few studies
(Cheng et al., 2022; Song et al., 2023; Sun et al.,
2023) focused on whether the abnormal upper airway
may influence the normal sleep process of OSAHS pa-
tients. Since the characteristic of snoring sounds could
reflect the structure of the upper airway, intuitively
classifying snoring sounds of simple snorers (SSSS),
apnea-hypopnea snoring sounds of OSAHS patients
(APSP), and simple snoring sounds of OSAHS patients
(SSSP) could explore the characteristics of the upper
airway in the different stages of sleep for simple snor-
ers and OSAHS patients, respectively. The classifica-
tion results could indicate that whether the abnormal
upper airway can be reflected by snoring sounds and
whether the abnormal upper airway influence the nor-
mal sleep for OSAHS patients. The existing studies
about snoring sound classification are based on a sin-
gle classification model, which had limited classifica-
tion accuracy and robustness. On this condition, the
snoring sound classification tasks based on a fusion
strategy might help to diagnose OSAHS patients more
accurately.
In this study, a fused model is proposed to classify

three kinds of snoring sounds, including SSSS, APSP,
and SSSP. A series of acoustic features were extracted
from snoring sounds. Three classifiers were first used to
classify these three kinds of snoring sounds based on
extracted acoustic features. Then a hard voting model
fusion strategy was applied to integrate these basic
models to obtain a model with relatively better classi-
fication performance and higher robustness.
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2. Material and methods

2.1. Dataset

The 46 subjects selected from the PSG-Audio
dataset are applied to validate the proposed method,
including 8 simple snorers and 38 OASHS patients
with different severities (Korompili et al., 2021). All
snoring sounds are collected clinically. When a sub-
ject undergoes the PSG (Alice 6), an ultra-linear mea-
surement condenser microphone (Berringer ECM800)
is placed approximately 1 m above the subject’s bed to
record snoring sounds during the whole night. Sound
signals are sampled at 48 kHz with 24-bit resolu-
tion and saved as WAV. All recorded signals are en-
hanced and segmented by the noise reduction algo-
rithm (Wang et al., 2017). These enhanced snoring
segments are labeled by ear-nose-throat (ENT) experts
as SSSS, SSSP, and APSP. In the experiment, there
are 73 373 effective snoring segments extracted from
all 46 subjects, including 12 967 SSSS, 44 748 simple
SSSP, and 15 658 APSP. These snoring sounds are di-
vided into a training set and a validation set by the
ratio of 4:1.

2.2. Proposed fused model

In the work, a fused model is proposed to classify
SSSS, SSSP, and ASSP to explore structures of the
upper airway of simple snorers and OSAHS patients
during sleeping. The overall structure of the proposed
model is shown in Fig. 1. A series of acoustic features
are firstly extracted to express snoring sounds. Three
basic classifiers, including the deep neural network –
DNN (Janiesch et al., 2021), K-nearest neighbors
– KNN (Zhang et al., 2017), and random under sam-
pling boost algorithm – RUSBoost (Seiffert et al.,
2010) are applied to classify these three types of snor-
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Fig. 1. Overall structure of the proposed system.

ing sounds. To adequately integrate these basic clas-
sifiers from different domains, a model fusion strategy
based on hard voting is used to fuse these classifiers.
That is to say, the final classification results of snoring
sounds were obtained by averaging the probability of
these three basic models.
The three basic classifiers used in this work are

DNN, KNN, RUSBoost. KNN is one of the most ma-
ture and simplest machine learning classification al-
gorithms with relatively high performance in differ-
ent domains. The basic idea of KNN is to calcu-
late the distance between the test sample and all
training samples to obtain its nearest neighbors and
then conduct KNN classification. Choosing the proper
K-value is an important part for training the KNN
model. The RUSBoost algorithm is an effective en-
semble method for the classification task with the un-
balanced sample distribution. RUSBoost incorporates
random under-sampling technology to remove sam-
ples from the majority class at each boosting iter-
ation of the Adaboost.M2 algorithm. Based on this
strategy, RUSBoost could adequately apply samples
of the majority class and solve the problem of un-
balanced sample distribution. The parameters that
RUSBoost needs to be trained are mainly concentrated
on Adaboost.M2, including a base estimator, the learn-
ing rate, n-estimators, and so on. DNN is a useful tech-
nology for the classification task with large samples. In
this work, a DNN structure with two hidden layers is
constructed to classify snoring sounds. There are 100
neurons in the first hidden layer and 5 neurons in the
second hidden layer. The loss function and the acti-
vation function used in the DNN are the logistic cost
regression function and the sigmoid function, respec-
tively. The optimizer used for training is Adam. The
batch size and the learning rate are set as 64 and 0.05,
respectively.
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2.3. Feature extraction

In the work, a series of acoustic features from the
time and frequency domains are extracted to express
snoring sounds. There are 16 features with 45 di-
mensions, including the Mel-frequency cepstral coeffi-
cient (MFCC), the linear prediction coefficient (LPC),
800 Hz power ratio (PR800), the crest factor (CF), the
fundamental frequency (F0), the pitch, formants, and
a series of spectrum related features. Since the gen-
eration process of snoring sounds has a significant ef-
fect on its high frequency band and a smaller effect
on the low frequency band, all snoring sounds are con-
ducted pre-emphasizing that aims to compensate for
the loss of high frequency components before the fea-
ture extraction. These pre-emphasized snoring sounds
are framed by a hamming window with length of 20 ms
and 50 % overlap. All features are firstly extracted
for each frame. Statistic functions, including mean,
minimum, maximum, and variance, are calculated by
frames for each snoring segment to describe the feature
distribution for each snoring segment.

2.3.1. Mel-frequency cepstral coefficient

The extraction of MFCC can be divided into five
parts (Zheng et al., 2001). Firstly, preprocessing, in-
cluding pre-emphasis, and framing aims to compen-
sate for the loss of high-value components. Then, per-
forming fast Fourier transform on each frame signal
to transform the time-domain signal into a frequency-
domain signal. The spectral energy of each frame is
calculated. Finally, the Mel filter is applied to trans-
form frequency-domain signal into Mel-frequency scale
to describe the human ear perception of frequency. The
Mel-frequency (fmel) could be obtained from the real
liner frequency (freal) by the equation:

fmel = 2595 ⋅ log (1 + fmel

700
). (1)

In this study, the average of all frames of an audio
segment are taken as features. MFCCs with dimension
of 13 were extracted.

2.3.2. Linear prediction coefficient

The basic concept of a linear prediction is that the
current sampling value of audio can be approximately
replaced by a linear combination of several past sam-
pling values (Sun et al., 2022). A unique set of predic-
tion coefficients can be obtained by approximating the
minimum mean square error of the actual audio sam-
pling value and the linear prediction sampling value.
LPC have the advantages of fast calculation and ef-
fective prediction. The 12-element LPC parameters of
each sound segment were extracted, and the average
value for each frame of every segment is calculated as
the feature vector.

2.3.3. Power ratio

The PR is the ratio of power below and above
a certain frequency f0. It can roughly reflect the power
distribution of audio signals divided by a certain fre-
quency (Sun et al., 2023). The PR can be expressed by:

PRf0 = log
⎛⎜⎜⎜⎜⎜⎝

f0∑
fi=0

(Yi)2
fC∑

fi=f0

(Yi)2
⎞⎟⎟⎟⎟⎟⎠
, (2)

where fC and Y are the cutoff frequency and spectrum
of the audio signal, respectively. In this work, f0 is set
as 800 Hz. Four statistic features, including PRmean,
PRmin, PRmax, PRvar are calculated to express PR.

2.3.4. Fundamental frequency

The definition of F0 is the lowest oscillation fre-
quency in a free oscillation system or the lowest
frequency in a composite wave. It can reflect the open-
ing and closing time of the vocal cords. In this work,
the normalized autocorrelation function is applied to
calculate F0 values for each frame audio signal. The
average of all frames of an audio segment are taken as
features.

2.3.5. Pitch

The tone is related to the fundamental frequency of
the sound, reflecting the information of pitch. The av-
erage, minimum, maximum, and variance of all frames
of an audio segment are taken as features, which are ex-
pressed as Pitchmean, Pitchmin, Pitchmax, and Pitchvar,
respectively.

2.3.6. Crest factor

The CF is defined as the ratio of the waveform peak
to the effective value (Qian et al., 2016):

CF = Vm

Ve

, (3)

where Vm is the maximum absolute value of an audio
signal amplitude, and Ve is the root mean square value
of the audio signal amplitude absolute value. It reflects
the amplitude of changes in the audio signal in the
time domain. The mean value of the peak factor of
each frame of the signal is taken as a feature.

2.3.7. Spectrum related features

Spectrum related features are widely used in the
analysis of snoring sounds. It can reflect impor-
tant details of snoring sounds with different types.
In this work, spectral cut-off frequency, spectral skew-
ness, spectral slope, spectral variance, spectral kurto-
sis, spectral entropy, and spectral flux are extracted for
further analysis (Sun et al., 2023).



Y. Luo et al. – Snoring Sounds Classification of OSAHS Patients Based on Model Fusion 73

Spectral skewness is a measure of the direction and
degree of skewness in the distribution of statistical
data, which is a numerical characteristic of the degree
of asymmetry in the distribution of statistical data. It
is defined as the third-order standard moment of the
sample, and the calculation formula is as follows:

Skewness(X) = E [(X − µ
σ
)3] = k3

σ3
= k3

k
3/2
2

, (4)

where k2 and k3 represent the second- and third-order
central moment, respectively.
Spectral slope is a measure of the speed at which

the spectrum of an audio signal tilts towards high fre-
quencies, typically calculated using linear regression.
Spectral variance is used to measure the degree of dis-
persion of a sound signal. This can be expressed as
follows:

Var = 1

n

n∑
i=1

(xi − x)2. (5)

For spectral variance, which can reflect the inter-
ference of noise on data, this paper uses a noise power
function of the carrier frequency, and the spectral vari-
ance of the signal can be obtained by the Fourier trans-
form of its autocorrelation function:

V (Ω) = 1

2π

∞

∫
−∞

ei2πΩτ ⟨y(t)y(t + τ)⟩dτ. (6)

Spectral kurtosis can be used to measure the steep-
ness of the probability distribution of random vari-
ables. Take the average of the obtained results to ob-
tain the average kurtosis in this work. In this work,
the sample entropy is calculated for the entire effec-
tive snoring signal. Spectral traffic records the sum
of squares of the normalized amplitude differences be-
tween two frames, which can describe the changes in
adjacent frames. Its definition is

Fli,i−1 = Wl∑
k=1

(Ei(k) −Ei−1(k))2 , (7)

Ei(k) = xi(k)
Wl∑
n=1

xi(n)
, (8)

where Ei(k) is the normalized amplitude, and Wl is
the sampling window length.

2.3.8. Formants

Formants are areas in the spectrum of audio sig-
nals where energy is relatively concentrated. It reflects
the physical characteristics of the vocal tract, namely
the degree of contraction of the throat. The first three
formant frequencies of snoring sounds are extracted in
this work, including the first formant (F1), the second

formant (F2), and the third formant (F3). The aver-
age value of all frames is applied to express a piece of
snoring sound.

2.4. Feature selection

Studies have indicated that extracted features not
only determine the performance of a classification
model, but also determine the complexity of the model
and influence its computation cost (Kursa, Rud-
nicki, 2010; Li et al., 2017). Selecting effective fea-
tures with high discriminability and low complexity is
an important step for machine learning. It can reduce
the dimension of features and the complexity of the
proposed classification model. In this work, the Reli-
efF algorithm is applied to select features by calculat-
ing the contribution of each feature to the classification
task (Wu et al., 2020).
The idea of ReliefF algorithm can be simply ex-

pressed as: if a feature has the same category to its
nearest neighbor (with similar numerical values), the
feature weight will be reduced; if the feature is different
from its nearest neighbor category, increase its weight.
The specific calculation method for the weight W is as
follows. Firstly, setting the weights of all features W
to 0. When calculating the weight of the j-th fea-
ture, an observation value xo is randomly selected from
the feature and the k-observation values are found
in the dataset of each category of the feature that are
closest in value to the observation value. Updating the
weight of the feature parameter by the relationship
between each nearest neighbor (xn) and the observed
value (xo). Then repeating the iterative calculation un-
til all parameters of the feature are traversed. The spe-
cific calculation formula is as follows:

1) when the observed value xo is of the same category
as the nearest neighbor xn:

W i
j =W i−1

j −
∆j(xo, xn)

m
⋅ don; (9)

2) when the observed value xo is different from the
category of the nearest neighbor xn:

W i
j =W i−1

j +
pyn

1 − pyo

∗
∆j(xo, xn)

m
⋅ don, (10)

where W i
j is the weight of the i-th iteration of the

j-th feature; ∆j(xo, xn) is the relative difference
between xo and xn, where Fj represents the set
of the j-th feature parameter, then the expression
for ∆j(xo, xn) is

∆j(xo, xn) = ∣xo − xn∣
max (Fj) −min (Fj) , (11)

where don is the formal distance function between
xo and xn:
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don = d̃on
k∑

r=1

d̃or

, (12)

d̃on = exp

⎡⎢⎢⎢⎢⎣−(
rank(o, n)
sigma

)2⎤⎥⎥⎥⎥⎦, (13)

where rank(o, n) is the corresponding position of
a certain nearest neighbor xn in the total near-
est neighbor sorting table of xo after sorting KNN
by distance. Calculate sigma in Eq. (13) to change
the scaling ratio, pyo

is the prior probability of the
category to which the observed value xo belongs,
pyn
is the prior probability of the category to

which the nearest neighbor xn belongs.

3. Result

3.1. Feature selection

A strategy of feature selection based on the ReliefF
algorithm is applied to select features with high robust-
ness and low redundancy. Figure 2 displays the normal-
ized weight value of each feature to the related label.
Most features make significant contributions to this
classification task, especially for MFCC and pitch fea-
tures. The importance weights of MFCC1 to MFCC13
are higher than 0.1, which indicates that there is evi-
dently different energy distribution on each frequency
band divided by the Mel filter. The MFCC5 to MFCC8

Feature names
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Fig. 2. Normalized weights of each feature obtained by ReliefF algorithm.

yield the highest weights more than 0.14. These re-
sults show that the differences of snoring sounds
of simple snorers, normal snoring sounds of OSAHS
patients, and abnormal snoring sounds of OSAHS pa-
tients mainly concentrated on the low and middle fre-
quency bands. Pitchvar also has relatively high weight
values, which means that the three kinds of snoring
sound have different pitches.
Furthermore, the relationship between the dimen-

sion of selected features and the classification results is
explored to select optimal features. Figure 3 shows the
relationship between the dimension of selected features
and the accuracy based on the KNN, RUSBoost, and
DNN classifiers. The dimension of features has great
influence on the classification results for all classifi-
cation models. With the increase of the dimension of
selecting features, the accuracy of classifiers gradually
increases and tends to be stable. When the feature di-
mension exceeds the optimal one, the classification re-
sult will not increase with the increase of the feature
dimension. The redundant features not only cannot im-
prove the model classification performance, but also
increase the computational complexity of the model.
For different classification models, there are significant
differences in the degree of influence of features and
the dimension of optimal features. The optimal fea-
ture dimension is 16, 18, and 37 for KNN, RUSBoost,
and DNN classifier, respectively. The related accuracy
of KNN, RUSBoost, and DNN model with optimal
features are 85.44 %, 84.45 %, and 83.91 %, respec-
tively.
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Fig. 3. Relationship of cross-validation average accuracy of KNN, RUSBoost, and DNN
with the selected feature dimensions.

3.2. Classification results

Table 1 shows the classification results of SSS,
SSSP, and ASSP based on KNN, RUSBoost, DNN
classifiers under the original feature set. The accuracy
obtained by KNN, RUSBoost, and DNN are 84.81 %,
83.80 %, and 83.67 %, respectively. Under the same
feature set, different classifiers may have different em-
phases. KNN and DNN achieve much higher recall for
SSSS and SSSP and lower recall for ASSP than RUS-
Boost. Specifically, the recall of SSSS, SSSP, and ASSP
obtained by DNN are 97.53 %, 91.94 %, and 48.54 %,
respectively. The recall of SSSS, SSSP, and ASSP ob-
tained by KNN are 99.14 %, 91.26 %, and 54.50 %,
respectively. The recall of SSSS, SSSP, and ASSP ob-
tained by KNN are 97.99 %, 84.60 %, and 69.75 %, re-
spectively.

Table 1. Classification results of SSS, SSSP, and ASSP
based on different classifiers under the original feature set.

Snoring
type

Evaluation KNN RUSBoost DNN
Fused
model

Accuracy 0.8481 0.8380 0.8367 0.8556

SSSS
Recall 0.9914 0.9799 0.9753 0.9954

Precision 0.9799 0.9704 0.9900 0.9847

F1 0.9856 0.9751 0.9826 0.9900

Recall 0.9126 0.8460 0.9194 0.9083

SSSP Precision 0.8515 0.8886 0.8314 0.8655

F1 0.8810 0.8667 0.8732 0.8864

Recall 0.5450 0.6975 0.4854 0.5938

ASSP Precision 0.6939 0.6179 0.6839 0.6987

F1 0.6105 0.6553 0.5678 0.6420

To obtain classification results with higher robust-
ness and stableness, the three basic models KNN,

RUSBoost, and DNN are further fused by the vot-
ing strategy. The fused model adequately fuses the
advantage of the three basic models. It achieves
85.56 % accuracy, which increases nearly 2 % com-
pared with RUSBoost and DNN. The fused model
not only maintains the relatively high recall for
SSSS, but also significantly increases the recall of
ASSP. The recalls obtained by the fused model are
10.84 % and 4.88 % higher than DNN and KNN, re-
spectively. The recalls of SSSS and SSSP of fused
model are 99.57 % and 90.21 %, respectively, which
indicates that there are evident differences between
SSSS and SSSP. The classification results imply that
the upper airway structure of OSAHS patients on the
normal sleep is different from that of simple snorers.
To obtain model with lower complexity and high

performance, the feature selection strategy is applied
in the model. Table 2 shows the classification results
of SSS, SSSP, and ASSP based on KNN, RUSBoost,
and DNN classifiers under the selected feature set with

Table 2. Classification results of SSS, SSSP, and ASSP
based on different classifiers under the selected feature set.

Snoring
type

Evaluation KNN RUSBoost DNN
Fused
model

Accuracy 0.8544 0.8445 0.8391 0.8576

SSSS
Recall 0.9926 0.9840 0.9775 0.9957

Precision 0.9859 0.9830 0.9909 0.9856

F1 0.9892 0.9835 0.9842 0.9906

Recall 0.9090 0.8521 0.9127 0.9021

SSSP Precision 0.8617 0.8930 0.8385 0.8709

F1 0.8847 0.8721 0.8740 0.8862

Recall 0.5841 0.7072 0.5143 0.6162

ASSP Precision 0.6974 0.6257 0.6782 0.6931

F1 0.6357 0.6639 0.5850 0.6524
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the dimension of 16, 18, and 37, respectively. Compar-
ing Tables 1 and 2, the progress of feature selection
not only reduces the complexity of the proposed fused
model, but also improves the classification of SSSS,
SSSP, and ASSP. Compared with the original fea-
ture set, the recall of ASSP obtained by the fused
model conducting the feature selection improves value
of 2.24 %.
Tables 3 and 4 illustrate the confusion matrices of

KNN, DNN, RUSBoost, and its related fused model
under the original feature set and selected feature
set. There is a substantial distinction between snoring
sounds of simple snorers and snoring sounds of OSAHS
patients. For all classification models, recalls of SSSS
are higher than 98 %. Under all test conditions, a cer-
tain amount of ASSP and SSSP are mislabeled, result-
ing in relatively lower recall and precision. The results
of Tables 3d and 4d indicate that the proposed fused
method could effectively merge the advantage of dif-
ferent classifiers and different features to relatively ac-
curate SSSS, SSSP, and ASSP.

Table 3. Confusion matrices of SSS, SSSP, and ASSP based
on different classifiers under the original feature set.

Real label
Predict label

Recall [%]
SSSS SSSP ASSP

a) KNN-under the original feature set

SSSS 3213 23 6 99.1

SSSP 43 10 209 935 91.3

ASSP 23 1758 2133 54.5

Precision [%] 98 85.2 69.4 –

b) RUSBoost-under the original feature set

SSSS 3189 24 28 98.4

SSSP 27 9532 1628 85.2

ASSP 28 1118 2768 70.7

Precision [%] 98.3 89.3 62.6 –

c) DNN-under the original feature set

SSSS 3161 78 2 97.5

SSSP 26 10 285 876 91.9

ASSP 6 2008 1900 48.5

Precision [%] 99 83.1 68.4 –

d) Fusion-under the original feature set

SSSS 3226 11 4 99.5

SSSP 28 10 161 998 90.8

ASSP 22 1568 2324 59.4

Precision [%] 98.5 86.6 69.9 –

Table 5. Literature reviews about snoring sounds classification of OSAHS patients.

Author Subjects Feature Validation method Accuracy [%]

Cheng et al. (2022) 44 MFCC, LPC, Fbanks LSTM 81.60

Ding et al. (2023) 50 Mel-spectrogram VGG19+LSTM 85.21

Song et al. (2023) 40 Mel-spectrogram CNN, ResNet, and XGBoost fused model 83.44

Shen et al. (2020) 32 MFCC, LPCC, and LPMFCC LSTM 87.00

Hou et al. (2019) 120 MFCC GMMs 80.00

This work 40 A series of acoustic features KNN, RUSBoost, and DNN fused model 85.76

Table 4. Confusion matrices of SSS, SSSP, and ASSP based
on different classifiers under the selected feature set.

Real label
Predict label

Recall [%]
SSSS SSSP ASSP

a) KNN-under the selected feature set

SSSS 3217 20 4 99.3

SSSP 30 10 169 988 90.9

ASSP 16 1612 2286 58.4

Precision [%] 98.6 86.2 69.7 –

b) RUSBoost-under the selected feature set

SSSS 3176 37 28 98

SSSP 63 9464 1660 84.6

ASSP 34 1150 2730 69.8

Precision [%] 97 88.9 61.8 –

c) DNN-under the selected feature set

SSSS 3168 70 3 97.8

SSSP 25 10 210 952 91.3

ASSP 4 1897 2013 51.4

Precision [%] 99.1 83.9 67.8 –

d) Fusion-under the selected feature set

SSSS 3227 12 2 99.6

SSSP 29 10 092 1066 90.2

ASSP 18 1484 2412 61.6

Precision [%] 98.6 87.1 69.3 –

4. Discussion

In this study, a fused model based on KNN, RUS-
Boost, and DNN is proposed to classify SSSS, SSSP,
and APSP. The ReliefF algorithm is applied to se-
lect optimal features in each basic model. The hard
voting strategy is employed to fuse the three basic
models. The feature selection and model fusion strate-
gies evidently improve the classification performance of
the proposed model. Experiment results show that the
proposed model achieves 85.76 % accuracy. The recall
and precision of SSSS are 99.57 % and 98.56 %, respec-
tively. The recall and precision of SSSP are 90.21 %
and 87.09 %, respectively. The recall and precision of
ASSP are 61.62 % and 69.31 %, respectively.
Table 5 displays details of studies on the identifica-

tion of APSP. Since there is no open snoring dataset
with label, studies of analysis of snoring sounds
are based on dataset collected and labeled by their
own labs. The unavoidable situation makes it impos-
sible to compare the performance of different classifica-
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tion models directly. As Table 5 shows, these studies
are capable of classifying snoring sounds with apnea-
hypopnea events or without apnea-hypopnea events.
Specifically, Cheng et al. (2022) extracted acoustic
features including MFCC, LPC and used LSTM to
classify SSSS, normal snoring sounds of OSAHS pa-
tients, and post-apnea snoring sounds of OSAHS
patients with accuracy of 81.6 %. Their work had
high recall for SSSS and normal snoring sounds of
OSAHS patients and low recall for post-snoring sounds
of OSAHS patients with value of 88.1 %, 93.4 %, and
63.5 %, respectively. The classification model proposed
by this work achieved recall with values of 99.87 %,
90.21 %, and 61.26 % for SSSS, SSSP, and APSP,
which are relatively better than the mentioned stud-
ies. The comparison demonstrates that the fused model
yields higher classification result and better robust-
ness. Since the snoring sound is generated by the
vibration of the upper airway, the classification re-
sults of SSSS, SSSP, and APSP demonstrate that the
structure of the upper airway is evidently different
from that of OSAHS patients. Obesity, smoking, and
other pathological reasons cause the upper airway of
OSAHS patients gets narrow (Ghosh et al., 2021).
The narrow upper airway is the main reason for the
occurrence of apnea and hypopnea events of OSAHS
patients. The classification results of simple snoring
sounds of OSAHS patients and apnea-hypopnea snor-
ing sounds of OSAHS patients indicate that OSAHS
patients snore continually throughout the whole night,
which is caused by the narrow upper airway. It can be
said that the narrow upper airway not only induces
hypopnea and apnea events during sleep, but also neg-
atively influences the normal sleep qualities and fre-
quently causes snoring sounds. Furthermore, the high
recall and precision of SSSS show solid experimental
verification for identifying simple snorers and OSAHS
patients based on analysis of snoring sounds. These
studies mentioned in Table 5 are concentrated on dis-
tinguishing simple snoring sounds of OSAHS patients
and apnea-hypopnea snoring sounds of OSAHS pa-
tients (Cheng et al., 2022; Ding et al., 2023; Shen
et al., 2020; Song et al., 2023). The accuracies of all
classification model are higher than 80 %. These re-
sults indicate that there are evident differences among
snoring sounds occurred in different sleep stages for
OSAHS patients.
Song et al. (2023) proposed a CNN, ResNet, and

XGBoost fused model to classify snoring sounds oc-
curred in different sleep stages and achieved 83.44 %
accuracy. The classification model may be only con-
centrated on differences at one latitude and achieve
limited classification results. The model fusion strat-
egy based on different fusion methods is proposed to
fuse basic classification models that has been widely
used in different kinds of classification tasks. In this
work, a hard voting fusion strategy is applied to fuse

KNN, RUSBoost, and DNN classifiers. This method
significantly increases classification recall and precision
of SSSS, SSSP, and ASSP. It also improves the effec-
tiveness and robustness of the proposed model. Exper-
iment results show promising foreground for diagnos-
ing severities of OSAHS patients based on analysis of
snoring sounds.
There are also some limitations of the proposed

model. Firstly, validation experiments of this work are
conducted based on subject dependence. It mainly fo-
cuses on exploring differences among these types of
snoring sounds. Further subject independent experi-
ments should be conducted to validate the generation
error and robustness of the proposed model. Moreover,
the proposed model just focuses on exploring differ-
ences among snoring sounds occurred in different sleep
stages. The relationship between apnea-hypopnea
snoring sounds and apnea-hypopnea events should be
studied to identify apnea-hypopnea events and esti-
mate AHI values of OSAHS patients.

5. Conclusion

In this work, a fused model based on KNN, RUS-
Boost, and DNN is proposed to classify SSSS, SSSP,
and APSP. Firstly, a series of acoustic features are
extracted to express snoring sounds. Three classifiers
KNN, RUSBoost, and DNN are independently trained.
The ReliefF algorithm is applied to select features in
each classification model. A hard voting strategy is
used to obtain an optimal fused model. Experiment
results show that the proposed fused model achieves
high performance with accuracy of 85.76 %. The recalls
of SSSS, SSSP, and APSP obtained by the proposed
model are 99.87 %, 90.21 %, and 61.26 %, respectively.
It demonstrates the effectiveness and validity of assist-
ing in diagnosing OSAHS patients based on analysis of
snoring sounds.
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Binaural audio technology has been in existence for many years. However, its popularity has significantly
increased over the past decade as a consequence of advancements in virtual reality and streaming techniques.
Along with its growing popularity, the quantity of publicly accessible binaural audio recordings has also ex-
panded. Consequently, there is now a need for automated and objective retrieval of spatial content information,
with ensemble location and width being the most prominent. This study presents a novel method for estimating
these ensemble parameters in binaural recordings of music. For this purpose, a dataset of 23 040 binaural record-
ings was synthesized from 192 publicly-available music recordings using 30 head-related transfer functions. The
synthesized excerpts were then used to train a multi-task spectrogram-based convolutional neural network
model, aiming to estimate the ensemble location and width for unseen recordings. The results indicate that
a model for estimating ensemble parameters can be successfully constructed with low prediction errors: 4.76○

(±0.10○) for ensemble location and 8.57○ (±0.19○) for ensemble width. The method developed in this study
outperforms previous spatiogram-based techniques recently published in the literature and shows promise for
future development as part of a novel tool for binaural audio recordings analysis.

Keywords: ensemble width; ensemble location; binaural; spatial audio; localization; convolutional neural net-
work; head-related transfer function; angle of arrival.
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1. Introduction

The human auditory system demonstrates excep-
tional proficiency in segregating, localizing, and inter-
preting diverse auditory signals, despite being limited
to two ears. This is possible, among other factors, by
internal examination of interaural differences in time,
loudness, and frequency, known as binaural hearing
(Blauert, 1996), which enables precise localization
of sound sources in complex auditory environments.
A notable advantage of binaural hearing is exemplified
by the “cocktail party effect”, highlighting humans’ ca-
pability to concentrate on foreground sound sources
while suppressing background noise (Cherry, 1953).
Understanding the auditory system is essential for
comprehending its limits but also for leveraging these
insights to create more immersive binaural experiences
for entertainment purposes (Zhang et al., 2017). It is

also important for enhancing auditory signal reception
in hearing aid devices (Hirsh, 1950; Thiemann et al.,
2016).
The advance of sophisticated machine learning

techniques, especially deep learning networks, has ini-
tiated an interesting exploration of their potential to
emulate the human auditory system. Recently emerged
studies have demonstrated that relying on the ad-
vanced spatial audio feature engineering is not neces-
sary in computational audio source localization (Pang
et al., 2019; Vera-Diaz et al., 2018; Yang, Zheng,
2022). While applying convolutional neural networks –
CNNs (LeCun et al., 1989) to audio signals is well-
established, often in conjunction with spectrograms
(Espi et al., 2015; Han et al., 2017; Thomas et al.,
2014) or other feature engineering techniques (Abdel-
Hamid et al., 2012; Sainath et al., 2013), these ap-
proaches continue to be refined and adapted for au-
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dio processing. Building on these foundations, this
study develops an audio localization method using
a spectrogram-based multi-task CNN model.
Humans tend to localize groups of sound sources

rather than individual ones (Bregman, 1994; Rum-
sey, 2002). Inspired by this fact, the objective of the
proposed model is to estimate the location and width
of these groups, termed “ensembles”, instead of the po-
sitions of individual sources. This study is unique as it
not only developed the method but also tested it on
a relatively large, realistic music corpus. The corpus
comprised 23 040 binaural excerpts synthesized using
192 multi-track music recordings (from a repository
provided by Senior (2023)) and 30 sets of publicly
available head-related transfer functions (HRTFs) ac-
quired from various sources (see Table 1 in Appendix
for a detailed list). The music recordings covered many
different genres, including rock, jazz, pop, and classical
music.
The findings demonstrate that this method is ef-

fective in accurately estimating the spatial character-
istics of groups of sound sources in near-real-world sce-
narios. This paper also demonstrates an experimen-
tal framework that facilitates the objective measure-
ment of a binaural localization technique, employing
a large-scale dataset synthesized from real-world mu-
sic signals (for applications of similar frameworks, see
studies conducted by Antoniuk and Zieliński (2023)
and Zieliński et al. (2020; 2022a; 2022b)). One of the
key advantages of the proposed method is that it does
not assume the number of audio sources. However, sig-
nificant limitations of this study include the absence
of reverberation in the synthesized recordings and the
method’s inapplicability to real-time scenarios – both
are critical areas for future research.
The developed method has the potential to be

highly beneficial in automated information retrieval
tasks, where a significant number of binaural record-
ings must be analyzed or labeled in terms of their
spatial content information. This could be utilized in
the development of a hypothetical autonomous “web-
crawler bot” that will collect binaural recordings from
publicly accessible repositories and label them accord-
ing to the spatial properties of the sound sources, such
as the location of the music ensemble or the sparsity of
audio source positions. This method may also assist au-
dio engineers in objectively assessing and segregating
binaural audio recordings with regard to their spatial
content.
This paper is structured as follows: Sec. 2 presents

related studies. The description of the method devel-
oped for this study is provided in Sec. 3, which also
includes detailed definitions of ensemble location and
width, along with a description of the experiments used
to evaluate this method. Section 4 presents and dis-
cusses the performance of the proposed method as well
as the results of the experiments conducted in this

study. Finally, Sec. 5 offers concluding remarks and
suggestions for future research.

2. Related studies

Most existing literature on computational sound
source localization reports techniques that take advan-
tage of multiple microphone arrays with more than two
channels (Chung et al., 2022; Hahmann et al., 2022;
Kaveh, Barabell, 1986; Liu et al., 2022; Pan et al.,
2021; Pavlidi et al., 2012). Although these methods
can improve localization precision by providing addi-
tional spatial information, they do not utilize binaural
hearing, rendering them ineffective for binaural record-
ings. In the context of sound source localization in bin-
aural signals, the focus of research is put on the identi-
fication of individual sound sources, rather than groups
of sounds (Benaroya et al., 2018; Dietz et al., 2011;
Ma, Brown, 2016; Ma et al., 2017; May et al., 2011;
2012; 2015; Woodruff, Wang, 2012).
Considering source direction of arrival (DoA) meth-

ods, the majority of research assumes a fixed num-
ber of sound sources (Arthi, Sreenivas, 2021; Ma
et al., 2017; Pang et al., 2019; Vera-Diaz et al.,
2018;Woodruff,Wang, 2012), which limits its prac-
tical applications as this information is rarely known
in real-life binaural recordings. Moreover, the majority
of studies have focused on relatively homogeneous sig-
nals, namely speech (Benaroya et al., 2018; Dietz
et al., 2011; Liu et al., 2018; Ma, Brown, 2016;
Ma et al., 2017; 2018; May et al., 2011; 2012; 2015;
Wang et al., 2020; Woodruff, Wang, 2012; Yang,
Zheng, 2022).
In contrast to the aforementioned studies, the pro-

posed method is not constrained by the number of
sources. Moreover, the approach is not narrowed to
speech and has been applied to a wide range of musi-
cal datasets, including instruments and vocals. In con-
trast to studies that primarily focused on individual
sources, the proposed method does not aim to sepa-
rate them, but rather considers them as a group, or in
this case – a musical ensemble – similar to how real
musical ensembles are arranged on stage. To the au-
thors’ knowledge, this is one of the first methods to
localize ensemble width (see (Antoniuk, Zieliński,
2023) for the previous ensemble-width-related study),
and the first to localize both ensemble position and
width simultaneously using a multi-task model.
Sound localization methods can be classified into

two categories based on the implementation of their
underlying algorithms, termed as glass-box and black-
box techniques. Glass-box methods could be consid-
ered as more traditional in the literature. They rely
on manually designed algorithms that mimic the au-
ditory system to explicitly extract key features for the
localization estimation, such as interaural level differ-
ences, interaural time differences, interaural coherence,
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or interaural phase differences (Blauert (1996) pro-
vides detailed descriptions of these features). Exam-
ples of glass-box methods can be found in numerous
studies, including those conducted by Dietz et al.
(2011), Ma, Brown (2016), Ma et al. (2017; 2018),
May et al. (2011; 2012; 2015), Woodruff, Wang
(2012), and Zieliński et al. (2022b). These features
are typically extracted using an auditory model. An
advanced implementation capable of extracting these
features was developed as part of the Two!Ears project
(Raake, 2016).
Black-box methods use a minimal degree of fea-

ture engineering, depending on deep neural networks
to both extract features and make estimations. While
effective, these methods do not necessarily consistently
mimic human hearing, rendering them less suitable for
objective measurement tasks (e.g., Vera-Diaz et al.
(2018), Yang and Zheng (2022)). Additionally, it is
challenging to reveal their internally extracted fea-
tures. Due to their opacity, unpredictable results, and
numerous learning parameters, these methods should
be treated more carefully. Moreover, they require large
datasets for their development and evaluation. These
datasets often contain thousands of examples, such as
the TIMIT corpus (Garofolo et al., 1993) used in
multiple studies (Benaroya et al., 2018; Ma et al.,
2017; 2018;May et al., 2015; Pang et al., 2019; Vera-
Diaz et al., 2018; Wang et al., 2020; Yang, Zheng,
2022). Some researchers have even created custom cor-
pora with hundreds of thousands of recordings (Anto-
niuk, Zieliński, 2023; Zieliński et al., 2020; 2022a;
2022b).
The necessity of having a large corpus to train

deep learning models poses a significant challenge in
gathering a sufficiently large and diverse collection of
labeled binaural recordings. However, this challenge
can be addressed through the synthesis of binaural
sounds, as demonstrated in various studies (Anto-
niuk, Zieliński, 2023;Ma et al., 2018;Yang, Zheng,
2022; Zieliński et al., 2020; 2022a; 2022b) and dis-
cussed further in Subsec. 3.2.

3. Methodology

This part of the paper presents a detailed descrip-
tion of the model developed in this study, as outlined in
Subsec. 3.1. It also describes the audio dataset used for
training and evaluating the model, as detailed in Sub-
sec. 3.2. In Subsec. 3.3., the spectrogram calculation
procedure is presented. Subsection 3.4. describes the
model topology, whereas Subsec. 3.5 addresses model
training and evaluation.

3.1. Ensemble location and width definition

The objective of the model developed in this study
is to estimate the ensemble location (θ) and width (ω),

as illustrated in Fig. 1. An ensemble is defined as
a group of audio point sources positioned on a circle
around the listener on a virtual acoustic scene with an
equal distance to the listener. The location of source i
is denoted by θi. The ensemble width (ω) is defined
as the angular distance between two extreme point
sources (maxi(θi)−mini(θi)), while the ensemble loca-
tion, designated by θ, represents the middle angle be-
tween two extreme sound sources ( (maxi(θi)+mini(θi))

2
).

For the purposes of this study, the locations of the
sources were limited to the frontal hemisphere only,
i.e., θ ∈ [−45○,45○], ω ∈ [0○,90○], as this range encom-
passes the majority of real-world recording scenarios.
It should be noted that although humans possess some
limited abilities to localize sound sources in the verti-
cal plane, in this study all sources are placed in the
horizontal plane, at the ear-level of the listener. This
covers the majority of cases for real-world recordings
(see (Ma et al., 2018; Zieliński et al., 2022a) for re-
lated studies that cover top-down discrimination).
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Fig. 1. Illustration of ensemble width (ω) and ensemble
location (θ) relative to the direction of the head orientation.
Black dots represent the positions of audio sources θi. The
ensemble location (θ) is the angular position of the center
of the ensemble relative to the direction the head is facing.
The ensemble width (ω) is the angular distance between
the two most extreme audio sources in the ensemble.

3.2. Synthesis of binaural music recordings

The experiments conducted in this study involved
23 040 binaural recordings of music. These recordings
were synthesized using 192 publicly-available multi-
track music recordings (Senior, 2023) and 30 HRTF
databases (see Table 1 in Appendix for a detailed list).
The large number of HRTF databases was necessary to
make the model as generalizable as possible. In real-
world scenarios, the HRTF used for binaural synthesis
is often unknown, so constructing a model for a single
HRTF would have limited practical utility. The aim
was to predict ensemble parameters regardless of the
specific HRTF function used. Additionally, the large
number of HRTF functions increased the amount of
data available for model training, which is particularly
beneficial in the context of deep neural networks. The
number of HRTF databases (30) was determined using
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heuristics from previous study conducted by Zieliński
et al. (2022b), which suggested this number should be
sufficient for the task.
The number of tracks in multi-track recording

ranged from 5 to 62, with median of 9. For each pair
of a multi-track recording and an HRTF database,
four binaural recordings were synthesized with differ-
ent random ensemble parameters, namely location θ

and width ω, as defined in Subsec. 3.1. Both param-
eters were drawn from a uniform random distribu-
tion. Furthermore, the tracks of the input multi-track
recordings were randomly assigned to sound source po-
sitions (θi) to enhance the diversity of the final binau-
ral corpora. Before the synthesis, the signals in each
track were equalized to −23 LKFS, in accordance with
(ITU, 2023) recommendation.
The binaural recordings were obtained in this study

using the binaural synthesis procedure, known as bin-
auralization, whose aim was to simulate the positions
of sound sources within a virtual acoustic environ-
ment (Blauert, 1996). This was achieved by convolv-
ing multi-track signals with head-related impulse re-
sponses from a specified HRTF database. The resulting
binaural output signal yc[n] for each stereo channel c
(left or right) at a sample n is given by the equation:

yc[n] = N

∑
i=1

K−1

∑
k=0

xi[k] × hc,θi[n − k], (1)

where xi represents the signal of an individual sound
source i from the input music recording and hc,θi de-
notes the head-related impulse response for channel c
at location θi of source track i.
After the binauralization procedure, the synthe-

sized recordings were truncated to a duration of seven
seconds, with sine-squared fade-in and fade-out ef-
fects of 0.01 seconds applied. The recordings were
then RMS-normalized, scaled by a factor of 0.9, and
DC-offset corrected. They were stored as uncom-
pressed files at 48 000 samples per second and with
a 32-bit resolution.
Due to copyright restrictions, the music corpus uti-

lized in this study was not published. However, the
corpus can be provided upon reasonable request from
the authors of this paper.

3.3. Calculation of spectrograms

Prior being input into the model, the binaural
recordings of music were transformed into magnitude
spectrograms. Although spectrograms do not directly
provide information that can be translated into ensem-
ble features, especially the ensemble width, the goal of
this task was to reduce the number of independent
variables compared to the raw audio signal by extract-
ing more compressed and informative data in the fre-
quency domain. This step was also necessary to de-
crease the likelihood of overfitting, reducing the num-

ber of examples needed to train the model, and thereby
lower the overall computational power requirements. It
is worth mentioning, however, that recently published
studies have shown that CNNs are suitable for end-
to-end audio localization without the spectrogram ex-
traction step, as demonstrated by Vecchiotti et al.
(2019) and Vera-Diaz et al. (2018).
To prepare the input for the model, a Hamming

window of 40 ms with an overlap of 20 ms was applied
to each frame of the signal, resulting in a total of 349
time frames. From each frame, spectrograms were ex-
tracted using the fast Fourier transform (FFT) algo-
rithm, with 150 frequency bands spaced linearly from
100 Hz to 16 kHz. This procedure was conducted for
both the left and right channels, yielding two spectro-
grams for each binaural sample. Consequently, each
sample was represented by the 32-bit floating-point
precision matrix of dimensions 2 × 349 × 150. This
method parallels the procedure presented by Zieliński
et al. (2022b).

3.4. Network topology

The network topology employed in this study was
strongly influenced by the AlexNet convolutional neu-
ral network introduced by Krizhevsky et al. (2012).
While AlexNet was originally designed for image clas-
sification, in this study it was adapted for the audio
analysis task by converting binaural recordings into
magnitude spectrograms, as described in Subsec. 3.3.
This conversion allowed the spectrograms to be treated
as visual data, enabling them to be used in an image-
recognition-like task.
As illustrated in Fig. 2, the network architecture

consists of an input layer accepting a pair of spectro-
grams, followed by a series of convolutional units and
classification units, culminating in two outputs pre-
dicting ensemble location and width, respectively. This
design employs a multi-task approach, enabling a sin-
gle network to estimate both ensemble parameters si-
multaneously.
The topology finalized in this study was chosen,

among many alternative architectures, based on the
highest prediction quality observed on the validation
dataset. Despite the existence of numerous algorithms
for automatic topology selection (Branke, 1995; Mi-
ikkulainen et al., 2017; Shafiee et al., 2016; Stan-
ley, Miikkulainen, 2002; Zhang et al., 2018), the
final topology was determined manually, primarily
due to the high computational demands relative to
the available resources.
Various architectural configurations were assessed,

with key parameters being varied such as the num-
ber of convolutional units (from 1 to 5), the number of
classification units (from 1 to 5), the inclusion or exclu-
sion of max pooling layers after each convolution layer,
the number of filters within the convolutional lay-
ers, the dimensions of these filters (2× 2, 2× 3, or 3×3),
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Fig. 2. Topology of the CNN used for estimating ensemble location and width, illustrating the layers (grouped in “convo-
lutional” and “classification” units) and connections of the network architecture.

the stride size, and the dimensions of the max pooling
layers (2× 2, 2× 3, or 3× 3). Based on this procedure,
it was concluded that the model is robust against vari-
ations in the assessed topologies. The differences in
mean prediction error among the configurations were
minimal, typically less than 1○ for most configurations.
Among the many tested topologies that yielded similar
errors, the simplest one was selected to optimize both
the performance efficiency and model simplicity.
Despite the availability of widely used techniques

for addressing an overfitting effect, such as the dropout
layer (Srivastava et al., 2014), and for accelerat-
ing training, such as batch normalization (Ioffe,
Szegedy, 2015), neither technique was employed in
this study as they were observed to be ineffective for
the specific estimation task being undertaken. Instead,
a global average pooling layer was utilized, known for
its capabilities in reducing overfitting (Lin et al., 2013).
This was confirmed in this particular task, as the in-
clusion of this layer significantly reduced overfitting,
lowering the final mean absolute error (MAE) score by
0.83○ (average across 10 trials) compared to configura-
tions where a simple flattening layer was used instead.

3.5. Model training and evaluation

The topology described in the previous section re-
sulted in a model with 216 562 learning parameters.
The model training procedure was repeated 10 times,
employing the Monte Carlo cross-validation method,
as described by Kuhn and Johnson (2013). For each

repetition, the entire dataset was randomly divided
into two parts: a development set containing two-thirds
of the dataset (15 360 recordings) for model construc-
tion, and a test set consisting of the remaining one-
third of the dataset (7680 recordings) for its evalua-
tion. This repetition procedure was employed to ensure
more reliable and generalizable results by assessing
the model’s performance across different subsets of the
data. Additionally, it helped to account for the inher-
ent variability in neural network training, where slight
changes in initial conditions or optimization paths can
lead to different model outcomes. While a large and
diverse dataset could mitigate this issue, the binaural
excerpts used in this study were generated from only
196 multi-track music recordings. This limited source
material raised concerns by these authors about po-
tential significant variations between the development
and test sets in each repetition. In hindsight, these con-
cerns were valid, as the maximum observed difference
in MAE between repetitions reached up to 0.85○ for
ensemble width.
To ensure that the evaluation process was unbi-

ased, the data split was done in such a way that no
original multi-track recordings used for synthesis were
included in both the development and test sets simulta-
neously. However, this rule was not applied to HRTFs
databases, allowing for the possibility of HRTF infor-
mation leaking between the development and test sets.
This could be seen as a significant limitation of the
study. However, it is known that a human auditory
system uses a single HRTF represented by ears, head,
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and torso, only slightly changing throughout the en-
tire life, mainly during infancy (Clifton et al., 1988;
King et al., 2001). Therefore, this limitation could be
considered in pair how the human auditory system be-
haves in real life. Nevertheless, it is worth noting that
some studies implement HRTF-independent testing for
binaural localization models, as demonstrated by An-
toniuk and Zieliński (2023) and Zieliński et al.
(2022a; 2022b).
The development set was divided into training and

validation subsets at a 7:1 ratio, with 13 440 record-
ings in the training subset and 1920 recordings in the
validation subset. The training subset was used to up-
date the model’s learning parameters, while the vali-
dation subset was solely used for early stopping (Mor-
gan, Bourlard, 1989; Pocock, Hughes, 1989) and
model checkpointing (Eisenman et al., 2020). These
techniques were employed to select the model with the
best generalization capabilities and prevent overfitting.
The test subset, which included data not seen dur-
ing the training or validation phases, was used solely
for performance assessment once per a repetition. This
divide-train-and-evaluate process was repeated to col-
lect 10 MAEs, from which the final model error was
determined.
For each sample, the model received two spectro-

grams as input: one for the left channel and one for the
right channel. The rationale behind the application of
CNNs to this task was to automatically extract local
features from the spectrograms and use these features
to estimate two contiguous ensemble parameters: en-
semble location and width, both measured in degrees.
For model training, the Adam algorithm (Kingma,
Ba, 2014) was used. The algorithm minimized predic-
tion errors, calculated as the difference between the ac-
tual ensemble parameters (known a priori from the
binaural synthesis described in Subsec. 3.2) and
the predicted values.
The optimizer was configured with the following

hyperparameters: an initial learning rate of 10−3, a de-
cay rate of 10−6, and momentum parameters β1 = 0.9
and β2 = 0.999. Training was conducted using a batch
size of 8, with a maximum of 256 epochs set. An
early stopping technique was implemented to prevent
overfitting, terminating the process if no improvement
was observed on the validation set for 20 consecutive
epochs. Consequently, the maximum number of epochs
was never reached; instead, training concluded after 25
to 36 epochs, with a median of 27.5 epochs. During
the training process, the losses for both outputs were
combined additively, ensuring equal weighting of both
ensemble features.
The computational work for this study was con-

ducted on a workstation equipped with an RTX Nvidia
GeForce 4090 GPU and a 48-core AMD Ryzen Thread-
Ripper processor (up to 4.5 GHz). On the software
side, MATLAB (The MathWorks Inc., 2022b) with

the Audio Toolbox (The MathWorks Inc., 2022a) was
used for the binaural recording synthesis, while Python
(Van Rossum, Drake, 2009) with the SciPy package
(Virtanen et al., 2020) was used for feature extrac-
tion and Keras (Chollet et al., 2015) for training the
CNN model. The complete source code for all the ex-
perimental stages is publicly available on the GitHub
repository (Antoniuk, 2024). The spectrogram cal-
culation phase required 21 minutes, data partitioning
took 34 minutes, and the total training time for all
iterations amounted to 40 minutes, making the entire
training and evaluation process 95 minutes long.

4. Results and discussion

The overall model performance measured across 10
experiment iterations, expressed as MAE, was equal to
8.57○ (±0.19○) for ensemble width and 4.76○ (±0.10○)
for ensemble location. As both ensemble parameters
were constrained within the same range of 90○, the
results demonstrate that the model exhibits a 44 %
lower error for ensemble location compared to ensem-
ble width. This outcome is not unexpected, given that
ensemble location is a less complex parameter. Essen-
tially, it represents the average location of all sources.
Therefore, it is more resistant to temporal fluctuations
in individual audio sources than ensemble width, which
is dependent on the two most extreme sound sources
that vary over time. Furthermore, estimating ensem-
ble width necessitates the identification of these two
extreme sources, a process that is inherently more com-
plex than estimating a single average location.
Figure 3 compares the actual and predicted ensem-

ble widths for each sample, showing a heteroscedastic
relationship between them, with a slight bias towards
predicting lower ensemble width values for higher ac-
tual widths. This relationship exhibits a strong positive
correlation, with the Pearson coefficient r of 0.90. Ad-
ditionally, the results indicate that the model provides
more precise predictions for narrower ensemble widths,
with an average MAE of 5.65○ for ω < 30○. However,
performance deteriorates as the ensemble width in-
creases, resulting in an MAE of 12.44○ for ω > 80○. This
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Fig. 3. Comparison between the actual ensemble width ω

and the predicted ensemble width ω′ for a single iteration
(of the total ten).
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effect is more visible in Fig. 4, which highlights the im-
pact of the actual ensemble width on the precision of
prediction. The correlation between the actual ensem-
ble width and prediction error shows a weak positive
relationship, with the Pearson coefficient r of 0.27.
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Fig. 4. Impact of the actual ensemble width ω on the mean
absolute prediction error, averaged across all ten iterations,

with indicated standard deviation.

The reduced accuracy in the width prediction
can be attributed to the sparse distribution of audio
sources in wider ensembles, which amplifies the influ-
ence of extreme sound sources on prediction errors,
resulting in lower precision as the ensemble width in-
creases. Moreover, Fig. 4 reveals that the relationship
between the ensemble width and the error is nonlin-
ear, displaying a notable decrease in error between 60○

and 75○. The reason for this nonlinearity is currently
unclear and requires further investigation.
The correlation between the actual and predicted

ensemble location values exhibits a very high degree
of correlation, as illustrated in Fig. 5. In this case, the
Pearson correlation coefficient r is equal to as much
as 0.97. In contrast to the ensemble width, no signif-
icant relationship is observed between actual location
and its prediction error. This finding suggests that the
model’s ability to localize the center of the ensemble
is robust, unaffected by the actual spatial positioning
of the ensemble, including lateral locations. Figure 6
corroborates this observation, demonstrating the rela-
tively consistent location error across most positions,
with minor increases at extreme locations. The negli-
gible correlation (r = −0.03) between the absolute lo-
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Fig. 5. Comparison between the actual ensemble location θ
and the predicted ensemble location θ′ for a single iteration

(of the total ten).
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Fig. 6. Impact of the actual ensemble width ω on the mean
absolute prediction error, averaged across all ten iterations,

with indicated standard deviation.

cation value and prediction error further supports the
model’s spatial invariance in its performance.
Figure 7 illustrates the influence of both the en-

semble location and width on the mean absolute er-
ror for an ensemble location, providing a detailed per-
spective complementing the results presented in Fig. 6.
Notably, the figure highlights asymmetric anomalies,
particularly within the θ ∈ [15○,30○] range compa-
red to the θ ∈ [−30○,−15○] range, which can be at-
tributed to the sparsity of sample result data across
specific regions of this heatmap. While the figure sug-
gests that ensemble location does not significantly af-
fect the model’s precision in predicting location, it
clearly demonstrates that ensemble width has a sub-
stantial impact. Specifically, there is a positive correla-
tion between the width of the ensemble and the error in
its location prediction, with error magnitude increas-
ing as the width expands.
Figure 8 reveals a characteristic performance de-

pression in ω ∈ [30○,60○] previously shown from a dif-
ferent perspective in Fig. 4. This heatmap highlights
another interesting phenomenon in its upper corners
as the error in these areas is considerably higher. This
indicates that the model’s performance for estimat-
ing ensemble width is substantially worse at extreme
widths and locations, i.e., when both the width and
locations are near their maximum investigated values
(∣θ∣ ≈ 45○, ω ≈ 90○).
The model presented in this study demonstrates

a significant improvement in ensemble-width perfor-
mance compared to the spatiogram-based model, first
introduced by Arthi and Sreenivas (2021) and fur-
ther investigated by Antoniuk and Zieliński (2023),
under similar evaluation conditions. While the dataset
used in this study was expanded with 40 additional
multi-track recordings and 10 HRTF databases, An-
toniuk and Zieliński (2023) showed that the spa-
tiogram model’s performance does not improve with
further increases in dataset size. This finding enables
a direct comparison of results between the two models
in terms of the precision of the ensemble width esti-
mation, despite the differences in dataset composition.
Our model achieved a MAE of 8.57○, outperforming
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Fig. 7. Heatmap illustrating the MAE of ensemble location distribution across different ensemble locations (x -axis) and
ensemble widths (y-axis). The color intensity corresponds to the MAE values, with lighter areas indicating higher errors.
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Fig. 8. Heatmap illustrating the MAE of ensemble width distribution across different ensemble locations (x -axis) and
ensemble widths (y-axis). The color intensity corresponds to the MAE values, with lighter areas indicating higher errors.

the spatiogram-based model’s result of 13.62○ by 5.05○.
This substantial improvement is further enhanced by
the current model’s ability to estimate ensemble loca-
tion, a feature absent in the previous model.
Assuming terms of ensemble location prediction,

the novelty of the proposed method makes direct
comparison with existing literature challenging. How-
ever, its efficacy can be only evaluated indirectly
against state-of-the-art individual-source localization
techniques. The ensemble location prediction preci-
sion (MAE = 4.76○) of the proposed method can be
contextualized with the leading-edge binaural localiza-
tion DeepEar model introduced by Yang and Zheng
(2022). Their model reported MAEs of 7.4○ and 2.3○ for
multi-source and single-source angle of arrival (AoA)
estimation, respectively. As another promising exam-
ple, the WaveLoc-CONV model developed by Vec-
chiotti et al. (2019) demonstrated errors of 0○ in ane-
choic conditions and 1.7○–2.4○ in multi-condition sce-
narios. However, these results are limited to the single-
source speech localization, a substantially less complex
task than the ensemble location prediction addressed
by the proposed method. These experiments, while
differing in objectives and datasets, provide valuable

context for the proposed method’s performance within
current DoA and AoA estimation research.

5. Conclusions

This paper introduces a novel approach to locat-
ing audio sources in binaural recordings. Unlike tradi-
tional methods that predict the locations of individual
audio sources, this study focuses on estimating “en-
semble parameters” of audio sources, thus allowing the
audio scene to be described using two parameters only:
ensemble location and width. This approach makes it
possible to avoid making restrictive assumptions about
the number of audio sources, rendering the proposed
method more suitable for real-world applications. The
study also explores the use of CNN in conjunction with
spectrograms applied to their inputs. According to the
obtained results, the networks show exceptionally good
performance, demonstrating their suitability for the in-
vestigated scenario.
The method was developed using 23 040 syn-

thesized binaural excerpts intended to mimic real-
world music recordings. The results show its out-
standing performance, with the model achieving MAE
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of 4.76○ (±0.10○) and 8.57○ (±0.19○) for the estimation
of ensemble location and width, respectively. While the
model is resilient to lateral ensemble locations, it is
sensitive to the actual ensemble width, lowering the
model accuracy as the width increases. The proposed
method demonstrates a significant improvement over
the previous technique based on spatiograms (Anto-
niuk, Zieliński, 2023), lowering the MAE by 5.05○.
Despite its high precision, the method exhibits cer-

tain limitations. Since it has been developed using the
binaural excerpts synthesized with the head-related
impulse responses being inherently anechoic in their
characteristics, the method’s performance under re-
verberant conditions has not been validated. More-
over, the proposed method is incapable of operating
in real-time scenarios. Validating the method under
reverberant conditions as well as optimizing its ar-
chitecture for practical real-time scenarios constitute

Appendix

Table 1. List of HRTF sets used to synthesize binaural audio excerpts.

No. Type Head Radius [m] Source Acronym

1. Human Human subject 1.2
RWTH Aachen University (Braren, Fels, 2020) AACHEN

2. Artificial GRAS 45BB-4 KEMAR 1

3. Human Subject 2 1.2

Austrian Academy of Science (2014) ARI
4. Human Subject 4 1.2

5. Human Subject 10 1.2

6. Artificial ARI printed head 1.2

7. Human Subject 012 1
CIPIC Interface Laboratory,

University of California (Algazi et al., 2001)
CIPIC8. Human Subject 015 1

9. Human Subject 020 1

10. Artificial Neumann KU 100 0.9 NASA (Andreopoulou et al., 2015)

CLUBFRITZ11. Artificial Neumann KU 100 1.5
Helsinki University of Technology
(Andreopoulou et al., 2015)

12. Artificial FABIAN 1.47 Technical University Berlin, Huawei Technologies,
Munich Research Centre, Sennheiser Electronic

(Brinkmann et al., 2019)
HUTUBS13. Human Subject pp2 1.47

14. Human Subject pp3 1.47

15. Human Subject 1003 1.95
IRCAM, AKG (Listen HRTF Database, n.d.) LISTEN

16. Human Subject 1002 1.95

17. Artificial KEMAR DB-4004 (DB-061) 1.4
MIT (Gardner, Martin, 1994) MIT

18. Artificial KEMAR DB-4004 (DB-065) 1.4

19. Human Subject 001 1.5

20. Human Subject 002 1.5 Tohoku University (Watanabe et al., 2014) RIEC

21. Artificial Koken SAMRAI 1.5

22. Artificial Neumann KU 100 1.2

23. Human Subject H3 1.2 University of York (Armstrong et al., 2018) SADIE II

24. Human Subject H4 1.2

25. Artificial KEMAR 1
South China University of Technology

(Yu et al., 2018)
SSCUT

26. Artificial Neumann KU 100 1 TH Köln (Pörschmann et al., 2017) STH Köln

27. Artificial FABIAN 1.7 TU Berlin
(Brinkmann et al., 2017; Wierstorf et al., 2011)

TU Berlin
28. Artificial GRAS 45BA KEMAR 1

29. Artificial
GRAS 45BB-4 KEMAR
– subject A attachment

1
Aalborg University; University of Iceland

(Spagnol et al., 2019; 2020)
VIKING

30. Artificial
GRAS 45BB-4 KEMAR
– subject B attachments

1

the topics for future research. Other minor limitations
include the lack of HRTF independence between the
development and test sets, and the absence of verti-
cal variations in audio source placement, as all sources
were positioned on the horizontal plane. Additionally,
the proposed approach requires substantial computa-
tional resources, particularly GPU usage, which was
not necessary for the previously used spatiogram-based
method.
These limitations, however, present opportunities

for future research. Despite the current constraints,
this study introduces a novel method for characterizing
acoustic scenes in binaural recordings of music, demon-
strating substantial potential for advancing binaural
audio analysis. The method offers promising prospects
for developing innovative tools that can objectively an-
alyze large repositories of binaural audio recordings,
focusing on spatial content.
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This study is aimed to evaluate a method for distinguishing between healthy and pathological voices. The
evaluation was carried out using several acoustic parameters including COVAREP (collaborative voice analysis
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The study group comprised 75 voice recordings of individuals affected by vocal fold paralysis. The control

group consisted of 49 voice recordings of healthy individuals. The results indicate that the voice quality of
the study group is significantly different than the voice quality of the control group. Acoustic parameters
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addition, data classification achieved over 90 % accuracy for every classifier.
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1. Introduction

Voice is a key element in everyone’s daily life as
it is needed to communicate with other people. Three
components are required for proper voice production:
breathing, phonation, and articulation (Majkowska,
2004). For a human to produce a sound, simultane-
ous orchestration of several organs is required. The hu-
man breathing apparatus consists of lungs, diaphragm,
trachea, and bronchi. It generates a driving force in
the form of a stream of air exhaled from the lungs,
which is needed to produce air turbulence and, there-
fore, sound. The phonation apparatus consists of the
larynx with the vocal folds, vocal muscles, and the la-
ryngeal nerve system. The airflow through the bronchi
and trachea into the larynx causes vocal folds to vi-
brate, which are the sound source for voiced parts of
speech. The articulation apparatus consists of the oral
cavity, along with the tongue, the pharynx, and the
nasal cavity. The oral cavity’s role is to amplify and
filter the sound produced in the larynx, thus trans-
forming it into an articulated sound that is intelligible

as speech. When the uvula of the soft palate is prop-
erly positioned the sound wave is emitted through the
nasal cavity and nostrils (Tadeusiewicz, 1988).
A healthy voice, also known as euphonic, is charac-

terised by correct and clear articulation, good diction,
and the smooth change of intensity and fundamental
frequency depending on the content of the utterance.
The air pressure of a person with such a voice is per-
fectly regulated. The close-ups of the vocal fold and
the onset of exhalation occur at the same time. The
opposite of a euphonic voice is a pathological voice.
Voice pathology manifests itself in the form of aphonia
and dysphonia. Dysphonia is characterised by hoarse-
ness, abnormal timbre, loudness, and duration of the
utterance (Kosztyła-Hojna et al., 2014). Aphonia
is defined as the inability to produce a voice. It may
be caused by surgery, tumor, or psychological means
(Roper, 2014).
Vocal fold paralysis is caused by damage to the

laryngeal nerves. The patient can suffer from unilat-
eral or bilateral paralysis, the former of which is more
common. We distinguish between central and periph-
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eral vocal fold paralysis. Peripheral causes can be di-
vided into traumatic and non-traumatic causes. Trau-
matic causes are mostly caused by surgery on the thy-
roid gland, either because of goiter or cancer. Other
causes include communication injuries, heart, lungs,
neck vessels or tracheal tumor surgeries, and intu-
bation injuries. Non-traumatic causes include respi-
ratory diseases such as tuberculosis, cancer, or en-
larged lymph nodes. They also include viral infections
such as shingles, influenza, esophageal, tracheal, and
bronchial neoplasms, aortic aneurysm, myocardial hy-
pertrophy, and mediastinal diseases. Patients with vo-
cal fold paralysis have impaired defensive function of
the larynx, which may cause choking on saliva or food.
The voice of such a person is monotonous and dull. The
fundamental frequency and timbre of the voice can
change rapidly (Chen et al., 2007).
In the medical environment, the assessment of voice

pathology is based on multiple different factors, includ-
ing questionnaires for self-assessment, expert derived
perceptual analysis (e.g., using the GRBAS scale (Hi-
rano, 1981)), acoustic analysis (e.g., jitter, shimmer,
noise-to-harmonic ratio (Boersma, 2001)), aerody-
namic analysis (e.g., maximum phonation time, mean
airflow rate (Speyer et al., 2010)), and vocal range
analysis (e.g., fundamental frequency and intensity
range (Cooper, Sorensen, 1981)). This assessment
is repeated at several stages of administrating medi-
cation or therapy, thus allowing for a correlation com-
parison of various methods of medical treatment – see
Table 1 (Jeong et al., 2022).
In recent years, especially spurred by the COVID-19

pandemic, much of the diagnosis and pre-screening
have been performed in a purely remote setting (Mon-
talbaron et al., 2023). As in this study, a com-
mon approach relies on using artificial intelligence (AI)
in computer-aided diagnosis (Verikas et al., 2006;
Crowson et al., 2020). Early systems relied on sim-
ple Mel-frequency cepstrum coefficients and hidden
Markov models (Dibazar et al., 2006) – an approach
common in speech recognition systems of the era. More
modern solutions rely on deep learning and other novel
machine learning techniques (Compton et al., 2022;
Tirronen et al., 2023; Suvvari, 2023). The results

Table 1. Voice outcome measures as outlined by Jeong et al. (2022).

Category of outcome measurement Definitions and examples

Visuo-perceptual
Subjective rating of laryngeal anatomy function, e.g., videostroboscopy, laryngoscopy, stro-
boscopy research tool

Auditory-perceptual
Subjective rating of the perceptual vocal quality, e.g., GRBAS (Hirano, 1981), CAPE-V
(Nemr et al., 2012)

Acoustic
Computerized measurements of features of the speech sound signal, e.g., jitter, shimmer,
noise-to-harmonic ratio, cepstral peak prominence

Aerodynamic
Measures of respiratory components of phonation, e.g., maximum phonation time, S/Z ratio,
subglottal pressure

Voice-related quality-of-life measures
Patient rated assessment of the impact of dysphonia, e.g., vocal handicap index (Wilson
et al., 2004), V-RQOL (Hogikyan, 2004)

outlined in the cited literature were relatively com-
pared to those discussed in this paper. However, the
comparison is difficult as the datasets of other authors
are generally not available for a direct comparison.
This study aimed to prove that both acoustic and

perceptual analysis are valuable tools for detecting
changes in voice quality. Through a series of experi-
ments using several classifiers, the data were success-
fully classified into voice recordings of people suffer-
ing from vocal fold paralysis and voice recordings of
healthy individuals.

2. Speech database

The recordings were conducted in 1973–1996 in the
Institute of Phoniatrics at the Central Clinical Hospi-
tal, 1a Banacha St. in Warsaw. The Nagra IV S se-
ries professional tape recorder was used to record
the speech in non-acoustically adapted room. (Wow
and flutter (9.5 cm/s) ±0.012 %, according to DIN
45507 standard, 0.043 % according to NAB standards.
Signal-to-noise ratio (SNR) ASA A-weighted, refer-
ence 1 mW 125 dBm). The recordings contain 416
recordings of patients with various diseases affect-
ing voice quality, such as after adenoidectomy, tubec-
tomy, cordectomy with vocal fold paralysis, or dys-
phonia. Each patient underwent a phoniatric examina-
tion. A significant number of patients had their voices
recorded repeatedly, which may allow us to compare
the performance of our system on the same voice be-
fore and after rehabilitation.
Following speech signals were recorded: vowels / ∶ i// ∶ y/ / ∶ a/ / ∶ e/ / ∶ o/ / ∶ u/ read at equal intervals, sim-

ple announcing, and questioning sentences, and scien-
tific text that the patient was not familiar with before
the study began.
In addition, 10 sentences of text were recorded. All

the recordings, which were conducted using a rarely
employed cost-effective speed of 9.5 cm/s, are stored
on analogue reel tapes in the Institute of Phoniatrics’s
archives. The speed does not influence the quality of
recorded speech.
The crucial process was to digitise the recordings.

It was conducted at the Polish-Japanese Academy of
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Information Technology using the Studer A812 reel-
to-reel tape recorder (Rosłanowski, 2008). The ana-
logue signal from the recorder was sent to the computer
via an E-MU 1616 audio interface. The connection was
made using a symmetric cable with one end plugged
into the CH1 connection of the recorded and the other
end plugged into the audio interface’s input. The sig-
nal was recorded in Sony Sound Forge at a sampling
rate of 44.1 kHz and a 16-bit depth.
A database containing the patient’s name, date

of recording, disease description, ID, and file name
recording, keywords, age, gender, and tape number was
also created.
Examples of the transcript used are provided in

Appendix A, together with its translation in Appendix
B. A subset of the recordings, where patients phonated
the sustained / ∶ a/ vowel and uttered sentences in
Polish: “Ten dzielny żołnierz był z nim razem. Ola lubi
bezy”, were included in the experiments. The voice
recording was excluded if a vowel’s phonation was not
sustained for at least 1 second.

2.1. Pre-processing of recordings

The acoustic background and reverberation in the
room used for recording exceeded appropriate levels,
which affected the quality of the voice recordings. All of
them had to be subjected to a noise reduction process.
Firstly, the SNR was calculated for every voice record-
ing. The SNR is a difference, measured in decibels, be-
tween the speech level and the background noise level.
Previous studies reported that recommended lev-

els of SNR are above 42 dB, acceptable: above 30 dB,
and unacceptable: below 30 dB (Ingrisano et al.,
1998; Deliyski et al., 2005). To eliminate mains hum,
we used a FIR high-pass filter to reduce all frequen-
cies below 60 Hz (Fig. 1), which greatly improved the
SNR levels of all recordings. Before the process, the SNR
ranged from 17.9 dB to 40.9 dB, averaging 26.2 dB.
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Fig. 1. FIR filter used to process the voice recordings.

After the process, the SNR ranged from 23.5 dB to
48.7 dB, averaging 36.1 dB. Only one recording was
deemed unusable and was excluded from the study.
Voice recordings were sorted by the type of vocal

disorder. Vocal cord paralysis, which is the goal of this
study, was the only one that appeared more than a few
times in the database. Only 75 recordings were used in
further experiments. Forty-nine recordings which came
from 17 healthy individuals were used as a control
group.

2.2. Perceptual assessment of voice quality

All voice recordings used in this study were assessed
by independent voice specialists using the RBH scale
(Nawka et al., 1994). The scale is widely recognised
as the easiest method of perceptual voice evaluation by
institutions including the Committee on Phoniatrics
of the European Laryngological Society (Dejonckere
et al., 2001). The RBH scale consists of three features:
R – roughness; B – breathiness; H – hoarseness.
Every feature can receive a score from 0 to 3, which

describes the severity of a vocal disorder: 0 – normal
voice, 1 – a slight change, 2 – medium change, and 3 –
high change.
The RBH scale, despite looking uncomplicated, is

a reliable method of assessing voice quality, provided
it is used by voice specialists such as phoniatrists or
speech therapists (Behrbohm et al., 2011).
Perceptual assessment of voice quality was carried

out on both occasions by the same two independent
voice specialists who had completed an RBH training
program and had extensive experience in voice/speech
signal assessment. On both occasions, the experts were
blindfolded for the assessment duration. The two ex-
perts underwent an audiometry test, and the test re-
sults for both indicated normal hearing.

2.3. Control group recordings

Because the original dataset contained only voices
with voice quality disorders, an additional set of
recordings was created to capture the vocal proper-
ties of healthy individuals for control purposes. The
recordings were made in the recording studio of the
Polish-Japanese Academy of Information Technology.
The microphone used in the recordings was a Rode
NT-1A and it has the following parameters: frequency
range 2 Hz–20 kHz, sensitivity 25 mV/Pa, equivalent
noise level 5 dBA, maximum SPL – 137 dB SPL, po-
lar pattern – cardioid. The signal was registered with
a 48 kHz sampling rate and a 16-bit resolution (stan-
dard WAV PCM).
During the recording, the healthy individuals

phonated the vowel /a ∶ / three times with a sound
pressure level of 60 dBA–80 dBA, 1 meter from the mi-
crophone, for a sustained period of at least 4 seconds.
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Following that, the recorded individual was made to
briefly strain his/her voice by reading out a few sen-
tences, and then again to phonate the vowel / ∶ a/ four
times.
The last four phonations of the vowel / ∶ a/ were

used to calculate the acoustic parameters. All the par-
ticipants phonated neutrally. Phonations with higher
or lower values of the fundamental frequency of
a speech signal, often denoted by F0, were not con-
sidered in the analyses.
A lot of consideration was taken to match the condi-

tions of the original dataset while preparing the control
samples. It is obviously impossible to recreate the con-
ditions perfectly, but the chosen signal analysis meth-
ods were not affected by the differences in the acqui-
sition and storage of the signal data. Given the over-
all low levels of background noise and good levels of
SNR, both sets of recordings showed negligible levels
of change in parameter values.

3. Acoustic voice evaluation

Acoustic methods for voice quality assessment are
growing in popularity amongst clinicians focusing on
voice research, because these methods benefit from be-
ing non-invasive and give the opportunity of utilising
automation (Maryn et al., 2009). They are an easy
and reliable way of comparing voice dysphonia lev-
els before surgeries and after them (Maryn et al.,
2009). Traditionally, sustained vowel phonation is used
for testing instead of continuous speech (Askenfelt,
Hammarberg, 1986). In the case of vowels, features
such as talking speed, pauses, the context of a sen-
tence, accent, or type of language spoken are not rele-
vant. On the other hand, this approach can sometimes
be worse than continuous speech because sustained
vowel phonation is not representative of everyday use
of speech in a normal spontaneous setting (Parsa,
Jamieson, 2001). That is why the best results are ob-
tained while using both methods.
One example of using acoustic analysis is an

acoustic parameter, which evaluates the voice qual-
ity based on the parametrized sound signal. Collab-
orative voice analysis repository for speech technolo-
gies (COVAREP) is a free toolkit with many imple-
mentations of acoustic parameters (Degottex et al.,
2014) and it is available as an open source public
repository online written in MATLAB. The following
acoustic parameters which were used for our study
were implemented in COVAREP: peak slope – PS
(Kane, Gobl, 2011), normalised amplitude quotient
– NAQ (Alku et al., 2002), parabolic spectral pa-
rameter – PSP (Alku et al., 1997), quasi-open quo-
tient – QOQ (Hacki, 1989), cepstral peak promi-
nence – CPP (Hillenbrand, Houde, 1996), H1H2
(Hanson, 1997), harmonic richness factor – HRF
(Childers, Lee, 1991), and maxima dispersion quo-

tient – MQD (Kane,Gobl, 2013). Voice recordings in-
cluded only the sustained phonation of the / ∶ a/ vowel,
which meant they could not be used in the experiments
in which continuous speech was also needed.

3.1. Peak slope

The PS is calculated by observing the wavelet de-
composition given the following formula for the mother
wavelet:

g(t) = − cos (2πfnt) ⋅ exp( t2

2τ2
), (1)

where fn = fs
2
, for fs being the sampling frequency

of 16 kHz and τ = 1
2fn
. This decomposition results

in an octave band filter bank with centre frequencies
at 8 kHz, 4 kHz, 2 kHz, 1 kHz, 500 Hz, and 250 Hz.
From this filterbank, a local maximum is located for
each band and a regression line is computed based on
the amplitudes of the observed maxima (see Fig. 1
in (Kane, Gobl, 2011)).
This acoustic parameter differentiates between

a modal, tense, or breathy voice. According to pre-
vious studies, the PS parameter has a certain advan-
tage compared to other parameters (Kane, Gobl,
2011). It is completely independent, meaning that no
other algorithm is used to compute its value. It is espe-
cially useful when the voice recording has an ambient
noise that may disturb other algorithms and, conse-
quently, affect the obtained values.

3.2. Normalised amplitude quotient

The NAQ is a time-based acoustic parameter used
for speech signal analysis. Studies have suggested that
the parameter effectively differentiates types of phona-
tions and demonstrates resistance to the presence of
noise in the speech signal (Alku et al., 2002).
It is computed for each glottal flow period using

the following formula (Alku et al., 2002):

Aac

Tav ⋅ dmin

= Amax −Amin

Tav ⋅ dmin

, (2)

where Amax is the amplitude for each period of the sig-
nal, Amin is the lowest amplitude for each period of the
signal, Tav is the average fundamental period length,
dmin is the minimum derivative glottal flow, and Aac is
the maximal flow of amplitude.

3.3. Parabolic spectral parameter

The PSP is an acoustic parameter based on fit-
ting a parabolic function to the low-frequency part of
the calculated glottal flow spectrum. The parameter
is a single numerical value that describes how the spec-
tral decay of the resulting glottal flow behaves with
respect to the theoretical limit corresponding to the
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maximum decay. The PSP is commonly compared with
other time-based acoustic parameters (Alku et al.,
1997).

3.4. Maxima dispersion quotient

The MDQ is an acoustic parameter used to differen-
tiate between modal, breathy, or tense voice. Previous
studies show that the parameter is effective in assess-
ing voice type based on sustained vowel phonation and
continuous speech, which achieves better results than
the NAQ parameter (Kane, Gobl, 2013).
For a tense voice, the maxima tend to appear

around glottal closure instants (GCIs), which mark
the moments of greatest excitation of vocal folds in the
glottal airflow. Otherwise, if the voice is breathier,
it has been observed that the maxima are scattered.
The MDQ parameter recognises the scale of maxima
scattering and thus effectively indicates the type of
voice, and it obtains particularly good results dur-
ing the analysis of continuous speech (Kane, Gobl,
2013).

3.5. Quasi-open quotient

The QOQ is an acoustic time domain parameter.
It is calculated by measuring the distance between two
points around and closest to the maximum of the glot-
tal flow pulse, which are exactly 50 % of the max-
imum’s amplitude value. This duration is also nor-
malised with respect to the pitch period T0 (Fig. 2).
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t1 t2
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Fig. 2. Amplitude of a glottal flow impulse.

As confirmed in studies (Kane, Gobl, 2013), the
QOQ parameter achieves weaker results than the MDQ
and NAQ parameters. Only in the case of SNR rang-
ing between 0 dB and 10 dB, this parameter works
better.

3.6. Cepstral peak prominence

In 2018 CPP was recommended by the Ameri-
can Speech-Language-Hearing Association (ASHA) as
a tool that allows to measure the degree of noise and
other unwanted sounds in the voice signal as well
as to detect the degree of dysphonia (Patel et al.,
2018). CPP is defined by the distance between the
top of the cepstrum and its regression line. As shown
in the research of Hillenbrand and Houde (1996),

the cepstral maxima are more visible in the cepstrum
of a breathy voice than in the cepstrum of a modal
voice which makes it possible to distinguish between
these types of phonations using this parameter.

3.7. H1–H2

This acoustic parameter helps to distinguish be-
tween breathy and tense voices, which was confirmed
in the studies by Hanson (1997), Airas and Alku
(2007). It is calculated by the difference between
the amplitude of the first two vocal harmonies in the
spectrum of the voice source. It is described in deci-
bels [dB]. The H1–H2 parameter is less accurate than
the MDQ and NAQ parameters (Kane, Gobl, 2013).
Only when the SNR of the recording oscillates between
0 dB and 10 dB, this parameter achieves better results
than its counterparts.

3.8. Harmonic richness factor

The HRF is described as the ratio of the sum of the
harmonic amplitudes in the glottal flow to the compo-
nent amplitude at the fundamental frequency. In pre-
vious studies (Childers, Lee, 1991), the HRF param-
eter’s scores were higher by 6.8 dB for a modal voice
compared to a breathy voice, which effectively allows
to distinguish between these types of phonations.

4. Acoustic voice quality index

The AVQI is a tool developed to measure overall
voice quality using acoustic markers for clinical pur-
poses. For the voice quality evaluation to be accurate
and representative, the AVQI needs continuous speech
and sustained vowel phonation, which lasts for a few
seconds (Maryn, Roy, 2012).
The AVQI ranges between 0 and 10 and has a cut-

off score between a healthy and pathological voice,
which differs depending on the language, but gener-
ally, it is around 3 (Fig. 3). The more an AVQI score
exceeds the cut-off threshold the higher the severity of
voice dysphonia. The threshold for English and Aus-
tralian equals 3.46 (Reynolds et al., 2012), 2.70 for
German (Barsties, Maryn, 2012), 3.07 for French
(Maryn et al., 2014), 2.95 for Dutch (Maryn et al.,
2010), 2.97 for Lithuanian (Uloza et al., 2017), 3.15
for Japanese (Hosokawa et al., 2017), 2.02 for Ko-
rean (Maryn, Weenink, 2015), and 3.09 for Finnish
language (Kankare et al., 2020). Measurement errors
must be considered while using the AVQI. The differ-
ence in results between the two recordings should be
at least 0.54 (Barsties, Maryn, 2012) to mark that
the voice quality has changed. To our knowledge, there
is no data about AVQI parameters for the Polish lan-
guage.
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Fig. 3. Example of AVQI results.

5. Inter-rater reliability

Two independent experts who used the RBH scale
to assess the voice quality of recordings in the database
of non-healthy individuals were tested for inter-rater
reliability because one of them had a sensitive hearing,
which could heavily affect the results of experiments.
Tests were conducted using MedCalc software and Real
Statistics Resource Pack addon for Excel. To check the
expert’s agreement a single measure of the intraclass
correlation coefficient (ICC) was used, which was pre-
viously used in other studies (Maryn et al., 2014). The
suggested limit between a good and a weak or an av-
erage agreement is 0.75 (Portney, Watkins, 2009).
The obtained results for the R, B, and H parameters
were as follows 0.56, 0.5, 0.46, which gave us an av-
erage of 0.51. In our experiment, we noticed a shift in
the annotation of the recordings between the voice spe-

Table 2. Perceptual score distribution among experts.
Scores of 0, 1, 2, and 3 are used for all parameters on
the RBH scale, with reference to the different degrees of
vocal disorder: 0 – a normal voice; 1 – a slight degree;

2 – a medium degree; 3 – a high degree.

Score Expert 0 1 2 3

R
Expert 1 172 149 70 26

Expert 2 38 172 148 59

B
Expert 1 100 195 87 35

Expert 2 41 129 179 68

H
Expert 1 49 243 92 33

Expert 2 1 110 149 157

cialists. The scores recorded by expert 2 proved to be
more sensitive to changes in voice quality than those
recorded by expert 1. The two experts underwent an
audiometry test, and the test results for both indicated
normal hearing. For further discussion on the inter-
rater reliability of experts can be found in previous
studies; Table 2 (Szklanny, Wrzeciono, 2019).

6. Acoustic analysis results

The AVQI score was tested to correlate with
RBH scores for the same voice recordings. We used
Spearman’s rank-order correlation coefficient and RBH
scores of experts were averaged. AVQI and the R fea-
ture had a weak correlation, while AVQI and two other
features noted a higher-than-average level of correla-
tion. Table 3 presents the results.

Table 3. Results of Spearman’s Rank-Order Correlation
coefficient for AVQI and RBH.

R and AVQI B and AVQI H and AVQI

0.371 0.655 0.594

Acoustic voice parameters obtained through CO-
VAREP were tested for a correlation with the AVQI
score for the same voice recording. With the use of
Spearman’s Rank-Order Correlation coefficient it was
noted that the PS parameter from COVAREP had
a significant correlation with the AVQI score amount-
ing to 0.62 for a vowel, and 0.69 for a continuous
speech. The parameter CPP, which is used for cal-



R. Halama et al. – Method for Vocal Fold Paralysis Detection Based on Perceptual and Acoustic Assessment 101

Table 4. Results of Spearman’s Rank-Order Correlation coefficient of AVQI with various acoustic parameters
of non-healthy individuals.

Phonation type NAQ QOQ H1H2 HRF PSP PS MDQ CPP

Vowel −0.11 −0.4 0.03 −0.08 0.18 0.62 0.37 −0.84

Continuous speech −0.35 −0.53 −0.16 −0.05 0.07 0.69 0.36 −0.77

Table 5. Results of Mann–Whitney U -test and Student t-test.

Parameter
Mean ±SD for non-healthy

individuals
Mean ±SD for healthy

individuals
Test results

CPP 12.41 ±0.66 11.47 ±0.47 p ¡ 0.0001 U = 481

H1H2 12.97 ±7.69 5.36 ±3.82 p ¡ 0.0001 t = 6.76

HRF 19.21 ±6.88 23.37 ±8.5 p = 0.0014 U = 1214

NAQ 0.174 ±0.05 0.11 ±0.02 p ¡ 0.0001 t = 8.647

PSP 0.27 ±0.08 0.16 ±0.06 p ¡ 0.0001 t = 8.06

QOQ 0.5 ±0.08 0.38 ±0.07 p ¡ 0.0001 U = 435

MDQ 0.11 ±0.02 0.1 ±0.02 p = 0.0001 t = 4.068

PS −0.42 ±0.05 −0.31 ±0.04 p ¡ 0.0001 U = 202

culations in AVQI, had a significant negative corre-
lation with the AVQI score amounting to −0.84 for
a vowel, and −0.77 for a continuous speech. Similar
results were observed in the study on the Finnish lan-
guage, where the correlation between the CPP param-
eter and the AVQI score was equal to −0.35 (Laukka-
nen, Rantala, 2022). Table 4 shows the tests results.
The Shapiro–Wilk test was used to check whether

acoustic parameters had normal distribution or not.
An F -test was run to check if the variance was equal.
Two variants of the Student t-test were used for acous-
tic parameters with normal distribution: the Student
t-test for an equal variance or the Student-test for un-
equal variance. As the distribution for other parame-
ters was not normal, the Mann–Whitney U -test was
used in their case. Table 5 shows that all acoustic
voice parameters calculated for recordings of healthy
individuals were statistically different from their coun-
terparts calculated for individuals suffering from vocal
fold paralysis.
The Shapiro–Wilk test was used to check whether

RBH scores had a normal distribution or not. As
their distribution was not normal, the Mann–Whitney
U -test was used. Results showed that RBH scores
for healthy individuals were statistically different from
RBH scores for non-healthy individuals.

7. Classification

During the final experiment, we tried to differen-
tiate a healthy voice from a voice affected by vocal
cord paralysis using the classification based on acous-
tic voice parameters. All calculations were done in the
WEKA software.
For the experiment, we used five classifiers, which

were proven to be effective in previous studies on voice
disorders (Verde et al., 2018): Näıve Bayes, support

vector machine (SVM), decision tree, logistic model
tree, instance-based learning algorithm k -NN.
Näıve Bayes is a classifier based on Bayes’ theo-

rem and the probability theory. The features of such
a classifier are independent, so neither of them affects
the other (Friedman et al., 1997).
The SVM is a classifier defined by a hyperplane,

that separates data belonging to different classes with
the widest possible margin. This technique distin-
guishes between a healthy and pathological voice be-
cause it natively splits the data into up to two classes.
The classification accuracy can be increased by chang-
ing the parameters and a function of the kernel
(Godino-Llorente et al., 2005). This study used
the polynomial function, which is one of the two most
popular kernel functions used in the SVM (Alpay-
din, 2004).
The decision tree is a technique used for classifying

categorised data based on the training method repre-
sented by a decision tree. Decision trees are easy to
interpret and can handle both continuous and categor-
ical data. In this work, we used J48, based on the C4.5
algorithm (Quinlan, 1999), which is the most popular
tree-based classifier.
The logistic model tree is a technique that com-

bines logistic regression, a probability-based machine
learning algorithm, with a decision tree. In the WEKA
software, it is implemented by the SimpleLogistic class
(Landwehr et al., 2005).
Instance-based learning algorithms are algorithms

that use specific instances to obtain the results of
a classifier. In this study, we used the k -NN algo-
rithm (Aha et al., 1991), which bases its results on
the k -number of nearest neighbours in a new instance.
The dataset containing 75 voice recordings of non-

healthy individuals and 49 voice recordings of healthy
individuals with their acoustic parameters calculated
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Table 6. Classification results.

Classifier Parameters Accuracy [%] Sensitivity [%] Specificity [%] MAE

Näıve Bayes NAQ, QOQ, H1H2, CPP, PSP, PS 95.16 98.59 90.57 0.059

SVM NAQ, QOQ, H1H2, CPP, PSP, PS, HRF, MDQ 94.35 98.57 88.89 0.057

Decision tree NAQ, QOQ, H1H2, CPP, PSP, PS 91.94 95.77 86.79 0.09

Logistic tree NAQ, QOQ, H1H2, CPP, PSP, PS 94.35 97.22 90.38 0.12

k -NN NAQ, QOQ, H1H2, CPP, PSP, PS, HRF 98.39 100 96.08 0.024

was prepared. Then, it was imported to the software
WEKA and then underwent a classification process
with the use of 10-fold cross-validation. We have calcu-
lated every classifier’s accuracy, sensitivity, specificity,
and mean absolute error (MAE). Accuracy describes
the percentage of correctly classified data. Sensitivity
describes the effectiveness of classifying positive cases.
Specificity describes the effectiveness of the classifica-
tion of negative cases. The MAE is a measure that
determines how much on average the forecast period
deviates from the real value.
Table 6 presents that the best results were received

while using the k -NN classifier with a group of acous-
tic parameters (NAQ, QOQ, H1H2, CPP, PSP, PS,
HRF). The decision tree (NAQ, QOQ, H1H2, CPP,
PSP, PS) achieved the lowest accuracy: 91.94 %. The
biggest MAE was received using the logistic model tree
(NAQ, QOQ, H1H2, CPP, PSP, PS).

8. Discussion

Conducted experiments have shown that both the
perceptual evaluation and the acoustic evaluation have
the potential to distinguish a healthy voice from
a pathological voice affected by vocal fold paralysis.
The biggest difficulty was encountered while pro-

cessing the database of non-healthy individuals. This
database contained voice recordings from 40–50 years
ago, which were recorded on old analogue tapes. In
addition, the standard of research has changed drasti-
cally over the last decades, so a significant part of the
recordings could not be used for this study. Noise re-
duction due to unwanted background noise also turned
out to be very time-consuming and the process should
have been automated.
The perceptual assessment of experts who graded

voice recordings of non-healthy individuals using the
RBH scale was a significant problem. One expert’s sen-
sitive hearing led him to grade voice recordings dif-
ferently from the other expert. Undoubtedly, this fact
has influenced the results of some experiments.
An interesting finding was the negative correlation

of the CPP parameter, which is one of the components
needed to calculate the AVQI score. A similar correla-
tion was found in the studies on the Finnish language
(Laukkanen, Rantala, 2022).
Every used classifier, whose accuracy was con-

firmed in the previous studies (Verde et al., 2018),

achieved over 90 % accuracy, which is a very high re-
sult for data classification. Such scores are reported in
the literature to be on par with the level of human
experts (Suvvari, 2023).
A similar study was carried out in (Szklanny,

2019), which investigated the differences in the val-
ues of acoustic parameters between choral singers and
individuals with a healthy voice. The values of acous-
tic parameters were compared with a group of men
with a healthy voice. Significant differences were only
observed for parameters H1H2 and HRF.
Other studies utilise deep learning approaches

(Compton et al., 2022) and transfer learning (Tir-
ronen et al., 2023) providing a similarly high score at
the cost of reduced interpretability of results.

9. Conclusion

The study shows that acoustic and perceptual analy-
ses are valuable tools for detecting differences in voice
quality. Using several classifiers, several experiments
classified the data successfully into voice recordings
of people suffering from vocal fold paralysis and voice
recordings of healthy individuals.
Statistical tests have shown a medium-high corre-

lation of the AVQI parameter with B and H features
from the RBH perceptual scale. The acoustic param-
eter PS has shown a strong correlation with AVQI,
while the CPP parameter has shown a strong, nega-
tive correlation with AVQI.
For further research, it would be advisable to ex-

pand the database with additional recordings of pa-
tients with vocal fold paralysis as well as healthy
subjects, considering prolonged phonation of the vo-
wel / ∶ a/.

Appendix A.

Examples of recorded sentences in Polish

Ten dzielny żołnierz był z nim razem. Ola lubi bezy.
Czy Ola lubi bezy? Idziemy do domu.

Czy idziemy do domu? Dzień dobry. Do widzenia.
Warszawa miasto pokoju. Warszawa stolica Polski. Do
widzenia Pani. Do zobaczenia Panu. Dziś jest ładna
pogoda. Czy dziś jest ładna pogoda?

Przeszło sto lat minęło od pojawienia się na ulicach
Warszawy pierwszego konnego tramwaju, łączącego
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dworce na Pradze z Dworcem Wiedeńskim przy uli-
cy Marszałkowskiej. Jeszcze dwa razy Stolica przeży-
wała podobnie uroczyste momenty – w 1908 roku
i 15 września 1945 roku. Wtedy w zniszczonej stolicy
na lewym brzegu Wisły rozpoczął kursowanie pierw-
szy powojenny tramwaj. Odbudowa Stolicy i rozbu-
dowa linii tramwajowych następowały równie szybko.
Rejon otaczający Dworzec Centralny stanowi obecnie
również wielki plac budowy, chociaż prowadzi się tu
dopiero różne roboty przygotowawcze. Załogi wielu
przedsiębiorstw inżynieryjnych przekładają urządzenia
podziemne. Coraz bliżej jest termin zakończenia bu-
dowy objazdów tramwajowych w Alejach Jerozolims-
kich oraz w ulicach Marchlewskiego i Chałubińskiego.
Na usunięcie czekają jeszcze słupy oświetleniowe, sto-
jące na linii zastępczego torowiska. Długość objaz-
dowych torów wynosi ponad dwa kilometry. Będą
się one przecinały przy ulicy Chałubińskiego w miejscu
gdzie rozebrano narożny budynek.

Appendix B.

Examples of recorded sentences translated

to English

The brave soldier was with him. Ola likes meringue.
Does Ola like meringue? We are going home. Are we
going home? Good morning. Goodbye. Warsaw, the
city of peace. Warsaw, the capital of Poland. Goodbye
Mrs. Goodbye Mr. Today is nice weather. Is it nice
weather today?
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Imaging based on the photoacoustic (PA) phenomenon is a type of hybrid imaging approach that combines
the advantages of pure optical and pure acoustic imaging, achieving good results. This method, which offers
high resolution, suitable contrast, and non-ionizing radiation, is valuable for the early detection of various types
of cancer. Recently, multiple studies have focused on improving different components of this imaging system. In
this presentation, we implemented a simplest form of a PA imaging system for detecting blood vessels, given that
angiogenesis is recognized as a common symptom of many cancers. For the first time, we implemented a high-
power light-emitting diode (LED), to replace bulky and expensive lasers, and integrated circuit technologies
such as field-programmable gate arrays (FPGAs) for a simple LED driver circuit and data acquisition (DAQ).
Using an FPGA block, we successfully generated a 200-ns square pulse wave with a repetition frequency of
25 kHz, whose amplified form can drive a high-power LED at 1050 nm for appropriately stimulating the sample.
By using ultrasonic sensors with a central frequency of 1 MHz and a DAQ system with 16-bit accuracy, along
with a suitable algorithm for image reconstruction, we successfully detected blood vessels in a breast tissue
mimic. With the use of the FPGA-based block, the image reconstruction algorithm was accelerated. Finally,
the simultaneous and first-time use of LED and FPGA-based circuit technology for driving the LED, output
information processing and image reconstruction were performed in PA imaging.

Keywords: photoacoustic imaging (PAI); light emitting diode (LED); pulsed light; breast tumor; field-
programmable gate array (FPGA).
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1. Introduction

A wide variety of imaging methods are involved in
the diagnostic process. They include X-rays, computed
tomography (CT), and magnetic resonance imaging
(MRI), which can help to pinpoint diagnoses and rule
out other conditions that may be causing symptoms.
However, our primary focus is on non-invasive, accessi-
ble, inexpensive, and highly accurate imaging modal-
ities. Hybrid imaging methods that combine the ad-
vantages of multiple methods seem to be promising
options. One such hybrid imaging modality is pho-
toacoustic imaging (PAI), which detects optical ab-
sorption contrast acoustically via the PA effect (Xu,
Wang, 2006). In PAI, nanosecond and non-ionizing
pulsed lasers with relatively high energy [mJ] are di-

rected at the sample. Then, a portion of this energy is
absorbed and converted into heat, leading to thermoe-
lastic expansion and, consequently, the propagation of
wideband ultrasonic waves [MHz] (Wang, 2008).
The physics of the PA phenomenon has been thor-

oughly studied in our previous works (Ahangar Dar-
band et al., 2023a; 2023b); here, we provide a brief
overview. The general equation describing the PA phe-
nomena can be expressed as follows:

[∇2
−

1

v2s

∂2

∂t2
]p(rt) = −p0

v2s

∂δ(t)
∂t

, (1)

where the acoustic wave is the p(r, t) at position (r)
and time (t), initiated by an initial source p0(r) =
Γ (r)Ae(r), where Ae(r) is the spatial electromagnetic
(EM) absorption function, vs is the speed of sound, and
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Γ (r) = v2sβ/Cp is the Grüneisen parameter, defined by
the following parameters: β = (1/V )(∂V /∂T )p, where
V is the volume, T is the temperature, p is the am-
bient density, and Cp is the specific heat. To improve
the optimal feature of the PA signal, several factors
must be considered: stimulation with pulsed radia-
tion at nanosecond [ns] duration, stress confinement,
and thermal confinement (Ahangar Darband et al.,
2023a; 2023b). During the past decade, extensive ef-
forts have been made to improve the performance of
various components of PAI (Paltauf et al., 2020).
PAI has a range of applications in medicine, includ-
ing tissue imaging, functional imaging, and molecular
imaging (Ponikwicki et al., 2019; Linde et al., 2014).
However, our focus in this report is on breast tissue
imaging using the PA phenomenon for breast tumor
diagnosis, as breast cancer is one of the most common
cancers (American Cancer Society, 2019) and if it can
be detected early in time, its treatment will be easier.
Therefore, we intend to use the PAI system for the
early detection of breast tumors.
The PAI system consists of four main components:

1) a stimulation light generation block and a chan-
nel for conversion of emitted light into a uniform, ho-
mogenized output (Harder et al., 2004); 2) a sample,
which can be either real tissue or a tissue mimic; 3) ul-
trasonic sensors collecting the propagated ultrasonic
wave; 4) a DAQ card combined with an image recon-
struction algorithm to convert the captured data into
images.
Despite the progress and improvements made in

various aspects of PAI over recent decades, there re-
mains room for further improvements in several com-
ponents of this method. We have previously published
the simulation results for different parts of the PAI
system on different platforms (Ahangar Darband
et al., 2023a), as well as studies on our proposed
image reconstruction algorithm in separate research
works (Ahangar Darband et al., 2023b). However,
this review aims to show our practical implementa-
tion of a breast tissue PAI system that is designed to
be as simple and cost-effective as possible (Fatima
et al., 2019). One of the most important components
of the PAI system is the sample stimulation module
(Tam, 1986). Some optical sources commonly used as
excitation modules in PAI include lasers, such as the
Q-switched Nd:YAG laser (Khosroshahi,Mandelis,
2015), diode laser, optical parametric oscillator laser
system, frequency-doubled YAG laser, and Ti:sapphire
laser (Wang, 2017). However, there are some disad-
vantages to the laser stimulation system. They include
high price, bulky size, complexity in both laser de-
vice structure and driving circuit, and a requirement to
use a dedicated wrapped light homogenization system
(Xavierselvan, Mallidi, 2020). It has previously
been reported that high-power LED can serve as an
alternative excitation source for PAI (Hansen, 2011;

Zhu et al., 2020; Allen, Beard, 2016) given their
low-cost (tens of dollars), ease of integration, and
smaller size. Therefore, to leverage these advantages
of high-power LED, we used a high-power LED in our
PAI stimulation module. Based on the findings in
(Agrawal et al., 2021), although LEDs provide lower
output energy than laser, their high pulse repetition
rate offers the possibility to average more frames and
thus improve the signal-to-noise ratio (SNR). LED-
based PAI holds strong potential for point-of-care PA
imaging, where an imaging depth of 2 cm–3 cm is suf-
ficient (Jo et al., 2020). In addition to the benefits of
using LED, the circuit presented in this article for LED
driving is as simple as possible due to the use of a field
programmable gate array (FPGA)-based module, fur-
ther reducing system complexity.
The use of real tissue in studies of the implemented

system would significantly help in the detailed analysis
of the captured data. But, due to possible unwanted
concerns, in this report, we used a tissue-mimic sample
to test the device.
The induced PA signal was detected by ultrasonic

transducers and then amplified and acquired by a DAQ
card to modify signals for use in the MATLAB envi-
ronment, where they were processed using an image
reconstruction algorithm. Actually, the LED driving
circuits, digital signal processing, recording, and recon-
struction were all implemented using an FPGA-based
hardware system. This approach allowed us to estab-
lish a PAI system in the simplest possible form (Up-
puturi, Pramanik, 2017; Liu et al., 2023).
The image reconstruction algorithm is the most im-

portant component of a PAI system, as it determines
sensitivity, speed, and resolution (Wang, 2017). In our
previous work (Ahangar Darband et al., 2023ab),
we reviewed different image reconstruction algorithms
and presented our own algorithm. Since this article
mainly focuses on the practical setup of the imaging
system based on the PA phenomenon, we do not go
into the details of the image reconstruction algorithm.
Tailored to the geometry of the imaging system, the
algorithm used in this study was based on a phase-
controlled algorithm (Zhou et al., 2011).

2. Principles and construction

2.1. Proposed method

We describe a simple and cost-effective PAI system
that can be used for in vitro mapping of breast tis-
sue mimics. For a detailed description of the different
components of the proposed PAI system see Fig. 1.
To propagate detectable PA waves, the light irradi-

ated to the tissue should be short-pulsed or modulated
with specific energy levels. Also, a proper wavelength
must be selected to detect specific markers in breast
tissue and tumor (Wang, 2017). Among the commer-
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Fig. 1. Block diagram of the proposed implemented system.

cially available LEDs, we used an infrared high-power
LED (LZ1-10R802, OSRAM). Easy-to-use evaluation
circuit and cooling system enabled by FPGA-based
technology, a low price (only a few tens of dollars),
and small dimensions are the most important advan-
tages of these LEDs. The LED driver circuit consists
of an FPGA module and a wide-band two-stage ampli-
fier. The FPGA-based LED driver circuit used in this
work offers greater flexibility and speed capabilities
compared to traditional MOSFET-based LED driver
circuits (Zhu et al., 2020; Liu et al., 2023).
With the help of an FPGA-based module (Mojo

Plus – FPGA Spartan 6) and appropriate program-
ming of the FPGA, the required pulsed signal could
be generated from the Mojo output pins. In our LED
driving circuit, the Mojo module was programmed to
generate a 200 ns square pulse (proper pulse to sat-
isfy the stress confinement criteria (Wang, 2008). This
pulse features a rise-time of 1.9 ns, a fall-time of 3.7 ns,
and a repetition rate of 25 kHz (Fig. 2). Afterward, the
voltage amplitude of the pulse was amplified to the nec-
essary level for optimal LED operation. Our two-stage
wideband amplifier (designed and manufactured by
the Microelectronics Laboratory of Sahand University)
provides a wide dynamic range with high output volt-
age and high current. This amplifier was designed using
a very high-speed, high-output current, high-voltage
feedback amplifier integrated circuit (IC) (LM7171).

Fig. 2. LED driving pulse wave: a 200 ns square pulse
with a repetition rate of 25 kHz.

It offers an adjustable gain between 22 and 150, with
a maximum operating frequency of 12 MHz for the
digital input. Additionally, the maximum output cur-
rent is 120 mA. Finally, the driven LED radiates to an
area of 1 mm× 1 mm with a power output of 1.2 W at
a wavelength of 1050 nm, which is the appropriate ab-
sorption wavelength for PAI (Wang, 2017). Since the
LED is placed in the water environment of the test
chamber, its internal circuit, ensuring no obstruction
to its radiation, is completely sealed within plastic con-
tainers. For complete tomography, the LED can rotate
270○ around the sample at a distance of 5 mm from
the tissue and can move along a straight line approx-
imately 2 cm in length along the z-axis. A schematic
representation in Fig. 3 illustrates the structure and
geometry of this radiation block.

Fig. 3. Schematic structure and geometry
of the radiation block.

Breast cancer is often associated with angiogene-
sis, and diagnosing abnormal blood vessels in the tis-
sue seems to be the best shortcut for diagnosing breast
tumors (American Cancer Society, 2019). Accordingly,
a mimic breast tissue model with blood vessels was cre-
ated in such a way that two low-density polyethylene
(LDPE) tubes with an inner diameter of 1 mm were
embedded in the middle and along the side edge of
a chicken breast tissue (a square cube approximately
2 cm long) at a depth of 3 mm. These tubes were filled
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with human blood that had been treated with hepa-
rin (0.1 mg/ml–0.2 mg/ml low-molecular-weight hep-
arin (LMWH)) as an anticoagulant (Fig. 4). To de-
termine imaging accuracy, a portion of the tube was
emptied. Also, to accurately study the PAI system, we
focused solely on the mimic blood vessel. The sample
was fixed 5 mm in front of the LED radiation in an
aqueous environment to optimize ultrasonic coupling
between the sample and the ultrasonic transducer.

a)

b)

Fig. 4. Breast tissue-mimicking phantoms: a) chicken breast
model with dimensions of 2 cm× 2 cm diameter; b) LDPE
tubes embedded as vessels filled with blood inoculated with

heparin as an anticoagulant.

The signals received by the ultrasonic sensors con-
tain important information about the properties of the
tissue being imaged. The process of receiving, process-
ing, and transmitting the appropriate data to MAT-
LAB to reconstruct the images was done by an ana-
log front-end block. The PA signal propagated from
the tissue were detected by eight ultrasonic sensors
(PSC1.0M014083H2AD2-B0, Zhejiang Jiakang Elec-
tronics Co., Ltd.) with a central frequency of 1 MHz
(1.0 MHz ±0.1 MHz) and a focal length of 66.74 mm
(Fig. 5). These eight ultrasonic sensors were arranged
at equal distances from each other to receive the PA

Fig. 5. Schematic of ultrasonic sensors with a central fre-
quency of 1 MHz and a focal length of 66.74 mm.

signal around the circular area of the cross-section of
the cylindrical chamber. The cylindrical chamber has
a diameter of 8 cm and a height of 14 cm, with the sen-
sors placed 6 cm above the bottom of the chamber (see
Figs. 6–7).

Fig. 6. Top view of the test sample chamber and the ar-
rangement of the eighth sensors, sample, and LED simu-

lated in COMSOL.

Fig. 7. Side view of the layout of the test chamber simulated
in COMSOL. The mimic blood vessels inside the sample are

visible in this view.
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Fig. 8. View of the implemented system in the laboratory.

A DAQ (PC7KS02, Rizpardaz Electronics Com-
pany) was used to properly process the data on which
Xilinx Spartan� 7 FPGA was located. It comprises
eight input channels to receive analog PA signals,
which are connected to the rest of the circuit with four
analog-to-digital (ADC) converters. The sampling fre-
quency of these ADC is up to 250 million samples per
second and has an accuracy of 14 bits to 16 bits. In
our proposed PAI system, the sampling rate is equal
to 50 million samples per second, which provides 16-bit
data at the output of the ADC. The digital signal is
saved inside the FPGA and then transmitted to the
computer at a speed of 1 million bit/s through the net-
work interface. In the MATLAB environment, a graph-
ical user interface (GUI) has been developed to easily
view and draw the received data. The LED driver cir-
cuit and GUI saving data in proper time are in com-
plete synchronization.
Choosing the right algorithm based on the scanning

geometry is a critical task that significantly affects im-
age reconstruction accuracy and speed. Based on the
structure of the presented here system, we used a spa-
tial phase-controlled algorithm (Zhou et al., 2011)
to reconstruct the images. We also used the FPGA-
based platform to accelerate the image reconstruction
speed (Gao et al., 2022). To obtain enough informa-
tion about the tissue structure and accurately detect
blood vessels, stimulation was done from various di-
rections. The light source was moved at different an-
gles and along the z-axis. At first, the LED was placed
5 mm from the sample and its opposite point, and then
it was rotated by ten 27○ counterclockwise rotations
from its initial position. This 270○ rotation is repeated
five times around the sample in a straight line, along
the z-axis at 4 mm intervals ranging from −10 mm to
10 mm.
After processing and sampling, the data captured

from the ultrasonic sensors were entered into MATLAB
as 50 matrices with dimensions of 8× 1019. The fea-
sibility of our PAI system was first validated by di-
agnosing vessels in tissue-mimicking phantoms. The
following section presents the results of tissue tomog-
raphy in the form of two-dimensional slices, which were
the output of the image reconstruction algorithm.

3. Results

To demonstrate the potential of our proposed PAI
system and its accuracy in detecting vessels in the
mimic tissue, two scenarios were tested: 1) two vessels
and 2) a single vessel embedded in the mimic tissue. In
the first case, where two vessels were included in the
mimic tissue, we used the sample shown in Fig. 4b. As
previously described, 50 different positions were con-
sidered for LED placement. Figure 9 displays the re-
sults of image reconstruction by processing the infor-
mation captured by the sensors in these modes. The
total computation time for each image was 1 minute
and 55.52 seconds. Figures 10 and 11 depict the out-
put data from the sensors for the first scenario, where
two mimic vessels were embedded in the sample, and
the LED was positioned at point Z = 0, directly in
front of the sample. Figure 10 shows the sensor data
as an image using the full range of colormap colors to
illustrate data intensity over time at each sensor posi-
tion. Figure 11 presents each sensor’s normalized data
plotted against time for the same LED position. The
procedure was then repeated for the second scenario in
which only one mimic vessel was placed inside the sam-
ple (Fig. 12). The processed sensor data for the single
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Fig. 9. Output from the image reconstruction algorithm
for the case in which two mimic vessels were embedded

in the sample.
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Fig. 10. Display of the sensor data as an image using the
full range of colors in the colormap in the first case.

Fig. 11. Plotting of each sensor’s normalized data graph
against time [s] separately in the first state.
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Fig. 12. Output of the image reconstruction algorithm
output for the case in which one mimic vessel was em-

bedded in the sample.

mimic vessel case is shown in Fig. 13, utilizing the full
colormap range for clarity. In addition, the normalized
data for each individual sensor in the second case is
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Fig. 13. Display of the sensor data as an image using the
full range of colors in the colormap in the second case,
testing a mimic vessel embedded in the sample.

shown in Fig. 14. This figure presents the sensor out-
puts over time, highlighting how the signal patterns
differ with a single mimic vessel in the sample, com-
pared to the two-vessel configuration in the first sce-
nario (Fig. 11).

Fig. 14. Plotting of each sensor’s normalized data graph
against time [s] separately in the second case.

Based on the results presented, this report uti-
lized a high-power LED to achieve good penetration
depth. We generated a suitable pulse todrive the LED
using FPGA technology, which successfully met the
stress confinement requirements and generated effi-
cient acoustic waves.

4. Conclusion

In summary, this article demonstrated the imple-
mentation of a miniature PAI system capable of de-
tecting blood vessels at a depth of 3 mm using using
high-power LED radiation, a driving circuit, and data
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acquisition (DAQ) based on FPGA technology. The
simple, low-cost, and compact setup makes it possi-
ble to conveniently use it in non-invasive and label-
free diagnoses. Furthermore, in future work, by using
high-power LEDs in arrays (Van Heumen et al., 2023;
Joseph et al., 2020) or specialized light delivery sys-
tem (Kuriakose et al., 2020), we could enhance the
accuracy and depth of the system’s diagnostic capa-
bilities and overcome many problems associated with
using LEDs (Zhu et al., 2020) in PAI systems.

Supplemental material

The data that support the findings of this study
are available from the corresponding author upon rea-
sonable request.
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1. Introduction

Characterizing the amount of gas within marine
sediments is crucial, as gas bubbles can significantly
affect acoustic reflection and penetration (Richard-
son et al., 1998; Anderson et al., 1998; Chen et al.,
2023). Fleischer et al. (2001) reported the global
distribution of gas-bearing sediments and noted that
these sediments are predominantly found in the North-
ern Hemisphere, particularly in shallow areas near Eu-
rope and the United States. In China, there is also
a noticeable presence of shallow gas near the seabed
in the South China Sea, East China Sea, and Yellow
Sea. Generally, sediments containing gas bubbles ex-
hibit pronounced sensitivity to acoustic waves, charac-
terized by high dispersion and attenuation (Leighton,
2007; Yarina et al., 2023; Zhang et al., 2023). These

acoustic properties of marine sediments are valuable
for assessing the ecological status of the seabed. Conse-
quently, the impact of bubbles on acoustic propagation
is typically used to estimate the gas content and bub-
ble size distribution within marine sediments (Karpov
et al., 1996; Leighton, Robb, 2008). However, deter-
mining the bubble size distribution is generally more
difficult than estimating the gas content of marine sed-
iments.
In addressing the inverse problem of bubble size dis-

tribution (Wilkens, Richardson 1998; Best et al.,
2004; Tóth et al., 2015; Edrington, Calloway,
1984; Shankar et al., 2005; 2006; Fonseca et al.,
2002), the forward model is typically based on Ander-
son and Hampton’s (A&H) model (Anderson,Hamp-
ton, 1980a; 1980b), which remains the most widely
used geoacoustic model for gas-bearing sediments.

https://acoustics.ippt.pan.pl/index.php/aa/index
mailto:276454158@qq.com
https://creativecommons.org/licenses/by/4.0/
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The A&H model is designed for linear bubble pulsa-
tion; however, its expression for complex sound speed
includes both positive and negative signs, leading to
ambiguities in the inverse problem concerning the bub-
ble characterization (Mantouka et al., 2016).
The literature also highlights other effective in-

version methods for estimating bubble size distribu-
tions in water and sediments. For example, Com-
mander and McDonald (1991) and Dogan et al.
(2015) utilized a linear B-spline to approximate an un-
known bubble size distribution, transforming the inte-
gral equation into a system of linear equations involv-
ing the coefficients of linear B-splines. Nonetheless, in
this inversion method, attenuation is derived from the
scattering and extinction cross-section a forward model
that may not be suitable for accurately modeling gas-
bearing sediments.
Accordingly, we propose an inversion method in

this paper to estimate bubble size distributions. Our
model integrates an acoustic model tailored for gas-
bearing sediments with B-spline expansions. Addition-
ally, both sound speed and attenuation are considered
simultaneously in the inverse problem. This new inver-
sion method utilizes an effective density fluid model
(Zheng et al., 2017), adapted to account for gas bub-
ble pulsations as the forward model, and employs a fi-
nite sum of cubic B-splines to represent the unknown
gas bubble size distribution. The inverse problem is re-
formulated as solving systems of equations that involve
the coefficients of the cubic B-splines. This method has
been validated using sound speed and attenuation data
obtained from an in situ experiment conducted in the
Yellow Sea.

2. Methodology

A corrected equivalent fluid density model, devel-
oped by Zheng and Huang (2016) and Zheng et al.
(2017), is utilized to predict sound speed and atten-
uation in gassy sediments. The model is expressed as

∇ [Keff∇ ⋅ ueff] = −ω2ρ̃effueff , (1)

where ueff denotes the effective displacement. The ef-
fective modulus Keff is expressed as follows:

Keff = ((1 − β)
Kg

+
β

Kw

)−1 , (2)

where Kg denotes the grain bulk modulus, Kw denotes
the water bulk modulus, and β denotes the porosity.
The corrected effective density is expressed as

ρ̃eff = ρeff +

∞

∫
0

4πβKeffρeffaf (a){ρw [ω2
0 (a) − ω2 + 2ib (a)ω]}da, (3)

ρeff = (ρρ̃ − ρ2w)(ρ̃ + ρ − 2ρw) , (4)

ρ̃ = αρw

β
−
iFη

κω
, (5)

ρ = βρw + (1 − β)ρg, (6)

where ω denotes the angular frequency, η denotes the
water viscosity, ρw denotes the pore fluid density, ρ de-
notes the sediment density, the permeability satisfies

κ = (d2β3)
[180(1−β)2] . The complex correction factor F is

given by:

F (ς) = ςT (ς)
4(1 − 2T (ς)

ς
) ,

T (ς) = (ber′(ς) + ibei′(ς))(ber(ς) + ibei(ς)) , (7)

ς = a(ωρw
η
)1/2 ,

where the pore size satisfies a = √8ακ
β
. The second

item in Eq. (3) is the correction term for bubble pulsa-
tion, where f(a)da is the number of bubbles per unit
volume with radii between a and a + da. The param-
eter a is the bubble radius, and we use R to generally
denote the bubble radius, ω0 denotes the bubble reso-
nance frequency:

ω2
0 = [Reφ − 2σ(RPin,0)]

Pin,0

ρwR2
, (8)

b denotes the damping term:

b = 2η(ρwR2) + ω2R(2c) + Im (Pin,0φ)(2ωρwR2) , (9)

where φ is the polytropic exponent of the gas, ex-
pressed as

φ = 3γg

{1 − 3 (γg − 1) iχ [( i
χ
)1/2 coth ( i

χ
)1/2 − 1]} , (10)

where c denotes the fluid phase velocity, σ denotes the
surface tension, Pin,0 = P∞ + 2σ

R
, P∞ denotes the equi-

librium pressure, χ = D
ωR2 , γg denotes the ratio of spe-

cific heat, and D denotes the thermal diffusivity of gas.
The complex velocity of gassy sediment is denoted

as c1 =√Keff

ρ̃eff

, and the phase velocity is

cp = 1

Re ( 1
c1
) . (11)

The attenuation in decibels per meter is

α(m) = −20ωIm ( 1
c1
)

ln 10
. (12)



X. Yang et al. – Inference of Bubble Size Distribution in Sediments Based on Sounding by Chirp Signals 117

The absolute value of the effective density changes sig-
nificantly due to bubble pulsation, leading to a de-
crease in the velocity of the porous medium. The imag-
inary part of the effective density accounts for an ad-
ditional dissipation mechanism related to bubble pul-
sations. However, when the coefficient ratio defined in
Eq. (13) is used to divide Eq. (1), Eq. (14) can be de-
rived. Notably, the ratio is complex, with a modulus
greater than 1 as long as the gas content is nonzero. As
demonstrated in Eq. (14), bubble pulsation also mod-
ifies the sediment’s effective modulus. In contrast, the
sediment’s effective density remains constant, result-
ing in a significant decrease in the sound speed of the
medium:

ratio = ρ̃eff

ρeff

= 1 +

∞

∫
0

4πβKeffaf (a){ρw [ω2
0 (a) − ω2 + 2ib (a)ω]} da, (13)

∇ [Keff

ratio
∇ ⋅ ueff] = −ω2ρeffueff . (14)

Notably, in comparison to existing acoustic theories
of gas-bearing sediments, the proposed model offers
two significant advantages:

1) it incorporates the dispersion mechanism resulting
from the relative motion between the pore water
and the solid frame;

2) it provides independent expressions for sound
speed and attenuation, in contrast to the A&H
model, which enhances the applicability of the
proposed model to inverse problems.

The reciprocal of the complex velocity can be de-
rived from Eqs. (11) and (12):

1

c1
= 1

cp
− i

α(m) ln 10

20ω
. (15)

Combining Eq. (15) with c1 = √Keff

ρ̃eff

, we obtain the
following equation:

ρ̃eff

Keff

= ( 1

cp
− i

α(m) ln 10

20ω
)2 . (16)

ρ̃eff

Keff

can be derived from Eq.(3):

ρ̃eff

Keff

=
ρeff +

∞∫
0

4πβKeffρeffaf(a)
{ρw[ω2

0
(a)−ω2

+2ib(a)ω]} da

Keff

= ρeff

Keff

+

∞

∫
0

4πβρeffaf(a){ρw [ω2
0(a) − ω2 + 2ib(a)ω]} da. (17)

A function E(f) that varies with frequency is in-
troduced to satisfy the relation in Eq. 17):

∞

∫
0

4πβρeffaf(a){ρw [ω2
0(a) − ω2 + 2ib(a)ω]} da
= ( 1

cp
− i

α(m) ln 10

20ω
)2 − ρeff

Keff

= E(f). (18)
The inverse of the bubble size distribution f(a) is used
to solve the first kind of Fredholm integral equation:

∞

∫
0

4πβρeffaf(a){ρw [ω2
0(a) − ω2 + 2ib(a)ω]} da = E(f). (19)

To solve the integral Eq. (19), we use a finite sum
of cubic B-splines to denote f(a):

f(a) = n+2∑
j=0

CjΩ3 (a − aj−1
h

), a0 ≤ a ≤ a1, (20)

where aj = a0 + jh (j = 0,1, ..., n), h = a1−a0

n
, and Cj is

the coefficient to be determined.
Substituting Eq. (20) into Eq. (19) yields a linear

set of equations:

E(fi) = n+2∑
j=0

CjKij , (21)

where the elements of the matrix are

Kij =
∞

∫
0

Ω3 (a−aj−1

h
)4πβρeffa{ρw [ω2

0(a) − ω2 + 2ib(a)ω]} da. (22)

In matrix notation, Eq. (21) may be written as fol-
lows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

K11 K12 K13

K21 K22 K23

K31 K32 K33

⋯ K1N

⋯ K2N

⋯ K3N

⋮ ⋮ ⋮

KN1 KN2 KN3

⋮

⋯ KNN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1

C2

C3

⋮

CN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1

E2

E3

⋮

EN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (23)

The proposed inversion method has two primary
advantages:

1) it transforms the nonlinear inverse problem by
solving linear equation sets, thereby reducing
computational demands;

2) it overcomes the ambiguities inherent in inversions
based on the A&H model.

Consequently, this method is particularly well-
suited for inverse problems that combine both sound
speed and attenuation data, optimizing computational
efficiency while accounting for both parameters.
To aid comprehension of the proposed method, we

summarize it in the following steps:

1) select the control points for the cubic B-spline;
2) utilize Eq. (22) to calculate the matrix kernel Kij

based on frequency, measured physical parame-
ters, and the selected control points;



118 Archives of Acoustics – Volume 50, Number 1, 2025

3) apply Eq. (18) to calculate the function E(f)
based on the measured sound speed and atten-
uation coefficient;

4) calculate the coefficients of the cubic B-spline us-
ing the pseudo-inverse of matrix K, and subse-
quently determine the bubble size distribution us-
ing Eq. (20).

Next, we present the simulation analysis of the in-
version process for bubble size distribution utilizing the
method developed in this section. A finite sum of cubic
B-splines is employed to represent the unknown bub-
ble size distribution, with the control points and their
corresponding coefficients detailed in Table 1. Figure 1
illustrates the resulting bubble size distribution, while
the physical parameters of the marine sediments are
provided in Table 2. The sound speed and attenuation
coefficient as functions of frequency are shown in Fig. 2.
The results indicate that as the insonifying frequencies
approach the resonance frequency of the bubble, the
acoustic properties of gassy sediment exhibit signifi-
cant dispersion, and the attenuation reaches its peak.

Table 1. Control points and their coefficients
of cubit B-spline.

Control point
[mm]

Coefficients
(×105)

0 0

1 −6.8

2 33

3 −5.8

4 4.9

5 1.2

6 8.3

7 1.6

8 3.3

9 6.3

10 1.4

11 0

R [mm]

f(a
)

Fig. 1. Bubble size distribution.

Table 2. Input parameters.

Parameters Values

Sediment
parameters

Grain density 2465 kg/m3

Grain diameter 0.781 mm

Fluid bulk modulus 2.193 Pa× 109 Pa

Grain bulk modulus 3.6 Pa× 1010 Pa

Fluid viscosity 1.002 Pa ⋅ s× 10−3 Pa ⋅ s

Porosity 0.37

Fluid density 998.2 kg/m3

Structure factor 1.25

Gas
parameters

Gas density 1.1691 kg/m3

Gas velocity 340 m/s

Equilibrium pressure 1.01 Pa× 105 Pa

Thermal diffusivity 2.4 m2/s× 10−5 m2/s

Surface tension 72.75 N/m× 103 N/m

Ratio of specific heat 1.4
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Fig. 2. Variation in: a) sound speed; b) coefficient of atten-
uation with frequency.

In the simulation of bubble size distribution, this
study evaluates the effects of random errors in sound
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speed and attenuation data to analyze the robustness
of the proposed inversion method in the presence of
data errors. When controlling for attenuation data,
the inversion results for bubble size distribution across
varying sound speed error ranges are depicted in Fig. 3.
Conversely, when controlling for sound speed data, the
inversion results for bubble size distribution across dif-
ferent attenuation error ranges are presented in Fig. 4.
Additionally, Fig. 5 illustrates the inversion results for
bubble size distribution considering data errors in both
sound speed and attenuation. In these figures, the solid
line represents the inversion results derived from mul-
tiple random errors, whereas the dashed line indicates
the true value of the selected bubble size distribution.
From Figs. 3 and 4, we observe that satisfactory in-
version results can be achieved with a sound speed
error range of 1× 10−3, while a larger local error in
bubble size distribution occurs with an error range of
2× 10−3. Similarly, good inversion results can be at-

a)

R [mm]

Inversion value

True value

f(R
)

b)

R [mm]

Inversion value

True value

f(R
)

Fig. 3. Inversion results of bubble size distribution for sound
speed error range of: a) 1× 10–3; b) 2× 10–3.

a)

R [mm]

Inversion value

True value

f(R
)

b)

R [mm]

Inversion value

True value

f(R
)

Fig. 4. Inversion results of bubble size distribution for at-
tenuation coefficients error range of: a) 5× 10–4; b) 1× 10–3.

tained with an attenuation coefficient error range of
5× 10−4, whereas a larger local error in bubble size dis-
tribution arises with an error range of 1× 10−3.
This analysis indicates that sound speed data ex-

hibits a stronger resistance to interference compared to
the attenuation data; therefore, the inversion of bub-
ble size distribution is more sensitive to variations in
attenuation data. Furthermore, when comparing the
results in Fig. 5, it is evident that inaccuracies in at-
tenuation data significantly influence the overall accu-
racy of the inversion of bubble size distribution when
random errors are present in both sound speed and
attenuation data. This is further corroborated by the
objective function E(f) in Eq. (18), where sound speed
cp appears in the denominator and the attenuation co-
efficient in the numerator. Consequently, the effect of
the attenuation coefficient α(m) on the objective func-
tion is more pronounced under the same perturbation
range of sound speed.
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a)

R [mm]

Inversion value

True value

f(R
)

b)

R [mm]

Inversion value

True value

f(R
)

Fig. 5. Inversion results of bubble size distribution for data
error range of: a) 5× 10–4; b) 1× 10–3.

3. Experiments and verification

In this section, we present an analysis of the exper-
imental results obtained by inverting the bubble size

Experimental site

Donggang, Liaoning

Longitude (°E)

La
tit

ud
e 

(°
N

)

Zhangdao

Fig. 6. Experimental site.

distribution using the method developed in this article.
The experimental site is located on the beach of a small
island in the Yellow Sea, southwest of Beijingzi Town,
Donggang City, Liaoning Province (N39○47′17.36′′,
E123○49′0.52′′), as illustrated in Fig. 6. We selected
an intertidal silt zone with a water depth of 3 m–4 m
at high tide and a beach that emerges at low tide for
the in situ acoustic experiment, due to substantial ev-
idence indicating the presence of shallow gas.
The layout of the in-situ measurement experimen-

tal setup is depicted in Fig. 7. Two B&K8103 hy-
drophones (designated as H1 and H2) are positioned
within the sediments at the same horizontal align-
ment, with a depth difference of 10 cm. These hydro-
phones are utilized to monitor the acoustic velocity
and attenuation of gas-bearing sediments. To preserve
the original structure of the sediment, we excavated
50 cm downward next to the designated burial loca-
tion of the hydrophones and subsequently inserted the
devices laterally into their predetermined positions.

30 cm

10 cm

10 cm

H2

H1
Sediment

Ocean

Transmitter

Fig. 7. Diagram of the experimental equipment layout.

The transmitter employed in the experiment is
a cylindrical piezoelectric transducer, which operates
within a frequency band ranging from 50 Hz to 20 kHz.
It is suspended directly above the buried hydrophones
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using an inverted L-shaped bracket, positioned 30 cm
above the sediment surface, with the acoustic axis ori-
ented vertically downward. The transmitted chirp sig-
nal spans a frequency range of 100 Hz to 15 kHz and
utilizes Blackman window modulation, with a modu-
lated pulse width of 8 ms and a pulse emitted every 1 s.
The A/D sampling rate is set at 100 kHz, and the
transmission data is recorded every 5 min for a dura-
tion of 200 min. Additionally, tidal height is monitored
using a miniSVP.
Figure 8 illustrates the time series and frequency

spectra recorded by H1 and H2 at two different tidal
heights during the experiment. In Figs. 8a and 8b,
the time series and frequency spectra captured by H1
and H2 at 21:00, when the water depth was 2.85 m, are
presented. Conversely, Figs. 8c and 8d show the cor-
responding data recorded at 22:15, at a water depth
of 3.41 m. Notably, the received signals vary signif-
icantly based on the tidal height and the depth of

a) 21:00 H1 b) 21:00 H2
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Fig. 8. Time series and frequency spectra recorded by hydrophones H1 and H2 for two different tidal heights during
the experiment.

the hydrophones. The acoustic signals at H1 and H2
can be distinctly identified, as the propagation path
length of the acoustic signals received by H2 in the gas-
bearing sediment is longer than that received by H1.
Consequently, the signal attenuation recorded by H2 is
greater than that of H1, leading to a lower amplitude
for the H2 signal compared to H1.
The sound speed of gas-bearing sediments at each

frequency point can be determined by analyzing the
phase difference ∆ϕ(f) between the signals received
by the two hydrophones when the transmitted signals
have a specified bandwidth. Additionally, the attenu-
ation coefficient can be derived through a comparison
of the power spectra of the signals captured by both
hydrophones. The sound speed and attenuation coeffi-
cients are calculated as follows (Yu et al., 2015):

cp(f) = c(1 + c∆ϕ(f)
ωδx

) , (24)
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α(f) = 10 1

δx
lg(A1(f)

A2(f)) , (25)

where δx is the distance between H1 and H2 (equal to
10 cm), and A1(f) and A2(f) are the power spectral
density functions of the signals received by H1 and H2,
respectively.
The analysis of sound speed and attenuation was

conducted using a wide-band measurement method.
Detailed derivations and implementation steps for this
approach are provided in Appendix, which supports
the experimental findings.
Figure 9 illustrates the relationship between sound

speed and attenuation as a function of frequency
(100 Hz–6000 Hz) over a half tidal cycle, with the
solid line indicating water depth. The water depth
varies from 0.65 m at 19:30 to 3.41 m at 22:15, be-
fore decreasing to 3.33 m at 22:45. In the upper graph
of Fig. 9b, three prominent lines represent the three
identified attenuation peaks. Notably, the attenuation
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Fig. 9. Experimental results: frequency-dependent changes in the speed of sound and damping factor during changes
in the height of the water column.

peak within the 4 kHz–6 kHz frequency band exhibits
a slight shift towards higher frequencies, which can be
attributed to the increase in tidal height and hydro-
static pressure in the sediments. However, no signif-
icant frequency shifts are observed for the other two
attenuation peaks, likely due to minimal changes in
hydrostatic pressure.
To better visualize the frequency shifts associated

with hydrostatic pressure variations, the measured
changes in sound speed and attenuation coefficient as
a function of frequency at both initial and final times
are presented in Figs. 9c and 9d. The resonance peaks
labeled A–C in Fig. 9d correspond to the three bright
lines in Fig. 9b. The frequency of the attenuation peak
represented by the dotted line exceeds that of the peak
indicated by the solid line, as evidenced by a compar-
ison of the two attenuation curves. The attenuation
peaks and their associated frequencies are detailed in
Table 3, which also lists the approximate bubble radii
for the peak frequencies. According to the frequency
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Table 3. Parameters of the attenuation peaks.

Attenuation
peaks

19:30:00
Water depth 0.65 m

22:45:00
Water depth 3.33 m

Model predictions

Resonance
peak
[Hz]

Attenuation
coefficient
[dB/m]

Resonance
frequency
[Hz]

Attenuation
coefficient
[dB/m]

Bubble radius
[mm]

A 664 138 750 110 4.528

B 1853 69 2127 66 1.693

C 4923 68 5626 68 0.575

data in Table 3, the frequency shifts for peaks A, B,
and C are 86 Hz, 274 Hz, and 703 Hz, respectively.
This observation suggests that smaller bubbles result
in larger frequency shifts due to increased hydrosta-
tic pressure. Furthermore, the sound speed represented
in Figs. 9a and 9c displays greater complexity, with
variations that are more pronounced than the cor-
responding attenuation data. These fluctuations in
sound speed can be attributed to changes in bubble
behavior from inductive to capacitive near the bub-
ble resonance frequency, leading to a phase jump at
resonance and resulting in significant fluctuations in
sound speed.
The frequency of attenuation peaks illustrated in

Fig. 9 increases with water depth, confirming that
the increase in hydrostatic pressure alters the reso-
nance frequency of the bubble. According to Eq. (8),
the resonance frequency of the bubble is proportional
to the square root of hydrostatic pressure and inversely
proportional to the bubble radius. This relationship
suggests that smaller bubble radii will result in larger
frequency shifts due to changes in hydrostatic pres-
sure, an observation that aligns with the experimental
data. However, the frequency shifts predicted by the
model (78 Hz, 232 Hz, and 585 Hz) differ significantly
from the measured data (86 Hz, 274 Hz, and 703 Hz).
This discrepancy can be attributed to the fact that
the measured sound speed and attenuation depend on
a specific distribution of bubble sizes, making it inap-
propriate to interpret frequency shifts for bubbles of
varying sizes.
Although the bubble radii correspond to peaks A–C

(Table 3), bubble sizes are distributed across marine
sediments. The bubble size distribution is derived from
sound speed and attenuation data using the proposed
inversion method, and the physical parameters of
the measured sediment are detailed in Table 4. The
best-fit bubble size distribution (ranging from 0.2 mm
to 8 mm) is presented in Fig. 10c, with the highest
gas content falling within the 6 mm–8 mm range. This
range corresponds to the peak of the attenuation co-
efficient near the 500 Hz frequency and coincides with
a sharp fluctuation in sound speed. The fitted sound
speed models and attenuation curves are depicted
in Figs. 10a and 10b, showing that the magnitudes
of these sound speeds and attenuation coefficients

Table 4. Physical parameters of the measured sediment.

Parameters Values

Sediment
parameters

Grain density 2478 kg/m3

Grain diameter 0.145 mm

Fluid bulk modulus 2.193 Pa× 109 Pa

Grain bulk modulus 3.6 Pa× 1010 Pa

Fluid viscosity 1.002 Pa ⋅ s× 10−3 Pa ⋅ s

Porosity 0.45

Fluid density 998.2 kg/m3

Structure factor 1.35

Gas
parameters

Gas density 1.1691 kg/m3

Gas velocity 340 m/s

Equilibrium pressure 1.01 Pa× 105 Pa

Thermal diffusivity 2.4 m2/s× 10−5 m2/s

Surface tension 72.75 N/m× 103 N/m

Ratio of specific heat 1.4

are consistent with the measured attenuation data,
thereby validating the proposed inversion method.

4. Conclusion

This study presented an inversion method for es-
timating bubble size distribution in gas-bearing sed-
iments. The methodology integrates a corrected ef-
fective density fluid model with a cubic B-spline ap-
proach. The nonlinear inverse problem can be transfor-
med by solving a set of equations involving the coeffi-
cients of cubic B-splines. Notably, this method allows
for simultaneous estimation of bubble size distribution
from measured sound speed and attenuation data. To
validate the accuracy and robustness of this method,
comparisons with other techniques for measuring bub-
ble size distribution are necessary.
The method proposed in this paper integrates

a suitable acoustic model – specifically, an effective
density fluid model (Zheng et al., 2017), adapted to
account for gas bubble pulsations – with B-spline ex-
pansions. This approach allows for the simultaneous
consideration of sound speed and attenuation in ad-
dressing the inverse problem. Additionally, the pro-
posed method offers greater applicability for real-time
monitoring of shallow gas in marine sediments, com-
pared to conventional inversion methods for bubble
size distribution.
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Fig. 10. Model fitting results: a) comparison of measured sound speed with model predictions; b) comparison of measured
attenuation coefficient with model predictions; c) inversion results of bubble size distribution.

Appendix

In this appendix, we describe the wide-band
method used for measuring sound speed and attenu-
ation in marine sediments. This technique involves the
use of a chirp signal modulated by a Blackman window
to achieve accurate broadband measurements. The
Blackman window offers several advantages, which are:

1) the compressed signal envelope is nearly free of
sidelobes, unlike the normal signal, which retains
smaller sidelobes. Ignoring these sidelobes can re-
sult in the loss of some information;

2) the signal’s bandwidth is narrower, reducing dis-
tortion from the transmitter transducer, which
has a limited bandwidth;

3) the reduced direct waveform shows less signifi-
cant distortion at the band edges compared to the
original signal. For these reasons, the Blackman
window is used to modulate the amplitude of the

transmit signal. As long as the signal’s bandwidth
is wide enough and it has high time-delay reso-
lution, the compressed signal can be separated in
the time domain, minimizing amplitude and phase
distortion. This ensures accurate broadband mea-
surements of sound speed and attenuation.

When a sound wave passes through a sample with
thickness d1 = x2 − x1, let p(x1, ω) be the sound pres-
sure at x1. In the frequency domain, ignoring the time
factor e−jωt and assuming a plane wave, the sound
pressure received at x2 can be written as

p(x2, ω) =D1
p (x1, ω) ejk(ω)d1

=D
1
p(x1, ω)ej[β(ω)+jα(ω)]d1

=D
1
p(x1, ω)e−α(ω)d1 exp (jβ(ω)d1),

(26)

where k(ω) is the complex wavenumber in the sample;
its real part β(ω) = ω/cp(ω) represents the phase ve-
locity, whereas the imaginary part α(ω) represents the
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attenuation coefficient in [Np/m]; cp(ω) is the com-
pression wave phase velocity, and D1 is the transmis-
sion coefficient at the water-sediment interface. If this
sample with thickness d1 is considered as a system, its
transmission function can be expressed as

Hs1(jω) =D1e
−α(ω)d1 exp (jβ(ω)d1). (27)

Assuming that the distance between the sound
source and hydrophone is l and that the sound veloc-
ity dispersion and attenuation in the water column are
neglected, the transfer function in the water column
cω can be written as

Hω1(jω) = exp (jω(l − d1)/cω). (28)

Replacing the sample with a thickness of d2(d2 > d1)
and keeping the same source-to-hydrophone distance,
we have

Hs2(jω) =D2e
−α(ω)d2 exp (jβ(ω)d2),

Hω2(jω) = exp (jω(l − d2)/cω). (29)

The ratio of the received signal spectrum is as fol-
lows:

Hr(jω) = [Hω2(jω)Hs2(jω)] / [Hω1(jω)Hs1(jω)]
= D2

D1

e−α(ω)∆d exp{j [β(ω)∆d − ω∆d/cω]}, (30)
where ∆d = d2−d1. Given ∆ϕ = β (ω)∆d−ω∆d/cω, the
sound speed and attenuation coefficient in the sample
can be calculated as follows:

cp = cω (1 + cω∆ϕ

ω∆d
)−1 , (31)

αp = −20 lg e
∆d

ln [D1

D2

∣Hr(jω)∣], (32)

where αp is the attenuation coefficient in [dB/m].
Thus, the sound speed is determined from the phase
difference of the received signal, and the attenuation
coefficient is calculated from the ratio of the ampli-
tude spectra of the received signal.
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1. Introduction

Array-based reception methods are usually used to
resist interference and improve gain, including uniform
linear arrays (ULA), uniform circular arrays (UCA),
L-shaped arrays, and planar arrays (Balanis, 2016;
Silver, 2019; Zhang et al., 2013). The ULA is the
most common, featuring uniformly spaced array ele-
ments. Studies have shown that a ULA performs best
when the spacing between array elements is half the
wavelength. However, with the advent of large ar-
rays such as towed line arrays, a larger array aper-
ture is required to cover more spatial data. Using half-
wavelength spacing necessitates an increasing number
of array elements. For example, the number of ele-
ments can reach thousands for a ULA operating at
28 kHz with an array length of tens of meters. This
leads to greater data storage requirements and in-
creased processing complexity, exceeding active sonar
systems’ hardware and software processing capabili-
ties, and thus affecting performance.

To address this issue, researchers have explored
sparse arrays. Sparse arrays sample a subset of elements
from a ULA, allowing the spacing between elements to
exceed the half-wavelength limit, thereby reducing the
number of elements while still achieving the desired
performance. Nested arrays (Pal, Vaidyanathan, 2010)
and coprime arrays (Vaidyanathan, Pal, 2011) are
typical examples of sparse arrays. A coprime array is
formed by interleaving two subarrays with coprime
numbers of elements. In contrast, a nested array is
created by nesting multiple levels of subarrays, with
the spacing of each level determined by the number
of elements in the previous level. Various improved
sparse arrays have been proposed based on the con-
cepts of nested and coprime arrays (He et al., 2022;
Mohsen et al., 2023; Yang et al., 2023). Sparse ar-
rays are widely used in array signal processing because
they increase the degrees of freedom. One approach is
to use the difference coarray of a sparse array to con-
struct an equivalent virtual ULA and then obtain the
covariance matrix of the virtual ULA by vectorizing
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the covariance matrix (Lei et al., 2015; Li, Zhang,
2020; Kazarinov, 2022). However, this virtual do-
main method has limitations regarding the array con-
figuration. If the difference coarray of a sparse array
has holes, it increases the processing complexity.
The advent of compressed sensing (CS) theory has

provided an effective means for array signal process-
ing (Candès, Wakin, 2008; Ender, 2010). The core
idea is to take advantage of the signal sparsity to re-
duce the amount of sampled data, which has been
extensively applied in processing under-sampled sig-
nals in the time domain (Li, Yang, 2014; Jurdana
et al., 2023). Since signal sources are sparse in the spa-
tial domain, naturally satisfying the sparsity require-
ment of CS, it has also been applied to signal recon-
struction in the spatial domain. Mirza et al. (2020)
have proposed a CS technique based on a sparse array
for direction of arrival (DOA) estimation, addressing
grid mismatch issues in spatial CS, thereby enhancing
the robustness of CS DOA techniques. Kikuchi et al.
(2022) applied CS theory to process ULA, effectively
reducing the number of elements in antenna arrays.
The measurement matrices used in these studies are
random. Although the random measurement matrices
satisfied the restricted isometry property (RIP) and
yielded satisfactory results in reconstruction accuracy,
it is impossible to determine the configurations of the
sparse arrays obtained by sampling, thus hindering en-
gineering implementation. For deterministic measure-
ment matrices, Salama (2020), Lakshmi et al. (2021),
and Chen et al. (2020) used the difference co-array of
nested arrays to construct an equivalent ULA and vec-
torized the covariance matrix of the sparse array to
reconstruct the ULA’s received signal. However, these
methods only reconstruct the covariance matrix of the
ULA’s received signal and cannot reconstruct the re-
ceived signal in the element domain.
This paper applies CS theory to the reconstruction

of element-domain signals. By constructing a sensing
matrix and using a two-dimensional orthogonal match-
ing pursuit (OMP) method, the time-domain signals
are projected onto the element domain to achieve the
reconstruction of under-sampled array signals. This
approach imposes fewer restrictions on the array con-
figurations of sparse arrays for signal reconstruction.
Furthermore, reconstructing signals in the element do-
main allows sampling only a portion of the array ele-
ments to obtain the entire array’s received data, effec-
tively reducing the data storage requirements for large
arrays.

2. Compressed sensing theory

For sparse signals, CS theory samples signals at
a rate much lower than the Nyquist sampling theo-
rem to obtain discrete samples of the original signals.
These samples are then used to reconstruct the origi-

nal signals through reconstruction algorithms. If a sig-
nal can be sparsely represented, a measurement matrix
unrelated to the transformation basis can be designed
to observe it. The observed values can then be used to
achieve exact or approximate signal reconstruction by
solving optimization problems. The process mainly in-
cludes two parts: CS observation and signal reconstruc-
tion.

2.1. Compressed sensing observation part

Consider an N -dimensional discrete-time domain
signal X and an N ×N -dimensional sparse representa-
tion matrix Ψ, consisting of N ×N -dimensional basis
vectors. If the signal X can be represented as

X = N

∑
i=1

ψiαi =Ψα, (1)

where α is a sparse vector containing only K (K ≪ N)
non-zero values, this implies that X can be sparsely
represented. Then, a measurement matrix Φ ∈ RM×N

(M ≪ N) that satisfies certain conditions is used to
“sense” the signal, resulting in an M -dimensional ob-
servation signal of X:

Y =ΦX. (2)

The process of CS observation is illustrated in Fig. 1.

Sparse representation
X = Ψ α

Compressed sampling
Y = Ф X

X Y

Fig. 1. Process of CS observation.

2.2. Signal reconstruction sections

After obtaining the linear observation vector Y of
the signal X with respect to the measurement ma-
trix Φ, the next step is to determine how to recover
X fromY. Since directly solving the underdetermined
Eq. (2) is infeasible, we use the sparse representation
of X in Eq. (1):

Y =ΦX =ΦΨα =Θα, (3)

where Θ = ΦΨ is a M ×N -dimensional matrix called
the sensing matrix. We can think ofY as the projection
of α onto the sensing matrix Θ. Thus, the problem
now becomes recovering α from Y. Although Eq. (3)
is also an underdetermined equation, the sparsity of α
significantly reduces the number of unknowns, making
signal reconstruction feasible.
Candès andWakin (2008) proved that, under the

condition that the signal α is sparse, if the sensing
matrix Θ satisfies the condition that any 2K columns
are linearly independent, the solution can be obtained
using the following equation:

{ α̂ = argmin ∥α∥0 ,
subject to Θα =Y.

(4)



T. Sun et al. – An Under-Sampled Line Array Element Signal Reconstruction Method Based. . . 129

Equation (4) is an NP-hard non-convex optimiza-
tion problem, making it very challenging to solve. Nu-
merous optimization algorithms have been proposed
to address this issue (Zhao, Nehorai, 2014; Wang
et al., 2022). After recovering α through the recon-
struction algorithm, the signal X can be reconstructed
according to Eq. (1).
The process of signal reconstruction can be illus-

trated in Fig. 2.

Signal reconstruction
Y = Θ α X = Ψ α

α XY

Fig. 2. Process of CS reconstruction signal.

From the aforementioned analysis, it can be con-
cluded that the primary research focus of CS encom-
passes the following three aspects:

1) sparse representation: designing a sparse represen-
tation matrix to represent the original signal X as
a sparse vector α of the same length;

2) compressed sampling: using an M ×N measure-
ment matrix, CS observes the high-dimensional
original signalX to obtain the low-dimensional ob-
served signal Y;

3) signal reconstruction: recovering the original sig-
nal X from the observed signal Y by solving
Eq. (4).

3. Under-sampled array signal reconstruction

method in the element domain

The application of CS in the time domain mainly
deals with one-dimensional signals. However, array re-
ception signals are typically two-dimensional, encom-
passing both the element domain (spatial domain)

a(θk) = [1, exp(−j2π d sin(θk)
λ

) , exp(−j2π ⋅ 2d sin(θk)
λ

) , ..., exp(−j2π ⋅ 2d sin(θk)
λ

)]T . (7)

1. Input: sensing matrix
under-sampled signal

2. Output: projection coefficient
vector
signal

The sparse representation matrix
Ψ consists of steering vectors of

Γ angles in the airspace

Signal reconstruction part

The deterministic measurement
matrix Φ is constructed according

to the sequence of sample arrays

Signal observation part

Sensing matrix
ΘM×Γ = ΦM×NΨN×Γ

Two-dimensional
OMP algorithm

....

Under-sampled array

....

Large ULA

y1

y2

yM

M M N NΦ XY

ΘM×Γ

1x
x2

3x

Nx

, , ,[ M ]TY y1 y2 y , , ,[ N ]TX x 1 x2 x

YM×L

XΓ×L SΓ×L

SΓ×L

xN–3

=ΨΓ×L

y1

y2

x1

x2

x3

Fig. 3. Flow chart of signal reconstruction method of under-sampled array.

and the time domain. Focusing on the three criti-
cal technologies of sparse representation, compressed
sampling, and signal reconstruction, this paper uses
the inherent sparsity of spatial arrays, construct-
ing a sparse matrix from steering vectors of various
angles for sparse representation in the spatial domain.
Based on the configuration of the under-sampled array,
a measurement matrix satisfying the RIP condition is
constructed using a unit diagonal sampling method.
It extends the OMP method to the two-dimensional
space-time joint domain for signal reconstruction in the
element domain. The implementation process is shown
in Fig. 3.

3.1. Sparse representation of array signals

CS requires the original signal to be sparsely rep-
resentable. When applied to the element domain, the
target is sparse in the spatial domain, naturally satis-
fying the sparsity condition.
Suppose a ULA withN hydrophones spaced by d re-

ceivesK signals with identical central frequency f0 and
wavelength λ. We first consider the case of a single
snapshot, where the time-domain signal received by
the array can be described as

X =As +N, (5)

where X = [x1,x2, ...,xN ]T, N = [n1,n2, ...,nN ]T,
xN , nN , respectively, represent the signal and addi-
tive noise received by the N -th array element. Addi-
tionally, s = [s1, s2, ..., sK]T, where sK represents the
K-th incident signal on the array. The matrix A is
the N ×K-dimensional array manifold matrix:

A = [a(θ1),a(θ2), ...,a(θk)]T , (6)

where a(θk) is the steering vector of the array in the
direction θk:
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If the spatial domain from −90○ to 90○ is divided
into Γ grids, and the incident angles of the K signal
sources fall on these grids, we obtain Γ spatial angles.
The array steering vectors at these Γ angles are used
to form an extended array manifold matrix Ψ. Thus,
Eq. (5) can be further expressed as:

X =Ψs +N, (8)

where s is a Γ -dimensional projection coefficient vec-
tor, and each element of s corresponds to a grid. Since
there are only K grids with incident signals among the
Γ grids, s is aK-sparse vector, having a form similar to[0,0, ..., s1,0, ...,0, ..., sK ,0, ...0]T, where non-zero val-
ues occur only at the grids with incident signals.
Equation (8) shows that the array received signal

X is sparsely represented as a sparse vector s through
the extended array manifold matrix Ψ. The extended
array manifold matrix Ψ serves as the sparse represen-
tation matrix, constructed through the following steps:

1) divide the spatial domain from −90○ to 90○ into Γ
grids of equal angles, resulting in {θ1, θ2, ..., θΓ };

2) obtain the steering vectors of the array at these Γ
angles: {a (θk)}Γk=1;

3) form the sparse representation matrix:
Ψ = [a (θ1) ,a (θ2) , ...,a (θΓ )]T.

3.2. Construction of the measurement matrix based

on under-sampled array configuration

In CS, the under-sampling of large ULAs is achieved
through a measurement matrix. The critical difference
between element-domain CS and time-domain CS is
that the measurement matrix of element-domain CS
does not require a linear combination of all element
signals for compressive sampling. From a hardware
perspective, linear combination of element signals
still necessitates sampling each element. However,
the under-sampled signals we obtain only contain the
received signals from a subset of elements.
In the element domain, the received signal of an

N -element ULA can be expressed asX=[x1,x2, ...,xN]T,
where xi (i = 1,2, ...,N) is the signal received by

....
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Fig. 4. Signal compression sampling in the element domain.

the i-th element. The measurement matrix Φ con-
sists of M ×N -dimensional sampling basis vectors φi

(i = 1,2, ...,M), each of which samples the origi-
nal array signal X once, obtaining one element sig-
nal. In total, the M sampling basis sample M ele-
ment signals, forming the under-sampled array signal
Y = [y1,y2, ...,yM ]T. To ensure that each sampling
basis samples only one element, each N -dimensional
sampling basis vector can be a sparse vector containing
only one non-zero value. Moreover, to avoid redundant
sampling, the positions of the non-zero values in the
M sampling basis should be different.
Figure 4 illustrates the process of element signal

under-sampling. By sorting the M sampling basis vec-
tors according to the positions of their non-zero values,
the measurement matrix has a structure similar to that
of Eq. (9). It can be viewed as M rows extracted from
an identity diagonal matrix, where the columns are
linearly independent, ensuring that the resulting mea-
surement matrix satisfies the RIP:

Φ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 0 1
⋯

0 0 0

0 0 0

⋮ ⋱ ⋮

0 0 0

0 0 0
⋯

1 0 0

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (9)

Thus, the steps to construct the measurement ma-
trix are as follows:

1) determine the positions of the sampled elements
in the under-sampled array: D = [d1, d2, ..., dM ];

2) construct an N -dimensional identity diagonal ma-
trix E;

3) extract the i-th rows from E to form the measure-
ment matrix Φ.

3.3. Signal reconstruction based

on two-dimensional OMP

Subsections 3.1 and 3.2 discussed the mathematical
model for the single snapshot case. Now, we consider
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the scenario with L snapshots. The problem of recon-
structing the original N ×L-dimensional array signal
X from the M ×L-dimensional array signal Y can be
described as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ŝ = argmin ∥S∥0 ,
X =ΨŜ,

subject to ΘS =Y,
(10)

where Ŝ is an M ×L matrix containing L projection
coefficient vectors; Ψ is an N ×Γ -dimensional sparse
representation matrix, and Θ is an M ×Γ sensing ma-
trix obtained by Θ =ΦΨ, with Φ being the measure-
ment matrix as detailed in Subsec. 3.2.
The reconstruction of the one-dimensional projec-

tion coefficient vector involves solving the problem
in Eq. (4). In CS, there are numerous optimization
algorithms available to solve Eq. (4). The OMP al-
gorithm is one such reconstruction method, which
uses an iterative approach to obtain the solution
(Tropp, Gilbert, 2007). However, traditional OMP
cannot handle two-dimensional signals as presented in
Eq. (10). This paper utilizes a two-dimensional OMP
algorithm. The under-sampled signal Y is first divided
into L vectors by columns, and then each vector is se-
quentially solved:

⎧⎪⎪⎨⎪⎪⎩
ŝi = argmin ∥si∥0 ,
subject to Θs =Yi,

(11)

where Yi denotes the i-th column of Y, and ŝi rep-
resents the projection coefficient vector reconstructed
from it. Finally, the L projection coefficient vectors
form the projection coefficient matrix Ŝ.
The two-dimensional OMP algorithm process is as

follows:

1) initialize the projection coefficient matrix SΓ×L

and set the iteration count i = 1. repeat steps (2)
to (4) L times until i > L, then proceed to step (5);

2) initialize the projection coefficient vector αΓ ,
residual r0 =Yi, index set Λ0 = ∅, and inner loop
iteration count n = 1. Repeat steps (a) to (e) until
the stopping criterion is met:

a) find the atom column in Θ most correlated
with the residual and its index:

λn = arg max
j∉Λn−1

∥⟨θj , rn−1⟩∥ ,
where θj is the j-th column of Θ;

b) update the index set: Λn = Λn−1 ∪ λn;

c) solve the projection coefficient vector using
least squares:

sn(t ∈ Λn) = argmin
x
∥ΘΛn

x −Yi∥2 ,
sn(t ∉ Λn) = 0;

d) update the residual: rn = rn−1 −Θsn;

e) n = n + 1;
3) output the projection coefficient vector s as the

i-th row of SΓ×L;
4) i = i + 1;
5) recover the signal: XN×L =ΨN×ΓSΓ×L.

Using the two-dimensional OMP algorithm, the en-
tire array signal X is reconstructed from the under-
sampled array signal Y.

4. Performance verification based on simulated

and measured data

This section compares the reconstruction error un-
der different under-sampling rates, array configura-
tions, and signal-to-noise ratio (SNR) using simulated
and measured data. For an N -element ULA, M ele-
ments are sampled. When M < N , the array is under-
sampled, and the ratio M/N is the under-sampling
rate. The reconstruction error is defined as

Error = ∥X̂N×L −XN×L∥2∥XN×L∥2 , (12)

where X̂N×L is the reconstructed signal, and XN×L is
the original signal.

4.1. Performance verification using simulated data

The simulation involves the transmission of lin-
ear frequency-modulated signals by active sonar with
a center frequency of 28 kHz and a bandwidth of
16 kHz. A 32-element ULA receives the echo signal.
The full array signal received by the ULA is the original
signal X. The under-sampled signal Y is obtained us-
ing the constructed measurement matrix as described
Eq. (2). The measurement matrix can be either de-
terministic, as shown is Subsec. 3.2, or random. The
underwater sound speed is set to c = 1500 m/s, and
the element spacing is half the wavelength of the echo
signal.

4.1.1. Signal waveform comparison

In this section, the waveform of the original signal
from unsampled elements is compared with the recon-
structed signal at an under-sampling rate of 50 % and
SNR = 5 dB. The positions of the 16 sampled elements
are {1, 2, 3, 5, 10, 11, 15, 16, 17, 19, 22, 23, 24, 25, 31,
32}. The original and reconstructed signals from the
18th and 28th elements among the remaining 16 un-
sampled elements are compared, as shown in Fig. 5.

4.1.2. Reconstruction error of different under-sampled
arrays

In this section, at an under-sampling rate of 50 %
and SNR = 5 dB, 100 sets of under-sampled structures
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Fig. 5. Comparison of signal waveforms before and after reconstruction: a) the 18th element; b) the 28th element.

are independently tested using a random measurement
matrix. Each set of structures undergoes five repeated
experiments, and the average reconstruction error of
the five experiments is taken as the reconstruction er-
ror for that set. The results are shown in Fig. 6, with
reconstruction errors mainly ranging from 0.1 to 0.25,
and some under-sampled structures exhibiting large er-
rors.

Fig. 6. Reconstruction errors of different under-sampled
arrays.

4.1.3. Reconstruction error at different under-sampling
rates

Five sets of under-sampled arrays are selected, and
the under-sampling rates are gradually reduced from
87.5 % to 12.5 % by removing one redundant element

from the under-sampled array each time, while keep-
ing other conditions unchanged. The reconstruction
error at different under-sampling rates is then com-
pared. Each set of under-sampled arrays undergoes
five repeated experiments to avoid randomness, and
the average error is computed. The results are shown
in Table 1. From Table 1, it can be seen that when
the under-sampling rate reaches 31.25 % or higher, the
reconstruction error is generally below 0.2, indicating
good reconstruction effect.

Table 1. Reconstruction errors of five under-sampled arrays
at different under-sampling rates.

Under-sampling
rate

25 % 31.25 % 37.5 % 50 % 75 % 87.5 %

1 0.702 0.151 0.14 0.094 0.071 0.063

2 0.677 0.124 0.109 0.102 0.069 0.062

3 0.895 0.124 0.1 0.081 0.055 0.059

4 0.47 0.23 0.195 0.165 0.078 0.068

5 0.528 0.265 0.251 0.185 0.095 0.061

4.1.4. Reconstruction error under different SNR

Ten groups of under-sampled arrays are selected to
construct deterministic measurement matrices. Each
group undergoes an independent experiment at an
under-sampling rate of 50 %. The reconstruction per-
formance under different SNRs is then analyzed. Each
group of under-sampled arrays is subjected to five re-
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peated experiments to avoid randomness. The results
are shown in Table 2. It can be observed that high
SNRs yield lower reconstruction errors. For signals
without noise, the optimal reconstruction error can
reach 0.009, which is almost negligible.

Table 2. Reconstruction errors of five under-sampled arrays
under different SNR.

SNR [dB] 1 2 3 4 5

Noise is 0 0.066 0.011 0.094 0.009 0.009

5 0.079 0.115 0.155 0.111 0.095

7 0.067 0.095 0.133 0.064 0.080

10 0.05 0.074 0.114 0.048 0.067

15 0.055 0.047 0.097 0.035 0.051

4.2. Performance verification using measured data

The measured data is obtained from a lake test at
the Xin’anjiang test site, where the underwater sound
speed is approximately 1450 m/s. A linear frequency
modulated signal with a frequency range of 20 kHz–
36 kHz is transmitted with a pulse width of 2 ms. The
test setup is shown in Fig. 7. A 32-element ULA re-
ceives the underwater echo signal, sampled at 1 MHz.
The hydrophone array and target are 10 m underwater,
and the transmitter is 9.5 m underwater. The target is
a 0.6 m diameter spherical model.
Due to the complexity of the underwater environ-

ment, and to more clearly observe the target, we ap-
ply a matched filter to both the original signal X and
the reconstructed signal X̂, resulting in X′ and X̂

′

, re-
spectively. Then, the reconstruction error is calculated
using Eq. (13):

Error = ∥X̂
′

N×L −X
′

N×L∥
2∥X′N×L∥2 , (13)

where X̂
′

N×L is the matched filter signal of the recon-
structed signal X̂N×L, and X

′

N×L is the matched filter
signal of the original signal XN×L.

Lake surface

10
 m

9.
5 

m

10
 m

Motion path of targetHydrophone 
array

Transmitting transducer
Target

Floating platform

Fig. 7. Experimental setup on the lake.

4.2.1. Signal waveform comparison

In this section, the 32-element ULA is processed at
a 75 % under-sampling rate. The positions of the sam-
pled elements are selected as {1, 2, 3, 4, 5, 7, 8, 10, 12,
13, 14, 15, 16, 17, 18, 19, 21, 22, 26, 27, 28, 29, 30, 32}.
Among the remaining eight unsampled elements, the
signals before and after reconstruction at the 23th ele-
ment are compared along with the results of matched
filter. The results are shown in Fig. 8.

4.2.2. Reconstruction error of different under-sampled
arrays

This section processes the measured data at a 75 %
under-sampling rate. One hundred groups of under-
sampled arrays are sampled using a random measure-
ment matrix. The results are shown in Fig. 9, where the
reconstruction error fluctuates between 0.08 and 0.28.

4.2.3. Reconstruction errors of 10 under-sampled
arrays

Five groups of under-sampled arrays are selected.
Starting with an under-sampling rate of 87.5 %, re-
dundant elements are gradually removed to reduce the
under-sampling rate to 37.5 % while keeping other con-
ditions unchanged. The reconstruction error at differ-
ent under-sampling rates is compared. The results are
shown in Table 3. As shown in Table 3, the proposed al-
gorithm achieves optimal performance with measured
data, with reconstruction errors below 0.1 when the
under-sampling rate is above 50 %.

Table 3. Reconstruction errors of five groups
of under-sampled arrays at different under-sampling rates.

Under-sampling
rate

37.5 % 50 % 62.5 % 75 % 87.5 %

1 0.164 0.103 0.071 0.064 0.083

2 0.174 0.117 0.096 0.092 0.107

3 0.166 0.099 0.086 0.076 0.095

4 0.157 0.116 0.085 0.079 0.099

5 0.166 0.125 0.097 0.096 0.106
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a)

b)

Fig. 8. Waveform comparison before and after reconstruction of measured data: a) signal comparison before and after
reconstruction; b) comparison of matched filter results before and after reconstruction.

Fig. 9. Reconstruction error under different under-sampled
arrays.

5. Conclusion

This paper addressed the under-sampling problem
in large ULAs by applying CS theory to element-
domain signal processing. The array signals were
sparsely represented by exploiting the sparsity of sig-
nal sources in the spatial domain. Time-domain sig-
nals were projected onto the element domain through
sparse representation. Then, reconstruction algorithms
were used in the element domain to recover the full ar-
ray signal from the under-sampled array signals. Com-
pared to the method of reconstructing the original ar-
ray covariance matrix, the element-domain signal re-
construction method directly processes the signal and

has broader applicability. Using CS for signal recon-
struction allows recovering full array data from any
under-sampled array, enabling data reception from re-
dundant elements in large arrays without the need
to sample them. The performance of this method is
verified through the processing of both simulated and
measured data, demonstrating that it can reconstruct
element-domain signals with small errors even at low
SNRs and varying under-sampling rates.
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Two-dimensional transition metal dichalcogenides (MoX2, where X = S, Se, Te), have been the research
hotspot over the past decade. The sonication-assisted liquid-phase exfoliation method is suitable for the mass
production of MoX2 in practical applications. Water and ethanol, rather than organic solvents, are increas-
ingly chosen for liquid-phase exfoliation method due to their non-toxic, environmentally friendly properties.
However, a systematic review of the method for MoX2 preparation using water and ethanol is lacking. In
this paper, recently published work on the sonication-assisted exfoliation method for MoX2 preparation using
water and ethanol is summarized. Three key parameters are focused on: solvents selection, sonication power,
and sonication time. Finally, the application of MoX2 flakes and the future outlook of the sonication-assisted
liquid-phase exfoliation method using water and ethanol are presented. The review aims to provide guidance
on exfoliating MoX2 using the sonication-assisted exfoliation method with water and ethanol.
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1. Introduction

Since graphene was discovered by Novoselov
et al. (2004), two-dimensional (2D) materials have be-
come a hotspot in materials research. So far, vari-
ous 2D materials have been studied, including the
insulator boron nitride (BN), semiconductor transi-
tional metal dichalcogenides (TMDs), magnetic mate-
rials such as CrX3 (I, Br), Fe3GeTe2, and the topo-
logical insulator Bi2Se3, among others. TMDs MX2

(where M = Mo, W, and X = S, Se) shows poten-
tial in many applications due to its excellent physical
properties. For example, MoS2-based field-effect tran-
sistors (FETs) exhibit a ∼108 on/off ratio with mobility
∼200 cm2V−1s−1 (Radisavljevic et al., 2011). Mono-
layer MoS2 also demonstrates a strong photolumines-
cence effect due to the indirect-to-direct bandgap tran-
sition (from 1.9 eV to 2.2 eV) from bulk to monolayer
(Mak et al., 2010). Actually, monolayer MoS2 exists in
three distinct phases: the semiconductive 2H phase, the

metallic 1T phase, and the 1T’ phase. The 2H-MoS2
phase holds potential development for applications in
valleytronics. On one hand, 2H-MoS2 displays a novel
valley degree of freedom due to broken inversion sym-
metry. On the other hand, its valley and spin degrees of
freedom are coupled due to spin-orbit splitting (Xiao
et al., 2012). MoSe2 is more conductive with respect to
MoS2 due to selenium (Se) atoms being more conduc-
tive than molybdenum (Mo) atoms. The bandgaps of
monolayer MoSe2 and MoTe2 are 1.55 eV, 1.1 eV, re-
spectively, extending the spectral range of TMDs from
the visible to near-infrared region (Wu et al., 2020).
The mass production of TMDs is required for

their practical applications. Currently, there are two
categories of TMDs synthesis methods: bottom-up
and top-down approaches. Chemical vapor deposition
(CVD) and metal-organic chemical vapor deposition
(MOCVD), both of which are bottom-up approaches,
can synthesize wafer-scale monolayer MoX2 films. Al-
though continuous efforts to produce large-scale wafers
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show promise for practical applications (Yu et al.,
2017;Hu et al., 2023; Xu et al., 2021), the cost remains
high for industrial application at this stage. The me-
chanical exfoliation approach, a top-down approach,
can produce high-quality MoX2, which is suitable for
advanced fundamental research. However, its efficiency
is relatively low. Another top-down approach is the
liquid-phase exfoliation (LPE). LPE methods include
shear exfoliation, ultrasonication exfoliation, and
microfluidization exfoliation (Sethulekshmi et al.,
2024). Sonication-assisted liquid exfoliation is the most
common technique for MoX2 synthesis. For example,
Coleman et al. (2011) demonstrated the feasibility of
ultrasonic-assisted liquid-phase exfoliation as early as
2011. Their findings were further supported and ex-
panded upon in subsequent studies (Khan et al., 2011;
2012; O’Neill et al., 2011; Barwich et al., 2013;
Coleman et al., 2013; Hanlon et al., 2015; Gho-
lamvand et al., 2016; Backes et al., 2017; Harvey
et al., 2017; Synnatschke et al., 2019; Griffin et al.,
2020). Though the sonication-assisted liquid exfolia-
tion process can cause problems such as high defect
rate, low stability and impaired electronic properties
of the nanosheets, its advantages are: (1) simplicity,
universality, and low cost, making it suitable for
mass production (Akeredolu et al., 2024); (2) mild
operating conditions (room temperature and pressure)
(Aggarwal et al., 2024), and the properties of the
nanosheets being controllable by adjusting process
parameters (Sethulekshmi et al., 2024).
The common solvents used in sonication-assisted

liquid exfoliation for MoX2 synthesis are organic poly-
mer, typically N-methyl-2-pyrrolidine (NMP) (O’Neill
et al., 2012). However, the polymer is toxic and hard
to remove due to its generally high boiling point.
Similarly, although alternative surfactant can exfo-
liate MoS2 by expanding the layers, the surfactant
molecules are usually difficult to recycle (Ma et al.,
2018; Pozzati et al., 2024). Recently, significant ef-
forts have been devoted to utilizing green solvents that
achieve comparable concentrations and sizes of TMDs
dispersion as NMP and surfactant-based solvents. It
has been demonstrated that phyto-extracted green
solvents facilitate the production of few layer MoS2

MoX2(X:S, Se, Te)

Solvents

Ultrasonication Centrifugation
Supernatant

Fig. 1. Schematic diagram of the sonication-assisted exfoliation process.

which enhances the photo-conversion efficiency of dye-
sensitized solar cells and exhibits an excellent redox
activity with high specific capacitance (Kumar et al.,
2023). Polarclean, Iris and Cyrene have been reported
as the most promising green solvents for the produc-
tion of graphene, MoS2 and WS2. In particular, Polar-
clean has been highlighted due to its low defect density
(Occhiuzzi et al., 2023). Rafi et al. (2024) produced
bilayered and trilayered MoS2 nanosheets by employ-
ing isopropyl alcohol and deionized water in a 7:3 ratio
as a cosolvent. Green solvents biomaterials are beyond
the scope of this review, with relevant work summa-
rized in other reviews (Sethulekshmi et al., 2024).
Among organic solvents, ethanol is considered more
environmentally favorable based on environmental im-
pact, health, and safety (EHS) statements (Capello
et al., 2007; Sheldon et al., 2019). Hence, our review
focuses on water and ethanol solvents.
To our knowledge, no review has been reported on

the sonication-assisted liquid exfoliation of MoX2 em-
ploying water and/or alcohol, specifically in terms of
factors of process, although reviews on water-mediated
exfoliation of MoS2 have been reported (Aggarwal
et al., 2024).
Our review summarizes the sonication-assisted ex-

foliation formulation using water and/or ethanol from
the following three aspects: solvents selection, sonica-
tion power, and sonication time, aiming to provide
a guidance on exfoliating TMDs using water and/or
ethanol via the sonication-assisted exfoliation method.

2. Sonication-assisted exfoliation recipe

A typical sonication-assisted exfoliation process is
as follows (Fig. 1). Firstly, MoX2 powder is mixed with
appropriate solvents. Then, the mixture is ultrasoni-
cated in ultrasonic instrument. Various techniques are
used to prevent excessive temperature rise during
sonication. For instance, intermittent ultrasound,
for example, 40 seconds ultrasonic time followed by
20-second break time, are utilized. Additionally, an
ice bath or water-cooling temperature control system
is used to maintain a constant temperature. The re-
sulting dispersion subsequently is centrifuged, and the
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supernatant is extracted. The speed and number of
centrifugation steps help to roughly separate the MoX2

flakes by size.
The mechanism underlying the sonication-assisted

exfoliation process has been reported (Gupta et al.,
2016; Coleman et al., 2011; Smith et al., 2011; Ni-
colosi et al., 2013; Li et al., 2020). The materi-
als discussed in detail are graphite, and the LPE
solvents used are various organic solvents, such as
IPA/H2O mixture, sodium dodecylbenzenesulfonate
(SDBS)/H2O mixture and NMP (Li et al., 2020).
Actually, LPE involves two simultaneous structural
modifications: exfoliation (reduction in thickness), and
fragmentation (reduction in lateral dimension). The
research explains exfoliation and fragmentation pro-
cesses in detail. It was found that fragmentation and
exfoliation take place during LPE in three distinct
stages, with the kink-band-induced peeling process be-
ing one key stages (shown in Fig. 2). In the first
stage, graphite flake rupture along existing defects,
and kink bands are formed due to surface acoustic
waves. The second stage involves the kink bands lead-
ing to increase in chemical activity, which promotes
fragmentation and exfoliation, leading to the peeling
off thin graphite stripes. Then, the last stage involves
the peeled graphite strips being exfoliated into thin
flakes, with a minimum of ∼30 layers. Although the
research did not discuss exfoliation of MoX2 by LPE
using water and/or ethanol, the mechanism is also ap-
plicable to the exfoliation of MoX2 by LPE using or-
ganic solvents, as both materials posses analogous 2D
layered structures.

Edge tear / Intercalation

Defective graphite Graphite with 
kink bands

Stage III

Stage II

Stage I

Oxygen

Strips peeled off graphite

Fig. 2. Schematic diagram of the sonication-assisted LPE

mechanism of graphite (reprinted with permission from

(Li et al., 2020)).

Table 1. HSP value for MoX2, H2O, and ethanol.

δD (0.5 MPa) δP (0.5 MPa) δP (0.5 MPa)

MoS2 (Zhou et al., 2011) 17–19 6–12 4.5–8.5

MoSe2 (Mao et al., 2018) 15.3–18.4 9–18 3.3–11.3

MoTe2 (Cunningham et al., 2012) 17.8 8 6.5

H2O (Zhou et al., 2011) 15.8 8.8 19.4

Ethanol (Zhou et al., 2011) 18.1 17.1 16.9
∗The HSP parameters are obtained from (Zhou et al., 2011). Republished with permission
from Angewandte Chemie International Edition, permission conveyed through Copyright
Clearance Center, Inc.

In general, the abovementioned procedures all have
influence on the concentration and size of the exfoliated
MoX2 flakes. Here, we focus on three main influencing
factors, including solvents selection, sonication power
and sonication time, while other aspects are beyond
the scope of this review.

2.1. Solvents selection

There are several theories for screening solvents,
such as Hansen solubility parameters (HSP), Young’s
equation, and Shen’s method for probing and match-
ing surface tension components (Ma et al., 2020). The
HSP theory is commonly used, with the HSP distance
Ra employed to evaluate the level of dissolution pro-
cess between solvents and solutes, as described by the
following equation:

Ra = [4(δD,solv − δD,solu)
2
+ (δP,solv − δP,solu)

+(δH,solv − δH,solu)
2], (1)

where δD, δP , δH represent dispersive, polar, and
hydrogen-bonding solubility parameters of a solvent
and solutes, respectively (Zhou et al., 2011). The ref-
erence HSP parameters of MoX2, H2O, and ethanol
are shown in Table 1.
In general, pure water is a poor solvent for MoS2

exfoliation. However, Ma et al. (2018; 2020) demon-
strated the feasibility of exfoliating MoS2 using water.
The authors concluded that the stability of MoS2 in
an aqueous solution is due to the fragmentation of
the MoS2 flakes induced by sonication. Compared to
graphite, MoS2 is easier to fragment. The obtained
MoS2 nanosheets have sizes ranging from 100 nm to
400 nm with a few layers (5–6 layers) or multilayers
(15–20 layers) in thickness. Mesoporous sheets were
also observed (shown in Fig. 3a). Li et al. (2015) re-
ported that MoS2 can be exfoliated in pure water due
to defects and enlarged interlayer spacing induced by
the fabrication process. Zhao et al. (2016) exfoliated
commercial MoS2 in water using a specially designed
sonication instrument with a stirring function. The
slipping exfoliation was achieved by the tilted rotation
of MoS2 sheets during stirring. Forsberg et al. (2016)
exfoliated MoS2 in water using a two-step method.
First, an orbital sander was used for mechanical ex-
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Fig. 3. Scanning electron microscope (SEM) images of exfo-
liated MoS2 flake (a–f) except for (e), which is the transmis-
sion electron microscope (TEM) image of exfoliated MoS2
with various vol% ethanol/water solvents. The concentra-
tion of MoX2 using water and water/ethanol solvents is

shown in (g).
(a) Reprinted from (Ma et al., 2018) with permission from Else-
vier; (b) republished with permission from Angewandte Chemie
International Edition from Zhou et al. (2011), permission con-
veyed through Copyright Clearance Center, Inc; (c) republished
with permission from IEEE Transactions on Nanotechnology
from Yuan et al. (2021), permission conveyed through Copy-
right Clearance Center, Inc; (d) reprinted from Wang et al.
(2013) with permission from Elsevier ; (e) republished with per-
mission from Journal of Materials Science: Materials in Elec-
tronics from Yang et al. (2017), permission conveyed through
Copyright Clearance Center, Inc; (f) adapted with permission
from Taghavi and Afzalzadeh (2021), Creative Commons Li-
cense CC BY-SA 4.0.

foliation of MoS2. Then, the obtained MoS2 powder
wasexfoliated in water by sonication. MoS2 was also
exfoliated in water via sonication under an Ar/H2 ato-

mosphere (Gutiérrez, Henglein, 1989). Liu et al.
(2018a) found that bulk MoSe2 can be directly exfoli-
ated in hot water at 50 ○C, achieving intense exfolia-
tion kinetics while maintaining high quality. Based on
simulation at atomic and molecular scales, it was pro-
posed that the stable dispersion of MoSe2 nanosheets
in water is achieved owing to the presence of platelet
surface charges originating from edge functionaliza-
tion and intrinsic polarity. A large number of atom-
ically thin MoSe2 layers are produced by 100 W
sonication for 24 h and 8000 rpm centrifugation for
40 min. The lateral dimensions of the obtained MoSe2
nanosheet range from 50 nm to 500 nm. A large pro-
portion (>70 %) of these layers are less than 2.0 nm
thick, and >40 % of them are thinner than 1.0 nm, cor-
responding to monolayers. Other studies have reported
that atomically thin MoSe2 platelets can be exfoliated
from bulk MoSe2 by 20 W sonication for 60 h and dis-
persed in pure water by centrifugation for 30 min under
temperature control (Kim et al., 2015). The exfoliated
flakes have dimensions of 200 nm to 300 nm with 2–3
layers. The concentration is shown in Fig. 3g, and lat-
eral size and number of layers of exfoliated MoX2 us-
ing water as the solvent are shown in Fig. 4, with data
coming from the above-mentioned studies.
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Fig. 4. MoX2 using water, ethanol and water/ethanol sol-
vents: a) lateral size; b) number of layers.

Anhydrous ethanol is used as the initial solvent for
exfoliating MoSe2 and MoTe2. MoSe2 nansosheets were
obtained in anhydrous ethanol through the ultrasonic-
assisted LPE method and were subsequently used as
a gas sensor as the ethanol solvent evaporates (Chen
et al., 2019). Absolute alcohol has also been reported
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to be used in the preparation of MoTe2 nanoflakes
(Han et al., 2023; Liang et al., 2020). Exfoliation
was obtained by sonication for 20 h followed by cen-
trifugation. At the end of the process, the layer thick-
ness of the stripped nanosheet ranged from 30 to
53 atomic layers (Han et al., 2023). Similarly, Yan
et al. (2018) mixed bulk MoTe2 powders with anhy-
drous alcohol and sonicated powders for 12 h. After
centrifugation and additional processing, the number
of layers of the resulting MoTe2 ranged from 8 to 15.
Ahmad et al. (2021) reported MoTe2 nanosheets with
a lateral size of about 12 µm by sonicating the mixture
of MoTe2 powder and absolute ethanol for 16 h. MoTe2
nanosheets were also prepared with an ethanol-assisted
ultrasound-assisted liquid-phase exfoliation (UALPE)
method at 20 ○C (Liu et al., 2018b). The concentra-
tion is shown in Fig. 3g, and lateral size and number
of layers of exfoliated MoX2 using ethanol solvent are
shown in Fig. 4.
Besides single-component solvents, the HSP theory

can also be used for solvent mixtures. The HSP param-
eters of a mixture are a linear combination of the cor-
responding parameters of each component, as follows:

δblend =∑ϕn,compδn,comp, (2)

where δblend, ϕn,comp, δn,comp represent the HSP
parameters of the blend, the volume fraction of each
component, the and HSP parameters of each compo-
nent, respectively (Zhou et al., 2011). By choosing
water and/or alcohol with the appropriate compo-
sition, a high dispersion concentration of MoS2 can
be achieved. Experimental results and theoretical
predictions are consistent in showing that a 45 vol%
ethanol/water provides the highest dispersion concen-
tration, with a value of 0.018 ±0.003 mg/mL, which
is approximately 13 times higher than that in pure
ethanol and 68 times higher than that in pure water
(Zhou et al., 2011). The size of the sheets varies from
100 nm to several micrometers and their thickness
is 3–4 layers (shown in Fig. 3b). Other works also
report using a 45 vol% alcohol/water mixture as
the solvent for MoS2 flake preparation. Yuan et al.
(2021) prepared MoS2 nanosheets by liquid phase
exfoliation (LPE) for a formic acid gas sensor using
a 45 vol% alcohol/water mixture as the solvent. The
size of the nanosheets obtained is about 3 µm (shown
in Fig. 3c). Wang et al. (2013) also prepared MoS2
nanosheets by dispersing MoS2 powder in a 45 vol%
ethanol/water mixture, with a thickness of 3–4 layers
and the size of nanosheets ranging from tens of
nanometers to several micrometers (shown in Fig. 3d).
Huang et al. (2024) prepared few-layer MoS2 flakes
with an average thickness of 7 nm by sonication in
45 vol% ethanol/water mixture at 240 W for 90 min.
In addition to the 45 vol% ethanol/water mixture,
other proportions of ethanol/water have also been
reported for liquid-phase exfoliation of MoS2 flakes.

For example, MoS2 quantum dots were obtained by
dispersing defected MoS2 nanosheets into a 25 vol%
ethanol/water solution. Due to the inherent defects
in MoS2, the average lateral size of acquired MoS2
quantum dots is 3.6 nm – shown in Fig. 3e (Yang
et al., 2017). A 23 vol% ethanol/deionized water
solution was also reported to be utilized to exfoliate
MoS2, yielding flakes with an average of 4 layers and
a lateral size of 500 nm – shown in Fig. 3f (Taghavi
et al., 2021). Furthermore, a 50 vol% ethanol/water
solvent mixture has been reported to exfoliate MoS2,
resulting in nanosheets with lateral sizes of several mi-
crometers and damaged surface edges (Prabukumar
et al., 2018; Jin et al., 2020). Compared to the same
proportion of NMP/water, this exfoliation efficiency is
poor (Prabukumar et al., 2018). Halim et al. (2013)
used Young’s equation to determine the liquid-solid
interfacial energy and predicted that the optimal
cosolvent of alcohol-water mixtures should have
a surface tension between 30 mJ/m2 and 35 mJ/m2.
The concentration lateral size and number of layers
of exfoliated MoX2 using water/ethanol solvent are
shown in Figs. 3g and 4, respectively.

2.2. Sonication power

In addition to the solvent type, which affects the
quality of the final MoX2 production in ultrasound-
assistant liquid exfoliation, the ultrasonic power also
plays a crucial role. Sonication power is an important
parameter influencing the exfoliation process. The size
of exfoliated MoS2 flakes increases as the sonication
power increases from 38.5 W, 47 W, to 65.5 W with
bath sonication. At 84 W, the MoS2 flakes begin to ag-
glomerate (Taghavi, Afzalzadeh, 2021). This phe-
nomenon can be explained by the collapse of the high-
energy bubbles, which increases the size and number
of bubbles. As a result, the shock waves produced by
sonication are reduced while the bubble implosions in-
crease. Unlike bath sonication, probe sonication uses
an ultrasound probe to transmit vibrations. Hau et al.
(2021) synthesized MoS2 for 8 h via probe sonication at
420 W using a water/ethanol with a volume ratio of 2:1.
Some divergence exists between sonication-assisted

LPE using water and/or ethanol and organic solvents.
For instance, using a mixture of chloroform and ace-
tonitrile in a 65:35 ratio as solvents for LPE, the av-
erage size of MoS2 nanosheets decreases as the ultra-
sonic power increases from 350 W, 450 W to 550 W.
Meanwhile, the concentration of produced MoS2 in-
creases correspondingly. This phenomenon is explained
by the cavitation effect and micro-jet effect induced by
ultrasound. The cavitation effect is the primary force
for exfoliating layered MoS2, involving the process of
the formation, growth, and implosive collapse of bub-
bles. Simultaneously, the micro-jet effect induced by
the collapse of bubbles is the force that fragments the
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MoS2 sheets (Zhang et al., 2014). The effect of ultra-
sonic power on exfoliation has also been studied us-
ing NMP as a solvent (Qiao et al., 2014). The ultra-
sonic power was controlled from 100 W, 200 W, 250 W,
285 W, 320 W, 350 W to 400 W. The concentration
of nanosheets increased as the sonication power in-
creased, and then decreased after 320 W. Meanwhile,
the size of the nanosheets initially decreased and then
increased after 320 W. This behavior is associated with
the ultrasonic cavitation effect. At low input power, the
covalently bonded S-Mo-S sheet are broken into small
flakes due to inertial cavitation. However, at high input
power, the breaking intensity decreases due to fewer
large bubbles being generated, a phenomenon known
as ultrasonic cavitation shielding effect.

2.3. Sonication time

Sonication time is another important parame-
ter. Taghavi and Afzalzadeh (2021) systematically
studied the effect of sonication time on the exfoliation
of MoS2 using a mixture of 77 % deionized (DI) water
and 23 vol% ethanol by volume. They found that the
size of MoS2 flakes increases as the effective sonication
time increases from 15 min to 60 min, but then de-
creases with prolonged sonication time. This is due to
the agglomeration process. A similar effect has been
observed in the LPE of MoS2 using NMP (O’Neill
et al., 2012). The dimensions of MoS2 flakes increase af-
ter 23 h of sonication, reaching a maximum after 60 h,
and then decrease after 60 h of sonication. Mittal
et al. (2023) reported that the number of exfoliated
MoSe2 layers in DI water and ethanol decreases as the
sonication time increases from 10 min to 60 min. Liu
et al. (2018a) studied the effect of sonication time on
exfoliation of MoSe2 using water at 50

○C. For com-
parison, the authors sonicated bulk MoSe2 for 8 h and
24 h, and found that the layers after 8 h of sonication
could notwithstand higher centrifugal speed. However,
bulk MoSe2 could be broken into high-quality layers at
a longer ultrasound time (24 h) due to more sufficient
exfoliation.
Xu et al. (2024) first compared the effects of differ-

ent ethanol contents on the dispersibility of MoTe2,
and then analyzed the relationship between sonica-
tion time and the thickness of nanosheets at inter-
vals of 0.5 h, 1.5 h, 2.5 h, 3.5 h, 4.5 h, and 5.5 h.
The results showed that the average thickness of the
nanosheets decreased as the sonication time increased.

3. Application, perspective and conclusions

Exfoliated TMDs using water and/or ethanol sol-
vents enable a wide range of applications, such as elec-
trochemical application as supercapacitor electrodes,
photoelectrochemical applications for photocurrent re-
sponse material (Kajbafvala et al., 2018), mechani-

cal reinforcement in polymers (O’Neill et al., 2012),
electrocatalysts for hydrogen evolution reactions, haz-
ardous gas sensor, batteries, surface coatings, and
more. Due to its high carrier mobility, strong spin-
orbit coupling, and extensive light absorption, MoSe2
is considered as one of the most promising materi-
als for optoelectronics in TMDs, making it suitable
for flexible, lightweight optoelectronic devices (Patel
et al., 2019). MoSe2 exfoliated by alcohol solvents can
also be applied to gas sensors by taking advantage
of the volatilization of alcohol (Zhou et al., 2011).
MoTe2 can be transformed into many types of lasers
following specific processing. Additionally, sonication-
assisted LPE using water and/or ethanol solvents is
an environment-friendly, low-cost, and easy-to-operate
method for scaling up mass production of TMD flakes,
making it suitable for industrial practical applications
(Ciesielski, Samor̀ı, 2014). Non-toxic, environmen-
tally friendly solvents and dispersants can extend the
range of 2D TMD inks (Lee et al., 2020). From a tech-
nological perspective, sonication-assisted LPE using
water and ethanol not only facilitates upscaled produc-
tion of TMDs flakes comparable to organic solvents,
but it is also an economical and practical solution,
as water and ethanol do not require additional post-
processing for environmental compliance.
In this review, the preparation of MoX2 flakes using

the sonication-assisted LPE method with water and/or
ethanol was summarized. Although many parameters
influence this method, the review focused on three
main parameters: solvent selection, sonication power,
and sonication time. Solvent selection refers to the ra-
tio of water and/or alcohol used. Related studies were
summarized, revealing that a 45 vol% alcohol/water
mixture is the optimal solvent for MoS2, as explained
by HSP theory. The effects of sonication power exhibit
some inconsistencies, and even some divergences exit
between LPE using water and/or etahnol solvents ver-
sus organic solvents. This variation may be attributed
to differences in sonication equipment used by various
research groups. Regarding sonication time, the size of
MoS2 flakes initially increases, and then decreases as
sonication time increases. This phenomenon is analo-
gous to that observed when using organic solvents.
To further analyze the mechanism behind the LPE
method using water and/or ethanol solvents, the ad-
vanced LPE mechanism, which includes three stages,
is summarized from the literature. Finally, the wide
applications of exfoliated MoX2 flakes and the future
outlook for the LPE method using water and ethanol
solvents were discussed.
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The acoustic behaviour of a classroom is vital for an effective teaching-learning process. The present work
aims to experimentally determine the acoustic performance of a typical classroom. The full-scale experiment
was conducted at the Seminar Hall, the Department of Applied Mechanics, MNNIT Allahabad, Prayagraj,
using a method with limited resource requirements. The Seminar Hall was divided into four planes by threads,
and the sound pressure level (SPL) was measured at 30 coordinates in each plane for the specified sound source
location. Data were collected from three different sound source locations. The study revealed that the sound
source location and frequency significantly influence the sound pressure levels in the classroom, impacting its
acoustic performance. The broader implications of interior materials, such as wall material and the position
of elements like the teaching board, door, and podium, are highlighted as critical considerations for future
classroom acoustic optimization. Furthermore, a numerical model was developed to predict the variation in
the SPL with change in the sound source locations and frequencies. The collected data validated with the
finite element (FE) model. The verification experiments for the modeling results were performed for each
plane. The results of the FE model and experiments were found consistent across all four planes of the seminar
hall and the various sound source locations.

Keywords: acoustic measurements; finite element method; room acoustics; sound pressure level; sound source
location.

Copyright © 2025 The Author(s).

This work is licensed under the Creative Commons Attribution 4.0 International CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Comfortable acoustic conditions are essential in the
workplace, as is intensive verbal communication for im-
proved efficiency. Classrooms are often noisy and rever-
berant, making learning difficult (Mealings, 2023a).
Specific classrooms are used for students to convey
better acoustics and comfort (Rabelo et al., 2014).
The acoustic parameters such as the sound pressure
level (SPL) and the speech transmission index di-
rectly impact the audience’s intelligence present in the
classroom. Noise decreases the information sent from
the source in the classroom (Mealings, 2023b; Peng
et al., 2016; Rabelo et al., 2014). The research com-

munity has conducted various studies to achieve the
acoustic comfort of the classroom. Peng et al. (2016)
investigated the background noise level and speech
SPL for the Chinese word recognition test and found
that high SPL could not guarantee good Chinese word
recognition score for children present in the classroom
because of its dependency on the background noise
level. Visentin et al. (2018) used speech intelligibility,
response time, and rating scales to analyze the effect of
acoustic changes in the room. Zhang et al. (2019) used
two classrooms and conducted listening tests at differ-
ent SPLs. The interaction effect of the sound types
and the SPL was found to have practical significance
for different noises. Gramez and Boubenider (2017)
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measured the ambient noise and interior sound insula-
tion for a conference room compared with the guide-
lines available in the literature. Poor room acoustics
was found due to the low insulation and high rever-
beration time. Mealings et al. (2024) measured the
acoustic performance of 166 rooms and found that re-
verberation time and noise level (SPL) are the two sig-
nificant factors that impact the room’s performance.
It is reported that the superior signal-to-noise

ratio is significant in addition to reverberation time
(Bradley, 1986; Bradley et al., 1999; 2003; Yang,
Bradley, 2009). Budzyński (1986) mentioned that
early reflections coming from sidewalls are respon-
sible for increasing auditory distance localization.
Installing sound-insulating material may help, but
speech transmission quality could be better and more
cost-effective. Increasing sound-absorbing material
leads to a lower signal-to-noise ratio and a decreased
speech intelligibility, specifically for distant listeners.
Interestingly, the acoustic ceiling tiles used for the
sound insulation absorb consonant sounds higher
than the vowel sound, as vowels have lower frequen-
cies (Nábělek et al., 1989; Nijs, Rychtáriková,
2011). The optimum configurations of absorptive
treatment for improved acoustical conditions using
computer-based and numerical models were reported
in (Bistafa, Bradley, 2000;Mir, Abdou, 2005; Re-
ich, Bradley, 1998; Smirnowa, Ossowski, 2005).
The authors reported the FE model, which effectively
predicted the acoustic behaviour of a room in their
previous work. The presented model was validated for
a rectangular room made of laminated glass (Vedrt-
nam, Pawar, 2018). Many standards are reported
in the literature, which provide reference values for
the different parameters that may influence acoustic
comfort (World Health Organisation, 1999; Newman,
Sabine, 1965). The studies on designing and mea-
suring the acoustic properties of interiors, especially
for small rooms and primarily SPL (Vorländer,
1998; Weyna, 1996) problems in estimating the
acoustic behaviour of interiors, the effect of source
directivity (Vigeant et al., 2006), and acoustical
designing of classrooms (Bradley, 1986; Bradley
et al., 1999; 2003; Gramez, Boubenider, 2017;
Jerlehag et al., 2018; Peng et al., 2016; Rabelo
et al., 2014; Visentin et al., 2018; Yang, Bradley,
2009; Zhang et al., 2019) are already available.
Numerous studies have explored the influence of

room geometry, materials, and sound source locations
on classroom acoustics. For example, Visentin (2023)
study explores how background noise, including stu-
dent interactions, impacts task performance and listen-
ing comprehension in classrooms. The research high-
lights the critical role of signal-to-noise ratio and em-
phasizes designing acoustic environments that account
for real-world noise levels beyond typical reverberation
time measurements. Hongisto et al. (2023) compared

two classrooms, one acoustically refurbished with en-
hanced sound-absorbing materials and reduced rever-
beration times. The study demonstrated significant
reductions in noise annoyance and improved speech in-
telligibility, particularly during activity-based lessons.
This reinforces the importance of targeted interven-
tions in classroom design. Van Reenen and Manley
(2023) focused on the implementation of classroom
acoustic standards globally. It discusses the effective-
ness of mandatory standards accompanied by detailed
design guidance in achieving optimal learning environ-
ments and identifies cost and accessibility as barriers
to adoption.
Several standards for the acoustical property mea-

surements, i.e., ISO 10534-2, ASTM E2611-09, ASTM
E1050-98, JIS A1409, ISO 354-2003, ASTM C423, ISO
140-3, SAE J1400, ISO 140-4, and ASTM E90 are also
available. The architect’s job nowadays should essen-
tially involve meeting the measurable standards set
for designing acoustically comfortable living rooms,
classrooms, workshops, laboratories, concerning halls,
lecture halls, fictional rooms, dining halls, drawing
rooms, factories, sports halls, mechanical rooms, ho-
tels, restaurants and every enclosed space of human
intervention including sound and noise. The minor
changes in frequency, room dimensions, materials,
goods, and interiors affect the SPL in the rooms.
Numerous studies have explored the acoustic per-

formance of classrooms, focusing primarily on rever-
beration time (RT), speech intelligibility indices (STI),
clarity (C50), noise reduction coefficients. However, the
influence of spatial variability in SPL across different
loudspeaker locations in a classroom using controlled
frequency tones, such as 4000 Hz (a frequency cru-
cial for speech clarity), has been underexplored. Also,
many of these studies rely heavily on generalized as-
sumptions and computational simulations, often need-
ing to integrate detailed experimental validation. In
this work, a method to determine SPL variation due
to sound source (SS) location, directivity, and objects
in the room is proposed. A numerical model is also
proposed for predicting SPL variation as a function of
SS location, frequency, and object.

2. Materials and methods

Figures 1a and 1b show the photograph and
schematic diagram of the seminar hall. The dimen-
sions of the seminar hall were 9.25 m× 7.23 m× 3.14 m.
This seminar hall had tiles on the floor, concrete walls,
a door, a teacher’s desk, a podium made of wood,
and a teaching board made of Balsa wood. The dimen-
sions of the board, door, podium, and teacher’s desk
were 3.6 m× 1.2 m, 1.20 m× 2.05 m, 0.62 m× 0.62 m×
1.20 m, and 3.68 m× 0.62 m× 0.76 m, respectively. An
air-conditioner was also mounted on the wall. The
speaker was placed in three different positions.
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a)

b) c)

Fig. 1. Schematic diagram (a) and photograph (b) of sem-
inar hall, photograph of the room used for verification ex-

periment (c).

Four different planes (Fig. 2) in the seminar hall
were created using the mesh of treads for accuracy
and repeatability of a particular location while record-
ing the SPL. The SPL was recorded at 30 points
(six along the x-axis and five along the y-axis) in each
plane. The coordinates were marked on the threads
for the accuracy of the location while noting the SPL.
The sound signal was produced using a directivity-
controlled SS mounted in a cubic cabinet. The omnidi-
rectional microphones were used. A filling of bonded
acetate fibre significantly increased the effective vol-
ume of a sealed-box loudspeaker. An amplifier was used
to enhance the amplitude of an electrical signal pro-
duced by the source. The amplifier was connected
in between a sound-generating laptop and the 2-in
electrodynamic loudspeaker. The horizontal and ver-
tical input loudspeaker coverage are 50○ and 30○, re-

Fig. 2. Position of different planes selected for the work.

spectively. The directivity index of the loudspeaker is
18.9 dB at 2000 Hz.
The speaker sensitivity rating is 85 dB – 1 W –

1 m, i.e., 85 dB sound is produced at 1 m away from
the speaker if 1 W input is given. The loudspeaker
with a 50 mm driver was mounted on the front, at-
tempting to block the sound backward, utilizing sound-
insulating materials. The Indi 6182 Multifunctional
Sound Level Meters were used to measure the SPL at
different locations in the room. The SPL was measured
by the sound level meters in Leq (equivalent continuous
sound level) mode. The Laser Distance Meter (Leica
DISTOTM X310, Swiss technology by Leica Geosys-
tem) was used for the distance measurement. The pure
tone of 4000 Hz (sine wave) was generated following
the authors’ procedure in their earlier work (Vedrt-
nam, Pawar, 2018).
The typical frequencies under consideration for

room acoustics are 125 Hz–4000 Hz, octave bands.
Thus, the SPL was measured at 1000 Hz, 2000 Hz,
and 3000 Hz at the selected coordinates of different
plains for comparison purposes. To systematically ana-
lyze the variation of SPL at different frequencies, sepa-
rate controlled experiments were conducted using pure
sine wave signals at 1000 Hz, 2000 Hz, 3000 Hz, and
4000 Hz. The SPL measurements reported for each fre-
quency correspond to independent experimental runs
rather than being derived from a single 4000 Hz exci-
tation. This approach ensures accurate assessment of
frequency-dependent acoustic behaviour in the class-
room environment. Further, the experimentation was
repeated in a different room to verify the effect of fre-
quency change on the SPL (Fig. 1c). The FE model
was constituted using the acoustics module, pressure
acoustics, and frequency domain of COMSOL 5.4. The
actual dimensions of the seminar hall and other objects
were considered for the geometry model (Fig. 1b). The
SS geometry was taken from experimentation for sim-
ulation. The meshing was performed using a physics-
controlled mesh with the extra fine element size. The
full mesh comprises 103 811 domain elements, 6146
boundary elements, and 390 edge elements. The para-
metric sweep of coordinates for the speaker (similar
to the experiment) was performed to compute the
speaker’s results for three locations. The standard ma-
terial properties were utilized for the different materi-
als present in the seminar hall (Vedrtnam, Pawar,
2018). The SPL of four virtual planes (Fig. 2) at sim-
ilar locations to experiments were obtained from the
FE model.
While acoustic performance is typically assessed us-

ing multiple parameters, including RT, STI, and C50,
this study focuses specifically on SPL variations. The
SPL is a critical factor in classroom acoustics as it
directly influences speech intelligibility and sound dis-
tribution. By analyzing the SPL across different source
locations and frequencies, this study provides valuable
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insights into the spatial acoustic behaviour of the class-
room. Future work will extend this analysis to incor-
porate additional acoustic metrics for a more compre-
hensive assessment. The SPL was measured up to the
height of 2 m from the floor since the maximum range
of height of humans for listening belongs to this re-
gion. The controlled harmonic tone 4000 Hz sine wave
frequency was selected as a test signal in the mid to
high-frequency range. It plays a significant role in un-
derstanding consonants due to its critical importance
in speech intelligibility. It provides preciseness and
repeatability for evaluating the frequency-dependent
SPL distributions without neglecting the confounding
effects of other variables, such as mixed-frequency con-
tent or background noise.
The SPL at 70 dB refers to the pressure value of

0.063 Pa and intensity of 1 W/m2
× 10−5 W/m2, and

at 80 dB, the SPL refers to the pressure value of 0.2 Pa
and intensity of 1 W/m2

× 10−3 W/m2 (Smirnowa,
Ossowski, 2005). Sound intensity as a “sound en-
ergy quantity” can be related to sound power (acoustic
power) as I ≈ p2 (for progressive plane waves) (Vedrt-
nam, Pawar, 2018).
The SPL was measured at 30 coordinates in every

plane, and the results were plotted using MATLAB.
Table 1 shows the locations of the loudspeakers used
in the experiments. These positions were selected
to represent different typical loudspeaker placements
in a classroom environment. The loudspeakers were
placed at varying distances and orientations from key
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Fig. 3. Variation in SPL at first fixed position of the source in: (a) plane 1; (b) plane 2; (c) plane 3; (d) plane 4.

room features (e.g., the teacher’s desk, podium, and
walls) to assess how the sound source location influ-
ences the SPL distribution. These positions were not
based on any pre-existing loudspeakers in the room
but were experimentally chosen to cover a variety of
configurations that might be encountered in real-world
classroom setups. Thereafter, the results for all three
fixed positions of the loudspeaker (Table 1) in each
plane are discussed.

Table 1. Location of the loudspeaker and their coordinates.

Loudspeaker location x y z

First fixed position 4 0 3.14

Second fixed position 1.5 3.5 0.76

Third fixed position 5.5 3.5 0

3. Results and discussions

3.1. Measurement of SPL in seminar hall at first

fixed position of the loudspeaker –

(x, y, z) = (4 m,0 m,3.14 m) – in different planes

Figure 3 shows the variation of the SPL in plane 1.
It is found that the effect of source directivity plays
a significant role in the SPL distribution curve
(Fig. 3a). The higher SPL values (red colour) were on
an axis parallel to the source as plenty of direct sounds
reached that axis. The low SPL was measured below
the speaker. The minimum SPL was measured be-
hind the podium because sound waves could not reach
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there directly. The lower reflection and lack of di-
rect sound waves have resulted in the lowest SPL be-
hind the podium. The sound waves coming toward the
podium first struck it, then absorbed and partially re-
flected. The lowest values of the SPL (blue colour) were
found beside the teacher’s desk because of the lack of
reach of direct sound waves.
The desk influences sound wave distribution by re-

flecting and diffusing the sound waves, with minimal
contribution from material absorption. Hence, the SPL
values were little higher in front of the teacher’s desk.
At the front wall, the SPL was measured lower near
the air conditioner’s presence. Generally, air condi-
tioners are designed with sound-absorbing materials
to dampen the sound. The front panels of the air con-
ditioners act as barriers and help reflect and absorb
sound waves. However, the SPL suddenly rose at the
corners of the front wall because of constructive inter-
ference due to the intersection of two walls.
Figure 3b shows the variation of the SPL in plane 2.

A similar trend was observed in plane 2.
The lowest SPL value was found on the wall, ex-

actly below the speaker. The SPL was found most sta-
ble near the source directivity field (yellow colour). The
area near the door (at the origin) had a lower SPL pri-
marily due to the positioning and interaction of the
sound waves with the wooden door, rather than signif-
icant absorption by the material itself. Additionally,
due to the formation of destructive interference, the
SPL values were low. The trends observed in Fig. 3c
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Fig. 5. Variation in SPL at the second fixed position of the source in: (a) plane 1; (b) plane 2; (c) plane 3; (d) plane 4.

and 3d were almost similar, with minimum variations
because of the absence of obstructions in their planes.
The comparison of the SPL for all four planes is shown
in Fig. 4.

SP
L 

[d
B]

Fig. 4. Comparison of SPL at first fixed position
of the source in all planes.

3.2. Measurement of SPL in seminar hall at second

fixed position of the loudspeaker –

(x, y, z) = (1.5 m,3.5 m,0.76 m) – in different
planes

In the second case, the loudspeaker was placed
0.76 m above the floor, facing the larger space in the
opposite direction as the board. The SPL was mea-
sured and plotted in a similar manner to the previous.
Figure 5a shows the variation in the SPL in plane 1 and
the effect of source directivity on the SPL distribution,
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which remains highly variable. Higher SPL values (red
colour, near 6 m, 7.23 m, 0.5 m) were measured in the
far-field region of the lower plane. This far-field re-
gion has a significant amount of space without inter-
fering with room interiors, so a lot of direct sound
reaches it. The average SPL values were measured on
the same wall where the speaker was mounted, be-
cause the side walls were closer in this case.
Figure 5b shows the variation of the SPL in plane 2.

The highest SPL values (red colour, near 2 m, 4 m,
1 m) were measured near the speaker field. The ab-
sorption of sound was maximum at the front wall lo-
cation (9.25 m, 2 m, 1 m) and near the air condition-
ers (9.25 m, 6 m, 1 m), but the source’s directivity
to the receiving place was also maximum. As a re-
sult, the SPL in these areas is approximately average.
Comparing Figs. 5a and 5b reveal that both curves
have higher and lower values at the same locations and
follow a nearly identical pattern while only varying
in SPL intensity. Figure 5c shows the variation of the
SPL in plane 3. The SPL was measured lower near
the origin coordinates (0 m, 0 m, 1.5 m) because of the
presence of a door, as sound absorption was maximum
at that location due to the presence of wood material.
The higher and lower points in Figs. 5a–c are almost
identical. Figure 5d shows the variation of the SPL
in plane 4. Since the sound distribution is more uni-
form in the presence of more free space, and there is
less interruption of interiors, this plane had the fewest
variations in the SPL distribution curve compared to
all other planes.
The highest SPL value (near 2 m, 4 m, 2 m) is

found in the near field region and on-axis to the source.
The SPL values at the speaker’s backside, as well as
the corners of walls near the podium (0 m, 7.23 m, 2 m)
were lower due to source directivity and the presence
of absorbing materials. The comparison of the SPL
for all four planes is shown in Fig. 6. The comparison
shows that the plane 4 has the most stable SPL val-
ues because of the higher source directivity and least
absorptivity. The corners of the room also helped in
maintaining the SPL values at the far end by forming
constructive interferences.
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Fig. 6. Comparison of SPL at second fixed position
of source in all planes.

3.3. Measurement of SPL in seminar hall at the third

fixed position of the loudspeaker –

(x, y, z) = (5.5 m,3.5m,0 m) – in different planes

In the third case, the loudspeaker was positioned at
ground level (near the center of the room), away from
the origin, and facing the teacher’s desk and board.
Figure 7a shows the SPL variation and the source

directivity effect in plane 1. This plane had the most
significant variation in SPL values due to speaker
location, less free space, and maximum interruption
from interiors. In Figs. 7a and 7b, the highest SPL
(red colour, near 4 m, 4 m, 0.5 m, and 4 m, 4 m,
1 m, respectively) were measured near the field re-
gion, speaker location, and on-axis to the source. In
Fig. 7b, the SPL drops abruptly between the podium
and the teacher’s desk (2 m, 6 m, 1 m) due to the maxi-
mum amount of sound-absorbing material surrounding
this area. Figures 7c and 7d show the variation of the
SPL in planes 3 and 4, respectively. SPL distributions
were relatively uniform due to the significant free space
and minimal interruption of interiors. The area from
the front to the speaker location was measured as the
high SPL. Figure 7d shows the variation of the SPL
in plane 4, which has a similar distribution to plane 3
with some apparent changes.
Figure 8 shows a comparison of the SPL across all

four planes. The SPL behaviour was found most stable
compared to the other two loudspeaker locations. The
area near the speaker showed the maximum SPL in all
four planes, whereas the SPL was found lower at the
corner backside of the SS location.
After analyzing all speaker locations, it was found

that the first plane had the most variations when com-
pared to the other planes. The most apparent reason
is the presence of objects in the room on this plane,
such as air conditioners, the teacher’s desk, and the
podium. Because the material absorption coefficients
of these interiors (beyond the scope of this study) can
vary, the reverberant field may influence the value of
SPL at different coordinates. The third speaker loca-
tion, in the third and fourth planes, was constantly
compared to the other two speaker locations because
the speaker was placed in the center of the room, at
ground level. As a result, the sound distribution was
more uniform than the other speakers’ locations.
Figure 9 shows the surface plot of the SPL ob-

tained after solving the FE model using COMSOL for
the different planes. However, as it was ambiguous to
demonstrate the experimental results with the simula-
tion results using this plot, a few verification experi-
ments were also performed, and line graphs were plot-
ted. The line graphs were plotted along the line par-
allel to the Y -axis at X = 4 m in four different planes
as described previously, and results were compared to
those obtained from the experiment. For comparison,
20 SPL readings from the investigation were collected
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Fig. 7. Variation in SPL at the third fixed position of the source in: (a) plane 1; (b) plane 2; (c) plane 3; (a) plane 4.

Fig. 8. Comparison of SPL at the third fixed position
of the source in all planes.

for the first and third locations of the SS in four dif-
ferent planes, and the results were compared against
the simulation results.
Figures 10a and 10d show line graphs that com-

pare the experimental and numerical results. The line
graphs in Fig. 10a represent the straight lines taken
on plane 1. The graph showed that the variation in
the SPL from modeling was uniform when compared
to experimental results due to modeling data com-
puted at continuous points on the line. After reach-
ing a steady state, the sound level meter’s equivalent
continuous sound level mode provided the SPL with-
out fluctuations. The SPL instability is visible in the
simulation’s steady state. The simulation fluctuations

Sx = 4, Sy = 0, Sz = 3.14, freq(1) = 4000 Hz.

Surface: Sound pressure level [dB].

a)

b)

Fig. 9. (a) Surface plots of SPL (sample modeling results)
and (b) surface plot of plane at y = 0.
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Fig. 10. Comparison of experimental and simulation results for: (a) plane 1; (b) plane 2; (c) plane 3; (d) plane 4.

show the values for each point in the room and do not
vary with time.
Further, additional experiments are conducted to

investigate the capability of a numerical model for pre-
dicting the SPL variation of any rectangular space for
different frequency ranges with different objects and
interiors if the velocity of sound and the absorption co-
efficient of the material are known. The additional ex-
periments are conducted in the seminar hall and a dif-
ferent room. The SPL was noted for four randomly
selected points.
Table 2 compares experimental and simulation re-

sults at different frequencies for the seminar hall. The
SPL was reduced with the increment of frequency for
the tested frequency values during the experiment. The
numerical model captured this effect well, and the SPL
was dropped in simulation results compared to the ex-
periments. However, a slight variation in the SPL could
be noticed; the SPL in simulation results is 3 %–5 %
higher than the experimental results, possibly due to
losses and unavoidable noise due to atmospheric fac-
tors present during the experiment. The trend of the
SPL variation with frequency change was similar for
experimentation and simulation.

Table 3 compares experimental and simulation re-
sults for a normal room at different frequencies. A simi-
lar observation was reported for the room and the sem-
inar hall. The prediction of the SPL from the numerical
model was in line with the experimentally evaluated
SPL values for all randomly selected locations in the
room for tested frequencies.

4. Conclusions

This study provides a comprehensive assessment of
SPL distributions in a classroom environment, both
experimentally and through FEM simulations. The
findings demonstrate how the SPL varies with sound
source location and frequency, providing critical in-
sights for optimizing classroom acoustics. The results
highlight the importance of considering spatial varia-
bility in the SPL for improving speech intelligibility,
particularly in classrooms with complex geometries.
This work also offers a replicable methodology for as-
sessing classroom acoustics that can be extended to
other indoor spaces, such as lecture halls and meet-
ing rooms. It is concluded from the experiments that
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Table 2. Comparison of experimental and simulation results at different frequencies for the seminar hall.

Simulation
no.

Location [m]
(1st fixed position
of the speaker)

Frequencies [Hz] used for experimentation
results of SPL in seminar hall

Frequencies [Hz] used for simulation
results of SPL in seminar hall

x y z 1000 2000 3000 4000 1000 2000 3000 4000

1. 2 4 0.5 90.1 87 85 79.44 92.8 90.6 89.5 83.1

2. 4 6 0.5 85.1 82.9 82.1 75.36 87.5 86.2 86.4 81.2

3. 6 2 0.5 83.7 81.8 80.9 73.84 84.2 84.3 84.7 79.2

4. 8 4 0.5 87 84.7 83.1 76.52 90.7 85.8 87.5 80.4

5. 2 4 1.0 88.2 86.1 84.1 77.8 90.2 91.5 87.5 83.1

6. 4 6 1.0 90.2 87 85.1 79.42 92.7 87.4 86.5 83

7. 6 2 1.0 82.1 80.2 79.3 72.56 87.1 82.1 81.2 75.2

8. 8 4 1.0 88 85.9 84 77.46 91.6 87.6 85.8 81.1

9. 2 4 1.5 83.8 82 81 74.14 88.6 87.5 83.1 80

10. 4 6 1.5 86.9 84.7 83 76.18 91.2 88.5 85.6 80.2

11. 6 2 1.5 83.1 81.9 80.6 73.5 87.5 85.7 84 78.1

12. 8 4 1.5 83 81.2 80.5 73.36 86.9 85 84.2 80.3

13. 2 4 2.0 84.7 82.3 81.4 74.76 87.7 84.2 83.1 79

14. 4 6 2.0 89.6 83.5 84.6 78.72 92.1 86.3 87.9 81.1

15. 6 2 2.0 86.4 84.4 82.6 75.12 88.2 87 83.5 79.2

16. 8 4 2.0 86.7 84.5 82.9 75.92 90 88.2 86 81.5

Table 3. Comparison of experimental and simulation results at different frequencies for a normal room.

Simulation
no.

Location [m]
(1st fixed position
of the speaker)

Frequencies [Hz] used for experimentation
results of SPL in normal room

Frequencies [Hz] used for simulation
results of SPL in normal room

x y z 1000 2000 3000 4000 1000 2000 3000 4000

1. 2 4 0.5 93.2 91.2 88.1 84.7 94.2 92 89.1 86.1

2. 4 6 0.5 88.3 86.1 85.8 80.7 89.2 86.7 86.4 83.1

3. 6 2 0.5 86.8 85.4 84.2 78.1 88.4 83.2 82.1 82

4. 8 4 0.5 90.1 87 86.5 81.2 93.5 89.5 85 84.6

5. 2 4 1.0 91.3 89.6 87.2 82.4 95.1 90.5 87 83.2

6. 4 6 1.0 93.5 90.1 88.5 84.2 94.3 88.4 86.1 81.2

7. 6 2 1.0 85.1 83.2 82.7 77 86.7 85.1 80.2 74

8. 8 4 1.0 91.5 88.7 87.1 82.1 93.9 89.7 87.9 85.1

9. 2 4 1.5 87.2 86.1 83.9 79.5 89.5 86.5 85 82.5

10. 4 6 1.5 90.3 88 86.1 81.4 92.5 88.1 88 83.2

11. 6 2 1.5 86.5 85.1 83.9 79 88 86.9 84 83.1

12. 8 4 1.5 86.7 84.6 84.2 78.6 89.1 84.7 82.1 79

13. 2 4 2.0 87.9 85.2 84.6 80 90.1 84.1 81 80.1

14. 4 6 2.0 93 86.2 88.2 83.2 93.5 88.9 88 85

15. 6 2 2.0 90.1 87.5 85 80.3 92.1 88.1 84.5 81.9

16. 8 4 2.0 89.8 87.1 85.4 81 88.5 86.1 82 81.1

source directivity is a significant factor as an on-axis
to the source. The SPL was comparatively found as
a continuous varying curve, but SPL values varied con-
siderably for other axes also. At the corners, the vari-
ations in the SPL were found maximum due to the
higher absorption coefficient variation. As the mate-
rial absorption coefficient varies at the corner because
of the connection of two walls, the sound wave will
get interrupted, and a discrepancy occurs. At the cor-
ners, the variation in the SPL was significant due to

the source’s directivity and construction or destruc-
tion of interference of waves. The SS location was also
found as a significant factor in variation of the SPL
behaviour. The SPL dropped for the tested sound fre-
quency range with the increment in frequency. Chang-
ing the material in the interiors and surfaces of the
room may alter the room’s acoustic performance.
The FE model has predicted the SPL effectively

and can be employed for the various concert halls, the-
atres, sports halls, and fictional rooms for the tested
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frequency range. The computation time has signifi-
cantly increased for higher frequency ranges. These
structures’ acoustic performance can be analyzed after
evaluating the speed of sound and absorption coeffi-
cient of different materials used in interior parts of the
room. The application of the FEM in this study pro-
vides unique insights into the spatial variation of the
SPL at a specific frequency, revealing non-uniformities
that may not be captured by simpler models. This
study also demonstrates the utility of the FEM in pro-
viding detailed spatial and frequency-specific insights
into classroom acoustics, which are critical for design-
ing learning environments optimized for speech intel-
ligibility. While harmonic tones serve as a controlled
experimental approach, future work should incorpo-
rate broader spectra and real-world sound sources to
extend these findings. Further investigations incorpo-
rating other acoustic parameters, such as RT, STI,
C50, etc., may also be considered for a more holistic
evaluation. The selection of these frequencies (1000 Hz,
2000 Hz, and 3000 Hz) was based on previous studies
emphasizing the importance of mid-to-high frequency
bands in determining speech clarity in typical class-
room settings. However, including lower frequencies
(250 Hz, 500 Hz, and 750 Hz) would provide a more
comprehensive understanding of speech intelligibility
and can be considered as future work.
The results of this study can help in the design of

classrooms and other educational spaces by optimizing
sound source placement, material choices, and over-
all room geometry to enhance speech clarity and re-
duce acoustic discomfort. By providing both experi-
mental and numerical insights, this study bridges the
gap between theory and practical application, offering
a more effective approach for achieving acoustically
comfortable learning environments. Additionally, the
hybrid methodology introduced here can be applied
to a wide range of indoor spaces that require acoustic
optimization. Future challenges that could be incorpo-
rated into the current FE model include modeling of
source and boundary properties as well as frequency
assessments.
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