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Underwater acoustic target classification has become a key area of research for marine vessel classification,
where machine learning (ML) models are leveraged to identify targets automatically. The major challenge
is inserting area-specific understanding into ML frameworks to extract features that effectively distinguish
between different vessel types. In this study, we propose a model that uses the coherently averaged power spec-
tral estimation (CAPSE) algorithm. Vessel frequency spectra is first computed through the CAPSE analysis,
capturing key machinery characteristics. Further, the features are processed via a vision transformer (ViT)
network. This method enables the model to learn more complex relationships and patterns within the data,
thereby improving the classification performance. This is accomplished by using self-attention mechanisms to
capture global dependencies between features, enabling the model to focus on relationships throughout the
entire input. The results, evaluated on standard DeepShip and ShipsEar datasets, show that the proposed
model achieved a classification accuracy of 97.98% and 99.19% while utilizing just 1.90 million parameters,
outperforming other models such as ResNet18 and UATR-Transformer in terms of both accuracy and compu-
tational efficiency. This work offers an improvement to the development of efficient marine vessel classification
systems for underwater acoustics applications, demonstrating that high performance can be achieved with re-
duced computational complexity.

Keywords: underwater acoustic targets; CAPSE; vision transformer; CNN; LOFAR gram.
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1. Introduction

Accurate classification of underwater acoustic tar-
gets is crucial in naval defense, underwater surveil-
lance, and environmental monitoring (Bjørnø, 2017;
Domingos et al., 2022; Thomas et al., 2020). The
ability to distinguish between different types of marine
vessels based on their acoustic signatures is essential
for operations such as threat detection and marine traf-
fic management (McKenna et al., 2024). However, the
underwater acoustic environment poses unique chal-
lenges due to complex propagation effects, ambient
noise, and interference from various sources, making
this task particularly difficult (Aslam et al., 2024).
Traditional classification methods, while effective in

controlled conditions, become less efficient with high
levels of noise and randomness present in real-world
underwater scenarios. This creates a need for improved
methods that can enhance the quality of the tar-
get signature and take advantage of deep learning to
achieve more accurate and reliable classification (Luo
et al., 2023).
Conventional underwater acoustic target classifica-

tion has relied on signal processing techniques such
as Fourier transforms, wavelet analysis, and mel-
frequency cepstral coefficients (MFCC), which are ef-
fective for identifying specific features in clean signals
(Müller et al., 2024). However, these methods face dif-
ficulties when dealing with highly noisy or distorted
signals. With the rise of deep learning, convolutional

https://acoustics.ippt.pan.pl/index.php/aa/index
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neural networks (CNNs) have been employed to clas-
sify acoustic signals by first transforming them into
spectrograms and then treating the problem as an im-
age classification task (Zeng et al., 2019). CNNs le-
verage spatial hierarchies to capture local features from
these spectrograms, but their reliance on local convo-
lutions limits their ability to capture global dependen-
cies in the data (Yang et al., 2024). This shortcom-
ing is particularly problematic for underwater acoustic
signals, where the temporal and spectral relationships
within the signal are essential for accurate target clas-
sification. Local features in a spectrogram refer to
specific, small-scale patterns over short time or fre-
quency ranges, such as individual machinery noises
(Feng, Zhu, 2022). Global features, in contrast, repre-
sent broader patterns across time and frequency, cap-
turing the overall acoustic signature of the source or
vessel. The vision transformer (ViT), a recently de-
veloped deep learning model, offers an alternative ap-
proach by employing a self-attention mechanism that
captures both local and global dependencies, making it
more suited for tasks that require holistic data analysis
(Dosovitskiy et al., 2020).
Another major challenge in underwater acoustics is

the low signal-to-noise ratio (SNR), making target de-
tection and classification challenging. Earlier research
indicates that targets become undetectable when SNR
falls below critical levels of −14.4 dB, and with nearly
90% of vessels receiving SNR below 0 dB in ambient
noise conditions (Siddagangaiah et al., 2016). Another
significant challenge in underwater acoustics is the low
SNR of acoustic signatures resulting from environmental
noise, surface reflections, and interference (Lampert,
O’Keefe, 2013). Preprocessing techniques, such as
the coherently averaged power spectral estimation
(CAPSE), are designed to enhance the quality of
acoustic signals by averaging power spectra across mul-
tiple observations, thus reducing noise and improving
the clarity of key signal features (Lan et al., 2020).
The integration of CAPSE and ViT forms the core

of this study. We use CAPSE as a preprocessing step to
improve tonal signals and minimize noise, highlighting
target-specific features through coherent spectral av-
eraging. The processed signals are then converted into
low frequency analysis and recording (LOFAR) grams,
which are fed into the ViT model for classification. The
ViT ability to capture both local and global machin-
ery features dependencies using its attention mecha-
nism is exploited. The proposed method was assessed
using DeepShip (Irfan et al., 2021) and ShipsEar
(Santos-Doḿınguez et al., 2016), a publicly avail-
able dataset, where it outperformed other methods re-
ported in the literature, delivering higher accuracy and
enhanced generalization. This approach highlights the
potential for incorporating CAPSE and the modified
ViT deep learning method for improving classification
performance in noisy underwater.

The rest of the article is arranged as follows: Sec. 2
is an overview of existing studies in literature; Sec. 3
highlights the proposed methodology, dataset pre-
processing techniques, and the model parameters em-
ployed in the experiments; Sec. 4 showcases the results,
emphasizing the advantages of the proposed methodol-
ogy; finally, Sec. 5 provides a conclusion, summarizing
the main contributions and proposed future work.

2. Related works

Research on marine vessel classification using
acoustic noise has explored a range of signal process-
ing techniques and machine learning models (Bianco
et al., 2019). Early methods relied heavily on manual
interpretation of acoustic signatures by sonar opera-
tors, depending entirely on their expertise (Domingos
et al., 2022). However, with advancements in computa-
tional power and deep learning techniques, automated
classification has become an area of increasing interest.
One of the most established techniques is the fast

Fourier transform (FFT), which converts time-domain
signals into the frequency domain, enabling the identi-
fication of spectral components, for understanding the
underlying patterns (Feng et al., 2021). However, it
is ineffective for representing underwater acoustic sig-
nals due to their non-stationary nature. The wavelet
transform offers both time and frequency information,
providing variable resolution that makes it effective
for analyzing non-stationary signals with varying pat-
terns, but it is sensitive to ambient noise (Kim et al.,
2021). MFCCs are frequently applied in sound analy-
sis due to their ability to capture the perceptual char-
acteristics of audio signals (Lim et al., 2007). They
are also designed to mimic the human ear’s sensitiv-
ity to different frequencies, making them particularly
useful in tasks such as speech and sound classification
(Sharma et al., 2020). The constant-Q transform of-
fers constant resolution across octaves, making it well-
suited for logarithmic frequency analysis (Singh et al.,
2021). In addition to these general techniques, LOFAR
is a method focused on detecting long-term spectral
patterns, which is particularly useful for identifying
sustained sounds such as engine noise or other mechan-
ical signals (Li et al., 2023). On the other hand, the de-
tection of envelope modulation on the noise (DEMON)
technique is specifically designed to detect modulation
spectrum caused by rotating components such as pro-
pellers and blades (Park, Jung, 2021).
Numerous multi-modal recognition techniques have

been investigated for marine vessel classification. In
(Yuan et al., 2019), a method was developed that
combines both optical images and radiated noise from
vessels as input data, allowing for a more compre-
hensive classification approach. Luo et al. (2021) ap-
plied a multi-window spectral analysis method to
capture a range of in-band frequency features, provid-
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ing a more detailed and accurate representation of the
acoustic environment. Additionally, Song et al. (2021)
significantly improved underwater noise classification
by extracting the one-third octave noise spectrum,
power spectral density, and MFCC features. These var-
ious approaches aim to increase classification accuracy
by integrating and leveraging multiple feature sets, en-
hancing the robustness of the recognition process.
Machine learning techniques, such as support vec-

tor machines (SVM) and shallow neural networks
(SNN), have long been used in underwater acoustic
classification. These techniques rely on efficient fea-
ture extraction methods to transform raw acoustic sig-
nals into feature vectors, which are subsequently in-
put into the network (De Moura, De Seixas, 2016).
For example, Sherin and Supriya (2015), used en-
hanced SVM classifiers to differentiate types of vessel
noise. With advances in deep learning, research has in-
creasingly focused on more complex neural networks.
Khishe and Mohammadi (2019) applied MFCC as
inputs to a neural network optimized by the salp
swarm algorithm and achieved an accuracy of 97.1%
(Hegazy et al., 2020). However, these fully connected
networks still face challenges in capturing deep, com-
plex features in multiple-class scenarios due to their
relatively simple architecture.
To overcome these limitations, CNNs have been

used to map raw waveforms or time-frequency repre-
sentations directly to vessel types (Hu et al., 2021; Luo
et al., 2021). CNNs have demonstrated good perfor-
mance in classifying vessels using acoustic signals. For
instance, Cao et al. (2019), introduced the CNN com-
bining second-order pooling (SOP) and the constant-Q
transform for feature extraction, outperforming tra-
ditional classifiers such as VGG-Net and deep belief
networks by achieving an accuracy of 96.3%. Custom
CNN architectures, such as VesselNet, have also been
proposed to enhance the classification of LOFAR spec-
trograms. Cinelli et al. (2018) designed VesselNet
specifically for spectrogram classification, using the
two-pass split-window filter with resulting in a pre-
cision of 88.1% on proprietary dataset (de Carvalho
et al., 2021).
The transformer architecture has been extensively

applied in fields such as natural language process-
ing (NLP) (Raffel et al., 2020), computer vision
(CV) (Dosovitskiy, 2020), and audio classification
(Noumida, Rajan, 2022), consistently demonstrating
superior performance. Recently, Chen et al. (2024)
introduced Swin transformer for ship-radiated noise
classification, combining DEMON spectra and mel-
spectrograms through feature fusion and attention
mechanisms. The achieved performance on standard
dataset was 98.62% and 99.01%. However, its per-
formance with weak acoustic signals due to masking
by both self-generated broadband noise, an increase in
distance from the receiver, and ambient noise from nat-

ural sources is unknown. This masking effect degrades
the clarity and detectability of the vessel’s tonal com-
ponents (Ikpekha et al., 2018). Similarly, the large
size of the deep learning network makes it unsuit-
able for real-time applications. This paper introduces
the ViT, with self-attention, as the classifier. This
lightweight transformer architecture significantly re-
duces training time and resource requirements (Chen
et al., 2024).

3. Methodology

This section details the methodology for underwa-
ter acoustic target classification, using CAPSE for sig-
nal enhancement and ViT for classification. CAPSE
improves spectral clarity by reducing noise, while ViT
leverages self-attention mechanisms to capture pat-
terns in the enhanced spectrograms and improve clas-
sification accuracy.

3.1. CAPSE

CAPSE is a signal processing technique designed
to enhance the detection of sinusoids in noisy environ-
ments. Unlike traditional methods such as the peri-
odogram and Welch’s method, CAPSE preserves phase
coherence across multiple signal segments, resulting in
a substantial improvement in SNR (Feng et al., 2021).
For a sinusoidal signal S0 embedded in noise, the

Fourier transform for each segment, Sk can be ex-
pressed as

Sk(ω) = S0(ω)e
(jϕk), (1)

where ϕk = ω0kD represents the phase difference be-
tween the Fourier transforms of the k-th and the 1st
segments at frequency ω0. CAPSE aims to coherently
average the signal across multiple segments K, thus
enhancing SNR:

X(ω) = (1K)
K−1

∑
k=0

Xk(ω)e
(−jϕk). (2)

This offset introduces a phase variation across seg-
ments, which can be corrected by applying an addi-
tional DFT along the segment indices given in Eq. (3),
yielding:

X̂ ˙(ωl, ωm) = (1/K)
K−1

∑
k=0

Xk(ωl)e
(−jωvk), (3)

ωl = argmax
ωm

∣X(ωl, ωv)∣
2
. (4)

CAPSE spectrum is then defined in Eq. (5), where
ωl and ωm are the indices of angular frequencies, mea-
sured in radians per second, and K is the number of
segments (Lan et al., 2020):

PCAPSE
xxx

(ω) = (1/UM) ∣X̂(ωl, ωδl)∣
2
. (5)
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By maximizing the energy component, CAPSE pre-
serves the most significant spectral information, mak-
ing it a robust method for tonal detection in noisy
environments. Details of the algorithm can be found
in (Feng et al., 2021).

3.2. Vision transformer

ViT is employed as the classification model,
leveraging its self-attention mechanism to capture
both local and global dependencies on data features
(Dosovitskiy et al., 2020). The acoustic signals pre-
processed with CAPSE are transformed into LOFAR
grams and treated as 2D images, displaying frequency
components along the horizontal axis and temporal
progression along the vertical axis. Let LOFAR gram
be denoted as x ∈ RW×H , where W is the number of
frequency bins and H is the number of time steps.
The LOFAR gram is divided into non-overlapping
patches, each of size Q × P , where Q and P repre-
sent the patch dimensions in frequency and time do-
mains, respectively. These patches are then flattened
into 1D vectors, creating a sequence of patch embed-
dings, Xp = [x1, x2, ..., xN ], where N = 400 is the total
number of patches. Each patch acts as an independent
token for the transformer input. Positional encodings
E ∈ RN×D are added to the patch embeddings to retain
the relative positional information, creating the input
sequence, z0 for the transformer layers,

z0 = [x1E,x2, ..., xNE] +E. (6)

The core of the ViT model is its multi-head self-
attention mechanism, which allows the model to com-
pute attention weights between different patches in the
sequence. For each attention head, the input sequence
z0 is transformed into a query (Q), key (K), and value
(V) matrices:

Q = z0WQ, K = z0WK, V = z0WV, (7)
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Fig. 1. Modified ViT network architecture with custom size LOFAR gram images (Dosovitskiy et al., 2020).

whereWQ,WK,WV ∈ RD×D are the learnable weight
matrices. The attention score for each patch is com-
puted as (Pang et al., 2023)

Attention(Q,K,V) = softmax(
QKT

√
D
)V. (8)

Multiple attention heads are applied in parallel, en-
abling the model to focus on different regions of the
LOFAR gram simultaneously. The outputs from the at-
tention heads are concatenated and then passed through
a feed-forward network for additional processing.
Following the attention module, a series of trans-

former encoder layers are applied, each containing
a multi-head self-attention block and a position-wise
feed-forward network. These layers help in progres-
sively learning higher-level representations from the
patch sequence. Each encoder layer includes residual
connections and layer normalization to stabilize train-
ing:

z′l = LayerNorm(zl−1 +MultiHeadAttention(zl−1)), (9)

zl = LayerNorm(z
′

l + FeedForward(z
′

l)), (10)

where l denotes the current transformer layer.
After passing through several transformer layers,

the final sequence representation zL is obtained from the
last encoder block. A class token is appended to
the patch sequence during input, and this token’s rep-
resentation at the final layer zclassL is extracted and
passed to a classification head. The classification head
consists of a fully connected layer followed by a softmax
activation function, which produces the class probabil-
ities for the acoustic target:

y = softmax (Wclassz
class
L ), (11)

whereWclass is the weight matrix of the classification
layer.
Figure 1 presents the process flow, where the clas-

sifier takes 50× 4000× 1 grayscale LOFAR grams as
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input and is divided into 400 patches of size 50× 10
to ensure that each patch spans the full temporal
resolution while maintaining fine spectral resolution,
allowing the model to preserve tonal shifts caused
by Doppler effects or environmental variability within
a single patch. The ViT model was trained using
stochastic gradient descent with momentum as the op-
timization method, with an initial learning rate set
to 0.001. Training was conducted over a maximum
of 10 epochs with a mini-batch size of 64, utilizing
a GPU to accelerate the process. A modified ViT net-
work model with description and learnable parame-
ters for each layer is presented in Table 1. The train-
ing was conducted on a system featuring an AMD
Ryzen 5 3600 processor (6-core), 32GB RAM, 500GB
SSD storage, and an NVIDIA GTX 1660 SUPER GPU
with 6GB of memory.

Table 1. Number of parameters of each layer
of the CNN architecture.

Modules Layers Number
of parameters

Input
processing

Image input –

Patch embedding 160 400

Embedding concatenation 400

Position embedding 200 400

Layer norm 800

Feature
extractor

Self-attention 641 600

Layer norm 800

Encoder block 1 480 400

Encoder block 2 480 400

Layer norm 800

Classifier Head 1604

Total parameters 1 967 604

3.3. Data preprocessing

The generation of LOFAR grams involves a sys-
tematic analysis of publicly available DeepShip and
ShipsEar datasets. The process starts with loading au-
dio files and configuring the key parameters of the
CAPSE algorithm. This includes setting a window size
of 16 000 samples with a 50% overlap and a sampling
rate of 8 kHz.
For the LOFAR gram, the algorithm processes the

audio signal in segments, applying a Hanning window
to reduce spectral leakage. A real FFT is performed
on each window, normalizing the power in each fre-
quency bin.
The first half of the bins is preserved, followed by

applying an FFT to each column of the spectrum.
After squaring the magnitudes, the maximum value
in each column is stored. The resulting spectrum is
saved as a row vector in a (50× 4000) matrix in log-
arithmic scale, and the matrix is saved as PNG im-
ages. Figure 2 shows samples of zoomed LOFAR gram

(0Hz–1600Hz) images generated for different classes in
DeepShip dataset (Irfan et al., 2021). Here, the spec-
tral components due to machinery are visible against
normalized broadband noise.

Cargo

LOFAR grams

Passenger ship

Tanker

Tug

Zoomed machinery components (0 Hz–1600 Hz)Time [s]

Frequency [Hz]

255

0

Fig. 2. Sample of LOFAR grams of DeepShip dataset
developed using CAPSE algorithm.

Following preprocessing, the dataset was randomly
divided into three distinct subsets: 70% of the data
was allocated for training, where the model learns pat-
terns and features within the data; 15% was kept for
validation, which is used to adjust the weights of the
neural networks of the model. Early stopping was used
to prevent overfitting by evaluating its performance on
unseen data during training; the remaining 15% of the
dataset was used for testing the trained model to eval-
uate its performance metrics.

4. Results and discussion

This section presents and analyzes the results of
our proposed method for underwater acoustic target
classification. The performance of the model is eval-
uated on a benchmark dataset, with a focus on clas-
sification accuracy, and the advantages of CAPSE en-
hanced spectral representations and ViT. Comparative
results with existing methods are also discussed. Fig-
ures 3 and 4 show the accuracy and loss curves for the
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Fig. 3. Accuracy curves for training and validation
on DeepShip dataset.
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Fig. 4. Loss curves for training and validation
on DeepShip dataset.

training and validation process on DeepShip dataset.
The network shows rapid accuracy improvement and
convergence with minimal overfitting. The loss steadily
decreases, indicating stable and effective training.

4.1. Classification performance

Tables 2 and 3 provide an overview of DeepShip
and ShipsEar datasets used for evaluating the classi-
fication performance, showing the number of samples
for each vessel class. Despite the variation in sample
sizes, the model demonstrated effective generalization
across all classes, maintaining high performance even
for classes with fewer samples, such as the tug class
in DeepShip or class B form ShipsEar, shown in the
confusion matrix in Figs. 5a and 5b.

Table 2. Class description of DeepShip dataset
(Irfan et al., 2021).

Class label Number of samples

Cargo 4242

Passenger ship 4641

Tanker 4454

Tug 4054

Table 3. Class description of ShipsEar dataset
(Santos-Doḿınguez et al., 2016).

Class label Vessel type Number
of samples

Class A
Mussel boats, dredgers,

fishing boats,
trawlers, and tugboats

389

Class B Sailboats, motorboats,
and pilot boats

313

Class C Passenger ferries 842

Class D Ro-ro vessels
and ocean liners

492

Class E Background noise recordings 229

In terms of classification performance on DeepShip
dataset in Fig. 5a, as presented in Table 4, the model
achieved excellent results across all vessel types. The
cargo class achieved the highest accuracy at 98.90%,
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Fig. 5. Confusion matrix for modified ViT network:
a) DeepShip dataset; b) ShipsEar dataset.

Table 4. Classification performance on DeepShip dataset.

Label Accuracy
[%]

Precision
[%]

Recall
[%]

F1-score
[%]

Cargo 98.90 98.36 98.90 98.63

Passenger ship 96.26 98.38 96.26 97.31

Tanker 98.05 97.20 98.05 97.62

Tug 98.68 97.98 98.68 98.33

Average 97.98 97.98 97.98 97.97

Std Dev 1.1971 0.5516 1.1971 0.6119

with the tug class following at 98.68%. The passenger
ship and tanker classes show slightly lower accuracies
of 96.26% and 98.05%, respectively. These small dif-
ferences indicate that the model is consistent in iden-
tifying all vessel types, regardless of their sample size.
The precision, recall, and F1-score metrics further

demonstrate the model robustness. The F1-scores,
which balance precision and recall, are consistently
high for all classes, ranging from 97.31% for the pas-
senger ship class to 98.63% for the cargo class, high-
lighting the model ability to maintain high classifica-
tion performance across diverse acoustic characteris-
tics. The model average F1-score of 97.97% across all
classes reflects its ability to generalize well to unseen
data, making it a reliable tool for underwater acoustic
target classification tasks. Although there are some mi-
nor performance variations, particularly for the passen-
ger ship class, the overall results confirm the model’s
effective classification capability, demonstrating robust
generalization across all vessel types.
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Similarly, the confusion matrix for the ShipsEar
dataset in Fig. 5b, shows high classification perfor-
mance across all vessel classes as shown in Table 5, with
an accuracy of (100%) achieved for classes A, B, and E,
indicating that the model can reliably distinguish mus-
sel boats, sailboats, and background noise recordings.
Class C (passenger ferries) and class D (Ro-ro ves-
sels and ocean liners) exhibit minor confusion, with
2.3% of class C misclassified as class D and 4.1% of
class D misclassified as class C. This overlap suggests
that these vessel types share similar acoustic charac-
teristics, likely due to comparable propulsion systems
or operational behaviours. However, the model main-
tains over 95% accuracy for all classes, demonstrating
strong generalization.

Table 5. Classification performance on ShipsEar dataset.

Label Accuracy
[%]

Precision
[%]

Recall
[%]

F1-score
[%]

Class A 100 100 100 100

Class B 100 100 100 100

Class C 100 96.10 100 98.01

Class D 95.95 100 95.95 97.93

Class E 100 100 100 100

Average 99.19 99.22 99.19 99.19

Std Dev 1.8130 1.7424 1.8130 1.1111

4.2. Features visualization

The t-SNE method is employed to visually an-
alyze the model feature extraction process. High-
dimensional features of vessel radiated noise data are
projected into a two-dimensional space to observe how
well the model separates different vessel classes. The
first visualization in Fig. 6 shows the t-SNE plot for
the input layer before the ViT model initialization,
where the samples are scattered with no clear patterns
or groupings. After the model processes the data, the
second visualization shown in Fig. 7 presents a clear
separation of classes, with most samples correctly clus-
tered into distinct groups according to their labels.
Very few instances remain misclassified, potentially
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Fig. 6. t-SNE high dimensional features visualization
of untrained network.
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Fig. 7. t-SNE high dimensional visualization after the net-
work is fully trained.

due to a weak or ambiguous target signature. By high-
lighting these outliers, the model limitations and ar-
eas for improvement become apparent. Overall, this
visualization confirms that the model effectively learns
discriminative features, resulting in well-formed class
clusters in the feature space.

4.3. Performance under varying SNR

In real-world maritime scenarios, the underwater
acoustic environment is subject to varying levels of
environmental noise originating from natural sources
such as wind, wave activity, and marine life. Such noise
can complicate the accurate classification and inter-
pretation of acoustic signals, highlighting the need to
evaluate the performance of classification models un-
der adverse conditions. To systematically examine the
robustness and generalization abilities of the classifiers,
this study simulated diverse noise environments by
injecting Gaussian white noise at multiple SNR lev-
els into the original acoustic signals. Using DeepShip
dataset, the power of the signal was computed for each
case, and zero-mean noise with a specified power level
was generated and added to achieve a targeted SNR
value. The objective was to mimic real-world situa-
tions where the clarity of received signals is degraded
by external noise sources.
The performance of the model was assessed, as de-

picted in Fig. 8. As the SNR decreases from 20 dB
to 0 dB, the overall accuracy declines, demonstrating
the negative impact of increasing noise on the model’s
performance. Notably, the average classification accu-
racy remains above 50% at 5 dB, indicating a mod-
erate level of robustness in noisy conditions. Among
the vessel classes, the cargo class consistently achieves
higher accuracy, which can be attributed to its stronger
and more distinguishable acoustic signature. In con-
trast, the model exhibits reduced performance for cer-
tain classes such as tankers and passenger ships, whose
acoustic characteristics are more susceptible to noise
interference. To address this limitation, future work
will focus on exploring alternative classifier configura-
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Fig. 8. Performance of classifier under varying SNR condi-
tions.

tions to further enhance robustness and improve class-
specific accuracy under challenging acoustic environ-
ments.

4.4. Comparison with earlier research

Most of the prior vessel classification research us-
ing deep learning techniques commonly employs CNN
models, with a majority of these studies relying on non-
standard datasets to evaluate the classification per-
formance of their proposed methods. This reliance on
diverse datasets makes it challenging to consistently
compare the performance of different models.
Table 6 compares the classification accuracy of our

model with earlier deep learning-based studies that uti-
lize both the DeepShip and ShipsEar datasets. The
comparative analysis demonstrates that our proposed
model achieves an accuracy of 97.98% on the DeepShip
dataset, which is competitive with the state-of-the-
art. It surpasses models such as UATR-transformer,
which achieved 95.30%, and significantly outperforms
DRA-CNN, which lagged at 89.20%. On the ShipsEar
dataset, our model achieves an impressive accuracy
of 99.19%, further solidifying its competitiveness.
Although the HAUT Fusion model slightly outper-
forms our method with an accuracy of 99.01% on
the DeepShip dataset and 98.62% on the ShipsEar
dataset, it does so at a considerable computational
cost. The HAUT Fusion model utilizes 30.33 million

Table 6. Classification performance on ShipsEar dataset.

Models Accuracy [%]
DeepShip

Accuracy [%]
ShipsEar

Parameters
(million)

ResNet18 (Hong et al., 2021) 96.37 94.30 11.70

DRA-CNN (Chen et al., 2021) 89.20 97.10 0.26

UATR-transformer (Feng, Zhu, 2022) 95.30 96.90 2.60

HAUT Fusion (Chen et al., 2024) 99.01 98.62 30.33

Proposed method 97.98 99.19 1.90

parameters, compared to the 1.90 million parameters
used by our classifier model. This highlights that our
model had a better balance between accuracy and com-
putational efficiency, making it a favorable choice for
practical applications.
Moreover, the ResNet18 model, despite achieving

commendable accuracies of 96.37% on the DeepShip
dataset and 94.30% on the ShipsEar dataset, oper-
ates with a significantly larger parameter count of
11.70 million. In contrast, our model maintains high
performance while using only 1.90 million parameters,
underscoring its efficiency in terms of model complex-
ity and memory requirements. Similarly, DRA-CNN,
while achieving better accuracies of 97.10% on the
ShipsEar dataset, uses only 0.26 million parameters,
but its performance on the DeepShip dataset is con-
siderably lower (89.20%).
These findings suggest that the proposed model

provides an effective solution with lower computational
demand, making it suitable for deployment in environ-
ments with limited resources without sacrificing ac-
curacy. The consistent high performance across both
datasets (DeepShip and ShipsEar) further validates
the generalizability of our approach.

5. Conclusions and future work

A new framework leveraging deep learning, based
on CAPSE as preprocessing and ViT as classifier is de-
signed to enhance the performance of classification of
marine vessel based on their radiated noise. The model
demonstrates a robust performance, achieving an accu-
racy of 97.98% while maintaining a significantly lower
parameter of 1.9 million compared to other state-of-
the-art models. The results highlight the model’s effi-
ciency in extracting discriminative features with min-
imal computational complexity, making it suitable for
real-time or resource-constrained environments. De-
spite marginally lower accuracy compared to HAUT
Fusion, our model’s efficiency in terms of parameter us-
age offers a compelling advantage. These findings em-
phasize the effectiveness of the proposed approach in
balancing accuracy and computational cost for passive
underwater acoustic target classification tasks.
Future work may explore further optimization

of the feature extraction process and the potential
integration of additional domain-specific knowledge
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to enhance performance. Furthermore, due to the lim-
ited availability of publicly available datasets and the
inadequate class of vessel types that are recorded, it is
difficult to fully assess the robustness of the model un-
der various environmental scenarios. To address this
issue, we plan to further investigate vessel radiated
noise and synthetically generate signals for different
scenarios using mathematical modelling.
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1. Introduction

An acoustic signal is generated when the diver
breathes through an apparatus regulator, with air
bubbles discharged from it. This signal is a broad-
spectrum (Johansson et al., 2010) ranging from hun-
dreds of hertz to 75 kHz (Tu et al., 2020), quasi-
periodic (Gorovoy et al., 2015), with a periodicity
ranging from 2.44 s to 7.09 s, and exhibits a repetition
pattern corresponding to the diver’s breathing rate,
which typically falls within the range of 0.14Hz to
0.41Hz (Donskoy et al., 2008). This range variabil-
ity is influenced by several factors such as the diver’s
age, experience, activity level, and scuba equipment
used (Donskoy et al., 2008). Passive sonar systems
utilize this periodic signal to detect the presence of
a diver. The respiratory cycle of a diver initiates with
the inhalation phase, which corresponds to sound fre-
quencies exceeding 2 kHz, followed by the exhalation

phase, which corresponds to frequencies below 2 kHz
(Tu et al., 2020). Both signals are useful in detection
systems (Hari et al., 2015). The specific frequency
band of interest for analysis varies among scientific
papers, with some focusing on the band with a high-
frequency band above 2 kHz (Tu et al., 2020; Jin,
Xu, 2020; Lennartsson et al. 2009; Li et al., 2015),
others focus on the low-frequency band (Korenbaum
et al., 2016; Gorovoy et al., 2014). The detectability
of a diver can be determined by two distinctive indica-
tors: the power of the frequency band and its repetition
rate (Korenbaum et al., 2020), which apply to the two
types of scuba, open circuit and closed circuit, while
the first emits more acoustic noise (Donskoy et al.,
2008), the detection of a diver with a closed circuit is
still challenging.
As the acoustic signal propagates away from the

source, two distinct fields are produced: pressure and
particle motion (PM). Pressure is a scalar quantity

https://acoustics.ippt.pan.pl/index.php/aa/index
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that can be measured using a hydrophone, whereas
PM is a vector quantity that is oriented parallel to the
direction of wave propagation in the free far field. PM
can be measured directly using inertial sensors such
as accelerometers or geophones, or indirectly through
a configuration of nearby pressure sensors. In last case,
the differential measurements approximated the pres-
sure gradient, providing an estimate of PM accelera-
tion (Gray et al., 2016; Nedelec et al., 2021). The
direct measurement approach involves challenges re-
lated to buoyancy, compliance, suspension, geometry,
and flow. In the contrast, the indirect measurement ap-
proach faces many issues such as spacing, calibration
uncertainty, noise, and flow (Gray et al., 2016). Inte-
grating the PM sensor with an omnidirectional pres-
sure sensor into a single unit results in what is known
as an acoustic vector sensor (AVS) (Roh et al., 2022),
which has recently gained attention and has increased
usability (Yuan et al., 2022; Dong et al., 2024). This
sensor has a wide range of applications in both ter-
restrial and aquatic environments. In terrestrial en-
vironment, it is used for localization, tracking, and
speech enhancement (Chen et al., 2018; Cao et al.,
2017), while in aquatic environment – the focus of
this paper – it is employed for detection (Yuan et al.,
2022), localization (Chen et al., 2023), and tracking
(Nagananda, Anand, 2017).
Detection using a single AVS still requires fur-

ther research efforts (Yuan et al., 2022). The energy-
flux detector is proved to perform as a maximum
likelihood ratio detector under isotropic noise condi-
tions (Sun et al., 2003). For horizontal isotropic noise,
Yuan et al. (2022) introduced a method to estimate
the signal power by analyzing the covariance matrix
of the 2D-AVS output. Incorporating this estimation
into detection has proven to be more effective than
traditional energy detectors under nonstationary am-
bient noise. Furthermore, an adaptive matched fil-
ter is proposed with 2D-AVS for passive broadband
source detection, demonstrating superior performance
against noise and interference (Ma et al., 2019). The
signal waveform can be optimally estimated using
the minimum variance distortion response (MVDR)
beamformer, also known as the Capon beamformer
or the minimum power distortion response (MPDR)
(Van Trees, 2002; Zhao et al., 2018). This tech-
nique is particularly valuable for direction of arrival
(DOA) estimation (Zhao et al., 2018), which is a topic
of growing interest among researchers. Various algo-
rithms have been explored with a single AVS, including
the arctan (Bereketli et al., 2015), intensity-based
(Wang et al., 2014; Nehorai, Paldi, 1994), velocity-
covariance-based (Nehorai, Paldi, 1994), beamform-
ing (Zhao et al., 2018; Bereketli et al., 2015), maxi-
mum likelihood (Levin et al., 2012), multiple signal
classification MUSIC (Zhao et al., 2018), and esti-
mation of signal parameters via rotational invariance

techniques Esprit (Tichavsky et al., 2001; Paulraj
et al., 1985).
Multiple algorithms are available for detection the

diver’s acoustic signal. While all of these algorithms
contribute to estimating the energy of the breathing
frequency, they vary in the way they reconstruct the
waveform of the diver’s signal. The envelope spectrum
was used within a 30 kHz–35 kHz bandwidth, achieving
a detection range of up to 25m (Lennartsson et al.,
2009). Chung et al. (2007) utilized a multiband nor-
malized matched filter but a reference signal is needed.
Tu et al. (2020) employed the envelope spectrum de-
tection method within 13 kHz–18 kHz bandwidth and
extended the range of detection from 20m to 40m by
using an adaptive noise subtraction approach. All the
aforementioned studies utilize data from a single hy-
drophone. Conversely, other studies have employed two
hydrophones to reconstruct the waveform of the diver’s
signal through cross-correlation. This cross-correlation
analysis determines the time delay between the sig-
nals received by the hydrophones, which is used in
DOA estimation (Korenbaum et al., 2020; Sutin
et al., 2013).
This paper focuses on utilizing an AVS to capture

the acoustic signals emitted by a diver with an open-
circuit scuba. Equations that relate the determinant
and trace of the AVS covariance matrix to the recip-
rocal of signal-to-noise ratio (SNR) are extracted in
a three-dimensions isotropic acoustic field with spher-
ical isotropic noise. Solving these equations results in
power signal estimation. We name this technique as
covariance matrix analysis (CMA). Additionally, the
MVDR beamformer is used to estimate the power sig-
nal by optimizing the azimuth and elevation angle val-
ues in order to maximize the MVDR spectrum. The
presence of a diver is estimated through comparing
the breathing frequency estimated power with a pre-
defined threshold which is estimated empirically using
a recorded data for ambient noise. The detection algo-
rithm is evaluated using data obtained from sea trials.
The structure of this paper is arranged as follows.

Section 2 describes the AVS with its mathematical
model and covariance matrix. The signal power estima-
tion using the AVS P -channel is presented in Sec. 3. In
Sec. 4, the signal power estimation by maximizing the
spectrum of MVDR beamformer is presented. In Sec. 5,
the power signal estimation using the CMA method is
performed. This method based on analysing the covari-
ance matrix of AVS channels: pressure and velocity,
which results in a quartic equation. Solving this equa-
tion provides an estimation of the signal power. The
effectiveness of this method is evaluated using simu-
lated data. The proposed diver detection approach us-
ing AVS is explained in Sec. 6 and evaluated in Sec. 7
using sea trial data. Finally, Sec. 7 concludes the pa-
per by summarizing the key findings and implications
derived from the study.
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2. Acoustic vector sensor model

The AVS sensor has four output channels, one for
pressure signal (P -channel) and three orthogonal com-
ponents for particle velocity signal (V-channels). So
that, the AVS captures more information about the
acoustic field comparing to hydrophones. The relation-
ship between the PM velocity (v), acceleration (a),
and the pressure (p) given by Euler’s equation, is de-
scribed as

dv
dt
= a = −

∇p

ρ
, (1)

where t is the time, ∇ is the gradient operation, and
ρ is the water density.
The PM vector, which has information about the

direction of the signal, can be measured in two ways:
1) using a geophone to measure the PM velocity (v),
or accelerometer to measure the acceleration (a), this
way is named direct measurement type or inertial type;
2) by estimation of the ∇p using multiple spaced hy-
drophones, this way is named indirect type or gra-
dient pressure type (Gray et al., 2016; Nedelec
et al., 2021).
Under plane wave conditions, the relationship be-

tween the pressure signal and the PM velocity signal
is expressed as (Abraham, 2019)

v = −
p

ρc
u, (2)

where ρc represents acoustic impedance, while c de-
notes the speed of sound in water,

u = [ cos θ cosϕ cos θ sinϕ sin θ ]
T

is a unit vector oriented from sensor to source, ϕ is the
azimuth angle, and θ is the elevation angle (Fig. 1).

Fig. 1. AVS coordinates.

The AVS output s(t), after scaling the velocity
channels with ρc, is modelled as

s(t) = [ p(t) + np(t) vT(t) + nT
v (t) ]

= h(ϕ, θ)p(t) + ns(t), (3)

where

h(ϕ, θ) = [ 1 uT ]
T
, ns(t) = [ np(t) nT

v (t) ]
T

is the ambient-noise, np(t) is the pressure noise with
power σ2

np, and n
T
v (t) is the velocity noise with power

σ2
nv. Under the ambient isotropic noise condition, the
relation between σ2

np and σ
2
nv is given as σ

2
np = 3σ2

nv

(Levin et al., 2012).
Assuming p(t) and ns(t) are uncorrelated, the co-

variance matrix of s(t) is given as

R =
1

T
∫

T

s(t) ∗ sT(t)dt =Rs +Rn, (4)

where Rn and Rs are the covariance matrix of noise
and signal. In practice, R can be estimated from the
received signal as following (Yuan et al., 2022; Liu
et al., 2019):

R̂ =
1

N

N

∑
n=1

s(n)sT(n), (5)

whereN is the length of snapshot. This matrix is a cru-
cial in array signal processing, as demonstrated in the
subsequent sections.

3. Signal power estimation using the AVS
P -channel

The AVS contains a pressure sensor that functions
as an omnidirectional hydrophone. The sensor’s out-
put, sp(t), is expressed as

sp(t) = p(t) + np(t). (6)

The power of measurement signal, assuming the
noise np(t) is uncorrelated with the signal p(t), is de-
fined as

y2 =
1

T
∫

T

s2p(t) =
1

T
∫

T

p2(t)dt + σ2
np

= σ2
s + σ

2
np = σ

2
s (1 +

1

SNR
) , (7)

where
σ2
s = ∫

T

p2(t)dt

is the signal power. For a high SNR, the power of pres-
sure signal approaches to signal power.
In practice, this power is estimated by averaging

the instantaneous power over a snapshot of lengthN as

y2 =
1

N

N

∑
n=1

s2p(n). (8)

This method is used to estimate the power of the
acoustic signal emitted by the diver to highlight its
periodicity, and is compared to other signal power es-
timation methods described in the next section.
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4. Signal power estimation using MVDR
beamformer

Beamforming is a technique employed in array sig-
nal processing to steer, shape, and concentrate signals
received from sensors toward a desired direction. The
shape and width of the beam are adjusted by combin-
ing multiple signals through weighting and delays. The
AVS features an array of four sensors located at the
same point, allowing for the application of beamform-
ing without the need for delay adjustments. The first
order beamformer is formed as (Levin et al., 2012)

y(n) =wTs(n) = αp(n) + (1 − α)uT
strv, (9)

where
wT
= [ α (1 − α)uT

str ]
T

is the weights with α ∈ [0 1], and ustr is the look vector.
The parameter α significantly influences the beam

pattern, functioning as a monopole for α = 1, and
a dipole for α = 0, while the optimum value of

α = α0 =
σ2
nv

σ2
np + σ

2
nv

corresponds to the DOA estimator with maximum re-
liability (Levin et al., 2012).
One of the most widely employed beamformers

is the MVDR. The objective is to determine the
weights wT that produces the signal p(n) at the beam-
former’s output without distortion while minimizing
noise power. This problem is mathematically formu-
lated as follows:

wMVDR = argmin
w

y2(n) = argmin
w

wTRw

subject to wTh(θ, ϕ) = 1.

(10)

Fig. 2. MDVR spectrum for source radiates signal from (θ,∅) = (45○,45○) angles and SNR = 5dB.

Using the Lagrange multiplier (Van Trees, 2002),
the solution is given as

wMVDR =
R−1h

hTR−1h
, (11)

the covariance matrix R should represent the noise co-
variance matrix in MVDR, and the array measurement
covariance matrix in MPDR. When the steering di-
rection aligns with the signal direction, MVDR and
MPDR are identical (Van Trees, 2002).
If the vector h is known, and the covariance matrix

R is estimated using Eq. (5), the weight vectorwMVDR

can be estimated, allowing the estimation of p̂(n) =
y(n) =wT

MVDRs(n) in the output of beamformer. And
the associated power is:

y2(n) = wT
MVDRRwMVDR

=
1

hT(θ, ϕ)R−1h(θ, ϕ)
= f(θ, ϕ). (12)

In case where the direction angles are unknown,
the MVDR spectrum f(θ, ϕ), which is a measure of
power radiating from direction (θ,∅), is computed by
changing (θ,∅) over all possible values. The solution
for the DOA problem is by searching (θ,∅) for maxima
of f(θ, ϕ). Therefore, the MVDR can be used in ad-
dition to DOA estimation, to estimate the max power
radiating from this estimated direction. The estimated
power can be applied to reconstruct the waveform of
AVS signals. Figure 2 presents an example of the spec-
trum of the MVDR for a single source emitting a linear
frequency signal within the band [600–1000]Hz, with
−3 dB power, from a position (θ,∅) = (45○,45○), and
with an SNR = 5 dB for additive Gaussian noise.
For the experimental data, only the estimated sig-

nal power is utilized, as this paper focuses on diver
detection rather than the diver’s DOA.
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5. Signal power estimation using the AVS
channels through CMA

For 2D-AVS, the signal power was estimated by
solving a cubic equation that relates signal and noise
power, to the determinant and trace of the AVS co-
variance matrix. The cubic equation is derived under
the assumption of a horizontal isotropic acoustic field
(Yuan et al., 2022). In this section, the solution for
3D-AVS with isotropic noise in both horizontal and
vertical dimensions is presented.
The covariance matrix of the AVS output is the

sum of signal covariance Rs and the noise covariance
Rn, as shown in the Eq. (4). The matrix Rs is ex-
pressed as follows:

Rs = h(θ, ϕ)h
T
(θ, ϕ)σ2

s

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 cos θ cosϕ cos θ sinϕ sin θ

cos θ cosϕ cos2 θ cos2 ϕ cos2 θ cosϕ sinϕ cos θ sin θ cosϕ

cos θ sinϕ cos2 θ cosϕ sinϕ cos2 θ sin2 ϕ cos θ sin θ sinϕ

sin θ cos θ sin θ cosϕ cos θ sin θ sinϕ sin2 θ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

σ2
s .

(13)

This matrix has four eigenvalues λ1 = 2σ2
s and λ2 =

λ3 = λ4 = 0.
The matrix Rn, under isotropic noise, is expressed

as follows:

Rn =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 1/3 0 0

0 0 1/3 0

0 0 0 1/3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

σ2
np. (14)

As a result, the matrix R can be expressed as fol-
lows:

R =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 +α cos θ cosϕ cos θ sinϕ sin θ

cos θ cosϕ cos2 θ cos2 ϕ + α
3 cos2 θ cosϕ sinϕ cos θ sin θ cosϕ

cos θ sinϕ cos2 θ cosϕ sinϕ cos2 θ sin2 ϕ + α
3 cos θ sin θ sinϕ

sin θ cos θ sin θ cosϕ cos θ sin θ sinϕ sin2 θ + α
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

σ2
s ,

(15)

where

α =
σ2
np

σ2
s

= SNR−1.
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Fig. 3. Estimation using CMA: a) SNR; b) signal and noise power.

The eigenvalues of R are

λ1,2 =
1

3
(2α ±

√
α2 + 9 + 3)σ2

s and λ3 = λ4 =
1

3
ασ2

s .

When there is only a signal α → 0, the eigenvalues
are λ1 = 2σ2

s , and λ2 = λ3 = λ4 = 0. These correspond
to the eigenvalues of Rs. Conversely, when α → ∞,
indicating the absence of a signal and the presence of
noise only, the eigenvalues are given as λ1 = σ2

np, and

λ2 = λ3 = λ4 =
σ2
np

3
that are associated with the eigen-

values of Rn.
The trace of R is expressed as

trace(R) =
4

∑
i=1

λi = 2(α + 1)σ
2
s . (16)

The determinant of R is expressed as

det(R) =
4

∏
i=1

λi =
1

27
α3
(α + 4)σ8

s . (17)

Substituting σ2
s into Eqs. (16) and (17) yields

a quartic equation in α, which can be presented as

kα4
+ 4kα3

+ 6α2
+ 4α + 1 = 0 (18)

where
k = 1 −

trace(R)4

432det(R)
.

This equation has a real positive root correspond-
ing with k < 0 as shown in Appendix. By solving
Eqs. (16)–(18), the values of α, σ2

s , and σ
2
np can be

determined. In practice, by estimating the covariance
matrix R̂ as indicated in Eq. (5), these parameters can
be determined using the following equations:

k̂ = 1 −
trace(R)4

432det(R̂)
,

k̂ α̂4
+ 4 k̂ α̂3

+ 6 α̂2
+ 4 α̂ + 1 = 0,

σ̂ 2
s =

trace(R)
2(α̂ + 1)

, σ̂ 2
np = α σ̂

2
s .

(19)

Figure 2 shows the implementation of this method
for a linear frequency signal within the band [600–
1000]Hz, with additive Gaussian noise and using 1000
Mont Carlo runs. Figure 3a presents the SNR esti-
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mation as the actual SNR varies within the range
of [−20 5] dB. The accurate estimation achieved for
SNR > −12dB. While Fig. 3b presents the estimation
of noise power and signal power as the SNR changes
within the same range. And the true power signal esti-
mation (the true value is −3 dB) is for SNR > −12dB.
This simulation data demonstrates the technique’s

capability in estimation the signal power under low
SNR. So, this method with the above two method is
used to detect the acoustic signal power generated by
the diver.

6. Steps for diver detection using AVS

Our method for detecting the diver presence in-
volves analyzing the energy associated with their
breathing rate. The process is shown in Fig. 4.
The process has the following steps:
1) capture the acoustic signal from the diver using
an AVS;

2) apply a bandpass filter to increase the SNR;
3) reshape the signal to resemble a periodic wave-
form, employing various techniques including esti-
mated signal power using the AVS pressure chan-
nel (P -channel), CMA, and MVDR beamformer;

4) compute the power of the diver’s acoustic sig-
nal power within the frequency band of 0.14Hz–
0.41Hz, utilizing the fast Fourier transform (FFT);

FFT &
power calculation 

within [0.14,0.4] Hz

Threhold

Diver> YAAVSVS  channels BBanandd  pass filter 
600 Hz–1000 Hz

WWavaveefoformrm  
reconstruction

FFT &
power calculation 

within [0.14,0.4] Hz

Threhold

Diver

NNoo
driveerr

> Y

Fig. 4. Diver detection algorithm.

a) b)

Fig. 5. Our system and experimental location: a) passive sonar system; b) experimental location.

5) compare the computed breath power energy
against a predefined threshold.

The proposed methods, AVS pressure channel, CMA,
and MVDR, are evaluated and compared in diver de-
tection under sea trials, as discussed in the follow-
ing section.

7. Experimental results

A passive sonar system (Fig. 5a) was placed 5m
deep on the floor of the marine basin in Tartous har-
bour. Figure 5 illustrates both the system and the
experimental location. The system includes two hy-
drophones and an AVS. The AVS is of the type VHS-
90, with a sensitivity of −180 dB across four channels.
The VHS-90 sensor contains three pairs of accelerom-
eters arranged along three orthogonal directions, and
six hydrophones connected in parallel to a single out-
put in order to obtain an omnidirectional response. All
sensors are encapsulated and coated uniformly with
polyurethane material to satisfy the waterproof and
sound-permeable requirements.
An expert young diver, with an open-circuit scuba,

navigated around the sensor without following a con-
sistent path due to the highly murky water conditions.
The movement is roughly drawn in Fig. 6. The diver
started his trajectory at point A (18, 5) directed to
point B (0, 10). He rested at B for 0.35min, then pro-
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Fig. 6. Approximation of movement of diver around AVS.

ceeded to point C, then D, which is approximately 30m
away from the AVS. The diver has then returned to-
ward point E, before heading back to point B. The
diver rested at B 0.5min, then went toward the AVS,
he circled around the sensor and heading back to
point G.
The data was captured using an A/D converter at

a sampling rate of 44 100Hz with 24-bit resolution.
The MATLAB program was used for processing.
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Fig. 7. AVS output signals and corresponding power levels.

The recorded data was filtered by the 100th-order
bandpass FIR filter within the 600Hz–1000Hz range
in the time domain, corresponding to the exhalation
and air bubble signals. Figure 7 illustrates the AVS’s
channels over time and their corresponding power (the
power is calculated using a sliding window with 200ms
and 50% overlapping). The figure shows a repeated
pattern with period 6.3 s. Each pulse corresponds with
one breathing of the diver.



180 Archives of Acoustics – Volume 50, Number 2, 2025

0 1 2 4 5 6
70

80

90

100
So

un
d 

le
ve

l [
dB

] P-channel power 
CMA signal power

MVDR power

0 1 2 3 4 5 6
Time[minute]

0

10

20

30

D
is

ta
nc

e[
m

]

3
Time [min]

Path4Rest1Path1 Path2 Path3 Rest2

0 1 2 4 5 6
70

80

90

100

so
un

d 
le

ve
l[

dB
]

 Signal Power Estimation Using AVS

P-Channel Power
CMA Signal Power

MVDR Power

0 1 2 4 5 63
Time [min]

0

10

20

30

D
is

ta
nc

e 
[m

]

Path4Rest1Path1 Path2 Path3 Rest2

Fig. 8. Signal power estimation and distance between diver and AVS.

The three estimation methods (P -channel power,
MVDR, and CMA) were implemented, and the results
are presented in Fig. 8, which also shows the distance
between the diver and the AVS over time. As illus-
trated in this figure, the signal power decreases with
increasing the distance from diver to AVS, falling be-
low the noise power by the end of Path3. This power
decreasing is resulted from attenuation caused by the
underwater environment. Furthermore, this figure il-
lustrates that all three methods effectively estimate the
waveform of the diver’s signal, which exhibits periodic
characteristics resulting from repetition in the breath-
ing process. However, the interference between pulses,
caused by scattering air bubbles, is evident especially
when the diver is close to sensor (Path4), where the
acoustic signal from the previous breath persists as
the current breath begins.
Utilizing a P -channel for detection is feasible; how-

ever, this approach relies only on the pressure sen-
sor that captures the noise from all directions. In
contrast, the CMA method depends on the correla-
tion between the pressure and velocity measurements,
similar to the MVDR method. However, the MVDR
method involves greater computational complexity re-
sulted from searching for maximum power.
Figure 8 illustrates that the CMA and MDVR

methods highlight the breathing pulses more effec-
tively than the P -channel method. This is because they
reduce noise power when the diver is silent or when
SNR is low (e.g., Rest2). However, when the SNR is
high (Path4), the estimated powers of all three meth-
ods converge to approximate the signal power.
After estimating the power signal which showed the

periodicity in the diver’s signal, it is necessary to de-
termine the power within the diver breath rate range
([0.14–0.42]Hz), as this serves as an indicator of the

diver’s presence. This can be done by calculation the
FFT of estimated power signal over a window of ap-
propriate length that must contain multiple breathing
cycles. Figure 9 illustrates FFT using a 13-second win-
dow when the diver is not silent. A local maximum at
0.15Hz is found – indicating a period with 6.7 s – for
all the three estimation methods, with advantages in
value to CMA first, MVDR, then P -channel. The diver
index Dindex is calculated by summing the squares of
FFT values between 0.14Hz–0.42Hz as

Dindex =
1

M

f=0.42

∑
f=0.14

∣FFT{y2(n)}(f)∣
2
,

whereM is the number of frequencies within the spec-
ified range. The results from repeating this process
across the entire signals are illustrated in Fig. 10, in-
dicating an increasing in diver index when the diver
is actively breathing. By comparing the diver index to
the predefined threshold, a decision of diver detection
can be made. The CMA method shows a higher diver
index value than the MVDR and P -channel methods,
giving it an advantage in diver detection. For assertion,
the metrics: accuracy, recall, precision, and F1-score
are calculated and compared over these methods.
The predefined threshold Th can be estimated

by applying the three methods to recorded ambient
noise and selecting the maximum value as DN

index. We
then set the threshold Th = 1.3DN

index as indicated by
Tu (2020). The probability of detection Pd can be ex-
pressed as

Pd =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 Dindex ≧ 2Th,

(Dindex − Th)/Th Th <Dindex < 2Th,

0 Dindex ≦ Th.

(20)

This formula was applied to recorded data, and the re-
sults are presented in Fig. 10, which shows false alarms



S. Mahmoud et al. – Experimental Results of Diver Detection in Harbor Environments. . . 181

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

f [Hz]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

|F
FT

 (p
ow

er
)|

P-channel
CMA
MVDR

f = 0.153257  

Fig. 9. FFT of window with 13 s length where the diver is present.

0 1 2 4 5 6
0

5

10

15

D
iv

er
 in

de
x

P-channel
CMA
MVDR

3
Time [min]

0 1 2 3 4 5 6
Time[minute]

0

5

10

15

D
iv

er
 I

nd
ex

Diver Index  Estimation

P-Channel
CMA
MVDR

0 1 2 4 5 63
0

0.2

0.4

0.6

0.8

1

P d

P-channel 
CMA
MVDR

Time [min]

Fig. 10. Calculation of: a) the diver index for journey; b) probability of detection.

in the beginning. Additionally, a low value of Pd is
observed when the diver is either silent or far away
from the sensor. To determine the detection distance
for the three methods, the detection probability for
Path3 was calculated and shown in Fig. 11. This figure
shows that the distance of detection is approximately
29m for both the P -channel and CMA methods with
a preference for CMA, while this distance is about 26m
for the MVDR method.

To compare between the three detection methods,
several commonly metrics were calculated as shown in
Fig. 12. These metrics were derived based on the con-
fusion matrix provided in Table 1.
The confusion matrix was estimated based on the

defined threshold Th = 1.3DN
index. The matrix initially

indicates comparable performance among the three
methods, with the CMA method showing an advan-
tage in correct classifications (true positives), while
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Accuracy 91.0% 92.8% 86.4%
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Fig. 12. Comparison of the three methods in detection performance under Th = 1.3D
N
index.

Table 1. Confusion matrix under Th = 1.3D
N
index.

P -channel MVDR CMA

Actual values

Positive Negative Positive Negative Positive Negative

Predicted values
Positive 4102 11 3868 20 4203 21

Negative 454 628 688 619 353 618

the P -channel method exhibits a lower value of false
positives. It is important to note that increasing the
threshold value affects the confusion matrix, gener-
ally resulting in degraded performance. However, be-
yond a certain threshold value, the performance of

the MVDR method becomes superior to that of the
P -channel method.
The results in Fig. 12 illustrate that: the accuracy

of detection for the three methods was 86% to 93%,
the recall was 85% to 92%, the precision was 99% to
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100%, and the F1-score was 92% to 96%. These val-
ues demonstrate the effectiveness of the three methods
in detecting the presence and absence of divers under-
water, with advantage to the CMA method.
The experimental data demonstrated the possibil-

ity of using the three methods (P -channel, CMA, and
MVDR power) in diver detection with a preference for
the CMA method.
Therefore, detection is impacted by the method

used to represent the periodicity resulting from the
breathing process, which affects the diver index value.
Furthermore, the long detection window (13 s) is a lim-
itation of using the diver’s breath rate as a key signa-
ture.

8. Conclusion

This study investigated the feasibility of detecting
a diver with an open-circuit scuba by analyzing the
acoustic signals emitted during respiration, which are
captured by AVS. The AVS focuses on a low-frequency
range of [600–1000]Hz, corresponding to the exhala-
tion phase. The detection method involves estimating
the signal power associated with the diver’s breath-
ing. In this paper, a novel method was presented to
estimate the signal power by analyzing the covariance
matrix of the 3D-AVS channels. This analysis leaded
to the derivation of a quartic equation that relates the
determinant and trace of the AVS covariance matrix
to the reciprocal of the SNR. Solving this equation al-
lows for the estimation of both the signal power and
the SNR. Simulated data demonstrated the effective-
ness of this method in estimating signal power un-
der low SNR (−12 dB). Additionally, the paper pre-
sented the MVDR beamformer, which showed poten-
tial for estimating signal power along with azimuth
and elevation angles using simulated data. The esti-
mated power via CMA, MVDR, and P -channel meth-
ods was also compared using trial data, showing a pe-
riodicity corresponding to the diver’s exhalation. The
trial data demonstrated that the CMA method pro-
vides a stronger diver detection index compared to
MVDR and the P -channel. However, a limitation of
these methods is the long detection duration. This is-
sue could potentially be addressed using AI algorithms
to identify other features in acoustic diver signals. In-
vestigating this approach will be a focus of our future
work.

Appendix. Roots of quartic equation

The existence of one real positive number for the
quartic equation (Eq. (18)) is demonstrated, and it can
be rewritten as

aα4
+ bα3

+ cα2
+ dα + e = 0,

a = kb = 4kc = 6, d = 4, e = 1.

By applying the change of variable α = β− b
4a
= β−1, the

depressed quartic equation has been obtained, which
has the following form:

β4
+ pβ2

+ qβ + r = 0,

where

p =
8ac − 3b2

8a2
= 6(

1

k
− 1) = 6g,

q =
b3 − 4abc + 8a2d

8a3
= −8(

1

k
− 1) = −8g,

r =
16ab2c − 64a2bd − 3b4 + 256a3e

256a4
= 3(

1

k
− 1) = 3g,

g = (
1

k
− 1).

The presence of real roots can be determined by eval-
uating the signs or values of two terms (Prodanov,
2021) in the following form:

δ(p, q, r) = 256r3 − 128p2r2 + 144pq2r + 16p4r − 27q4

−4p3q2 = 6912g3(g + 1)2,

L(p, q, r) = 8pr − 9q2 − 2p3 = −432g2(g + 1).

There are several cases depending on the value of g, as
follows:
1) g = 0(k = 1) → δ = 0, L = 0, p = 0: rewrite Eq. (18)
as (α + 1)4 = 0, the root is αi = −1, this value is
invalid because it is a negative number;

2) g = −1 (∣k∣→∞) → δ = 0, L = 0, p < 0: rewrite
Eq. (18) as α3(α+4) = 0, there are two real roots:
α1 = 0, and α2 = −4. The root α1 indicates that
the power of noise equals to zero, and the root α2

is invalid;
3) g < 0(k < 0 ∪ k > 1) → δ < 0: Eq. (18) has two
distinct real roots;

4) g > 0(0 < k < 1) → δ > 0, L < 0: Eq. (18) has not
any real roots.

Thus, the acceptable case is 3, where there are two
distinct real roots. To determine the sign of these roots,
Descartes’ rule of signs is applied, which is based on
analyzing the sign changes in the coefficients of the
polynomial, as follows:
– k > 1: the polynomial f(α) = kα4 + 4kα3 + 6α2 +

4α + 1 has no changes in the sign of coefficients.
So, the two distinct roots are negative. And this
case is invalid;
– k < 0: the polynomial f(α) = kα4 + 4kα3 + 6α2 +

4α + 1 has one sign change, indicating that the
Eq. (14) has one positive real root. Additionally,
the polynomial f(−α) = kα4 − 4kα3 + 6α2 − 4α + 1
shows three sign changes, meaning it has either
three or one negative roots. Since Eq. (18) has two
distinct roots, this results one invalid negative real
root and one valid positive real root.
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As a result, when k < 0, Eq. (18) has one positive root,
which represents the valid solution for the reciprocal
of SNR.
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In recent years, single vector hydrophones have attracted widespread attention in target direction esti-
mation due to their compact design and advantages in complex underwater acoustic environments. However,
traditional direction of arrival (DOA) estimation algorithms often struggle to maintain high accuracy in non-
stationary noise conditions. This study proposes the novel DOA estimation method based on a convolutional
neural network (CNN) and the convolutional block attention module (CBAM). By inputting the covariance
matrix of the received signal into the neural network and integrating the CBAM module, this method enhances
the model’s sensitivity to critical features. The CBAM module leverages channel and spatial attention mech-
anisms to adaptively focus on essential information, effectively suppressing noise interference and improving
directional accuracy. Specifically, CBAM improves the model’s focus on subtle directional cues in noisy envi-
ronments, suppressing irrelevant interference while amplifying essential signal components, which is crucial for
an accurate DOA estimation. Experimental results under various signal-to-noise ratio (SNR) conditions val-
idate the method’s effectiveness, demonstrating superior noise resistance and estimation precision, providing
a robust and efficient solution for underwater acoustic target localization.
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1. Introduction

In recent years, vector hydrophones have gained
a wide range of research and applications in underwa-
ter target detection and localization. Compared with
traditional scalar hydrophones, vector hydrophones
can record acoustic pressure information and partially
mitigate isotropic noise. Traditional direction of arrival
(DOA) estimation algorithms primarily include high-
resolution algorithms based on eigenvalue decomposi-
tion, such as multiple signal classification (MUSIC)
and estimation of signal parameters via rotational
invariance techniques (ESPRIT) (Tichavsky et al.,
2001), which perform well in idealized stationary noise
environments. However, nonlinear effects, noise inter-
ference, and multipath effects in real marine environ-
ments often degrade the algorithm performance.

Advances in deep learning have facilitated the ap-
plication of various neural networks in the under-
water DOA estimation. Xiao et al. (2020) proposed
a deep unfolding network called DeepFPC, which is
based on a fixed-point algorithm, utilizes 1-bit quan-
tization measurements for sparse signal recovery, and
has been successfully applied to the DOA estimation,
significantly improving estimation accuracy and com-
putational efficiency. In parallel with deep learning
advancements, Xu et al. (2022) developed a block
sparse-based dynamic compressed sensing estimator
for underwater acoustic communication, addressing
challenges like impulsive noise. This method’s adapt-
ability to varying underwater channel conditions en-
hances the potential of neural network-based ap-
proaches for improving estimation accuracy in noisy,
real-world marine environments. Liu et al. (2024) in-
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troduced a deep learning-based method for graph sim-
ilarity computation, which contributes to the field of
signal processing and could further enhance DOA es-
timation techniques. In parallel, Xu et al. (2019) pro-
posed the M-SIMMUKF algorithm for tracking under-
water maneuvering targets, demonstrating its robust-
ness under dynamic and noisy conditions. Moreover,
Wajid et al. (2020; 2022) explored direction estima-
tion and tracking methods using acoustic vector sen-
sors, highlighting their ability to improve source lo-
calization in underwater environments, providing in-
sights that complement deep learning methods for the
robust DOA estimation in real-world conditions. Liu
et al. (2021) proposed the DOA estimation method for
underwater acoustic arrays based on a convolutional
neural network (CNN), which significantly enhanced
the direction estimation accuracy of underwater sig-
nals, with strong adaptability and excellent noise re-
sistance. Varanasi et al. (2020) combined spherical
harmonic decomposition with a deep learning frame-
work to achieve the robust DOA estimation in complex
environments, providing an effective solution for sig-
nal direction estimation under high-noise conditions.
Numerous studies have shown that neural network-
based methods can effectively improve the DOA es-
timation accuracy and adaptability in complex noise
environments. For example,Yao et al. (2020) proposed
a recursive neural network model that achieves the
DOA estimation for unknown signal sources through
the Toeplitz matrix reconstruction. Niu et al. (2017a;
2017b) investigated the performance of three machine
learning methods – feedforward neural networks, sup-
port vector machines, and random forests – based on
vertical arrays for source ranging and validated the fea-
sibility and effectiveness of these methods at different
signal-to-noise ratios (SNR). Progress has also been
made in machine learning applications for underwater
surface and subsurface target resolution in vertical ar-
rays, and direction estimation with horizontal arrays.
Chi et al. (2019) employed a feedforward neural net-
work combined with early stopping for source ranging,
which effectively enhanced the model’s generalization
ability, allowing it to maintain strong ranging perfor-
mance across various environments. Choi et al. (2019)
used supervised learning methods to classify surface
and submerged vessels in the ocean, significantly im-
proving classification accuracy, demonstrating the po-
tential of their method for practical marine monitor-
ing. Ozanich et al. (2020) employed a feedforward
neural network for the DOA estimation, demonstrat-
ing the efficiency and accuracy of their method in un-
derwater acoustics, further validating the potential of
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deep learning in this field. These methods demonstrate
excellent performance not only in synthetic data but
also show significant potential in practical ocean ex-
periments. The application of neural networks and ma-
chine learning expands the possibilities for the DOA es-
timation with single vector hydrophones, particularly
in terms of adaptability and real-time performance.
This paper proposes the CNN-CBAM-based DOA

estimation method that uses a normalized covariance
matrix as input and incorporates the convolutional
block attention module (CBAM) to enhance key fea-
ture extraction (Woo et al., 2018) this design is par-
ticularly advantageous for the underwater DOA esti-
mation, where capturing subtle directional cues amidst
noise is critical. The model is trained on a simulated
dataset to improve generalization. Experimental re-
sults validate the performance advantages of this ap-
proach under varying signal-to-noise conditions, pro-
viding an efficient and robust solution for underwater
target direction estimation.

2. Vector signal model and data preprocessing

2.1. Single vector hydrophone signal model

Under the far-field plane wave assumption, a single
vector hydrophone can measure the sound pressure p
and the three velocity components, νx, νy, and νz,
at a single point in the sound field. Under ideal con-
ditions, the sensitivities of the sound pressure sensors
and velocity sensors are identical, so the received signal
for a single vector hydrophone can be represented as

p(t) =
N

∑
i=1

si(t) + np(t),

νx(t) =
N

∑
i=1

si(t) cos θi cosφi + nx(t),

νy(t) =
N

∑
i=1

si(t) sin θi cosφi + ny(t),

νz(t) =
N

∑
i=1

si(t) sinφi + nz(t),

(1)

where si(t) represents the incident signal from the i-th
source; θi and φi denote the horizontal and pitch an-
gles, respectively; np(t), nx(t), ny(t), and nz(t) indi-
cate the noise in the sound pressure and three velocity
channels. This expression can be rewritten in a matrix
form for further processing:

x(t) = A ⋅ s(t) + n, (2)

x(t) = [p(t) vx(t) vy(t) vz(t)]
T, (3)
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s(t) = [s1(t) s2(t) . . . si(t) . . . sN(t)]
T, (5)

n = [np(t) nx(t) ny(t) nz(t)]
T. (6)

2.2. Data preprocessing

Before the received signal x(t) is input into the neu-
ral network, it requires preprocessing to enable the neural
network to more effectively extract features. First, the
covariance matrix Rxx of the received signal is com-
puted:

Rxx = E [x(t)xT(t)] , (7)

followed by normalization of Rxx:

Rxxi,j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2 ×
Rxxi,j −minval

maxval −minval
− 1, Rxxi,j ≠ 0,

0, Rxxi,j = 0,

(8)

where Rxxi,j represents the element at the i-th row
and j-th column of the matrix Rxx; minval and maxval
are the minimum and maximum elements of the matrix
Rxx, respectively. By normalizing only the non-zero
elements, we retain the sparse structure of Rxx, which
is crucial for maintaining the integrity of the signal
representation.

3. Network-based direction estimation
of a single vector hydrophone

3.1. Convolutional neural network

A CNN is a feedforward deep neural network based
on convolutional computations and consists of input,
hidden and output layers. The hidden layers include
convolutional layers, activation functions, pooling lay-
ers, and fully connected layers. The convolutional layer
performs convolution operations on input data using
kernels of various sizes, with each layer containing mul-
tiple kernels. Each kernel consists of weight coefficients
and biases and is activated by an activation function.
The convolutional layers are connected in sequence to
extract higher-dimensional data features through mul-
tiple convolution operations. The formula for the con-
volutional layer is as follows:

f
(l)
j = g (

n

∑
i=1

w
(l)
ij ⋅ x

(l−1)
i + b

(l)
j ), (9)

where f (l)j represents the feature value of the j-th fea-
ture in the l-th layer, capturing the output of the con-
volution operation for this feature; w(l)ij is the weight
coefficient connecting the i-th input feature in the
(l − 1)-th layer to the j-th feature in the current layer;
x
(l−1)
i denotes the feature value of the i-th input in the
(l−1)-th layer, serving as the input to the current layer;

b
(l)
j represents the bias term corresponding to the j-th
feature in the l-th layer, which offsets the weighted sum
of inputs; g(⋅) is the activation function, unlike a sig-
moid function, which is inherently nonlinear, ReLU is
piecewise linear but still allows the network to model
complex relationships through its composition across
multiple layers. Lastly, n is the number of input fea-
tures in the previous layer. The fully connected layer
links the extracted features through neurons and uses
ReLU as the activation function:

g(x) =max (0, x) . (10)

In recent years, CNNs have shown significant po-
tential for improving the DOA estimation accuracy
through their feature extraction capabilities. However,
underwater acoustic environments present unique chal-
lenges; complex noise and interference can hinder CNN’s
ability to focus on key features. These challenges ne-
cessitate an enhanced model structure that can effec-
tively extract features while dynamically adjusting its
focus to prioritize relevant information within high-
dimensional data.
The CBAM addresses this issue by introducing an

adaptive attention mechanism that refines feature se-
lection based on channel and spatial importance. In-
tegrating CBAM into the CNN architecture enables
the model to selectively enhance informative features
while suppressing irrelevant background noise. This de-
sign is particularly advantageous for the underwater
DOA estimation, where capturing subtle directional
cues amidst noise is critical. By leveraging the chan-
nel and spatial attention, CBAM integration not only
enhances directional discrimination but also improves
the robustness and accuracy of the DOA estimation
process.

3.2. CBAM module

To fully leverage the CNN’s capability for feature
extraction from high-dimensional data matrices, this
study improves the traditional neural network by in-
troducing CBAM to the CNN structure, thereby en-
hancing the model’s detail extraction capability for the
DOA estimation. The CBAM spatial-channel attention
module is illustrated in Fig. 1.
The channel attention module (CAM) adaptively

adjusts channel weights in the feature map, enhancing
feature selection. For instance, CAM effectively em-
phasizes subtle directional cues in underwater acous-
tic data, improving the model’s focus amidst noise
interference. First, the input feature map undergoes
global average pooling and max pooling along the spa-
tial dimension, resulting in two channel descriptors
that represent global average and maximum features.
Next, these descriptors pass through a shared fully
connected layer sequence, including layers for dimen-
sionality reduction and restoration, with a ReLU ac-
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Fig. 1. Working principle of the CBAM attention mechanism in feature enhancement.

tivation function connecting the intermediate layers.
Then, the two feature vectors are summed and passed
through a Sigmoid activation function to obtain the at-
tention weights for each channel. Finally, these weights
are multiplied by the original input feature map on
a per-channel basis, completing the channel weight-
ing process. This design allows the network to adap-
tively allocate attention based on the global features
of each channel, thereby effectively enhancing its focus
on target features. The Sigmoid activation function is
defined as follows:

σ(x) =
1

1 + e−x
, (11)

where x represents the input value, and σ(x) repre-
sents the output of the Sigmoid function.
The spatial attention module (SAM) learns the

weight distribution in the spatial dimension to high-
light key area information, suppressing interference
from background or irrelevant regions. First, the input
feature map undergoes average pooling and max pool-
ing along the channel dimension to produce two single-
channel feature maps, representing spatial average and
maximum information, respectively. Next, these two
feature maps are concatenated along the channel di-
mension to form a two-channel feature map. This con-
catenated feature map is then processed by a convo-
lutional layer with a kernel size of 7× 7, capturing
a broader range of spatial dependencies and produc-
ing a single-channel spatial attention weight map. Fi-
nally, this weight map is passed through a Sigmoid ac-
tivation function and multiplied element-wise with the
original input feature map to complete spatial weight-
ing. Through this approach, the SAM can adaptively

focus on key regions within the feature map, enhancing
the model’s spatial representation capability.
The CBAM combines channel attention and spa-

tial attention to dynamically adjust the weights of key
information within the feature map. Channel attention
emphasizes key feature channels to enhance the role of
different channel features in the network, while spatial
attention focuses on critical regions within the feature
map, thus capturing essential information required for
accurate direction estimation.

3.3. Network structure

The overall network structure is illustrated in
Fig. 2. This network model is a deep learning archi-
tecture based on a CNN combined with a CBAM, de-
signed for the DOA estimation. The model includes
two convolutional layers: the first layer increases the
input feature channels from 1 to 32, and the second
layer further increases the channels to 64. In the con-
volutional layers, ‘3× 3’ specifies the kernel size, and
the third number indicates the number of kernels.
Each convolutional layer is immediately followed by
a CBAM module to enhance channel and spatial at-
tention for the features. After processing by the con-
volutional layers and CBAM modules, the feature data
is flattened and passed to two fully connected layers,
containing 128 and 64 neurons, respectively, ultimately
outputting two directional estimation values. Through
the integration of convolution and attention mecha-
nisms, this network structure can more effectively ex-
tract key features, thereby improving the accuracy of
the DOA estimation.
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Fig. 2. Network architecture of CNN-CBAM.

3.4. Training process

Monte Carlo simulation is used to generate received
signals x(t) without added colored noise according to
Eqs. (2)–(6); then, the covariance matrix Rxx of the
received signal is computed according to Eq. (7) and
normalized to a 4× 4 matrix to serve as input for the
neural network.
Each sample includes the covariance matrix of

noiseless signals generated at the specific azimuth and
elevation angles. First, an angle conversion factor, the
number of array elements, the sampling frequency,
and the time sequence are set up to simulate the basic
received signal. Sample angles are randomly generated
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Fig. 3. Time-domain signals for four channels when the SNR is 0 dB.

within the specified azimuth and elevation ranges,
and their corresponding array manifold vectors are
calculated and multiplied with the basic signal to
obtain the received data. The covariance matrix is
then constructed from the received data, and its
non-zero elements are normalized by mapping their
values to the range [−1, 1], resulting in a normalized
covariance matrix. All generated covariance matrices
form a dataset for a neural network input, with the ar-
ray of the sample azimuth and elevation angles serving
as output labels for training the deep learning model.
The training data consists of noiseless, clean data, with
target angles randomly selected between 0○ and 359○.
Figure 3 shows the time-domain waveforms of the
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received signal x(t) for each of the four channels when
the SNR is 0.
Training uses the mean squared error (MSE) loss

function and the Adam optimizer. The model under-
goes training for 180 epochs, with each epoch begin-
ning by initializing the accumulated loss in training
mode. Data is loaded in batches to the specified com-
putation device (e.g., GPU), and the model outputs
are obtained through forward propagation, with losses
calculated between the output and true labels. Loss
is backpropagated to update model parameters, and
the mean loss for each epoch is accumulated. During
training, a StepLR scheduler adjusts the learning rate
dynamically every 100 epochs to enhance convergence.
At the end of each epoch, the loss and current learn-
ing rate are recorded and displayed to monitor training
progress. The training loss is shown in Fig. 4.
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200
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600

800
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ss

Training loss

Fig. 4. Training loss variation.

To evaluate the potential overfitting issue, we con-
ducted K-fold cross-validation (K = 4) and recorded
the training and validation losses. The key parameters
used in the validation process are as follows:

– K-value (n splits): 4, indicating the dataset was
divided into 4 subsets for cross-validation;
– batch size: 32, defining the number of samples pro-
cessed in each iteration;
– number of epochs: 180, representing the total
training iterations;
– optimizer: Adam, with a learning rate of 0.001;
– loss function: MSE, used to measure the discrep-
ancy between predicted and true labels.

The results of the K-fold cross-validation are visu-
alized in Fig. 5, which depicts the average training loss
(blue line) and average validation loss (red line) over
the epochs. The figure shows that both the training
and validation losses exhibit a sharp decline in the ini-
tial epochs, followed by a gradual stabilization as the
number of epochs increases. Notably, the training and
validation loss curves remain closely aligned through-
out the training process, the convergence of the loss
curves to a low and stable level, along with the min-
imal gap between the training and validation losses,
suggests that the model effectively avoids overfitting.
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Fig. 5. Training and validation loss curves over epochs
in K-fold cross-validation.

This demonstrates the model’s ability to fit the data
well.

4. Simulation results analysis

The study evaluates the CNN-CBAMmodel’s single-
target direction estimation performance across varying
SNRs. In the simulation, the target azimuth and ele-
vation angles are randomly selected within the range
of 0○ to 359○. SNR values are set to −5 dB, 0 dB, 5 dB,
10 dB, and 15 dB in 5 dB increments, with 10 000 data
samples generated for each SNR, totaling 50 000 sam-
ples. The sampling frequency of the single vector hy-
drophone is 1Hz, with each snapshot containing 1024
sample points and one direction estimated per snap-
shot. The x-axis and y-axis represent the azimuth and
elevation angle errors relative to the target’s true po-
sition, with blue points indicating errors within 10○

for both angles. In Fig. 6, the left subfigure shows
the histogram of azimuth estimation errors, while the
right subfigure shows the histogram of elevation esti-
mation errors. Each subfigure displays the error distri-
butions under SNRs of 15 dB, 10 dB, 5 dB, 0 dB, and
−5 dB. As SNR decreases, the error distribution grad-
ually broadens, and errors increase. At higher SNRs,
such as 15 dB, 10 dB, and 5 dB azimuth and eleva-
tion errors are primarily within 5○. At lower SNRs,
like 0 dB and −5 dB, the CNN-CBAM model demon-
strates reliable performance, with the majority of es-
timation errors not exceeding 15○ in azimuth and 10○

in pitch.
In this simulation, the target azimuth and elevation

angles were set to [45○, 45○], with other simulation pa-
rameters remaining consistent with previous settings.
The target direction was estimated using the weighted
histogram method, MUSIC, Capon, the fourth-order
cumulant method (Guo et al., 2018), SBL (Liang
et al., 2021), and the CNN-CBAM model. Figure 7
illustrates the CNN-CBAM model’s estimation results
under various SNR conditions, where the x-axis and
y-axis represent the azimuth and elevation angle errors
relative to the true target position, with blue points
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Fig. 6. Random direction estimation results of the
CNN-CBAM method under different SNRs: a) SNR
= 15 dB; b) SNR = 10 dB; c) SNR = 5 dB; d) SNR =

0 dB; e) SNR = −5 dB.
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Fig. 7. Estimation results of the CNN-CBAM method
for [45○, 45○] under different SNRs: a) SNR = 15 dB;
b) SNR = 10 dB; c) SNR = 5 dB; d) SNR = 0 dB;

e) SNR = −5 dB.
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indicating errors within 10○ for both angles. The re-
sults show that under SNR conditions of 5 dB, 10 dB,
and 15 dB, the CNN-CBAM model achieves effective
direction estimation with azimuth and elevation errors
not exceeding 2○. Even under SNR conditions of −5 dB
and 0 dB, the model successfully estimates the source’s
direction with errors in both azimuth and elevation
within 7○.
The analysis of azimuth and pitch angle error dis-

tributions under varying SNR conditions (SNR = 15,
10, 5, 0, −5) reveals a systematic increase in distribu-
tion non-uniformity and measurement inaccuracy as
SNR decreases. At high SNR (15 dB, 10 dB), the ma-
jority of error points are clustered in the southwest
direction relative to the origin, indicating high mea-
surement precision with minimal deviation. As SNR
reduces to 5 dB, the error distribution shifts predom-
inantly to the west, reflecting a moderate decline in
accuracy. In low SNR conditions (0 dB and −5 dB),
the error points are concentrated in the northwest di-
rection, demonstrating significant dispersion and the
emergence of systematic errors. This directional non-
uniformity in the error distribution is attributed to
noise interference and system instability, which are
exacerbated under low SNR conditions. To quantify
this systematic deviation, we introduce the concept of
bias (B), defined as the mean difference between the
estimated angles (ŷi) and the true angles (yi):

B =
1

n

n

∑
i=1

(ŷi − yi), (12)

where n is the total number of measurements. This
bias term captures the systematic error component,
which becomes increasingly significant as SNR de-
creases, highlighting the need for robust error correc-
tion strategies in low SNR environments.
The bias in azimuth and pitch measurements re-

fer to the systematic deviation of the estimated values
from their true values. In this study, the bias is quan-
tified as the mean error of azimuth and pitch measure-
ments under different SNR conditions. As shown in
Table 1, the mean azimuth errors exhibit a consistent
negative bias across all SNR levels, ranging from −0.27○

at 15 dB to −1.82○ at −5 dB. This indicates that the az-
imuth estimates are systematically lower than the true
values, and the magnitude of this bias increases with
decreasing SNR.

Table 1. Biases of azimuth and pitch angles under different
SNR conditions.

SNR [dB] Azimuth error mean [○] Pitch error mean [○]
15 −0.27095 −0.29417

10 −0.29320 −0.24869

5 −0.37225 −0.11144

0 −0.68524 0.28555

−5 −1.82368 1.33251

Similarly, the mean pitch errors demonstrate a tran-
sition from negative to positive bias as the SNR de-
creases. At higher SNR levels (e.g., 15 dB), the pitch
errors show a negative bias of −0.29○, suggesting that
the pitch estimates are slightly lower than the true val-
ues. However, as the SNR decreases, the bias shifts to-
wards positive values, reaching 1.33○ at −5 dB. This in-
dicates that the pitch estimates become systematically
higher than the true values under low SNR conditions.
The observed biases in both azimuth and pitch

measurements highlight the influence of SNR on the
accuracy of the estimation process. The increasing neg-
ative bias in azimuth and the transition from negative
to positive bias in pitch suggest that the estimation
algorithms may be more susceptible to noise in cer-
tain directions or dimensions. These findings empha-
size the need for bias correction techniques, particu-
larly in low SNR environments, to improve the accu-
racy of azimuth and pitch measurements.
Figure 8 shows the estimation results of differ-

ent methods under a −5 dB SNR. MUSIC, Capon,
weighted histogram, and fourth-order methods use
a spectral peak search step size of 0.1○, while SBL em-
ploys a grid step size of 0.1○. CNN-CBAM and SBL
stand out as the most effective methods for the DOA
estimation, offering high accuracy. While weighted his-
togram and fourth-order cumulant methods remain
competitive. MUSIC and Capon methods are more
sensitive to noise and exhibit higher estimation errors.
However, a notable limitation of CNN-CBAM in this
scenario is that a significant portion of its estimates
do not uniformly distribute around the origin, as ob-
served in the error distribution plot. This deviation in-
dicates that while CNN-CBAM achieves high accuracy
in many cases, its estimates can be biased or skewed
under low SNR conditions, leading to occasional insta-
bility. This limitation highlights the need for further re-
finement of the method to ensure more consistent and
uniform performance across all scenarios. Future work
could focus on enhancing the noise resilience of CNN-
CBAM by optimizing its attention mechanisms, incor-
porating additional noise suppression techniques, or in-
tegrating it with probabilistic frameworks like those
used in SBL to address this issue and improve its ro-
bustness in highly noisy environments.
This study adopts the root mean square error

(RMSE) as the performance metric for direction es-
timation, where ŷi represents the estimated data and
yi represents the actual data:

RMSE =

¿
Á
ÁÀ 1

n

n

∑
i=1

(yi − ŷi)
2
. (13)

Figure 9 illustrates the RMSE of six DOA esti-
mation methods, weighted histogram, MUSIC, Capon,
fourth-order, CNN-CBAM, and SBL, across SNR lev-
els ranging from −5 dB to 15 dB. As SNR increases,



F. Zeng et al. – Single Vector Hydrophone DOA Estimation: Leveraging Deep Learning with CNN-CBAM 195

a)

-4 -3 -2 -1 0 1
Azimuth error [°]

-1

0

1

2

3

4

Pi
tc

h 
er

ro
r [

°]

Errors 10°
Errors >10°

b)

-10 -8 -5 5 8 10

-8

-5

-2

0

2

5

8
Errors  10°
Errors >10°

Pi
tc

h 
er

ro
r [

°]

-2
Azimuth error [°]

20

c)

-20 -10 10 200
Azimuth error [°]

-20

-10

0

10

20
Errors   10°
Errors >10°

Pi
tc

h 
er

ro
r [

°]

d)

-20 -10 10 20
-20

-10

0

10

Errors  10°
Errors >10°

0
Azimuth error [°]

Pi
tc

h 
er

ro
r [

°]

e)

-10 -5 5 10

-10

-5

0

5

10 Errors  10°
Errors >10°

Pi
tc

h 
er

ro
r [

°]

0
Azimuth error [°]

Fig. 8. Estimation results of various methods for
[45○, 45○] when the SNR is −5 dB: a) CNN-CBAM;
b) weighted histogram; c) MUSIC; d) Capon;

e) fourth-order cumulant; f) SBL.
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Fig. 9. RMSE of various methods for estimating [45○, 45○]
under different SNRs.

the RMSE for all methods decreases, reflecting im-
proved estimation accuracy. CNN-CBAM consistently
achieves the lowest RMSE values, demonstrating high
accuracy across all SNR conditions, particularly ex-
celling at higher SNR levels. The fourth-order also per-
forms well, closely following CNN-CBAM and SBL,
while MUSIC and Capon show moderate performance
with higher RMSE values at lower SNR. Overall, CNN-
CBAM, the fourth-order and SBL stand out as the
most effective methods, offering high accuracy and re-
liability in the DOA estimation.
Underwater environments are characterized by

complex noise conditions, including not only Gaus-
sian noise but also other types of noise such as im-
pulse noise, ambient noise, and biological noise. To
evaluate the adaptability of the CNN-CBAM model
to such environments, we conducted experiments by
adding impulse noise to the data at a SNR of 0 dB,
with impulse noise ratios ranging from 0.05 to 0.25.
We compared the RMSE of six DOA estimation meth-
ods. Figure 10 illustrates the RMSE performance of six
DOA estimation methods, the RMSE of all methods
generally rises, with MUSIC and Capon showing the
most significant degradation in performance. In con-
trast, CNN-CBAM performs well under low impulse
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Fig. 10. RMSE of various methods under varying impulse
noise ratios.
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noise ratios (5% and 10%), achieving lower RMSE
values, however, as the noise ratio increases, its per-
formance degrades rapidly, with RMSE rising signif-
icantly, highlighting its sensitivity to higher levels of
impulse noise, the fourth-order cumulant demonstrates
greater resilience, with a slower increase in RMSE. The
results suggest that CNN-CBAM, despite its advanced
architecture, may require enhancements such as noise
suppression techniques or hybrid approaches to im-
prove its performance in environments dominated by
impulse noise. Future work could focus on integrating
traditional signal processing methods with deep learn-
ing models to achieve better adaptability to complex
underwater noise conditions.
Table 2 presents the computation time of six DOA

estimation methods for single and multiple (10) tar-
gets, MUSIC, Capon, weighted histogram, and fourth-
order methods use a spectral peak search step size
of 1○, while SBL employs a grid step size of 1○, re-
vealing that CNN-CBAM, despite its slightly longer
computation time (0.125 s) for single-target estima-
tion compared to Capon (0.136 s) and weighted his-
togram (0.031 s), demonstrates superior scalability and
efficiency for multiple targets, requiring only 0.228 s
for 10 targets. This advantage stems from its parallel
processing capability, attention mechanism, and opti-
mized framework, which minimize computational over-
head in complex scenarios. In contrast, methods like
the fourth-order and SBL exhibit significantly longer
computation times (6.722 s and 13.279 s, respectively)
for multiple targets, making them less practical. Thus,
CNN-CBAM emerges as an efficient choice for the real-
time DOA estimation, particularly in applications in-
volving continuous estimation.

Table 2. Comparison of methods in processing time.

Method
Time

for single target
[s]

Time
for 10 targets

[s]
CNN-CBAM 0.125 0.228

MUSIC 0.226 3.306

Capon 0.136 1.437

Weighted histogram 0.031 0.359

Fourth-order 0.583 6.722

SBL 1.247 13.279

5. Discussions

The proposed CNN-CBAM model represents a sig-
nificant advancement in the DOA estimation for single
vector hydrophones, particularly in complex underwa-
ter acoustic environments. By integrating the CBAM
into a CNN, the model achieves superior noise resis-
tance and estimation accuracy across a wide range
of SNRs. This innovative approach addresses the lim-
itations of traditional methods such as MUSIC and

Capon, which often struggle with non-stationary noise
and multipath effects. The model’s ability to adap-
tively focus on critical features through channel and
spatial attention mechanisms establishes it as a robust
solution for real-time underwater target localization.
However, several challenges remain to be addressed.

A notable limitation is the model’s performance in
multi-source environments or scenarios with overlap-
ping signal sources. While CNNs excel in one-to-one
mapping tasks, their performance deteriorates when
handling multiple concurrent sources. This degrada-
tion is primarily attributed to the inherent complex-
ity of disentangling overlapping signals, which de-
mands more sophisticated feature extraction and sep-
aration techniques. Future work should prioritize en-
hancing the model’s capability to handle multi-source
scenarios, potentially through the integration of ad-
vanced signal separation algorithms or hybrid architec-
tures that combine CNNs with other machine learning
paradigms.
The computational efficiency of the CNN-CBAM

model is another critical consideration. As demon-
strated in Table 2, the model exhibits competitive pro-
cessing times for single-target estimation and demon-
strates superior scalability for continuous estimation.
This efficiency is largely due to the parallel process-
ing capabilities of CNNs and the optimized attention
mechanisms of CBAM. Nevertheless, computational
requirements may escalate significantly in multi-source
environments, necessitating further optimization of the
network architecture and training process. Future re-
search should explore techniques such as model prun-
ing, quantization, and distributed computing to en-
hance scalability and reduce computational overhead.
Integrating the CNN-CBAM model into existing

underwater acoustic systems presents additional chal-
lenges. A key issue is compatibility with legacy hard-
ware and software, which may require substantial mod-
ifications to accommodate the deep learning frame-
work. Moreover, the model’s reliance on large datasets
for training poses logistical challenges in data collec-
tion and preprocessing. To address these issues, future
work should focus on developing modular and adapt-
able frameworks that can be seamlessly integrated into
existing systems, as well as exploring transfer learning
techniques to reduce dependency on extensive train-
ing data.
The CNN output, while not always precise, is ‘pre-

cisely wrong’ in the sense that it consistently deviates
from the true values in a predictable manner. This sys-
tematic bias, particularly evident in low SNR condi-
tions, underscores the need for robust error correction
strategies. Future research should investigate methods
to mitigate this bias, such as incorporating probabilis-
tic frameworks or ensemble learning techniques, to im-
prove the model’s reliability and accuracy. By address-
ing these challenges and advancing the proposed ap-
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proach, the CNN-CBAM model has the potential to
significantly enhance the state of the art in the DOA
estimation, providing a robust and efficient solution for
underwater acoustic target localization in real-world
applications.
Future research directions should focus on ad-

vancing the multi-source DOA estimation through
the integration of signal separation techniques or hy-
brid architectures, enhancing the model’s capability
in complex environments. Systematic biases in the
model’s output, particularly under low SNR condi-
tions, must be addressed through robust error cor-
rection strategies to ensure reliable and accurate esti-
mations. Computational efficiency and scalability can
be further optimized via techniques such as model
pruning and distributed computing, enabling real-time
applications. To facilitate seamless integration into ex-
isting underwater acoustic systems, modular frame-
works should be developed, overcoming compatibil-
ity and logistical challenges. Additionally, leveraging
transfer learning techniques can reduce dependency
on extensive training datasets while improving adapt-
ability to diverse operational scenarios. Furthermore,
real-world experiments will be conducted to validate
the method’s effectiveness in practical underwater en-
vironments, ensuring its robustness and applicability
in real-world scenarios. By addressing these critical ar-
eas, the CNN-CBAM model is poised to significantly
advance the state of the art in the DOA estimation,
offering a robust and efficient solution for underwater
acoustic target localization in real-world applications.

6. Conclusion

This study proposes a CNN-CBAM-based ap-
proach for the DOA estimation using a single vector
hydrophone, enhancing accuracy in complex under-
water environments. By integrating the CBAM with
a CNN, the model processes normalized covariance
matrices to focus on critical channels and spatial fea-
tures. Experimental results demonstrate robustness
across varying SNRs, with azimuth and elevation er-
rors within 5○ at higher SNRs (15 dB, 10 dB, 5 dB) and
within 15○ in azimuth and 10○ in pitch at lower SNRs
(0 dB, −5 dB).
The CNN-CBAM model outperforms traditional

methods such as MUSIC and Capon in precision and
noise resistance, addressing limitations of eigenvalue
decomposition-based methods in non-stationary noise
and multipath environments. Challenges remain in
multi-source environments, where overlapping signals
degrade performance. Future work will focus on en-
hancing the multi-source DOA estimation, optimizing
computational efficiency, leveraging transfer learning
for practical deployment, and conducting real-world
experiments to validate the method’s effectiveness.
These advancements will solidify the CNN-CBAM

model as a robust solution for real-time underwater
target localization.
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To predict the scattered acoustic field for underwater targets with separate transmission and reception
points, a forecasting method based on limited scattered acoustic pressure data is proposed. This method repre-
sents the scattered acoustic field as the product of an acoustic scattering transfer function and a source density
function. By performing numerical integration, the transfer function is obtained using the model surface grid
information as input. An equation system concerning the unknown source density function is then derived us-
ing the computed scattering transfer matrix, the principle of acoustic reciprocity, and the geometric properties
of the target. The unknown source density function is solved using the least squares method. The scattered
field with separate transmission and reception points is then obtained by multiplying the calculated trans-
fer matrix with the estimated source density function. This paper applies the finite element method (FEM)
to solve the scattering field for a benchmark model with separate transmission and reception points. Using
a subset of the elements as input, predictions of the omnidirectional scattered field were made. The predicted
results were subsequently compared with those obtained from FEM simulations. The simulation results demon-
strate that the proposed method maintains high computational accuracy and is applicable to the prediction
of low-frequency scattered fields from underwater targets with spatially separated source and receiver. Fur-
ther comparison with the FEM-calculated target strength patterns across varying incident–reception angles
reveals a high level of agreement, indicating that accurate bistatic target strength predictions can be achieved
with a limited amount of input data.

Keywords: acoustic scattering properties; bistatic scattering sound field; scattering sound field prediction;
target strength.
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1. Introduction

Acoustic waves are the only physical field capable
of transmitting information effectively over long dis-
tances in the ocean. Devices that use acoustic waves
for underwater detection, positioning, navigation, and
communication are collectively referred to as sonar
(Tang et al., 2018). Currently, sonar technology and

detection methods are undergoing significant transfor-
mation, with increasingly complex underwater acous-
tic environments. Future developments in sonar tech-
nology are expected to integrate active and passive
systems, multi-band capabilities, and multifunctional-
ity. Key directions include low-frequency, high-power,
adaptive array processing, and distributed transmis-
sion and reception systems.
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The rise of big data and artificial intelligence has
also enabled the possibility of coordinated networks
and formations of sonar-equipped tools, such as un-
manned surface and underwater vehicles (UUVs).
However, complex hull structures face unprecedented
challenges from these three-dimensional underwater
detection networks.
Research methods for studying the echo character-

istics of complex hull structures can be categorized into
theoretical solutions, numerical methods, and approx-
imation methods. Theoretical solutions are primarily
used to analyze the scattering acoustic fields of regu-
lar models, such as spheres and infinitely long cylin-
ders. For more complex shapes and materials, numeri-
cal methods like the T-matrix method (Waterman,
2005), the finite element/boundary element method
(FEM/BEM) (Zhou et al., 2009), and the finite differ-
ence time domain (FDTD) method (Schneider et al.,
1998). Numerical methods offer a broad range of ap-
plications and are capable of solving target scatter-
ing problems under virtually any conditions. For high-
frequency, large-scale models, the computational speed
of numerical methods is often slow, necessitating the
use of approximation methods for more efficient calcu-
lations. Fan and Zhou (2006) proposed a modified pla-
nar element method that incorporates considerations
for occlusion and secondary scattering effects. Peng
et al. (2018) presented a method to predict echo char-
acteristics of surface targets using the Kirchhoff ap-
proximation. Xue et al. (2023) improved the compu-
tational efficiency of the patch element method by re-
placing planar elements with surface elements, thereby
enhancing the overall calculation speed of the method.
The bistatic target detection offers advantages such

as an excellent, wide detection range, and strong anti-
jamming capability, leading many scholars to con-
duct in-depth studies on the bistatic acoustic scatter-
ing characteristics. Chen et al. (2024) proposed and
validated a prediction method for underwater acous-
tic scattering. Liu et al. (2012) proposed a modifica-
tion to the scattering integration region on the target
surface, thereby extending the applicability of phys-
ical acoustics to arbitrary separation angles. Wang
et al. (2022) developed a time-domain transforma-
tion method based on the Kirchhoff approximation
for calculating bistatic acoustic scattering of under-
water rigid targets. In the field of bistatic underwa-
ter maneuvering target tracking. Gunderson et al.
(2017) discussed the interference and resonance struc-
tures present in the frequency responses of the targets,
and presented bistatic spectra for a variety of elastic
sphere materials. Meng et al. (2024) proposed a high-
light model for predicting bistatic acoustic scattering
characteristics. Schmidt (2001) studied bistatic scat-
tering from buried targets in shallow water. Agounad
et al. (2023) systematically analyzed the guided wave
propagation characteristics of cylindrical shells under

bistatic acoustic scattering configurations from both
theoretical and experimental perspectives, and pro-
posed a time–frequency analysis-based method to es-
timate the group velocities of waves propagating in
different directions. Cheng et al. (2010) established
a bistatic scattering strength model for underwater
targets under far-field conditions based on the Kirch-
hoff approximation. Park et al. (2006) studied the
bistatic acoustic scattering phenomena of a hemispher-
ical closed cylinder. Gu et al. (2025) proposed an im-
proved rapid prediction method for solving the full-
space bistatic scattering acoustic field of underwater
vehicles. Zhang et al. (2011) conducted a thorough
review of the existing research, summarizing key ad-
vancements and trends in this area. Long et al. (2022)
demonstrated through research that, in bistatic sys-
tems, detection performance for configurations such as
quadrilateral, hexagonal, rhombic, and checkerboard
layouts consistently outperforms that of collocated
transmission and reception configurations. Schenck
et al. (1995) developed a hybrid method to predict the
complete three-dimensional acoustic scattering func-
tion from limited data by using computational mod-
els and least-squares problems. Currently, research on
underwater bistatic scattering acoustic fields primar-
ily focuses on typical configurations such as collocated
transmission and reception, as well as forward scatter-
ing. There is relatively little research on the relation-
ship between collocated and bistatic scattering fields.
In early radar systems, a method known as the sepa-
ration theorem was used to estimate the bistatic tar-
get strength based on the known monostatic target
strength. However, the separation theorem is only ap-
plicable for small separation angles. There is currently
no well-established method for calculating and relating
the scattering echoes in bistatic systems.
This paper investigates the transmit-receive sep-

aration echo characteristics for large angles and om-
nidirectional scenarios, focusing on the prediction of
transmit-receive separation scattering acoustic fields
based on limited data. A prediction method for transmit-
receive separation scattering acoustic fields is estab-
lished, combining limited data, model geometry prop-
erties, numerical integration, acoustic reciprocity, and
the least squares method. Using the integral formula
of the acoustic field and the surface integral equa-
tion, the far-field scattering sound pressure is expressed
as the product of the unknown sound source den-
sity function and the sound scattering transfer matrix.
Through numerical integration, the target surface grid
model is used as input to obtain the sound scattering
transfer matrix. Based on the calculated sound scat-
tering transfer matrix, the principle of acoustic reci-
procity, and the geometric properties of the target,
a system of equations for the unknown sound source
density function is derived. The unknown density func-
tion is then solved using the least squares method. The
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calculated sound scattering transfer matrix and the un-
known sound source density function are multiplied
to obtain the transmit-receive separation scattering
acoustic field. The FEM is used to solve the transmit-
receive separation scattering acoustic field for a Bench-
mark model. Several elements from the model are
used as input to predict the omnidirectional transmit-
receive separation scattering acoustic field. A compari-
son is made between the predicted results and the FEM
results. The simulation results show that the method
has good computational accuracy and can be used for
calculating the transmit-receive separation scattering
acoustic fields of complex underwater targets.

2. Theoretical method

The scattered acoustic field can be expressed as
the product of the sound transfer function and the
equivalent surface source density function of the target
(Schenck et al., 1995). As shown in Fig. 1, under the
plane wave incidence from the direction x̂ inc, the sound
pressure at the receiver point x can be expressed as

ps (x, x̂ inc
) =

1

4π
∫
s

q (ξ, x̂ inc
) [

∂

∂nξ
+ i]

⋅
e−ikr(x,ξ)

r(x, ξ)
dS(ξ), (1)

where q is the unknown source density function; S rep-
resents the target surface; x̂ inc is the unit vector in the
direction of the incident point; ξ denotes a point on
the target surface and n̂ is the unit normal vector at
a point on the target surface. Where R(x) is the dis-
tance between the target and the receiver point in the
far field, and r(x, ξ) is the distance between a point ξ
on the target surface and the receiver point in the near
field. The target surface S is discretized intoNs surface
elements, Eq. (1) is expressed as

ps (x, x̂ inc) =
1

4π

Ns

∑
l=0

ql(x̂
inc
)∫
s0

[
∂

∂nξ
+ i]

⋅
e−ikr(x,ξ)

r (x, ξ)
dS(ξ), (2)

R(x) xS

r(x,ξ)

ξ
δ(ξ)

n(ξ)̂

o

xxinĉ

Fig. 1. Schematic diagram of target sound scattering.

when the receiver point x is defined in the far
field of the integration surface S, r(x, ξ) =̇R(x) and
divided by the spherical wave propagation factor
e−ikR(x)/R(x), the far-field scattered sound pressure
is defined as follows:

psff (x, x̂
inc) =

1

4π

Ns

∑
l=0

q(x̂ inc
)

⋅∫

S

[ikx̂ n̂(ξ) + i] e−ikx̂δ(ξ) dS(ξ). (3)

Define the scattering acoustic field matrix S, where
the elements are denoted as Smn = psff (x̂m, x̂

inc
n ). Ad-

ditionally, define the source density matrixQ, with the
elements represented as Qln = ql (x̂ inc

n ), therefore, we
have the following relationship:

S =CffQ. (4)

The vectors Sex, Qex, and Cex are expressed as

Sex = [S11,S12, ...,S1n,S21,S22, ...,S2n, ...,

Sm1,Sm2, ...,Smn]
T, (5)

Qex = [q11,q12, ...,q1n,q21,q22, ...,q2n,⋯,

qm1,qm2, ...,qmn]
T, (6)

Cex = [C
1
e,C

2
e, ...,C

m
e ]

T, (7)

Ci
e =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ci 0 ⋯ 0
0 Ci ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ Ci

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (8)

where, the matrix element S corresponds to the acous-
tic pressure, C to the transfer function, and q to the
source density function.
The sound scattering matrix S is an m×n matrix,

the sound scattering transfer matrixCff is anm×l ma-
trix, and the source density matrixQ is an l×n matrix.
The sound scattering transfer matrix can be computed
using the Gaussian–Legendre quadrature method for
numerical integration. The sound scattering matrix S
and the source density function matrix Q can be
rewritten as column vectors Sex and Qex, respectively.
Simultaneously, the matrix Cff undergoes a matrix
transformation to yield Cex:

Sex =CexQex. (9)

According to the principle of acoustic reciprocity,
the ratio of the excitation applied at point A to the
response at point B is equal to the ratio of the exci-
tation applied at point B to the response at point A.
The elements of the sound scattering matrix satisfy:

Smn = Snm. (10)
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For the bistatic scattering matrix S, it is a sym-
metric matrix where the upper triangular elements are
equal to the lower triangular elements. By perform-
ing elimination while retaining the diagonal elements,
m1(m1 + 1)/2 equations are obtained:

Sre =CreQre , (11)

where Sre is composed of the monostatic scattered
acoustic pressure and a zero vector.
Assuming that the monostatic acoustic scattering

matrix Sre is known, a portion of the scattered sound
pressure data Sad from the receive-transmit separated
configuration is added to the vector Sre . At the same
time, the corresponding row vector in the matrix Cex

that corresponds to Sad is found. These are then com-
bined to form the matrix Cad, which is subsequently
appended to the matrix Cre . This results in a sound
scattering matrix Ss that contains both monostatic
and partial bistatic configurations, as well as the cor-
responding matrix Cs is:

Ss= [
Sre

Sad
], Cs= [

Cre

Cad
]. (12)

The least squares method is used to approximate
the solution of Eq. (6), resulting in the source density
matrix Qex. The obtained column vector Qex is then
transformed into an l1 × n1 matrix Q. This matrix Q,
along with the calculated bistatic scattering transfer
matrix Cff

ml, is substituted into Eq. (3) to obtain the
bistatic scattered sound pressure S. The detailed pro-
cedure is illustrated in Fig. 2.
The target strength is calculated using the follow-

ing expression, assuming an incident acoustic pressure
of 1Pa:

TS = 20 log(abs(Ss)). (13)

To evaluate how much input data is required to
achieve accurate prediction results, the ratio η between

the elements of the input scattered sound pressure data
and the predicted scattered sound pressure data can be
expressed as

η =
k(k + 1) + 2m1

2m2
1 − k(k + 1) − 2m1

× 100%. (14)

3. Case studies

The finite element software COMSOL Multi-
physics, a multi-physics coupling software, is used to
solve the scattering sound field under planar wave in-
cidence. Partial sound scattering data obtained from
simulation calculations and the target surface mesh
are used as input to predict the separated transmit-
receive scattering sound field. Finally, the prediction
results are compared and analyzed with the finite ele-
ment results.

3.1. Cylinder

Figure 3 is a schematic diagram of the triangular
mesh model for column targets. The acoustic scatter-

 
Fig. 3. Cylindrical target surface geometry mesh model.
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ing transfer function is calculated according to the grid
model Cff

ml, the calculation frequency is 100Hz–1 kHz,
the step length is 50Hz, the incidence angle and re-
ceiving angle are 0○–360○, and the step length is 2○,
different quantities of finite element calculation data
are taken as input for prediction.
According to the grid model, the calculation condi-

tions for the sound scattering transfer function remain
consistent with those described earlier. Predictions are
performed using varying amounts of finite element sim-
ulation data as input. Bistatic target strength predic-
tions for cylindrical targets are conducted using a rigid
cylinder as shown in Fig. 4.
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Fig. 5. Comparison of frequency-angle spectra of rigid cylinder predictions and FEM target strength.
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Fig. 6. Prediction of rigid cylindrical target strength maps and calculation using the finite element method
for separate transmission and reception.
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Figure 7 Benchmark single-hull submarine model 
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The bistatic scattering sound field matrix S is con-
structed by sorting out the finite element calculation
results, the bistatic scattered sound field is predicted
by controlling the ratio η of the input element and
the prediction element. Figure 5 shows the compari-
son results of the target strength frequency-angle spec-
trum between forecast results and finite element cal-
culation results. Figure 6 compares the target strength
predicted by the proposed method and the finite el-
ement method under different incident and receiving
angles.

3.2. Benchmark model

The applicability of the method discussed in this
paper is examined by selecting the Benchmark single-
shell model, which has a total length of 62m. The spe-
cific dimensions are shown in Fig. 7.
The underwater vehicle model is subjected to the

finite element simulation, where the hull is set as rigid.
The incident wave is a harmonic plane wave with unit
amplitude in the xOy plane. The calculation conditions
are the same as those for the cylinder.
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Fig. 8. Comparison of the predicted and finite element target strength frequency-angle spectra
for the Benchmark scaled model.

As shown in Fig. 8, the predicted results for the
Benchmark scaled model are similar to the predic-
tion trends for the cylindrical model. As the num-
ber of input elements increases, the predicted results
become more consistent with the analytical solution.
However, the prediction accuracy decreases as the fre-
quency increases. Figure 8 presents the bistatic tar-
get strength maps for the Benchmark scaled model
and the FEM; Figs. 8a–8c show the finite element
results, Figs. 8d–8f present the predicted results for
η = 3.15%; and Figs. 8g–8i show the predicted results
for η = 1.91%. Figure 9 compares the predicted and
finite element computed bistatic target strength maps
for the Benchmark scaled model.

4. Conclusion

This paper presents a prediction method for
bistatic scattering sound fields based on limited data.
The bistatic scattering sound field is expressed as
the product of the target’s sound scattering transfer
function and the source density function. The target
surface mesh is used as input to numerically integrate
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Fig. 9. Comparison of the predicted and finite element computed bistatic target strength maps
for the Benchmark scaled model.

and obtain the bistatic target sound scattering transfer
function. Using the known co-located transmit-receive
scattered sound pressure, n sets of separated transmit-
receive scattered sound pressures, and their corre-
sponding sound scattering transfer functions as input,
the source density function is solved using the least
squares method. This method establishes a connec-
tion between single-base and bistatic scattering sound
fields, offering significant practical value in acoustic
scattering experiments, numerical calculations, and
underwater countermeasure applications. The pro-
posed prediction method has the following features:

1) This prediction method is applicable to low-
frequency bistatic scattering sound field forecast-
ing. In theory, it can be used to calculate the scat-
tering sound field for any complex target model
without relying on the internal structure of the
target. It only requires the input of the sur-
face geometric mesh and known scattered sound
pressure data to predict the bistatic scattering
sound field for targets with complex structures.
The method demonstrates good computational ef-

ficiency for low-frequency, small target bistatic
scattering sound field calculations.

2) The prediction accuracy of this method is depen-
dent on both the precision and location of the in-
put elements. The higher the precision of the input
elements, the more accurate the prediction. Addi-
tionally, the location of the input elements has
a significant impact on the prediction accuracy.
When the known input elements correspond to
the peaks of the scattering sound field, the pre-
diction performs better. For bistatic scattering
sound fields, the strongest scattered echoes typ-
ically occur in the forward scattering direction
of the target, while strong echoes are also found
in the backscattering direction, i.e., the co-located
transmit-receive direction. Furthermore, scatter-
ing echoes from the mirrored reflection directions
are also significant. In contrast, the scattering
echo in the vertical direction of the incident wave
is relatively weak. Therefore, using elements from
these directions as known data for prediction re-
sults in higher computational efficiency.
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3) The method proposed in this paper estimates the
target strength of any complex shape and struc-
ture at any given angle of view based on a small
amount of known data. It can be used for the
engineering prediction of bistatic target strength
for complex underwater targets and is applicable
in underwater bistatic experiments. This method
only requires the target surface mesh, making the
modeling process simple and the calculation speed
relatively fast, which holds certain potential ap-
plication value in numerical calculations and un-
derwater countermeasures. However, this method
is suitable for low-frequency bistatic scattering
sound field prediction, and the accuracy of the
predictions is dependent on the position and pre-
cision of the input elements.
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The present study focuses on the spatial characteristics of the sound pressure level (SPL) generated by
a circular piston (a circular-shaped acoustic transducer or loudspeaker). It presents a short theoretical review
to aid inunderstanding the primary sound field characteristic – acoustic pressure – as a function of time,
frequency, directivity angle, and distance from the source. The study introduces a simple and practical criterion
for determining the near- and far-field boundary along the axis of the circular piston as a function of frequency.
This criterion is validated through theoretical analysis and experimental measurements. Overall, the results
show the influence of circular piston parameters on the SPL spatial distribution.
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1. Introduction

The study of sound’s spatial characteristics plays
a critical role in numerous engineering and medical ap-
plications (Stefanowska, Zieliński, 2024). Over the
years, extensive research has been conducted on sound
propagation in different environments, such as water
(van Geel et al., 2022) and air (Iliev, Zhivomirov,
2015; Kudriashov, 2017).
Additionally, various experiments have explored

sound produced by different sources, including uncon-
ventional ones (Öztürk, Tiryakioglu, 2020).
To better understand the sound field generated by

an acoustic transducer, its spatial characteristics must
be examined using both conventional and innovative
methods (Klippel, Bellman, 2016; Shi et al., 2022).
In this context, the sound pressure pa is the physical
quantity (parameter) that provides the most detailed
information about the structure of the sound field in
the space.
Theoretical analysis indicates that the SPL near

a circular piston is not uniformly distributed. In clas-
sical acoustics, two primary regions are distinguished

around an acoustic source: the near-field and far-field.
A third region, known as the very near-field, is pri-
marily the subject of research in vibration mechanics.
In some references, the near-field is referred to as the
Fresnel zone, while the far-field is called the Fraun-
hofer zone. Each zone has distinct formulas for deter-
mining the sound pressure pa. This raises questions
about the delineation of the boundaries defining vari-
ous zones and the corresponding SPL variations within
each zone. Equally crucial is pinpointing the moment
at which the SPL stabilizes, ensuring accurate sound
reproduction.
This paper builds upon the author’s previous re-

search (Iliev, Zhivomirov, 2015), which provided
a theoretical overview of established mathematical
techniques for calculating the SPL generated by a cir-
cular piston in both near-field and far-field condi-
tions. Expanding on that foundation, this work pro-
poses a unified framework to define the boundary
between the near- and far-field zone of a circular
piston.
Understanding the formation of the SPL spatial

structure around the acoustic transducer enhances its
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design and application precision, especially in monitor-
ing and screening systems.

2. Background

As shown by Kinsler et al. (2000) the total acous-
tic pressure pa generated by a circular piston at an
arbitrary point A (Fig. 1) can be obtained using the
well-known Huygens–Fresnel principle (also referred to
as the Rayleigh integral):

pa(entire)(θ, f, r, t) = jρsfνm ∫
Q

1

l
e
j(2πft− 2πfl

c )
dQ, (1)

where θ – elevation angle; f – frequency of the sound
signal; r – distance between the circular piston and ob-
servation point A; t – time; ρs – density of the medium;
νm – deformation amplitude the transducer surface;
Q – surface area of the circular piston; l – distance
between the elementary section dQ and observation
point A; c – speed of sound in the medium.
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l

O

α
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θ

d = 2a
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a

Fig. 1. Determination of the SPL in front
of a circular piston.

Equation (1) is not suitable for direct practical
implementation. However, the entire acoustic pres-
sure pa(entire), generated by a circular piston, can also
be computed using the authors’ modified expression
(Iliev, 2014):

pa(entire)(θ, f, r, t) = ρsfνme
j2πft

a

∫
0

bdb
2π

∫
0

⋅
e
−j2πf

c (

√

r2+b2+2rb sin θ cosα)

√
r2 + b2 + 2rb sin θ cosα

dα, (2)

where a – radius of the circular transducer; b – radial
distance between the elementary section (point source)
dQ and the center of the circular piston O; α – direc-
tivity angle (azimuth).

A simplified solution of Eq. (2) allows for calcu-
lating the sound pressure in the far-field pa(far) (when
r ≫ d) on the axis of the circular piston (when θ = 0),
as follows (Kinsler et al., 2000):

pa(far)(0, f, r, t) =
ρsfνm
r

ej2πft

⋅

a

∫
0

bdb
2π

∫
0

e
−j2πfr

c dα. (3)

Also, a simplified version of Eq. (2) for the near-field
SPL pa(near), on the axis of the circular piston, is given
(Kinsler et al., 2000):

pa(near)(0, f, r) = 2ρsfνm

⋅
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. (4)

Equation (4) is graphically represented in Fig. 2, evalu-
ated for various distances and frequencies for a circular
piston with a = 0.08m. This provides insight into the
spatial structure of the near-field SPL.
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Fig. 2. Axial near-field SPL structure for various distances
and frequencies for a circular piston with radius a = 0.08m,
evaluated by Eq. (4). The pulsations of the SPL are evident.

Equation (4) reveals that extrema in the axial SPL
occur due to the sine function. For a constant sound
speed c and a specific circular piston with radius a,
the sine function reaches extremum values at distances
(Lependin, 1978):

rm =
a2f

mc
−
mc

4f
, (5)

where m ∈N. The maxima occur when m is odd, and
the minima when m is even. The first SPL maximum
(moving toward the circular piston axis) appears for
m = 1, at a distance:

rmax(first) =
a2f

c
−
c

4f
. (6)
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This relationship is depicted in Fig. 3. It turns out that
it represents the contour of the outer ridge of the SPL
structure shown in Fig. 2.

0 2000 8000 100004000              6000 
Frequency [Hz]

10-3

10-2

10-1

100

D
is

ta
nc

e 
 [

m
]

Fig. 3. Distance of the first axial SPL maximum, evalu-
ated by Eq. (6), vs. frequency for a circular piston with
r = 0.08m. The plot can also address the problem of iden-
tification of the frequency of the first axial SPL maximum

in relation to distance (see Eq. (7)).

For distances r < rmax(first) the axial SPL suffers from
maxima and minima, and for distances r > rmax(first)

the SPL decreases monotonically, approaching an
asymptotic dependence 1/r (Rossing, 2017). There-
fore, one may consider the distance rmax(first) as a rea-
sonable threshold or dividing line between regions
where the SPL is not completely formed and where
the SPL becomes asymptotic. It is evident that rm is
frequency-dependent – the higher the frequency, the
longer the near-field zone of the transducer.
Moreover, Eq. (6) reveals that the distance

rmax(first) has physical meaning only for frequencies
f > c

2a
(Iliev, 2014). For those frequencies, the radi-

ation of the circular piston resembles that of a simple
source, that is, without extrema.
Consequently, from Eq. (6), one can derive a rela-

tionship to determine the frequency of the first maxi-
mum:

fmax(first) =
c (
√
a2 + r2 + r)

2a2
. (7)

It should be noted that different authors (Kleiner,
2013; Gelfand, 2017) have proposed various expres-
sions (similar to Eq. (6)) to estimate the last maxi-
mum, which some consider the upper border distance
of the near-field. In (Kozień, 2012), the hybrid inten-
sity method is used to determine the boundary be-
tween the near and far fields. However, these methods
have some disadvantages. The first (Kleiner, 2013;
Gelfand, 2017) is too rough and lacks accuracy. The
second method (Kozień, 2012) is too complicated and
less practical.

Currently, there is no established criterion for delin-
eating all zones, each with its unique characteristics,
that influence the distribution and formation of the
SPL in front of the circular piston.

3. Boundary between the near- and far-field

Identifying the region where sound pressure is fully
developed provides valuable insights into the practi-
cal utility of a circular piston. Conversely, employing
a circular piston at frequencies and distances where the
SPL is not fully formed yields unsatisfactory outcomes.
In this paper, the authors introduce an enhanced

method that not only determines the boundary be-
tween the fully developed acoustic field and the area
where the acoustic field suffers from interferences, but
also provide a new interpretation of the zones and their
characteristics in front of the circular piston. The lat-
ter is based on the normalized difference between the
axial SPLs calculated by Eqs. (2) and Eq. (3):

∆pa(0, f, r) =
pa(entire) − pa(far)

pa(far)
. (8)

For a given circular piston, the boundary can be iden-
tified in terms of distance and frequency when both
Eq. (2) and Eq. (3) yield similar results.
The axial overall sound pressure level produced by

a circular piston with a radius a = 0.08m, as deter-
mined by Eq. (2), is shown in Fig. 4. Additionally,
the axial far-field SPL, derived from Eq. (3), is de-
picted in Fig. 5. Both equations are numerically eval-
uated in the MathCAD environment and graphically
represented in MATLAB RO. The normalized difference
between the entire field SPL and the far-field SPL on
the axis, calculated by Eq. (8), is presented in Fig. 6.
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Fig. 4. Axial overall field SPL, evaluated by Eq. (2),
for a circular piston with r = 0.08m.

The authors propose that the distance where the
SPL difference ∆pa < 30% (using the well-known 3 dB
rule) should be considered the dividing line between
the area with unstable SPL (i.e., the near-field zone)
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Fig. 5. Axial far-field SPL, evaluated by Eq. (3),
for a circular piston with r = 0.08m.
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Fig. 6. Normalized SPL difference for a circular piston with
r = 0.08m, calculated by Eq. (8). The black dashed line de-
picts the boundary between the near- and far-field accord-
ing to the newly proposed criterion. The red dashed line
represents the outer ridge of the SPL structure, evaluated

by Eq. (4).

and the area with asymptotic SPL (i.e., the far-field
zone). It is evident that the boundary calculated by
this rule strongly differs from the generally accepted
rule-of-thumb, which is based on the outer ridge of the
SPL structure evaluated by Eq. (4).
When applying the proposed method to distin-

guish the dividing line between the interferential area
and the asymptotic area of the SPL for a circular pis-
ton with a radius a = 0.08m, one observes interferences
for frequencies f > 2147Hz up the upper-frequency
limit of the circular piston – 10 000Hz. By applying
the 30% difference criterion between the SPLs calcu-
lated by Eq. (2) and Eq. (3), one can determine the
distance r for each frequency where the SPL experi-
ences interferences. For example, at f = 5000Hz, using
the isobars from Fig. 6, the interference region is found
for r < 0.11m (close to rmax(first)).

4. Experimental results

An experiment was conducted to validate the theo-
retical statements and provide a semi-quantitative, in-
tuitive understanding of the proposed method, without
claiming accuracy. In future work, more precise results
will be obtained using numerical simulations and ac-
curate measurements in a controlled environment.
The object of the experiment is a circular piston

(loudspeaker) with a radius a = 0.08m, identical to
the loudspeaker with the same radius used for the the
theoretical analysis. For this loudspeaker, and taking
into account the aforementioned factors,one may ex-
pect extremes in the SPL to occur between 2147 Hz
and the maximum reproducible frequency of this loud-
speaker model – 10 000Hz.
Furthermore, for distances greater than r > 0.065m

at f > 2147Hz and r > 0.21m at f = 10000Hz, the SPL
is expected to decrease monotonically.
The measurements of the axial SPL are car-

ried out using an active sound-level meter, DAQ-
system, laptop, and MATLAB RO software developed
by the authors. The measurements are performed us-
ing a sine-wave signal with a frequency of f = 5000Hz
at eight different distances: r = {0.001,0.01,0.05,
0.1,0.2,0.3,0.4,0.5}m. The results are shown in Fig. 7
and are compared with the theoretical axial SPL in the
near-field, calculated by Eq. (4).

Fig. 7. Axial SPL at f = 5000Hz theoretically estimated
(solid red line) and measured at distances r = {0.001,0.01,

0.05,0.1,0.2,0.3,0.4,0.5}m (blue crosses).

There is a well-pronounced overlap between the
measured SPL (represented by blue crosses) and
the predicted theoretical SPL (solid red line). Notice-
able extrema in the axial SPL occur at r = 0.012m
(SPL minimum) and r = 0.076m (SPL maximum),
which are theoretically predicted by Eq. (5) for this
particular operating frequency. For relatively large
distances r, the theoretical and the experimental SPLs
decrease monotonically, approaching an asymptotic
dependence 1/r (black dashed line), in agreement with
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Eqs. (3) and (4), and the proposed interpretation. In
this particular case, the near-field boundary is situated
at r = 0.11m, according to Eq. (8). Beyond this point,
the SPL decreases strictly monotonically, as expected.

5. Conclusion

The newly proposed method for distinguishing the
dividing line between the interference and asymptotic
areas of the SPL produced by a circular piston is rel-
atively simple, easy to apply, and practically accu-
rate. If one knows the radius a and frequency f of
the circular piston, one can implement Eqs. (2), (3),
and (8) to generate a graph similar to those shown in
Fig. 6.
From the presented review of the different areas in

front of the circular piston, the following conclusions
can be drawn:

– the larger the circular piston radius a, the longer
the interference area;
– the higher the frequency f , the longer the inter-
ference area;
– the higher the sound speed c, the shorter the in-
terference area.

Furthermore, when dealing with complex signals
exhibiting a complex and non-stationary spectral com-
position, a region of pronounced distortions in the
sound field emerges within a specific area in front
of the circular piston (specifically, between 0m and
0.21m in this case). This occurs due to the fact that
for certain spectral components, this region functions
as a near-field zone. In contrast, for others, it repre-
sents a far-field zone.
In this context, it becomes highly significant to de-

fine an ‘unconditional far-field zone’, which is deter-
mined by the maximum frequency of the considered
signal or the maximum reproducible frequency of the
circular piston, whichever is lower. Likewise, the con-
cept of an ‘unconditional near-field zone’ needs to be
introduced, with its boundary defined by either the
psychical characteristics of the circular piston (f > c

2a
)

or by the lowest frequency within the signal spectrum,
whichever is higher. The intermediate region between
these two zones can be referred to as the ‘transitory
zone’.
The results shown in Figs. 2, 3, 4, 5, and 7 can be re-

produced by the user using the MATLAB RO scripts and
data given in (Zhivomirov, Iliev, 2024) as supplemen-
tary material. This allows for a better understanding
of the visualization and the ability to reuse or adapt
the code for specific user data.
The conclusions drawn in this paper should be con-

sidered in the development of various screening sys-
tems (such as sonography, sound localization systems,
audio systems, etc.) and in the development of systems
using circular pistons in general.
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This article explores the challenge of identifying noise-generating factors in traffic flows (TFs) within the
constrained spaces and imperfect transport networks of historical cities, using Lviv as a case study. Experi-
mental studies were conducted to measure the equivalent noise levels at different times of the day on selected
streets in Lviv. These streets are characterized by dense development, paved surfaces, and a high volume of
vehicular and rail traffic. The study identified correlations between noise levels, traffic volumes, and vehicle
speeds during daytime and nighttime periods. Notably, vehicle speed was found to have a more significant
impact on noise levels than the number of vehicles.
Through the analysis of these findings, empirical mathematical models were developed and validated using

the Lagrange interpolation polynomial to predict noise pollution levels on selected streets at specific times.
The developed computer system enables quick forecasting of noise levels for a given street while simultaneously
provides data to manage TF as a factor affecting noise generation. Crucially, this tool can also assist in
calculating the required specifications for acoustic insulation on building façades adjacent to these TFs.
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1. Introduction

The continued growth in vehicle numbers and the
intensification of traffic flows (TFs) within the con-
strained urban spaces and flawed transport networks
contribute to escalating noise pollution issues in most
large cities. Addressing these challenges proves par-
ticularly difficult in the city of Lviv, especially in its
central, historical district, which is dense with inter-
sections and narrow streets. Elevated noise levels pose
a significant public threat that directly impacts the
health of urban residents. Consequently, designing an
efficient passenger transport system in such settings

necessitates the development and implementation of
sophisticated software models that account not only
for TFs but also for all contributing factors.
In an effort to assess and evaluate the environmen-

tal impact of transport, experimental studies were pro-
posed and conducted to measure equivalent noise lev-
els at various times of the day, focusing on selected
streets in Lviv as representative examples of old his-
toric cities. The chosen research locations are charac-
terized by dense urban development along roads with
heavy traffic on deteriorating cobblestone surfaces and
tram routes, revealing the compounded challenges of
managing urban noise in such environments.

https://acoustics.ippt.pan.pl/index.php/aa/index
mailto:kamisins@agh.edu.pl
https://creativecommons.org/licenses/by/4.0/
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2. Analysis of the latest research
and publications

The impact of road noise on urban areas has been
the subject of in-depth global research due to its sig-
nificant effects on public health and quality of life.
Across Europe, substantial studies have examined the
contributing factors of noise pollution and proposed
potential mitigation strategies (Brown, 2015; Ow,
Ghosh, 2017; Titu et al., 2022).
Research by Ozer et al. (2008) and Zambon et al.

(2018) identify urbanization, population growth, and
the associated surge in vehicular traffic as primary con-
tributors to rising noise levels, particularly in urban
settings. Such noise adversely affects human health,
leading to sleep disorders, cardiovascular diseases, and
cognitive impairments (Basner et al., 2014; Dzham-
bov, Lercher, 2019; Hegewald et al., 2020).
Further studies, such as those by Petrescu et al.

(2015), recognize road characteristics (notably road
surface conditions), along with traffic intensity, speed,
and vehicle type as major noise sources in urban envi-
ronments. Several mitigation strategies, including the
implementation of quieter road surfaces, have been ex-
plored.
In Ukraine, the study of urban noise pollution

caused by vehicular traffic has gained significant im-
portance. Recent research (Mironova et al., 2021;
Reshetchenko, 2018; Luchko, 2010; Adamenko
et al., 2017) has examined noise pollution levels on
the streets of various Ukrainian cities, including Lviv.
Notably, an analysis byGrynchyshyn et al. (2021) re-
vealed significant noise pollution on the main streets in
central Lviv, where levels frequently exceeded permis-
sible standards, especially in areas with narrow streets
and aged buildings.
Research by Kalyn and Sheleviy (2016) focused

on the issue of noise pollution within the urban ecosys-
tem of Lviv, identifying its sources and key charac-
teristics, evaluating methods for its mitigation, and
analyzing noise levels across different city road seg-
ments.
Studies by Kachmar (2013), Kachmar and Lan-

ets (2020), Kachmar et al. (2018), and Zubyk and
Khodan (2014) explored the impact of road surface
conditions on noise levels in Lviv. These works high-
lighted that permissible noise standards are often ex-
ceeded in urban areas, particularly in central Lviv.
The authors argue that while reducing traffic noise
using traditional methods is challenging and finan-
cially demanding, controlling and decreasing noise at
the source is more feasible. In this context, passen-
ger cars, which constitute a major portion of TF, are
significant noise contributors. The research conducted
in Lviv presents valuable insights for developing infor-
mation systems aimed at assessing noise levels in pop-
ulated areas, especially in cities with prolonged road

load times like Lviv. The analysis of recent advance-
ments and research in this field underscores the signif-
icance of these experiments and highlights opportuni-
ties for further scientific inquiry.
Noise pollution studies are critically important in

urban environments, where the population is continu-
ally exposed to various sources of noise. Traffic noise,
a significant contributor, results from the operation
of vehicle engines, wheels, brakes, and aerodynamics
(Zubyk,Khodan, 2014). The primary metric for eval-
uating noise levels is the equivalent continuous sound
level that transmits the same amount of energy over
a specific period as fluctuating noise would during the
same period. The equivalent continuous sound level is
calculated using the following equation:

Leq = 10 log
⎛
⎜
⎝

1

t2 − t1

t2

∫
t1

100,1LA(t) dt
⎞
⎟
⎠
, (1)

where LA(t) is the sound level value and t1, t2 are the
time periods of measurement.

3. Conducting an experiment

To gain a comprehensive understanding of the fluc-
tuations in noise levels throughout the day, experi-
ments were conducted at various times. These results
are intriguing, as they illustrate the onset of increasing
noise pollution levels.
The collected data are invaluable for further ana-

lysis and practical application. While noise intensity
is a significant factor, the distribution and perception
of noise and factors influencing these two are equally
crucial. Additional data gathered during the measure-
ments, such as the day of the week, time of day, air tem-
perature, pressure, humidity, and wind speed, are piv-
otal for in-depth analysis. For instance, air tempera-
ture and humidity influence the speed of sound, while
wind direction can alter noise direction and intensity.
Video recordings enabled the classification vehicles

by category, including trams, which aids in identifying
noise sources and evaluating their impact on overall
noise pollution levels.
This supplementary information can be employed to

calibrate computer simulation systems for sound prop-
agation or to test new methods of predicting road
noise. Additionally, it enhances the accuracy and re-
liability of models used to analyze and forecast noise
pollution in Lviv. Such a meticulous approach to data
collection and analysis contributes to the develop-
ment of more effective noise control strategies, ul-
timately improving the quality of life for local re-
sidents.
For better data usability, a detailed diagram was

created to document the building, with all measure-
ment points clearly marked (Fig. 1).
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Fig. 1. Placement of measuring points on Shevchenko Street and adjacent streets.

4. Coordinates of measurement points

To facilitate further computational simulations, all
points where noise levels were monitored were metic-
ulously marked on the diagram, and their coordinates
were accurately recorded using a GPS logger, as sum-
marized in Table 1.
Additionally, extensive experiments were con-

ducted on Taras Shevchenko Street (Fig. 2). The ac-
cumulated measurements adequately illustrate the di-
urnal trend of noise level fluctuations.

Fig. 2. Measurement of the equivalent noise level during
the day on Taras Shevchenko Street.

The results are depicted in Fig. 3, where PPH1
represents the equivalent noise level [dB(A)] for Taras

Table 1. Geographic coordinates of measurement points.

Measurement point
number

GPS coordinates Microphone height
above road level [m]

Distance to the wall
of the house [m]

PPH1 49.8440065, 24.0108481 1.5 2

PPH2 49.843972, 24.010861 1.5 2

PPH3 49.844806, 24.011583 1.5 7.5 (from the center of the road)

Shevchenko Street, PPH2 for Yarsolav Mudryj Street,
and PPH3 for Yaroslav Pstrak Street. Notably, Taras
Shevchenko Street exhibited the highest noise levels,
which was anticipated due to the presence of trams.
The analysis of Taras Shevchenko Street reveals a rapid
increase in noise levels until 8:00, peaking at 10:00,
followed by a gradual decline. However, this decline
is minimal, only about 2.5 dB, during the rush hour
from 17:30 to 19:00, after which noise levels rise again
and only start to decrease after 21:30. The reduction
in noise levels during the evening rush hour might ini-
tially appear counterintuitive due to the higher traffic
volumes. However, it is the traffic congestion that sig-
nificantly reduces vehicle speeds, which, particularly
on cobblestone surfaces, results in lower noise levels.
An intriguing contrast is observed on Yaroslav

Mudryj Street, where the conditions are reversed.
Around 15:30, while noise levels are lower on Taras
Shevchenko Street, they peak on Yaroslav Mudryj
Street. This occurs because, with fewer cars on Ta-
ras Shevchenko Street, vehicles can move more swiftly
along Yaroslav Mudryj street, generating more noise,
and vice versa. When TFs onto Taras Shevchenko
Street, Yaroslav Mudryj Street experiences congestion,
causing vehicles near the measurement point to move
at almost zero speed.

https://www.google.pl/maps/place/{%}D0{%}B2{%}D1{%}83{%}D0{%}BB{%}D0{%}B8{%}D1{%}86{%}D1{%}8F$+${%}D0{%}A8{%}D0{%}B5{%}D0{%}B2{%}D1{%}87{%}D0{%}B5{%}D0{%}BD{%}D0{%}BA{%}D0{%}B0,$+$3a,$+${%}D0{%}9B{%}D1{%}8C{%}D0{%}B2{%}D1{%}96{%}D0{%}B2,$+${%}D0{%}9B{%}D1{%}8C{%}D0{%}B2{%}D1{%}96{%}D0{%}B2{%}D1{%}81{%}D1{%}8C{%}D0{%}BA{%}D0{%}B0$+${%}D0{%}BE{%}D0{%}B1{%}D0{%}BB{%}D0{%}B0{%}D1{%}81{%}D1{%}82{%}D1{%}8C,$+$
https://www.google.pl/maps/place/49{%}C2{%}B050'38.3{%}22N$+$24{%}C2{%}B000'39.1{%}22E/@49.8440065,24.0108481,17.79z/data$=$!4m10!1m3!11m2!2s1lQmQOquC_K1TQ91lpG_UQfc1gVA!3e1!3m5!1s0x0:0xa11b0af3cf8f0b9d!7e2!8m2!3d49.843971!4d24.0108649
https://www.google.pl/maps/place/49{%}C2{%}B050'41.3{%}22N$+$24{%}C2{%}B000'41.7{%}22E/@49.8440065,24.0108481,17.79z/data$=$!4m10!1m3!11m2!2s1lQmQOquC_K1TQ91lpG_UQfc1gVA!3e1!3m5!1s0x0:0x75e7fb5151d496d4!7e2!8m2!3d49.8448029!4d24.0115743
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Fig. 3. Graph illustrating the dependence of noise level on the time of day.

Based on the experimental data, the hours with the
most significant noise levels were identified: the most
congested hour during the day is from 09:40 to 10:40
and at night from 22:00 to 23:00.
On Taras Shevchenko Street, vehicular traffic lacks

smooth flow during the day, with vehicles frequently
caught in traffic jams and moving at low speeds; con-
versely, at night, though fewer in number, vehicles tend
to move at higher speeds.

5. Mathematical model

5.1. Mathematical model of the equivalent noise level
for Taras Shevchenko Street

Using the Lagrange interpolation polynomial, a math-
ematical model was developed to determine the level
of noise pollution on Taras Shevchenko Street in Lviv,
as follows:

f(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

67.482t + 48.395 for 0.23 ≤ t ≤ 0.30,

8.4245t + 66.235 for 0.30 < t ≤ 0.40,

0.3349t + 69.505 for 0.40 < t ≤ 0.58,

771.57t3 − 1719.9t2 + 1253.3t − 229.344
for 0.58 < t ≤ 0.90,

(2)

where f(t) represents the equivalent noise level [dB(A)]
as a function of time, while t denotes the time of day,
segmented into 24 hours. For instance, to calculate the
noise level at 12:00, t = 12

24
= 0.5.

Observations from Fig. 3 indicate that noise levels
vary significantly throughout the day. Consequently,
to provide a more precise approximation of the exper-
imental data, the time of day has been segmented into
five distinct periods. A separate polynomial is calcu-
lated for each interval, specifically chosen to optimally
reflect the temporal fluctuations in noise levels.
To evaluate the accuracy of the developed model

(Eq. (2)), a graphical representation was constructed
as depicted in Fig. 4. It clearly shows that the exper-
imental data, indicated with red markers, align well

L

Fig. 4. Comparison of the mathematical model with exper-
imental data of the equivalent noise level during the day

for Shevchenko Street.
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with the outcomes derived from the Taras Shevchenko
Street model, represented by the blue line. This align-
ment validates the model’s accuracy, confirming its
suitability for estimating the equivalent noise levels
from 5:00 to 23:00.

5.2. Mathematical model for determining the noise
level on Yaroslav Mydryj Street

Similar to the previous model, the Lagrange in-
terpolation polynomial was also employed to develop
a mathematical model for determining the noise pol-
lution levels on Yaroslav Mudryj Street in Lviv. This
approach ensures consistency in modeling techniques
across different urban settings, thereby facilitating com-
parative analyses and refined predictions:

f(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−392.5t2 + 327.7t + 7.0386
for 0.24 ≤ t ≤ 0.33,

20.644t2 − 10.746t + 73.948
for 0.33 < t ≤ 0.43,

−6.9624t2 + 1.5893t + 73.692
for 0.43 < t ≤ 0.71,

−1326.3t3 + 3336.3t2 − 2773.7t + 833.54
for 0.71 < t ≤ 0.89,

−91.826t + 154.35 for 0.89 < t ≤ 0.94.

(3)

The implementation of model (Eq. (3)) within the
MATLAB system is illustrated in Fig. 5.
The program code, as depicted in Fig. 5, facilitated

verification of the model’s accuracy against experimen-
tal data. As the graph demonstrates, there is a congru-
ence between the model and the experimental data,
affirming the model’s validity (Fig. 6).

twymSzew=[0.23 0.30 0.40 0.58 0.65 0.78 0.90]; 
ywymSzew=[64.00 68.78 69.64 69.70 70.60 68.00 68.20]; 

t=0.23:0.01:0.90;
[r c]=size(t);
for i=1:c
    if (t(i)>=0.23) & (t(i)<=0.30)

y(i)=67.482.*t(i) + 48.395; 
    elseif (t(i)>0.30) & (t(i)<=0.40)

y(i)=8.4245.*t(i) + 66.235;
    elseif (t(i)>0.40) & (t(i)<=0.58)

y(i)=0.3349.*t(i) + 69.505;
    elseif (t(i)>0.58) & (t(i)<=0.90)

y(i)=771.57.*t(i).^3 - 1719.9.*t(i).^2 + 1253.3.*t(i) - 229.344;
    end
end

hp = plot(t,y,'LineWidth',1.5);
hold on
hpwym = plot(twymSzew,ywymSzew,'o','LineWidth',1.5);
ha = get(hp,'Parent'); 
Data = get(ha,'XTick'); 
timestr = datestr(Data,15); 
set(ha,'XTickLabel',timestr);

Fig. 5. Segment of the program for determining the noise level on Yaroslav Mudryj Street during the day.

L

Fig. 6. Comparison of the mathematical model with exper-
imental data of the equivalent noise level during the day

for Yaroslav Mudryj Street.

Subsequent to model validation, a user interface
was developed. Figure 7 displays this interface, which
features a slider for rapidly adjusting the time of day,
a drop-down list containing the names of streets for

Fig. 7. User interface of the information system for deter-
mining the equivalent noise level for selected streets in Lviv.



220 Archives of Acoustics – Volume 50, Number 2, 2025

which the equivalent noise level will be calculated, and
a display window that presents the results and a scale
for expedient noise level assessment.

6. Conclusions

Experimental studies carried out on Taras Shev-
chenko Street and its vicinity revealed significant de-
tails regarding the acoustic environment. The findings
indicate that vehicle speed has a more substantial ef-
fect on noise levels than traffic volume and correlates
with the fluidity of TF. Furthermore, it was observed
that the noise levels on these streets exceed the allow-
able daytime levels of 55 dB(A) (DBN V.1.1-31:2013,
2013). To mitigate noise pollution, measures such as re-
ducing vehicle speeds or enhancing window insulation
on building facades could be implemented to reduce
the noise impact on residents.
The developed mathematical models for predicting

equivalent noise levels based on the time of day have
proven to be both effective and accurate in estimat-
ing noise levels on urban streets. The results validate
the ability of our information system for the prompt
and accurate assessment of noise levels on a designated
street at a given time.
The findings and analyses from this research are

essential for the further development of sound propa-
gation modeling systems. They provide a foundation
for calibrating and refining existing systems, as well
as testing innovative methods and approaches within
this field. This progress is expected to enhance the ef-
fectiveness and accuracy of noise prediction systems,
ultimately contributing to reducing noise pollution and
enhancing the quality of life for urban residents.
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Bird sounds collected in the field usually include multiple birds of different species vocalizing at the same
time, and the overlapping bird sounds pose challenges for species recognition. Extracting effective acoustic
features is critical to multi-label bird species classification task. This work has extended an efficient transfer
learning technique for labelling and classifying multiple bird species from audio recordings, further laying the
foundation for conservation plans. A synthetic dataset was created by randomly mixing original single-species
bird audio recordings from the Cornell Macaulay Library. The final dataset consists of 28 000 audio clips, each
5 s long, containing overlapping vocalizations of two or three bird species among 11 different species. Several
pre-trained convolutional neural networks (CNNs), including InceptionV3, ResNet50, VGG16, and VGG19,
were evaluated for extracting deep features from audio signals represented as mel spectrograms. The long
short-term memory network (LSTM) was further employed to extract temporal features. A multi-label bird
species classification was investigated. The absolute matching rate, accuracy, recall, precision, and F1-score of
the InceptionV3+LSTM model for multi-label bird species classification are 98.25%, 99.32%, 99.41%, 99.90%,
and 99.57%, respectively, with the minimum Hamming loss of 0.0062. The results show that the proposed
method has excellent performance and can be used for multi-label bird species classification.
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1. Introduction

Field recordings of bird sounds typically contain
vocalizations from multiple bird species occurring si-
multaneously, known as the ‘dawn chorus’, a phe-
nomenon common in natural habitats. However, rel-
atively few studies have addressed the challenge of
multi-label bird species classification in these realis-
tic acoustic environments. Early studies primarily re-
lied on classical acoustic features and traditional ma-
chine learning approaches. For example, Briggs et al.
(2012) manually segmented overlapping bird sounds
recorded from the H.J. Andrews Experimental For-
est (548 audio clips, each containing 1–5 species) and
utilized multi-instance multi-label K-nearest neighbor
(MIML-KNN), achieving an accuracy of 96.1%. Leng
and Dat Tran (2014) combined spectral features,
MFCC, and linear predictive coding (LPC) extracted
from NIPS4B dataset (687 audio clips, containing mul-
tiple bird species per clip) and trained ensemble clas-

sifiers, obtaining an AUC of 91.74%. Liu (2016) in-
troduced a transfer learning feature mapping method
based on MFCC and Gaussian mixture models (GMM)
for multi-label bird sound classification. The method
was evaluated on NIPS4B and an artificial dataset
(constructed by mixing xeno-canto bird audio), achiev-
ing the Hamming loss of 0.1024.
With the advancement of deep learning, recent ap-

proaches have increasingly utilized convolutional neu-
ral networks (CNNs) to automatically learn acoustic
features. Sprengel et al. (2016) proposed a CNN ap-
proach trained on the BirdCLEF 2016 dataset, achiev-
ing a mean average precision (MAP) score of 0.686
for identifying the dominant bird species in audio
recordings, surpassing previous state-of-the-art results.
Bravo Sanchez et al. (2021) used the CNN frame-
work SincNet on NIPS4Bplus bird recordings, achiev-
ing an accuracy of 73.56%. Noumida and Rajan
(2022) proposed a hierarchical attention-based bidi-
rectional gated recurrent unit (BiGRU) model with

https://acoustics.ippt.pan.pl/index.php/aa/index
mailto:phjxpeng@163.com
https://creativecommons.org/licenses/by/4.0/
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MFCC, trained on the xeno-canto dataset, achieving
an F1-score of 0.85. Abdul Kareem and Rajan
(2023) fused MFCC-RNN and mel spectrogram-CNN
methods, obtaining an F1-score of 0.75 on the xeno-
canto dataset.
Although CNNs effectively extract local features

from spectrograms, they often neglect long-term tem-
poral dependencies in acoustic data. Integrating CNNs
with recurrent neural networks (RNNs), such as long
short-term memory (LSTM), addresses this limitation
by capturing sequential acoustic patterns (Sainath
et al., 2015; Nishikimi et al., 2021; Liu et al., 2021).
Transfer learning allows models to leverage the

knowledge learned from large-scale datasets and tasks,
significantly reducing training parameters and acceler-
ating learning processes (Weiss et al., 2016). Trans-
fer learning is very helpful when there is insufficient
data to fully train a model, such as recognizing un-
common bird species (Huang, Basanta, 2021). Gu-
nawan et al. (2021) applied a transfer learning tech-
nique to avoid overfitting when classifying endangered
species, such as the small footed owl in Indonesia.
Deep CNN models, including VGG (Simonyan, Zis-
serman, 2014), ResNet (He et al., 2016), and In-
ception networks (Szegedy et al., 2016; 2017), have
shown superior performance on image classification
tasks, making them ideal candidates for transfer learn-
ing. Sevilla and Glotin (2017) successfully adapted
the Inception-v4 network to bird sound classification,
achieving the highest accuracy 71.4% on the Bird-
CLEF 2017 dataset. Transfer learning has also proven
effective in various multi-label classification tasks, in-
cluding autonomous driving (Li et al., 2021), natu-
ral language sentiment analysis (Tao, Fang, 2020),
and transformer-based models across multiple domains
(Gómez-Gómez et al., 2023).
In this study, inspired by previous works, we utilize

transfer learning models including VGG16, VGG19,
InceptionV3, and ResNet50 to extract deep acous-
tic features from mel spectrograms of bird sounds.
An LSTM network is integrated to capture temporal

224 × 224 × 3

224 × 224 × 64

112 × 112 × 128

56 × 56 × 256
28 × 28 × 512 14 × 14 × 512 7 × 7 × 512 1 × 1 × 4096 1 × 1 × 11

Convolution+ReLU

Max pooling

Full connected+ReLU

Fig. 1. VGG16 network structure diagram (based on (Simonyan, Zisserman, 2014)).

dependencies across frames. We specifically focus on
multi-label classification tasks involving simultaneous
vocalizations of two or three bird species, using syn-
thetic datasets created from Cornell’s Macaulay Li-
brary recordings (28 000 audio clips, each lasting 5 s).
The feature extraction capability, classification accu-
racy, and generalization performance of these inte-
grated models are comprehensively analyzed.

2. Method

2.1. Transfer learning models

The core idea of transfer learning is to leverage
knowledge from the source domain to improve perfor-
mance in a related target task. In this study, we utilize
four pre-trained convolutional neural network architec-
tures – VGG16, VGG19, InceptionV3, and ResNet50
– originally trained on the ImageNet dataset (Deng
et al., 2009). Each architecture has distinct character-
istics that influence its performance on multi-label bird
species classification tasks.

2.1.1. Classification model based on pre-trained
network VGG16/VGG19

VGG is a classic image classification network based
on the ImageNet database. Its characteristic is to use
a convolutional layer with a smaller kernel (3× 3) in-
stead of a convolutional layer with a larger kernel.
On the one hand, it can reduce parameters, and on
the other hand, it is equivalent to performing more
nonlinear mapping, increasing the network’s expressive
power (Simonyan, Zisserman, 2014). The VGG16
pre-trained network framework is shown in Fig. 1.
The VGG19 model adds three additional convolu-
tional layers on top of VGG16: one 3× 3× 256 and two
3× 3× 512. VGG19 has a deeper network than VGG16,
and increasing the depth can effectively improve per-
formance. The part before the fully connected layer is
commonly referred to as the feature extraction layer.
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2.1.2. Classification model based on pre-trained
network InceptionV3

The method of increasing the number of convolu-
tional layers to enhance the learning ability of the net-
work is not always feasible, because after the network
reaches a certain depth, increasing the number of net-
work layers will cause the problem of random gradient
disappearance and explosion, and also lead to a de-
crease in accuracy. Moreover, complex networks can
also bring high computational costs. The Inception
module decomposes large convolutions into multiple
small convolutions, where multiple small convolution
kernels simultaneously convolve the image and aggre-
gate information at different scales, as shown in Fig. 2
(Szegedy et al. 2016). This can significantly reduce
network parameters without losing features. The key
to the InceptionV3 network is to use Inception mod-
ules and two asymmetric decomposition structures to
construct different types of Inception module groups.

Filter concat

Base

3 × 3

3 × 3

1 × 1 1 × 1 1 × 1

3 × 3 3 × 1

Pool

Fig. 2. Each 5×5 convolution in the Inception
module is replaced by two 3 × 3 convolutions

(based on (Szegedy et al., 2016)).

2.1.3. Classification model based on pre-trained
network ResNet50

In response to the problem of gradient disappear-
ance, He et al. (2016) proposed a residual structure
that not only solves the gradient problem, but also
improves its feature expression ability with the in-
crease of network layers, thereby improving classifi-
cation performance. Figure 3 shows a residual struc-
ture in ResNet50, which includes cross layer connec-
tions that allow input to be directly passed across lay-
ers and then added to the convolutional result. This
helps the model converge towards the equal mapping

Table 2. CNN networks comparison.

CNN networks Depth (layers) Parameters, complexity Feature extraction strategy

VGG16/19 16/19 High parameters, high computational com-
plexity

Small 3× 3 convolutions, captures fine-grained
local features

InceptionV3 48 Moderate parameters, efficient computation
due to parallel modules

Multi-scale feature extraction via parallel con-
volutions (Inception modules)

ResNet50 50 High parameters but efficient training Deep residual structure enabling hierarchical
feature abstraction

Fig. 3. Residual structure diagram (He et al., 2016).

direction, ensuring that the final accuracy is not af-
fected by the depth of the model. Table 1 shows the
ResNet50 model structure and network parameters.

Table 1. Model training parameter statistics.

Models
LSTM
input
size

LSTM
trainable
parameters

FC
parameters

Total
trainable
parameters

VGG16/VGG19 3 584 3 933 184 2 827 3 936 011

InceptionV3 16 384 17 040 384 2 827 17 043 211

ResNet50 14 336 14 943 232 2 827 14 946 059

We chose these models due to their distinct ad-
vantages: VGG models provide strong representational
power, InceptionV3 excels at multi-scale feature ex-
traction with fewer parameters, and ResNet50 effec-
tively manages training of very deep networks. A com-
parative analysis of these models is summarized in Ta-
ble 2.

2.2. Pre-trained convolutional neural network fused
with LSTM

The feature sequence extracted by the pre-trained
CNN cannot be directly fed into the LSTM network.
Taking the VGG16 model as an example, the final
extracted feature map has dimensions of 7× 7× 512
(H ×W ×C). The original mel spectrogram of size
224× 224 is compressed spatially to 7× 7, and the num-
ber of channels deepens from 3 (original RGB chan-
nels) to 512. Through convolution and pooling oper-
ations, the spatial structural information in the mel
spectrogram is transformed into deep feature represen-
tations, where each channel corresponds to a particular
response pattern, such as edges, textures, and colors.
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Fig. 4. Feature sequence obtained from pre-trained VGG16 input with LSTM.

To make these features suitable for temporal mod-
eling by LSTM, the feature maps are reshaped based
on the spatial dimension (e.g., width dimension) into
a sequential format. Specifically, we expand the feature
maps along the width dimension (W ) into a feature se-
quence of size 7× 3584, where 7 corresponds to the
number of time steps, and 3584 (i.e., 7× 512) rep-
resents the features at each time step. Figure 4 il-
lustrates the detailed procedure of feeding these fea-
ture sequences input into the LSTM network. Sim-
ilarly, for other pre-trained CNN architectures, the
extracted feature map dimensions differ slightly: In-
ceptionV3 produces a feature sequence of 8× 8× 2048,
and ResNet50 yields a feature sequence of 7× 7× 2048.
These feature maps are processed in the same way as
described above to prepare sequential data suitable for
input into the LSTM network.
The number of neurons in the output layer of the

LSTM network is 11 for classifying bird species. Sig-
moid is used as the activation function for the output
layer, ensuring that each neuron outputs a probability
of 1. When the probability value is greater than 0.5,
the predicted value output by the neuron is 1, indicat-
ing that the bird species corresponding to the neuron
exists in the audio sample. The fusion model also adds
a batch normalization (BN) layer to avoid gradient dis-
appearance. Dropout layers are introduced to reduce
overfitting by randomly dropping units during train-
ing, thereby improving the generalization performance
of the network. The parameters in the feature extrac-
tion modules of VGG16, VGG19, InceptionV3, and
ResNet50 are frozen, and the remaining parts of the
network are trained using our dataset in this work. To
help assess model complexity, we provide the number
of trainable parameters (excluding frozen CNN layers)
for each configuration, as shown in Table 1.

3. Experimental settings

3.1. Dataset construction

Bird sound recordings of 11 bird species used for
this work are collected from the Macaulay Library at

Cornell University1. Table 3 shows the selected origi-
nal audio of each bird. These recordings are in MP3
format, with a sampling frequency of 44 100Hz and
a bit rate of 128 000 bps. Each recording is annotated
as a single species of bird vocalization. To create multi-
label bird species samples, we randomly selected au-
dio segments from the original single-species recordings
and combined them digitally using audio mixing soft-
ware ‘Adobe Audition’. Before mixing, the audio seg-
ments were normalized to the same volume level to pre-
vent any single recording from dominating due to vol-
ume differences. Each resulting 5-second segment con-
tains clearly annotated overlapping vocalizations from
either 2 or 3 different bird species. The detailed infor-
mation is shown in Table 4.
Figures 5 and 6 represent mel spectrograms of syl-

lable overlapping for 2 and 3 bird species, respectively.
The mel spectrograms were constructed using the Li-
brosa library with a sample rate of 44 100Hz, the FFT
window length (n fft) of 1024 samples, a hop length of
512 samples (50% overlap), and 128 mel filter banks.
A visual inspection reveals that as the number of over-
lapping bird species increases, the spectral complexity
and signal interference also become more pronounced.
For instance, in Figs. 5a and 5c, the individual vocal
patterns of each species are relatively separable, often
occurring in distinct frequency bands or time inter-
vals. However, in Figs. 6b and 6c, the spectrograms
show significantly denser and more continuous activ-
ity across both frequency and time, making it more
difficult to visually or algorithmically disentangle indi-
vidual species. This suggests that classification tasks
involving three or more overlapping bird species are
inherently more challenging due to increased spectral
overlap, which can obscure characteristic frequency
patterns and temporal features.
The labels of each audio segment are manually re-

viewed and verified to ensure the presence of corre-
sponding bird sounds. The ratio of training set to test-
ing set is divided into 3:1.

1Specifically retrieved via the search interface at:
https://search.macaulaylibrary.org/catalog

https://search.macaulaylibrary.org/catalog
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Table 3. Audio file information of 11 bird species.

Bird species
Number

of downloaded
audio files

Audio file name

Downy Woodpecker 12 ML107289, ML433684551, ML320270011, ML216529601, ML288560951, ML89889581,
ML259178751, ML94232, ML282354581, ML249048571, ML218533941, ML539363

Northern Flicker 9 ML60535251, ML47981841, ML6891, ML84808, ML224667, ML176938031, ML6802,
ML63072, ML299493831

Black-capped Chickadee 10 ML381756441, ML202239, ML227931651, ML228999, ML359860121, ML244530591,
ML442275881, ML315584611, ML9334271, ML217850561

White-breasted Nuthatch 9 ML51757711, ML196990751, ML304498191, ML105313481, ML313785451, ML120214,
ML169318341, ML88195851, ML245567141

Northern Cardinal 7 ML101113031, ML94284, ML94286, ML94285, ML325248201, ML434987071,
ML24184651

House Finch 9 ML369617771, ML44967, ML110958961, ML331732541, ML161496541, ML22938,
ML56843, ML22941, ML12932

Pine Siskin 5 ML156434831, ML22902731, ML176160, ML89549511, ML219631251

Western Backyard Birds 6 ML481585181, ML203884811, ML425203981, ML279795071, ML2425203911,
ML168880461

Steller’s Jay 8 ML35291431, ML202130641, ML44859, ML410551461, ML42204, ML119017701,
ML192457, ML90747421

Evening Grosbeak 5 ML148939381, ML160442941, ML129191951, ML77259, ML227584

Blue Jay 13 ML166281501, ML177463211, ML345934681, ML107392, ML264268971,
ML260458751, ML421603721, ML539887, ML219634, ML13448, ML359246651,
ML223790721, ML20432

Table 4. Detailed information of multi-label dataset.

Category Number of training samples Number of test samples In total

2 11 550 3 850 15 400

3 9 450 3 150 12 600

Total 21 000 7 000 28 000
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Fig. 5. Mel spectrogram of mixed audio of syllables overlapping between two species of birds: a) Black capped Chickadee–
Blue Jay; b) Pine Siskin–Steller’s Jay; c) Downy Woodpecker–House Finch; d) Northern Flicker–White-breasted Nuthatch.
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Fig. 6. Mel spectrogram of mixed audio of syllables overlapping between three species of birds: a) Black capped Chickadee–
White-breasted Nuthatch–Blue Jay; b) Downy Woodpecker–Northern Flicker–White-breasted Nuthatch; c) Western Back-

yard Birds–Steller’s Jay–Evening Grosbeak; d) White-breasted Nuthatch–Northern Cardinal–Pine Siskin.

3.2. Objective evaluation

Unlike single label classification tasks, a sample in
a multi-label classification task can have multiple la-
bels. Firstly, without considering partially correct eval-
uation metrics, the sample can only be predicted cor-
rectly if the predicted label is exactly the same as the
true label (Paniri et al., 2020). This evaluation met-
ric is called the exact match ratio (Zhang et al., 2016)
and the calculation formula is as follows:

Exact match ratio =
1

n

n

∑
i=1

I(Ŷi = Yi), (1)

where I is the indicator function. When Yi is com-
pletely equivalent to Ŷi, I is 1, otherwise it is 0; Ŷi is the
predicted label set for sample i, Yi is the ground truth
label set; n represents the total number of samples. It
can be seen that this evaluation metric is very strict
for the classification model. In addition, only some la-
bels that are correctly predicted can also be used to
evaluate the performance of classification models. The
commonly used performance metrics include accuracy,
recall, precision, and F1-score (Godbole, Sarawagi,
2004). Accuracy is defined as the proportion of cor-
rectly predicted labels to the union of predicted and
true labels for each sample, averaged across all sam-
ples:

Accuracy =
1

n

n

∑
i=1

∣Yi ∪ Ŷi∣

∣Yi ∩ Ŷi∣
, (2)

where ∣Yi∪Ŷi∣ is number of correctly predicted labels for
sample i, ∣Yi∩Ŷi∣ is total number of unique labels in the
prediction and true labels for sample i. Recall measures
the proportion of correctly predicted labels out of all
true labels for each sample, averaged over all samples:

Recall =
1

n

n

∑
i=1

∣Yi ∩ Ŷi∣

∣Yi∣
, (3)

where ∣Yi∣ is total number of true labels for sample i.
Precision is defined as the proportion of correctly pre-
dicted labels out of all predicted labels for each sample,
averaged over all samples:

Precision =
1

n

n

∑
i=1

∣Yi ∩ Ŷi∣

∣Ŷi∣
, (4)

where ∣Ŷi∣ is total number of labels predicted for sam-
ple i. The F1-score for each sample is the harmonic
mean of precision and recall, averaged across all sam-
ples:

F1 − score =
1

n

n

∑
i=1

2 ×
Precisioni ×Recalli
Precisioni +Recalli

. (5)

In addition, performance metrics also include the Ham-
ming loss (Sorower, 2010). The Hamming loss evalu-
ates the fraction of labels that are incorrectly predicted
across all samples:

Hamming loss =
1

kn

n

∑
i=1

k

∑
j=1

I(yij ≠ ŷij), (6)
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where k is the total number of labels, yij is the true
value of the j-th label for sample i, and ŷij is the pre-
dicted value of the j-th label for a sample i. The smaller
the value of the Hamming loss, the better the perfor-
mance of the classification model.

3.3. Implementation details

The hardware environment for experiments is
a server with Inter I9-7920X CPU and NVIDIA GTX
RTX1080Ti GPU, and the operating system is Ubuntu
16.04. All experimental models are built based on
the PyTorch deep learning framework, with the Py-
Torch version number 1.9.1. During the training pro-
cess, MultiLabelSoftMarginLoss (Cheng et al., 2021)
is used as the loss function, and the stochastic gradient
descent (SDG) is used to update the network param-
eters. Momentum is set to 0.9, the learning rate is set
to e-4, epoch is set to 300, and batch size is set to 32.

4. Result

4.1. Classification results of different transfer
learning models

The results of multi-label bird species classification
under different transfer learning models are shown in
Table 5. According to Table 5, the InceptionV3 model
has the best classification performance, with exact
match ratio, accuracy, recall, precision, and F1-score
of 93.04%, 97.30%, 97.50%, 99.75%, and 98.30%, re-
spectively, and the Hamming loss of 0.026. The Incep-
tionV3 model uses decomposition convolution, which
decomposes large convolution factors into small convo-
lutions and asymmetric convolutions, effectively reduc-
ing parameters and avoiding overfitting. The Inception
modules use multiple branches to extract high-order
features with different levels of abstraction, enriching
the network’s expressive power (Szegedy et al., 2016).
The absolute matching rate of the VGG19 model is
4.23% lower than that of the VGG16 model, which
proves that blindly adding convolutional layers will not
improve the classification performance and will lead to
overfitting of the model. The exact match ratio, accu-
racy, recall, precision, and F1-score of the ResNet50

Table 5. Multi-label bird species classification results
of four transfer learning models.

VGG16 VGG19 InceptionV3 ResNet50

Exact match
ratio [%]

87.87 83.64 93.04 85.62

Accuracy [%] 95.20 93.63 97.30 94.40

Recall [%] 95.69 94.41 97.50 95.22

Precision [%] 99.41 99.00 99.75 99.02

F1-socre [%] 96.97 95.97 98.30 96.46

Hamming loss 0.045 0.059 0.026 0.051

model are 85.62%, 94.40%, 95.22%, 99.02%, and
96.46%, respectively, with the Hamming loss of 0.051.
The classification performance of the ResNet50 model
is better than VGG19, but inferior to VGG16, indi-
cating that the residual structure has to some extent
alleviated the overfitting phenomenon of the model.
The CNN structure affects the results of multi-label
bird sounds classification.
Figures 7 and 8, respectively, depict the variation

curves of exact match ratio and the Hamming loss for
four pre-trained models. As shown in Fig. 7, the exact
match ratio of ResNet50 did not significantly improve
after the 50th epoch, while the exact match ratio of In-
ceptionV3 continued to increase, approaching satura-
tion approximately after the 100th epoch. From Fig. 8,
it can be seen that after the 50th epoch, the Ham-
ming loss of InceptionV3 is significantly lower than
VGG16, VGG19, and ResNet50. Overall, the VGG16
and VGG19 models are not suitable for multi-label
bird species classification.
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Fig. 7. Exact match ratio curves of four transfer learning
models.
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Fig. 8. Hamming loss curves of four transfer learning
models.

4.2. Classification results of four transfer learning
models fused with LSTM

Table 6 shows the classification results of four
transfer learning models fused with LSTM. Compar-
ing Tables 5 and 6, it can be seen that after fus-
ing LSTM, the classification performance of VGG16,
VGG19, InceptionV3, and ResNet50 has all improved
significantly. The exact match ratio of ResNet50 in-
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creased the most, by 12.89%, VGG19 by 6.42%, Incep-
tionV3 by 5.21%, and VGG16 by 3.73%. The LSTM
network can learn the time series characteristics in fea-
ture sequences, and the time series of vocalizations
of different bird species vary. InceptionV3+LSTM has
the best classification performance among all models,
with exact match ratio, accuracy, recall, precision, and
F1-score of 98.25%, 99.32%, 99.42%, 99.90%, and
99.57%, respectively. Moreover, the Hamming loss also
reaches a minimum of 0.0062. The Hamming loss of
InceptionV3+LSTM is reduced by 0.0198 compared
to InceptionV3, indicating that the prediction error
and missing error of multi labels are minimized. This
is because the CNN-LSTM model can learn compli-
cated patterns from data more rapidly and correctly
than the CNN model alone. However, the precision of
InceptionV3+LSTM is slightly lower by 0.05% than
ResNet50+LSTM. The exact match ratio, accuracy, re-
call, precision, and F1-score of the ResNet50+LSTM
model are 6.55%, 2.46%, 1.99%, 0.52%, and 1.52%
higher than those of VGG16+LSTM, respectively.
This indicates that the feature sequence obtained by
ResNet50 contains more time series characteristics.
The classification performance of VGG19 fusion LSTM
network has been improved, but it is still lower than
the other three transfer learning models.

Table 6. Multi-label bird species classification results
of four transfer learning models fused with LSTM.

VGG16
+LSTM

VGG19
+LSTM

InceptionV3
+LSTM

ResNet50
+LSTM

Exact match
ratio [%]

91.60 90.06 98.25 98.15

Accuracy [%] 96.78 96.21 99.32 99.24

Recall [%] 97.28 96.79 99.41 99.27

Precision [%] 99.43 99.32 99.90 99.95

F1-score [%] 97.99 97.62 99.57 99.51

Hamming loss 0.029 0.034 0.0062 0.0073

Figures 9 and 10, respectively, depict the ex-
act match ratio and the Hamming loss variation
curves of four transfer learning models fused with
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Fig. 9. Exact match ratio curves of four transfer learning
models fused with LSTM.
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Fig. 10. Hamming loss curves of four transfer learning
models fused with LSTM.

LSTM. As shown in Fig. 9, the exact match ratio of
the VGG16+LSTM and VGG19+LSTM classification
models is significantly lower than InceptionV3+LSTM
and ResNet50+LSTM. Before the 70th epoch, the ex-
act match ratio of ResNet50+LSTM was slightly higher
than InceptionV3+LSTM. After the 70th epoch, there
was no significant difference between the two fusion
models. As shown in Fig. 10, before the 200th epoch,
InceptionV3+LSTM had the higher Hamming loss
than ResNet50+LSTM. After the 200th epoch, there
was no significant difference between the two fusion
models. Considering the performance of the model and
computing resources, we chose InceptionV3+LSTM as
the multi-label bird species classification model.

4.3. Classification confusion matrices
of InceptionV3+LSTM

To further analyze the performance of the
InceptionV3+LSTM model in multi-label bird species
classification, we present the confusion matrices for
each label in Table 7. These confusion matrices provide
a detailed view of the model’s prediction accuracy for
each individual label. For label 0, the high number of
true positives (1332) and true negatives (5661) indi-
cates that the model performs well in identifying this
label. However, label 2 has a relatively higher number
of false positives (8) and false negatives (11) compared
to other labels, which may suggest that this label is
more challenging for the model to classify accurately.
Label 4 has a moderate number of false positives (4)
but a higher number of false negatives (23), indicating
that the model may have difficulty in correctly identi-
fying this label.
Overall, the confusion matrices demonstrate that

the InceptionV3+LSTM model has a high accuracy
in classifying most labels, with only a few exceptions
where misclassifications occur. This suggests that the
model is capable of effectively learning the features and
temporal patterns in the bird sound data, leading to
accurate multi-label classification results.
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Table 7. Confusion matrix for different labels.

Confusion matrix for label 0

Label 0: real
Predict

0 1

0 5661 5

1 2 1332

Confusion matrix for label 1

Label 1: real
Predict

0 1

0 5082 3

1 2 1913

Confusion matrix for label 2

Label 2: real
Predict

0 1

0 5154 8

1 11 1827

Confusion matrix for label 3

Label 3: real
Predict

0 1

0 5284 0

1 4 1712

Confusion matrix for label 4

Label 4: real
Predict

0 1

0 5318 4

1 23 1655

Confusion matrix for label 5

Label 5: real
Predict

0 1

0 5379 0

1 16 1605

Confusion matrix for label 6

Label 6: real
Predict

0 1

0 5440 0

1 6 1554

Confusion matrix for label 7

Label 7: real
Predict

0 1

0 5543 0

1 0 1457

Confusion matrix for label 8

Label 8: real
Predict

0 1

0 5620 0

1 13 1367

Confusion matrix for label 9

Label 9: real
Predict

0 1

0 5647 0

1 20 1333

5. Discussion

Table 8 shows a comparison of the relevant studies
with the present study in terms of method and perfor-

mance. In multi-label bird species classification tasks,
syllable overlap can limit manual feature extraction
(Liu, 2016; Briggs et al., 2012; Noumida, Rajan,
2022; Leng, Dan Tran, 2014; Abdul Kareem, Ra-
jan, 2023), because syllable segmentation is a crucial
step. The accuracy of any classifier that relies on seg-
mentation is sensitive to the quality of the segmenta-
tion (Fagerlund, 2004). A recent study has shown
that deep learning is an effective method for classi-
fying birds based on their sounds, such as processing
large amounts of audio data, which allows it to de-
tect subtle differences between bird sounds (Michaud
et al., 2023). Researchers usually increase the number
of convolutional layers to extract more detailed fea-
tures from the audio raw waveform (Bravo Sanchez
et al., 2021) and mel spectrograms (Abdul Kareem,
Rajan, 2023). These methods result in more training
parameters and the need for sufficient data to train
model parameters. To reduce the number of trainable
parameters and address the issue of data availability
for the deep convolutional network to be effectively
trained, a transfer learning approach is adopted in this
study. For multi-label bird species classification, we
employed the ImageNet-trained InceptionV3 convolu-
tion network. However, the CNN model ignores the
temporal dependence of bird sounds. The pre-trained
InceptionV3 is further fused with LSTM to extract
time series characteristics from the feature sequence.
Table 7 demonstrates that the proposed multi-label
bird species classification method based on pre-trained
InceptionV3 fused with LSTM has excellent perfor-
mance.
The experimental results demonstrate the superi-

ority of the InceptionV3+LSTM model in multi-label
bird species classification, particularly in challenging
cases involving overlapping syllables from two or three
bird species. This confirms that combining convolu-
tional feature extraction with temporal modeling via
LSTM yields significant benefits over CNNs alone.
However, despite the strong performance, the pro-

posed method relies on a large number of parameters
and pre-trained models trained on image datasets (Im-
ageNet), which may not optimally capture the charac-
teristics of audio spectrograms. Furthermore, although
we simulate overlapping bird calls, the synthetic na-
ture of the dataset may not fully capture the complex-
ities of real-world soundscapes such as environmental
noise or unpredictable call patterns.
Compared to previous studies listed in Table 8, our

method achieves state-of-the-art performance, yet di-
rect comparisons remain difficult due to the diversity
of datasets, label types, and evaluation metrics. Future
work could benefit from the establishment of standard-
ized multi-label bird audio benchmarks and the inte-
gration of more audio-specialized architectures, such
as attention-based transformers or audio foundation
models.
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Table 8. Comparative analysis with other methods.

Reference work Method Dataset Performance

Liu (2016) Based on MFCC feature transfer NIPS4B and xeno-canto Hamming loss 0.1024

Briggs et al. (2012) Spectral features with MIML-KNN H.J. Andrews Experimental
Forest

Accuracy 96.1%

Noumida, Rajan (2022) MFCC with BiGRU xeno-canto F1-score 0.85

Leng, Dat Tran (2014) Spectral features, MFCC
and LPC with ensemble model

NIPS4B AUC 91.74%

Bravo Sanchez et al. (2021) SincNet NIPS4Bplus Accuracy 73.56%,
AUC 74.85%,
Precision 74.81%,
Recall 73.56%

Abdul Kareem, Rajan (2023) Fused the MFCC-RNN
and mel spectrogram-CNN

xeno-canto F1-score 0.75

Proposed method in this work Pre-trained InceptionV3
with LSTM

Cornell Macaulay Library Exact match ratio 98.25%,
Accuracy 99.32%,
Recall 99.42%,
Precision 99.90%,
F1-score 99.57%,
Hamming loss 0.0062

6. Conclusions

In recent years, research on multi-label bird sound
classification has been limited, particularly for realis-
tic scenarios where two or three bird species vocal-
ize simultaneously within the same audio segment.
Moreover, most existing works rely on researcher-
constructed datasets due to the lack of publicly
available multi-label bird datasets, which makes per-
formance comparison and method validation chal-
lenging. To address these issues, this study pro-
posed a multi-label bird species classification model
based on a transfer learning architecture fused with
LSTM. Specifically, our method focuses on the re-
alistic challenge of identifying two or three bird
species vocalizing simultaneously within the same
5-second audio clip. Traditional syllable segmenta-
tion methods often struggle in such overlapping sce-
narios. By applying pre-trained convolutional neural
networks to extract deep acoustic features from mel
spectrograms, and further integrating LSTM to cap-
ture temporal dependencies, the proposed model ef-
fectively addresses this challenge. Experimental re-
sults demonstrate that the InceptionV3+LSTM fusion
model achieves outstanding performance in multi-label
classification, with an exact match ratio of 98.25%,
accuracy of 99.32%, recall of 99.42%, precision of
99.90%, F1-score of 99.57%, and the minimum Ham-
ming loss of 0.0062.
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1. Introduction

The main function of the cello bridge is to trans-
form the vibrations generated in the strings into vi-
brations of the top plate. The strings transmit this
vibration to the bridge at the points of contact between
the two elements, and the bridge transmits it to the top
plate through the two supporting feet. The way the
bridge performs this transmission and what its modes
of vibration are like, are central issues in the final
characteristics of the instrument and have been stud-
ied by several authors. Minnaert and Vlam (1937)
published a pioneering work, where the normal, flex-
ural, and torsional modes of the bridge were studied.
Later, in 1963, Steinkopf introduced basic mechanical
models of the bridge to obtain the frequency response
(Cremer, 1984). Bissinger (2006) carried out studies
of various violin bridges and a detailed analysis of the
bridge as a filter in the transmission of vibrations to
the top plate of the instrument. Among the works with

experimental results, Reinicke and Cremer (1970)
can be mentioned as one of the first to use optical in-
terferometric techniques to measure vibrations in the
instrument. Subsequently, Jansson et al. (1994) made
interesting contributions to the experimental analysis
of violin body vibrations and their effects on the fre-
quency response. In (Jansson, 2004) the importance
of the shape and dimensions of the bridge base and
foot on the characteristics of the coupling with the
top plate of the instrument is determined, demonstrat-
ing a correlation between the quality of the violin and
the shape of the bridge. Other researchers have ana-
lysed the frequency response of the bridge by study-
ing the admittance or mobility variables of the sys-
tem (Boutillon,Weinreich, 1999; Elie et al., 2013;
Malvermi et al., 2021). Simplified shapes of the in-
strument or some of its parts were modelled and the
frequency response was measured or simulated, taking
the bridge as a simple mass-spring system or consider-
ing more complex models (Woodhouse, 2005; 2014).

https://acoustics.ippt.pan.pl/index.php/aa/index
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In a separate line of research, the impact of the violin
and cello bridge shapes on their static and vibrational
characteristics was examined through parametric mod-
elling and simulations utilizing the finite element meth-
ods. An important point in these works is the boundary
conditions to which the bridge is subjected in contact
with the top plate of the instrument during normal op-
eration. These conditions ranged from a fixed point to
more realistic systems incorporating combinations of
springs and dampers. Several models were considered
where each foot of the bridge had up to three trans-
lational springs and three rotational springs (Kabała
et al., 2018). Lodetti’s et al. (2023) work served as
a basis for a subsequent analysis on a cello.
The primary objective of this paper was to mea-

sure the static elastic constant of the instrument’s top
plate at the contact points with each of the bridge’s
support feet. The proposal aimed to measure the value
of the elastic constant in the primary direction of dis-
placement, which is perpendicular to the instrument’s
top plate, understanding this parameter is crucial as
it plays a significant role in determining the boundary
conditions that the bridge experiences at the contact
points with the top plate.
Another goal of this study was to compare the val-

ues of the elastic constants measured at the aforemen-
tioned contact points, in two different scenarios: in the
first, when the instrument is received from the factory;
and in the second, after an adjustment made by a pro-
fessional luthier. Industrially manufactured cellos are
often assembled in music stores, and such assembly
frequently requires additional adjustments by profes-
sional luthiers. These adjustments significantly influ-
ence the elastic conditions between the bridge and top
plate. This step is crucial to ensure that the structural
and acoustic characteristics of the instrument meet
higher standards. As the measurements show, the val-
ues of the elastic constant after the luthier’s work are
considerably lower than before the adjustment, partic-
ularly at the treble foot (next to the sound post).
The experimental work was conducted on a set-

up that include the entire instrument under controlled
laboratory conditions, with measurements of the elas-
tic constant taken to assess the variation at different
points along the top plate. This variation is due to the
structural asymmetry present in both the bridge and
the instrument’s top plate. The asymmetry was influ-
enced by the curvature of the upper part of the bridge
and the stiffness disparity resulting from the position-
ing of the sound post near the treble support (‘A’ string
220Hz), and the bass-bar close to the bass support
(‘C’ string 65.4Hz).

2. Experimental setup

To obtain the values of the elastic constants, an
experimental setup was implemented to measure the

deformation of the top plate as a function of the force
applied at a series of selected points on the instru-
ment top plate. The deformation of a spring of known
elastic constant was used to measure the force and
a low coherence optical interferometer was used to
measure the deformation distances. With this exper-
imental scheme, deformation measurements were car-
ried out under different conditions and results were ob-
tained for the elastic constants at the selected points.
From these measurements it was possible to verify
a linear behaviour between the displacement and the
force in the range of values of both magnitudes to
which the instrument is subjected during its execution.
The strings used for this experiment, replacing the

original ones, are Jargar RO Classic Medium strings.
The manufacturer gives the nominal tension of each
string (C: 13.8 kg, G: 13.4 kg, D: 14.0 kg, A: 17.9 kg)
under normal tuning conditions, with the tension val-
ues of the treble strings being higher than those of the
bass strings.
The points where the top plate deformation was

measured are close to the bridge support points. To
ensure clarity, they are identified with numbers 1 to 6.
Point 1 is located next to the footrest corresponding to
the treble string (note A3 220Hz) on the tailpiece side
of the instrument. Point 2 is located on the right side of
the bridge, always seen from the tailpiece side; point 3
on the side of the fingerboard opposite to the location
of point 1 and so on in correlative order for points 4,
5, and 6 on the foot corresponding to the bass string.
Figure 1 shows the location of these points on the top
plate of the instrument.

Fig. 1. Strain measurement points indicated on the top
plate of the instrument.

Both, the experimental device for measuring force
and deformation and the instrument used as sample,
were mounted on an anti-vibration table that allows to
isolate the system from mechanical noise and external
vibrations. A structure was designed and constructed
to secure the instrument to the table, providing sup-
port for the components used to apply and measure the
compression force on the instrument’s soundboard, as
well as for the corresponding deformation measure-
ment system.
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2.1. Instrument fixing system

Clamping the instrument on the test table was car-
ried out with a device specifically designed with three
purposes. The first was to ensure that the instrument
is statically fixed to the table so that the deformations
measured are due exclusively to the deformation of the
top plate and not to movements of the instrument with
respect to the measuring point. The second was to
use this structure for the location of the devices in-
tended to exert and measure the force on the top plate
and the corresponding deformation measuring device.
The third was to preserve the instrument and develop
a method of attachment and mounting that would not
damage its structure.
The points where the straps are attached to the

instrument’s C’s were used as a link to the fixation
structure as they were considered to be structurally
stronger. A mechanical clamp element was designed
and constructed with separate upper and lower jaws.
The lower part is screwed to the measuring table and
the upper part presses the instrument top plate as
shown in Fig. 2. Both the lower and upper-part press
on wooden blocks covered with plush that are in direct
contact with the instrument. In this way, the instru-
ment is supported by this clamp system and no other
parts are in direct contact with the measuring table.
The points set out in the four blocks are the only el-
ements linking the instrument to the measuring table.
Figure 2 shows the instrument placed on the measur-
ing table and the top plate compression system in the
measuring situation.

Fig. 2. Cello mounted on the measuring table by means
of the clamping frame.

2.2. Device for exerting and measuring forces

To exert and measure the compression force on the
top plate of the instrument, two identical mechanical
devices were designed and built to replace the original
bridge and were placed at the same support points. In
this configuration the cello is stripped of the bridge,
tailpiece, and strings. Each of these devices has a sup-
port point on the top plate of the instrument, a cy-
linder with a piston associated to a calibrated thread
of 1mm of advance per turn, and an internal spring of
known elastic constant (kR) as it is showed in Fig. 3.

Bridge foot

L

Dc

Bridge foot

Spring
Spring

Cylinder
Cylinder

Piston
Piston

Screw
Screw

1 mm per turn (L)
1 mm per turn (L)

Top plate Top plate 

Fig. 3. Device diagrams to exert and measure the compres-
sion force on the top plate of the instrument.

To exert a controlled force, the piston is rotated a cer-
tain number of revolutions (n) compressing the spring
at a distance L. At the other end of the spring, the sup-
port point exerts the same force on the instrument top
plate. As a result, it deforms and moves a distance DC ,
assuming the same behaviour that it has in the tuning
and playing process. It is convenient to define the rate
of deformation of the top plate per revolution (Apr) of
the cylinder as

Apr =
DC

n
. (1)

Considering that the calibrated thread pitch is one
millimetre per revolution (10−3m/rev) with an error
that we estimate at 1%; the distance L can be ex-
pressed as

L ±∆L = 10−3
m

rev
∗ n

±(10−5
m

rev
∗ n + 10−3

m

rev
∆n), (2)

where ∆n, the error in the number of turns, was ob-
tained from the relation that defines Apr:

∆n =
∆DC

Apr
+
DC

A2
pr

∆Apr. (3)

The force exerted by the spring (FR) at both ends
can be expressed as

FR ±∆FR = (kR ±∆kR)

⋅ ((L ±∆L) − (DC ±∆DC)) , (4)

where kR, the elastic constant of the spring, was ob-
tained by measuring the stretch produced by a series
of standard weights in the range of values comparable
to the stretch measured in tuning.
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The average of these measurements, taken as the
final value with a relative error of 1.6%, was

kR = (6100 ± 100)
N

m
.

2.3. Deformation measurement
with an interferometer

Deformation measurements of the top plate sur-
face were made using frequency domain optical coher-
ent tomography (FD-OCT) with a Fizeau-type fiber
optic configuration (Vakhtin et al., 2003), as shown
in Fig. 4a. This configuration allows measurements at
points close to the feet of the bridge and allows si-
multaneous measurement of the deformation at two
points. The interference between the optical reflection
generated at the end of each optical fibre (Fa and Fb)
and the reflections on the cello top plate allow to deter-
mine the distances between the end of the fiber and the
top plate (Da and Db) as shown in Fig. 4b. Da rep-
resents the distance measurements taken at points 1
and 6, while Db represents the same measurements for
points 4 and 3. The distances at points 2 and 5 were
calculated as the average of the distances measured
at 1 and 3, and 4 and 6, respectively.
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Fig. 4. a) Interferometer schematic. The light emitted by
the S-LED source is coupled to the beam splitter (BS 50:50)
whose outputs, fibers Fa and Fb, illuminates the cello top
plate. Da and Db are the distance between each fiber and
the top plate. Beams reflected are coupled back into the
fibers and sent to the detector through the fiber Fo; b) im-

age of the optically instrumented cello.

3. Results

The process of measuring and determining the elas-
tic constants of the top plate was carried out in three
stages.

In the first stage, only the nominal displacements
of the top plate produced by the bridge pressure un-
der normal tuning conditions were measured. Defor-
mation measurements were obtained at points 1, 3, 4,
and 6 with the instrument mounted with tailpiece and
strings. The deformation values at points 2 and 5 were
obtained as the average of the values measured at 1
and 3, and 4 and 6, respectively. Measurements under
tuning conditions were made by allowing the instru-
ment to rest and noting that after about eight min-
utes the stabilisation of the deformation was essentially
definitive within the instrumental resolution. A mea-
surement immediately after compression and a second
measurement after eight minutes of rest were taken as
the norm.
In a second stage, the bridge and strings were re-

placed by a calibrated spring system. The forces ap-
plied with this system corresponded to deformation
values equal to those obtained in the first stage. In
this way, the values of force and deformation were ob-
tained simultaneously in similar conditions to those
achieved in the normal use of the instrument.
In a third stage the same measurements and re-

sults are presented as in the second stage but after
the luthier has adjusted the instrument. The objective
is to compare the values of the elastic constant before
and after adjustment.

3.1. First stage – Measurement of deformation
imposed by the tuning of strings
(before luthier’s work)

Table 1 presents the measurements of top plate de-
formation (DC) produced during the tuning process in
points 1, 3, 4, and 6.
The values labelled ‘free’ represent the measure-

ments of distances (Da or Db) taken before tuning. In
this state, the strings were completely slack, positioned
between the pegs and the tailpiece, and resting on the
bridge without any tension. This condition was main-
tained for more than eight minutes to ensure the top
plate was free of residual tension. Measurements were
then taken at points 1, 3, 4, and 6 near the bridge sup-
ports, establishing a baseline reference position. This
static state served as the zero point for quantifying
deformation caused by string tension after tuning.
The values in the column ‘tuning 1’ corresponds

to the first measurement of the same distances (Da or
Db) taken immediately after tuning the four strings.
Eight minutes later a second measurement of the same
distances was taken, referenced as ‘tuning 2’, and ad-
justed the four strings again with the micro tuning
screw to obtain ‘tuning 3’, which was considered as
the final measurement of distances resulting from tun-
ing. This procedure was performed three times (mea-
sures 1, 2, and 3), at each of the points of the top plate.
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Table 1. Absolute displacements and deformation at points 1, 3, 4, and 6 during tuning process.

Type Free [µm] Tuning 1 [µm] Tuning 2 [µm] Tuning 3 [µm] DC−T1 [µm] DC−T2 [µm] DC−T3 [µm]

a) absolute displacements and deformation at point 1 during tuning process

Measure 1 789 1252 1245 1256 463 456 467

Measure 2 797 1255 1252 1260 458 455 463

Measure 3 798 1248 1245 1272 450 447 474

Average 794.7 1251.7 1247.3 1262.7 457.0 452.6 468.0

Error 2.8 2.0 2.3 4.9 3.9 2.9 3.3

b) absolute displacements and deformation at point 3 during tuning process

Measure 1 712 1394 1389 1402 682 677 690

Measure 2 717 1396 1394 1409 679 677 692

Measure 3 716 1414 1411 1419 696 695 703

Average 715.0 1401.3 1398.0 1410.0 685.7 683.0 695.0

Error 1.6 6.6 6.9 5.1 5.4 6.2 4.2

c) absolute displacements and deformation at point 4 during tuning process

Measure 1 1132 1790 1787 1803 658 655 671

Measure 2 1134 1796 1791 1807 662 657 673

Measure 3 1137 1807 1805 1816 670 668 679

Average 1134.3 1797.7 1794.3 1808.7 663.3 660.0 674.3

Error 2.6 5.1 5.6 4.0 3.6 4.1 2.5

d) absolute displacements and deformation at point 6 during tuning process

Measure 1 1240 1888 1877 1891 648 637 651

Measure 2 1249 1897 1889 1906 648 640 657

Measure 3 1249 1886 1880 1907 637 631 658

Average 1246.0 1890.3 1882.0 1901.3 644.3 636.0 655.3

Error 3.1 3.5 3.7 5.3 3.8 2.7 2.3

The values of deformation referenced as ‘DC−T1’,
DC−T2’, and ‘DC−T3’ were obtained as the difference
between ‘tunings 1, 2, 3’ and ‘free’ measurements, re-
spectively. The average was taken as the representative
value. The final error was obtained from the standard
statistical error of the three deformations as indicated
in the last column of the table, in the same way as all
the errors indicated in the last row. The final tuning
deformation result, utilized in subsequent calculations,
is underlined.

3.2. Second stage – Measurement of deformation
imposed by the spring compression system

(before luthier’s work)

At this stage, the bridge and strings were replaced
by a system of calibrated springs to apply and measure

Table 2. Deformation measurements (DC), number of revolutions (n), and the rate of advance per revolution (Apr)
in each series of measurements.

Point 1 Point 3 Point 4 Point 6

Measure 1 – DC (n) 483µm (14 rev) 720µm (19.5 rev) 721µm (9.5 rev) 674µm (9.5 rev)

Measure 2 – DC (n) 482µm (14 rev) 694µm (20 rev) 683µm (9 rev) 675µm (9.5 rev)

Measure 3 – DC (n) 478µm (14 rev) 724µm (20.5 rev) 675µm (9 rev) 656µm (9 rev)

Measure 1 – Apr 34.50µm/rev 36.92µm/rev 75.89µm/rev 70.95µm/rev

Measure 2 – Apr 34.43µm/rev 34.70µm/rev 72.56µm/rev 75.00µm/rev

Measure 3 – Apr 34.14µm/rev 35.32µm/rev 75.00µm/rev 72.89µm/rev

Average – Apr (34.36 ±0.11)µm/rev (34.65 ±0.66)µm/rev (74.48 ±0.99)µm/rev (74.95 ±1.65)µm/rev

forces on the instrument. The deformation values (DC)
obtained in the previous stage were used as a reference
to determine the necessary force that must be applied
with the spring system in order to generate similar de-
formations. To apply the required force in each point, it
is necessary to determine the value of the relative rate
of deformation per revolution (Apr) and the number of
revolutions (n) of the cylinder of the spring device. To
obtain these values each spring was compressed three
times simultaneously at the points 1, 3, 4, and 6 and
left to rest for eight minutes after each adjustment to
make the measurements comparable to those made un-
der tuning conditions. Table 2 summarises the three
measurements at each point indicating the compres-
sion in microns and the number of revolutions between
brackets. The average rate per revolution values is re-
ported in the same table.
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The equivalent elastic constant of the top plate
(kT ) can be defined as

FT = kTDC . (5)

It is assumed that the elastic force exerted by the
top plate ‘FT ’ is the same as that exerted by the cali-
brated spring ‘FR’, then:

FR = FT = kTDC = kR(L −DC). (6)

So, it is possible to obtain the equivalent elastic
constant of the top plate and its error as

kT ±∆kT =
FR
DC
± (

∆FR
DC

+
FR
D2
C

∆DC). (7)

Finally, we have the results summarised in Table 3.
We estimate the value of the equivalent elastic con-

stant of the top plate under the support of the foot
as the average between the values measured at points 1
and 3 for the La (A) and for the Do (C) string:

kT (A) = (171 ±12) kN/m,

kT (C) = (75 ±5) kN/m,

with relative errors in the order of 8% and 7%, respec-
tively.

Table 3. Synthesis of results at points 1, 3, 4, and 6 for top plate deformation (DC), relative advance per turn (Apr),
estimated number of revolutions to equalize deformations (n), displacement length of the calibration spring (L), force

exerted by the spring (FR), equivalent elastic constant of the top plate (kT ), and its relative error (ER).

Point 1 Point 3 Point 4 Point 6

DC [µm] 468.0 ±3.3 695.0 ±4.2 674.3 ±2.5 655.3 ±2.3

Apr [µm/rev] 34.36 ±0.11 34.65 ±0.66 74.48 ±0.99 74.95 ±1.65

n [rev] 13.62 ±0.14 20.06 ±0.51 9.05 ±0.16 8.74 ±0.23

L [mm] 13.62 ±0.27 20.06 ±0.71 9.05 ±0.25 8.74 ±0.32

FR [N] 80.2 ±3.0 118.1 ±6.2 51.1 ±2.4 49.3 ±2.7

kT [kN/m] 171.4 ±7.6 169.9 ±9.9 75.8 ±3.9 75.2 ±4.4

ER [%] 4.4 5.8 5.2 5.9

Table 4. Mean deformation with standard and percentage error after luthier’s intervention.

Point 1 Point 3 Point 4 Point 6

Average – DC 513.0 ±4.3µm 729.7 ±6.5µm 910.7 ±5.0µm 859.7 ±12.7µm

Table 5. Deformation measurements (DC), number of revolutions (n), and the rate of advance per revolution (Apr)
in each series of measurements after the luthier’s intervention.

Point 1 Point 3 Point 4 Point 6

Measure 1 – DC (n) 574µm (13 rev) 736µm (14 rev) 931µm (11 rev) 888µm (11 rev)

Measure 2 – DC (n) 530µm (13 rev) 760.9µm (14 rev) 969µm (11.5 rev) 855µm (11 rev)

Measure 3 – DC (n) 522µm (13 rev) 750µm (14.5 rev) 926µm (11 rev) 848µm (11 rev)

Measure 1 – Apr 44.16µm/rev 52.57µm/rev 84.64µm/rev 80.73µm/rev

Measure 2 – Apr 40.77µm/rev 54.35µm/rev 84.26µm/rev 77.73µm/rev

Measure 3 – Apr 40.15µm/rev 51.72µm/rev 84.18µm/rev 77.09µm/rev

Average – Apr (41.69 ±1.27)µm/rev (52.88 ±0.79)µm/rev (84.36 ±0.15)µm/rev (78.52 ±1.14)µm/rev

3.3. Third stage – Measurement of deformation
imposed by the spring compression system

(after luthier’s work)

In this section, we present the same measurement
and calculus procedure as in the second stage but after
the work done by a professional luthier adjusting the
position and length of the sound post.
The appreciation of the luthier as soon as he worked

on the instrument was that the sound post was ‘too
rigid’ and that he had to shorten its length and posi-
tion. After luthier’s work we measured the static elas-
tic constants again noticing that the values obtained
were considerably smaller than before, especially in the
treble foot (next to the sound post).
Table 4 shows the final deformation measurements

of the strings during the tuning process after an inter-
vention of a luthier consisting in the adjustment of the
sound post location.
Table 5 repeats the results presented in Table 2

after luthier’s intervention.
Table 6 presents a summary of the results obtained

after the luthier’s intervention. The last row shows
a new magnitude, the stiffness reduction (Sr), defined
as the percentage relative difference in kT before (sec-
ond stage) and after (third stage) luthier’s interven-
tion. It is clear that the most remarkable reductions
occur at points 1 (18%) and 3 (36%), where the sound
post has the greatest influence.
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Table 6. Synthesis of results at points 1, 3, 4, and 6 for top plate deformation (DC), relative advance per turn (Apr),
estimated number of revolutions to equalize deformations (n), displacement length of the calibration spring (L), force
exerted by the spring (FR), equivalent elastic constant of the top plate (kT ), relative error (ER), and stiffness reduction (Sr)

after the intervention of the luthier.

Point 1 Point 3 Point 4 Point 6

DC [µm] 513.0 ±4.3 729.7 ±6.5 610.7 ±5.0 859.7 ±12.7

Apr [µm/rev] 41.69 ±1.27 52.88 ±0.79 84.36 ±0.15 78.52 ±1.14

n [rev] 12.31 ±0.48 13.80 ±0.33 7.24 ±0.08 10.95 ±0.16

L [mm] 12.31 ±0.60 13.80 ±0.47 7.24 ±0.15 10.95 ±0.27

FR [n] 72.0 ±4.9 79.7 ±4.3 40.4 ±1.7 61.6 ±2.8

kT [kN/m] 140.4 ±10.8 109.2 ±7.3 66.2 ±3.4 71.7 ±4.32

ER [%] 7.7 6.7 5.1 6.0

Sr [%] 18 36 13 5

We estimate the value of the equivalent elastic con-
stant of the top plate under the foot support corre-
sponding to the string La (A) and Do (C):

kT (A) = (125 ±15) kN/m,

kT (C) = (69 ±6) kN/m,

with relative errors in the order of 12% and 9%, re-
spectively.

4. Conclusions

An experimental system was developed to measure
the force and displacement of the cello’s top plate at
points near the bridge supports and estimate its static
elastic constant. Key findings and contributions are
summarized as follows:
– measurement methodology:

a) top plate deformation was measured using
low-coherence interferometry, a non-contact
optical technique with sub-micron resolution;

b) the force was applied and measured us-
ing a calibrated spring system mounted on
a custom-designed device, ensuring mini-
mal spurious deformations and compatibility
with standard instrument fixtures;

– phase 2 results:

a) before the luthier intervention, the measured
static elastic constant (kT ) varied signifi-
cantly across the different points [kN/m]:

* point 1: kT = 171.4 ±7.6,
* point 3: kT = 169.9 ±9.9,
* point 4: kT = 75.8 ±3.9,
* point 6: kT = 75.2 ±4.4;

b) error (ER) values ranged from 4.4% to 5.9%;

– phase 3 results:

a) after professional adjustment of the sound
post by luthier (who identified excessive
rigidity and corrected its position and

length), significant reductions in kT were ob-
served, particularly at point 3 [kN/m]:

* point 1: kT = 140.4 ±10.8 (↓ 18%),
* point 3: kT = 109.2 ±7.3 (↓ 36%),
* point 4: kT = 66.2 ±3.4 (↓ 13%),
* point 6: kT = 71.7 ±4.3 (↓ 5%);

b) ER values increased slightly (6.0% to 7.7%);

– impact of the luthier’s intervention:

a) the most pronounced stiffness reductions oc-
curred near the treble foot up to 36% in
point 3 (string A, adjacent to the sound
post), emphasizing the importance of proper
sound post positioning and adjustment for
achieving optimal elastic properties.

These findings provide valuable insights for cello
setup optimization and serve as a reference for mod-
elling the bridge using the finite difference methods.
Future work will focus on refining measurement tech-
niques, extending the analysis to additional instru-
ments, and correlating elastic properties with acoustic
performance.
This work highlights the significant contribution

that the intuition and expertise of luthiers can make to
scientific research aimed at understanding the func-
tioning of musical instruments. Collaborative work,
combined with the use of new techniques and scien-
tific methods, offers the potential to provide objective
insights into subjective aspects, thereby fostering the
generation of new knowledge.
The results obtained using low-coherence interfer-

ometry suggest that this technique is highly suitable
for measuring deformation at different points of the
top plate. This paves the way for future studies focus-
ing on other elements of the instrument.
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The difference in sound pressure levels between two types of rounds fired from a saluting gun has been
investigated; the rounds being identified as ‘current’ and ‘new’. A 3-pounder saluting gun mounted on a concrete
floor based at HMNB Portsmouth, UK, was used in the survey. Sound pressure levels were measured at the two
people responsible for operating the gun: the firer and the loader. Twelve current rounds and 24 new rounds
were fired during the survey. The new rounds showed a greater variation in peak sound pressure levels between
rounds (interquartile range of 2.1 dB, firer’s location) compared with the current rounds (interquartile range of
1.1 dB, firer’s location). The highest C-weighted peak sound pressure levels for the firer were 173.1 dB for the
current round compared with 166.8 dB for the new round. The corresponding highest C-weighted peak sound
pressure levels for the loader were 170.6 dB and 163.0 dB, respectively. The difference between median peak
sound pressure levels was 8.8 dB for the firer and 9.8 dB for the loader. Similar differences were measured in
sound exposure levels between the two types of rounds. Frequency data presented can be used for assessing
the suitability of appropriate hearing protectors. Mitigation measures are proposed for further reducing noise
exposure of the operators.
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1. Introduction

The firing of a saluting gun serves a very specific
purpose – this shows a sign of respect or welcome,
celebratory or for remembrance. That is, the firing
marks a commemoration of an event that occurred in
the past, or of a current special occasion. One such
important and notable occasion was on 9 September
2022 with the passing of Her Majesty the Queen Eliz-
abeth II (the late monarch of the United Kingdom)
whereby 96 rounds (or salutes) were fired during the
Death Gun Salute from Hyde Park, London. The num-
ber of rounds corresponding to the age of Her Majesty
upon death. Similar events with saluting guns and the
same number of rounds took place at other locations
such as Belfast (Northern Ireland), Cardiff (Wales),
Edinburgh (Scotland), and Gibraltar. To mark the oc-
casion, 117 rounds were fired from the saluting guns at
Portsmouth Naval Base, UK: 96 to mark Her Majesty’s

age (upon her demise) and an additional 21 shots as
a mark of respect. Other military bases, including De-
vonport Naval Base Plymouth, UK fired 96 shots to
mark the occasion.
Indeed, there are many ceremonial royal occasions

within United Kingdom when saluting guns are fired,
these include Accession Day, His Majesty the King’s
Birthday, His Majesty King Charles III’s official birth-
day, Her Majesty the Queen’s Birthday, The State
Opening of Parliament, and meetings of visiting Heads
of State and the Sovereign. The number of gun salutes
vary but could include 21, 41, or 61 firings. The sa-
lutes are fired in 10-second intervals until all salutes
are complete.
There are other guns which are fired on daily basis.

One such example is the ‘One O’clock Gun’ fired from
Edinburgh Castle every day at 13:00 to announce the
time so that ships could synchronise their chronomet-
ric timepieces. Apart from a few exceptions, the gun

https://acoustics.ippt.pan.pl/index.php/aa/index
mailto:Gurmail.Paddan472@mod.gov.uk
https://creativecommons.org/licenses/by/4.0/
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has been fired every day since 1861. Noting that the
speed of sound is approximately 343m ⋅ s−1, Time gun-
maps (n.d.) were produced to account for the delay in
the sound being heard at different distances from the
gun. All this, however, is of a historic nature and only
serves a symbolic purpose in this technological age.
Unsuccessful attempts were made to quieten the noise
from the gun on health and safety grounds (Sheridan,
2024).
Only a few published studies were found dealing

with the sound pressure levels emanating from the
firing of saluting or ceremonial guns and cannons.
Primetake, a manufacturer of ammunition for use in
ceremonial saluting guns, states that their 25-pounder
cartridge (88mm bore size) with full charge (454 g of
gunpowder) would produce a sound pressure level
of 160 dB at a distance of 20m measured at an angle of
90○ to the muzzle. The sound pressure level would re-
duce to 155 dB with a half charge (227 g). However, no
data are provided for the locations of the gun operators
who would be stationed behind the cannon.
The use of cannons is not restricted for just cel-

ebrating royal occasions in the UK. Various types of
cannons are regularly used at some universities in the
USA (and other countries) to celebrate and commence
activities. Peak sound pressure levels of 174 dB have
been reported at the operators’ locations from cere-
monial cannons (Flamme et al., 2019). Based on the
findings, it was stated that the sound pressure levels
could be ’potentially hazardous’ and that double hear-
ing protection (earplugs and earmuffs) should be worn
by those involved in the firings.
The effect and purpose of firing a saluting gun

should serve both as an auditory and a visual signal
to those in the local vicinity; although the visual effect
would only be observable when in line-of-sight with
the saluting gun. The event of firing should not cause
any harm or injury to any person involved in the firing
or observing the firing. The hazards from this activ-
ity might include the noise generated, the flash and
emission of any gases. It is considered that these three
hazards would not pose a significant risk to any ob-
server as there would normally be an area cordoned
off around the gun. However, those involved with the
firing, nominally the firer and the loader, would neces-
sarily be exposed to these hazards due to the close
proximity with the gun. The main premise with re-
gards to noise exposure should be that the firing of
the salutes must not affect the hearing of those ob-
serving the firing (spectators) and operating the gun.
The noise generated during firing of saluting guns

exposes the operators to undesirable sound pressure
levels which pose a risk to their hearing. An assess-
ment of the noise from firing of saluting guns based at
HMNB Portsmouth showed that the operators might
be exposed to C-weighted peak sound pressure levels
around 178 dB (Paddan, Howell, 2019). The peak

sound pressure produced during firing was considered
to be a potential noise risk and this necessitated the
need for control measures. One of the main mitigation
measures to reduce noise exposure of the operators in-
cluded recommending the use of a lower charge in the
ammunition used in the saluting guns with the aim
of maintaining the visual display (flash), but reducing
the noise produced (bang). Therefore, based on the rec-
ommendation, an opportunity arose to assess the noise
from saluting guns firing ammunition with two differ-
ent types of charge; that is, using the current charge
and a new improved lower charge. The data have
been assessed using the available guidance specified in
(Statutory Instruments, 2005; Directive 2003/10/EC,
2003). Furthermore, the suitability of hearing protec-
tion has been evaluated using the procedure in (Min-
istry of Defence, 2015) using maximum sound pressure
levels.

2. Equipment and procedure

2.1. Saluting gun and ammunition

Noise measurements were made during the fir-
ing of the 3-pounder saluting guns mounted on con-
crete platforms at the South Railway jetty at HMNB
Portsmouth, Hampshire, UK (Fig. 1). The three land-
based guns were aimed towards the water between
Portsmouth and Gosport. One of the guns, shown
as the gun on the right in Fig. 1 identified as the
‘northern gun’, was used during the survey. The block
number (serial number) of the gun was 538. The
gun was manufactured by the Royal Naval Armament
Depot, Plymouth. Other identifying marks included
704.R.N.A.D. PLY.1960.

Fig. 1. Saluting guns at HMNB Portsmouth, UK.
The right-most gun was fired during the survey.

Two types of 3-pounder blank ammunition identi-
fied as ‘current’ and ‘new’ were fired during the survey.
Further details are shown in Table 1. The survey was
conducted such that 24 rounds of the new ammunition
were fired first followed by 12 rounds of the current
ammunition. There was a gap of about 7 s between
successive rounds.

https://primetake.com/wp-content/uploads/sites/5/2016/03/Saluting.pdf
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Table 1. Two types of 3-pounder blank ammunition used in the survey.

Type Identification No. of round fired NSN∗ Charge Casing

L1A1 with primer No. 20 L22-A1 Current 12 1305-99-701-2144 11 oz (312 g) Brass

L6-A1 New 24 1310-98-209-0397 90 g Pyrodex Plastic
∗NSN is the NATO Stock Number, essentially a part number to uniquely identify equipment used by NATO military services.

The gun was operated by two people identified as
the ‘firer’ and the ‘loader’. Both people were kneel-
ing with the firer immediately behind the gun and
the loader slightly to the right side of the gun. The
firer was facing in the direction of the barrel with his
head approximately 1.2m above the concrete mount-
ing base of the gun. The loader faced backwards to the
gun and his head was about 1.4m above the ground
(he had the same stance as the firer but was on the
plinth). (Although these two workers are identified as
the ‘firer’ and the ‘loader’, firing a round from the gun
involved the following operations: the loader pushes
down a lever (seen on the right of the gun in Fig. 1)
thus opening access to the barrel, the firer inserts the
ammunition into the barrel, the loader pulls up the
lever thus closing access to the barrel, the firer pulls the
trigger to fire the gun and discharge the round.) Both
operators were fully protected with suitable clothing
and appropriate gloves including anti-flash hoods over
their faces. They wore double hearing protection com-
prising earplugs (E-A-R soft FX) and earmuffs (Peltor
Comtac XPI).
Meteorological data (taken from Ventusky) were

recorded which showed the environmental conditions
on the day to be a temperature of 9 ○C, wind speeds
of up to 18km ⋅ h−1, relative humidity of 70% and no
precipitation.

2.2. Noise measurements

Audio recordings were made near the left ears
(about 15 cm away) of the firer and the loader, in accor-
dance with UK Health and Safety Executive guidance
on measuring peak noise (Health and Safety Executive,
2021). The microphones for measuring sound pressure
levels were mounted on tripods at a 90○ incidence (mi-
crophone diaphragm parallel to the sound) to the bar-
rel of the gun. Measurements were made using 1/4

′′

high pressure microphones (40BH, GRAS, Denmark)
connected to microphone preamplifiers (26AC, GRAS,
Denmark). The microphones were fitted with spheri-
cal foam windscreens approximately 65mm in diame-
ter with a 5-mm hole (WQ-1099, Brüel & Kjær, Den-
mark). The preamplifiers were connected to the input
channels of a microphone power supply (12AA, GRAS,
Denmark) and then to the data acquisition and ana-
lysis system (DATS Tetrad, Prosig, United Kingdom).
The output from the Tetrad acquisition system was
connected to a laptop running DATS for Windows soft-
ware (v4.10.01) where 24-bit rate time histories were

acquired simultaneously at a sampling rate of 100 000
samples per second.
Calibration of the complete recording system was

carried out using a class 1 pistonphone (42AC, GRAS,
Denmark), which gave a sinusoidal calibration tone of
134 dB at a frequency of 250Hz. The calibration proce-
dure was repeated following the measurement of noise
from the gun which showed the equipment to be stable
over the measurement period.

2.3. Procedure

The 24 rounds of the new ammunition were fired
first followed by the 12 rounds of the current ammuni-
tion. There was a 7-second gap between the successive
rounds to ensure that there was no interference be-
tween the sounds from consecutive rounds. A single
computer sound file was saved for each type of round:
two time-history waveform files were acquired. Each
file was separated into 24 segments for the new am-
munition and 12 segments for the current ammunition
(each of 0.9 s (±0.1 s) duration) to show the individual
rounds in preparation for analysis.

2.4. Analysis of recordings

The human ear does not respond equally at all fre-
quencies, therefore the A-weighting is applied to the
audible frequency range to represent the reduction in
sensitivity to the low frequencies. The C-weighting fil-
ter is suitable for assessing peak sound pressure levels.
Long-term noise-induced hearing loss from moderate
to loud noise is highly correlated with the noise expo-
sure in dB(A). The mechanism of instant damage to
the ear for extremely loud noise is different and is re-
lated to peak C-weighted sound pressure levels, LCpeak

(Health and Safety Executive, 2021). The equivalent
continuous sound pressure levels (that is, the time-
averaged noise levels), LAeq and LCeq, are generally
calculated for the measured time histories. However,
when assessing noise from single events, such as from
weapons fire, the LAeq and LCeq will be dependent
on the period of measurement. In such a case, the
A- and C-weighted sound exposure levels are calcu-
lated, LAE and LCE (Health and Safety Executive,
2021), indicating the total energy of the signal nor-
malised to a 1-s period. If the measurement comprises
a single round, then the LAE is a measure of noise
dose per round; the daily noise exposure can be cal-
culated from the number of rounds and the LAE per

www.ventusky.com
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round. Maximum A- and C-weighted sound pressure
levels, the LAFmax and LCFmax, were also measured
with the time weighting ‘F ’ (with a time constant
corresponding to 0.125 s) which replicates the ‘fast’
meter response of older analogue sound level meters.
The time-domain data were processed using a script
written in Python© Programming Language. (The re-
sults from the Python© script were the same as those
when compared with commercially available analysis
software including DATS Prosig, HVLab (ISVR, Uni-
versity of Southampton) and Brüel & Kjær BZ-5503
‘measurement partner suite’ software.)
The different parameters calculated were selected

so that the sound exposure levels (LAE and LCE)
could provide the energy within the waveform signals;
and the maximum sound pressure levels (LAFmax and
LCFmax) could be used for an estimation of the suit-
ability of hearing protection in attenuating the peak
noise (Ministry of Defence, 2015).

3. Results

Figure 2 shows example time histories of one
current and one new round fired from the saluting
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Fig. 2. Sound pressure levels measured near the head of the firer during firing of current and new rounds
from the saluting gun.

gun as measured at the firer’s location. Each time
history is of 0.1-second duration encompassing the
complete waveform for each round. Four, possibly
five, positive peaks are seen in the first 0.006 s of the
waveform for the round using current ammunition.
The peak sound pressure measured for the current
round was 11642Pa corresponding to 175.3 dB, i.e.,
unweighted (or dB(Z)); this corresponds to the direct
sound transmitted from the muzzle of the cannon. The
corresponding C-weighted peak sound pressure level
is 172.0 dB; this being lower as the C-weighting will
reduce the value. The highest peak (minimum) sound
pressure level was −7198Pa (171.1 dB, Z-weighted).
The sound pressure had reduced to below 10% of the
peak after about 0.015 s from the start of the waveform
(this is referred to as the B-duration; (Department
of Defence, 1997)). (The B-duration is defined as the
time interval between the peak (either negative or
positive) and the last point on the waveform where
the value of the pressure has reduced to 10% of the
peak value with succeeding values remaining below
10% of the peak value (Coles et al., 1968).) The shape
of the waveform for the new round is similar to that
for the current ammunition, but the values are lower.
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Table 2. Different parameters for the sound pressure levels measured during firing of current (12 off)
and new (24 off) rounds from the saluting gun.

Operator Ammunition Parameter LCpeak [dB] LAE [dB] LCE [dB] LAFmax [dB] LCFmax [dB]

Firer

Current

Minimum 170.4 138.7 144.3 147.2 152.6

Maximum 173.1 142.3 145.9 150.8 154.3

Median 171.7 141.3 145.4 149.8 153.7

Interquartile 1.1 0.8 0.4 0.8 0.4

New

Minimum 158.8 128.2 131.2 136.7 139.6

Maximum 166.8 135.4 140.7 144.0 149.1

Median 162.9 131.8 136.1 140.3 144.5

Interquartile 2.1 1.8 2.3 1.8 2.4

Loader

Current

Minimum 168.1 133.5 141.7 141.9 150.0

Maximum 170.6 137.3 143.3 145.8 151.7

Median 169.7 136.6 142.8 145.0 151.2

Interquartile 1.1 0.7 0.2 0.7 0.2

New

Minimum 154.2 122.7 128.7 131.1 137.1

Maximum 163.0 129.4 137.7 138.0 146.2

Median 159.9 126.8 134.3 135.2 142.8

Interquartile 3.1 2.8 2.0 2.9 2.0

The peak sound pressure for the new round was
5559Pa (unweighted (Z) value of 168.9 dB, C-weighted
value of 164.1 dB). The B-duration for the new round
was 0.019 s. It is noted that although B-durations are
presented for the different waveforms, these are not
used in the assessment procedures. Both waveforms
show many peaks and troughs of unknown origins, pos-
sibly relating to reflections from the various structures
around the gun (such as the other guns, and solid con-
crete bases as shown in Fig. 1).
Table 2 presents the sound pressure levels mea-

sured for the firer and loader locations with the cur-
rent and new ammunition rounds. Various parameters
based on the number of rounds fired are also presented;
12 rounds of the current type and 24 rounds of the
new type. The highest C-weighted peak sound pres-
sure level measured with the current type of round

USE TETRAD IN ANALYSIS
TETRAD - Firer Firer, new TETRAD - Loader Loader, new

NEW AMMO Round LCpeak (dB(C)) LAE (dB(A)) LCpeak (dB(C)) LAE (dB(A))
1 161.93 131.38 160.04 127.86 Figure 3 Figure 4
2 164.05 132.21 161.57 128.50
3 164.02 132.08 161.16 126.95
4 166.29 135.43 163.03 129.13
5 164.27 133.12 162.10 128.55
6 158.84 128.71 154.19 122.70
7 162.34 130.56 157.87 125.81
8 162.18 131.71 157.74 126.87
9 162.92 133.18 160.19 129.39
10 158.88 128.64 156.11 125.33
11 166.81 131.87 160.92 126.80
12 163.44 132.89 162.05 128.77
13 162.84 131.30 157.20 124.62
14 161.21 131.57 158.57 126.88
15 160.92 130.40 156.35 123.31
16 165.59 132.87 160.84 128.68
17 163.50 133.01 161.07 128.72
18 162.38 131.44 159.76 126.49
19 166.26 134.36 160.53 126.72
20 162.37 130.20 159.20 124.87
21 162.97 131.77 160.73 126.33
22 164.25 131.90 159.16 127.19
23 166.68 132.84 159.10 126.60
24 159.89 128.18 156.37 124.40

TETRAD - Firer Firer, current TETRAD - Loader Loader, current
OLD AMMO Round LCpeak (dB(C)) LAE (dB(A)) LCpeak (dB(C)) LAE (dB(A))

1 170.9 141.0 169.3 136.9
2 172.1 141.8 169.2 136.2
3 171.7 141.0 170.5 136.6
4 171.1 138.7 168.1 133.5
5 170.4 140.6 170.3 136.7
6 172.2 141.3 170.6 136.8
7 172.7 142.1 169.6 137.1
8 171.6 141.6 169.8 137.3
9 171.7 141.3 170.1 136.5
10 173.1 142.3 168.5 135.7
11 170.6 140.2 170.6 135.5
12 171.7 141.3 169.1 136.2

150

155

160

165

170

175

0 2 4 6 8 10 12 14 16 18 20 22 24

Pe
ak

 so
un

d 
pr

es
su

re
 le

ve
l, 

L C
pe

ak
[d

B
]

Round

Firer, new Firer, current

Loader, new Loader, current

120

125

130

135

140

145

0 2 4 6 8 10 12 14 16 18 20 22 24

So
un

d 
ex

po
su

re
 le

ve
l, 

L A
E

[d
B

]

Round

Firer, new Firer, current

Loader, new Loader, current

Fig. 3. Peak sound pressure levels (LCpeak) measured at the firer and the loader during firing of current
and new rounds from the saluting gun.

was 173.1 dB, and that with the new type of round was
166.8 dB; both measurements being at the firer’s loca-
tion.

3.1. Peak sound pressure level, LCpeak

Figure 3 shows the peak sound pressure levels,
LCpeak, measured at the firer’s and loader’s locations
during the firing of both current and new rounds. The
variation between individual rounds can be seen. It
is clear that the current rounds, shown as red and
green circles, show higher values compared with the
new rounds, shown as blue and yellow circles. The
greatest difference between the rounds is seen for
measurements at the loader with new rounds: round 6
shows a C-weighted peak of 154.2 dB compared with
163.0 dB for round 4 – a difference of 8.8 dB. The new
rounds showed higher variation (interquartile range)
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USE TETRAD IN ANALYSIS
TETRAD - Firer Firer, new TETRAD - Loader Loader, new

NEW AMMO Round LCpeak (dB(C)) LAE (dB(A)) LCpeak (dB(C)) LAE (dB(A))
1 161.93 131.38 160.04 127.86 Figure 3 Figure 4
2 164.05 132.21 161.57 128.50
3 164.02 132.08 161.16 126.95
4 166.29 135.43 163.03 129.13
5 164.27 133.12 162.10 128.55
6 158.84 128.71 154.19 122.70
7 162.34 130.56 157.87 125.81
8 162.18 131.71 157.74 126.87
9 162.92 133.18 160.19 129.39
10 158.88 128.64 156.11 125.33
11 166.81 131.87 160.92 126.80
12 163.44 132.89 162.05 128.77
13 162.84 131.30 157.20 124.62
14 161.21 131.57 158.57 126.88
15 160.92 130.40 156.35 123.31
16 165.59 132.87 160.84 128.68
17 163.50 133.01 161.07 128.72
18 162.38 131.44 159.76 126.49
19 166.26 134.36 160.53 126.72
20 162.37 130.20 159.20 124.87
21 162.97 131.77 160.73 126.33
22 164.25 131.90 159.16 127.19
23 166.68 132.84 159.10 126.60
24 159.89 128.18 156.37 124.40

TETRAD - Firer Firer, current TETRAD - Loader Loader, current
OLD AMMO Round LCpeak (dB(C)) LAE (dB(A)) LCpeak (dB(C)) LAE (dB(A))

1 170.9 141.0 169.3 136.9
2 172.1 141.8 169.2 136.2
3 171.7 141.0 170.5 136.6
4 171.1 138.7 168.1 133.5
5 170.4 140.6 170.3 136.7
6 172.2 141.3 170.6 136.8
7 172.7 142.1 169.6 137.1
8 171.6 141.6 169.8 137.3
9 171.7 141.3 170.1 136.5
10 173.1 142.3 168.5 135.7
11 170.6 140.2 170.6 135.5
12 171.7 141.3 169.1 136.2
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Fig. 4. Sound exposure levels (LAE) measured at the firer and the loader during firing of current
and new rounds from the saluting gun.

in peak sound pressure levels compared with the cur-
rent rounds (see Table 2). Based on the median peak
sound pressure levels, the LCpeak at the firer and the
loader for the current ammunition was 8.8 dB and
9.8 dB higher, respectively, compared with the new
rounds. Higher LCpeak values were measured for the
firer compared with the loader (p < 0.01 for both types
of rounds, Student’s t-test): 2.0 dB higher for the cur-
rent rounds and 3.0 dB higher for the new rounds (see
median values in Table 2).

3.2. Sound exposure level, LAE and LCE

A- and C-weighted sound exposure levels (LAE and
LCE), which provided the noise level normalised to
a one-second period, were calculated for each round.
For transient noise, such as that associated with
weaponry, sound exposure level is a more convenient
and preferred measure compared with the equivalent
continuous sound pressure level (LAeq) as it effec-
tively shows the total noise energy per round fired. Ta-
ble 2 shows the LAE and LCE values for the two types
of rounds and for the two operators. Sound exposure
levels (LAE) measured for the different combinations of
round and location are shown in Fig. 4. The differences
in the LAE values are quite clear: the current rounds
show higher values compared with the new rounds (dif-
ference between median values of 9.5 dB for the firer
and 9.8 dB for the loader), and the firer was exposed
to higher values compared with the loader (difference
between median values of 4.7 dB for the current rounds
and 5.0 dB for the new rounds).
The frequency spectra of the different combinations

of rounds and measurement locations for the firings
from the saluting gun are shown in Fig. 5. The data
show the mean and range (minimum and maximum)
sound exposure levels (LZE) corresponding to the 12
current rounds and 24 new rounds fired from the gun.
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Fig. 5. One-third octave band sound exposure levels LZE

(mean (solid line) and range (dashed line) corresponding
to 12 current and 24 new rounds) measured for the current

(red line) and new (blue line) rounds.

Without exception, the mean sound exposure levels
at the one-third octave frequency bands for current
rounds were higher than the new rounds fired from the
gun. When averaged over the frequency bands from
20Hz to 20000Hz, the current rounds produced sound
exposure levels (LZE) approximately 8.7 dB higher for
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Table 3. Median values for the maximum fast sound pressure levels and sound exposure levels measured during firing
of rounds from the saluting gun.

Location, round LAFmax [dB] LCFmax [dB] LAE [dB] LCE [dB] LCFmax – LAFmax [dB] LCE – LAE [dB]

Firer, current 149.8 153.7 141.3 145.4 4.0 4.2

Firer, new 140.3 144.5 131.8 136.1 4.1 4.1

Loader, current 145.0 151.2 136.6 142.8 6.2 6.3

Loader, new 135.2 142.8 126.8 134.3 7.0 7.0

the firer and 8.6 dB higher for the loader than the new
rounds, respectively. Most of the sound energy was
present in frequencies below about 100Hz.

3.3. Maximum sound levels, LAFmax and LCFmax

Various parameters about the sound levels mea-
sured during firing of different types of round and lo-
cation are shown in Table 2. The parameters LCpeak,
LAE, and LCE do not give an indication of the fre-
quency content present within the sound. These either
show a single value within the signal (LCpeak) or the
total energy present in the signal (LAE and LCE). The
difference between the A- and C-weighted maximum
sound levels, LAFmax and LCFmax, can, however, give
a broad indication of the frequency content of the sig-
nal. (Although, the spectra shown in Fig. 5 would
give a better measure of the differences at the vari-
ous frequencies.) The differences between the A- and
C-weighted levels for both sound exposure levels (LE)
and maximum sound levels (LFmax) were therefore cal-
culated for each of the current and new rounds fired
from the cannon; median values are shown in Table 3.
Table 3 also shows the median differences between
A- and C-weighted levels for the two measurement lo-
cations (that is, the firer and the loader). Various find-
ings become evident from the data. The differences be-
tween C- and A-weighted values are lower for the firer’s
location than the loader’s position; this being the case
for both the current and the new rounds. This would
indicate that the sound measured at the firer’s loca-
tion contained a higher proportion of high-frequency
energy compared with the loader’s location; this is con-
firmed by the spectra shown in Fig. 5. There appears
to be only a small difference between the maximum
sound levels (LCFmax−LAFmax) and the exposure lev-
els (LCE − LAE) when comparing data for the current
rounds (0.2 dB for the firer and 0.1 dB for the loader).
Overall, it is seen that there are only very marginal dif-
ferences when using either the sound exposure levels or
the maximum sound levels.

4. Discussion

The noise measurements for the saluting gun being
used with the two types of rounds show that, at the
firer’s location, the C-weighted peak sound pressure
level, LCpeak, for the new type of round (162.9 dB) was

about 8.8 dB lower than the current round (171.7 dB).
The difference was higher (9.8 dB) for the loader’s lo-
cation. The corresponding differences between sound
exposure levels, LAE, were 9.5 dB for the firer and
9.8 dB for the loader’s position. This represents a sig-
nificant decrease in the exposure of the two operators
during firing of the gun with the new rounds compared
with the current rounds. It could be argued that one
of the drawbacks of the lower noise levels is that peo-
ple in the local vicinity are not able to hear the noises
made in a celebratory nature. This consequence, how-
ever, should be considered as acceptable and that the
health of the operators would (should) outweigh this
concern.
Table 2 shows that the variation (interquartile

range) in the different sound parameters was greater
for the new rounds compared with the current rounds.
For example, for measurements made at the loader’s
position, parameters LCE and LCFmax show that there
was 10 times as much variation between rounds for the
new ammunition (2.0 dB) compared with the current
ammunition (0.2 dB). This large variation for the new
rounds is also seen in the unweighted sound exposure
levels LZE calculated in the one-third octave bands as
shown in Fig. 5. (It is noted that twice as many of
the new type of rounds (24 rounds) were fired com-
pared with the current type (12 rounds).) It is assumed
that this difference in noise between successive rounds
would be no cause for concern due to the purely com-
memorative nature of the activity. The source of the
variation is, however, not known. One of the factors
that might influence this variation could be the spec-
ification, or tolerance, used in the manufacture of the
rounds. If that were to be the case, then this might im-
ply that the new rounds were manufactured to a lower
standard compared with the current rounds. However,
such inferences might cause differences of opinion with
the manufacturers of such items. A similar discussion
has been presented regarding the slightly higher vari-
ation (though inconclusive) in sound pressure levels
measured when firing blank rounds from three mili-
tary rifles compared with live rounds (Paddan, How-
ell, 2022). It was opined that the blank rounds, which
are used for educational and training purposes, might
be manufactured to less stringent standards compared
with the tighter tolerances used when producing live
rounds. All this discussion is based on speculation; this
topic, however, requires evidence.
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Two frequency weightings, A and C, appropriate
for exposure to noise were used in the assessment of
sounds produced by the rounds fired from the saluting
gun (further details about the frequency weightings for
sound level meters are shown in (British Standard In-
stitution, 2013)). The C-weighting filter is more appro-
priate for assessing peak sound pressure levels normally
found in impulse or impact signals. Long-term damage
to hearing from moderate to loud noise is related to
the noise exposure calculated using the A-weighting.
It is noted that the A-weighting amplifies the sound
pressure levels over the frequency range 1000Hz to
6000Hz. Sound exposure levels (LZE) for one-third oc-
tave frequency bands are shown in Fig. 5 for the two
types of rounds. Most of the energy in the impulse sig-
nals for the new rounds occurred at frequencies below
about 100Hz.
The suitability of hearing protection that can

be used to protect the operators from the impulse
noise can be determined using the frequency data
presented in Fig. 5. Further details about the pro-
cess involved are given in (Health and Safety Ex-
ecutive; 2021). A method specifically for determin-
ing suitable hearing protection for use with military
weapons is given and mandated in (Ministry of De-
fence, 2015). The method is based on using the differ-
ence in the maximum sound levels; this is calculated
as LCFmax −LAFmax. This is used to give a broad in-
dication of the frequencies present in the noise signal.
It is seen from Table 3 that the same information can
be gleaned from the sound exposure levels: LAE and
LCE. The difference between LCE and LAE can pro-
vide the same information as the maximum sound lev-
els (that is, LCFmax − LAFmax). The development of
Defence Standard 00-027 (Ministry of Defence, 2015)
is discussed elsewhere (Paddan, Howell, 2025).
The suitability of the hearing protection worn by

the firer and the loader can be made using the atten-
uation properties of the hearing protection combina-
tion of earplugs (E-A-R soft FX) and earmuffs (Pel-
tor Comtac XPI), and details about the noise pro-
duced. The attenuation properties of this combination
of hearing protection were 42 dB for high (H) frequen-
cies, 44 dB for medium (M) frequencies, and 42 dB for
low (L) frequencies; the SNR (single number rating)
was 45 dB (INSPEC, 2017). For the assessment, the

Table 5. Effective sound pressure level at the ear for the loader and firer when using current and new ammunition. Hearing
protector (E-A-R soft FX earplugs worn in combination with Peltor Comtac XPI earmuffs) – H = 42 dB, M = 44dB,

L = 42 dB.

Location, round LCFmax −LAFmax [dB]
Modified sound attenuation

value, dm [dB]
Effective sound pressure level at the ear,

L′Cpeak [dB]

Firer, current 4.0 M − 5 = 39 134.1

Firer, new 4.1 M − 5 = 39 134.1

Loader, current 6.2 L − 5 = 37 136.1

Loader, new 7.0 L − 5 = 37 136.1

highest LCpeak of 173.1 dB can be used corresponding
to the firer’s noise exposure while using the current am-
munition (see Table 2). The difference between the two
parameters, LCFmax and LAFmax, is required to deter-
mine the suitability of hearing protection as specified
in (Ministry of Defence, 2015); these are shown in Ta-
ble 3. The guidance (Ministry of Defence, 2015) states
that this difference would then be used to calculate
a ‘modified sound attenuation value, dm’ as shown in
Table 4. Table 3 shows this difference to be between
4.0 and 7.0 depending on the operator (firer or loader)
and type of ammunition (current or new). The effective
sound pressure level at the ear, L′Cpeak, is calculated:

L′Cpeak = LCpeak − dm. (1)

Table 4. Modified sound attenuation values for different im-
pulse or impact noises (adapted from Ministry of Defence,

2015); H = high, M = medium, L = low.

LCFmax −LAFmax [dB]
Modified sound attenuation

value, dm [dB]
≤0 H

>0 to 1 M

>1 to 3 M − 5

>3 to 5 L or M − 5 if a lower value

>5 to 10 L − 5

>10 Conditional use of L − 5

Table 5 shows the effective sound pressure level at
the ear, L′Cpeak, based on the attenuation properties of
the E-A-R soft FX earplugs worn in combination with
the Peltor Comtac XPI earmuffs. The C-weighted peak
sound pressure at the ear would be below the expo-
sure limit value, corresponding to 140 dB, specified in
(Statutory Instruments, 2005; Directive 2003/10/EC,
2003).
The sound pressure levels measured during firing of

the saluting gun with the two types of rounds can be
compared and assessed using the guidance in (Statu-
tory Instruments, 2005; Directive 2003/10/EC, 2003).
These documents specify the following:
1) the lower exposure action values (LEAV) are:

– a daily or weekly personal noise exposure of
80 dB (A-weighted);
– a peak sound pressure of 135 dB
(C-weighted);
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2) the upper exposure action values (UEAV) are:

– a daily or weekly personal noise exposure of
85 dB (A-weighted);

– a peak sound pressure of 137 dB
(C-weighted);

3) the exposure limit values (ELV) are:

– a daily or weekly personal noise exposure of
87 dB (A-weighted);

– a peak sound pressure of 140 dB
(C-weighted).

It is noted that the ‘daily personal noise exposure’
is standardised to an 8-hour period and the ‘weekly
personal noise exposure’ is standardised to five 8-hour
working periods (40 h per week). Data in Table 2 show
peak sound pressure levels, while data in Table 5 cor-
respond to the peak sound pressure levels after taking
into account the attenuation provided by the hearing
protection. These data have been compared with the
peak sound pressure level (peak sound pressure level
at the ear L′Cpeak = 140 dB) as shown earlier. An as-
sessment with respect to the ‘daily personal noise ex-
posure’ would require a measurement of LAeq over an
8-hour period. The sound exposure level, LAE, which is
a measurement standardised for a 1-second period, can
be used. This comparison can also be carried out by
calculating the exposure levels in terms of sound expo-
sure values: the LEAV would be LAE 124.6 dB, UEAV
would be LAE 129.6 dB, and the ELV would be LAE

131.6 dB. It is seen from Table 2 that, apart from the
loader’s position during firing of the new rounds, the
median sound exposure levels for the other combina-
tions (operator and type of round) exceeded the UEAV
(LAE 129.6 dB). However, it must be emphasised that
an assessment with respect to the ‘daily personal noise
exposure’ can only be carried out if the peak sound
pressure level has not been exceeded.
It is clear from the data that the new rounds pro-

duce lower sound pressure levels compared with the
current rounds, and that the firer is exposed to higher
levels compared with the loader. Further mitigation
measures should be considered in reducing noise expo-
sure of the two operators. Some of the measures pro-
posed might not be practicable or feasible but should
nonetheless be considered. Also, some of the sugges-
tions might be deemed as being controversial or un-
palatable to the operators (or those in command), but
these difficult questions should be addressed. There
would need to be a fine balance between ceremony
and safety. Some of the measures could include the
following:
– In theory, sound pressure levels decrease by 6 dB
with doubling of distance from the noise source.
That is, increasing the distance between the gun
and the operators would result in a significant de-
crease in exposure. One such measure could be to

automate the firing of the gun or to operate the
firing mechanism from a distance.

– The firer is exposed to higher sound pressure lev-
els compared with the loader. Rotating (sharing)
the jobs carried out by the two operators could
be considered such that the firer and the loader
alternate their duties between successive rounds.
This would ensure that no single operator is con-
tinuously exposed to high noise levels. It is noted
that this suggestion might impinge on the firing
rate (the period between) of successive rounds.
The standard period between successive salutes
is nominally 10 s.

– The frequency spectra for the two types of rounds
show a dominance in sound pressure levels for fre-
quencies below about 100Hz. Hearing protectors
are generally less effective at attenuating low fre-
quencies compared with high frequencies. If pos-
sible (and available), careful selection of hear-
ing protection could involve showing preference to
those protectors likely to offer greater protection
over low frequencies.

– A barrier or screen could be placed between the
muzzle of the gun and the two operators. This
could take the form of a solid plate attached to
the gun thus creating an ‘acoustic shadow’ around
the operators. Depending on the design of such
a screen or enclosure, this might be expected to
reduce the sound pressure level by a few decibels.
The barrier would alter the noise received by the
operators and might influence the choice of hear-
ing protection worn by the operators.

– The number of rounds, or salutes, is dictated
by ceremony and tradition. Maybe fewer salutes
could be conducted to mark ‘regular’ occasions.
This would not discourage increasing the num-
ber of salutes, as necessary, to mark extraordi-
nary events; one such event being the 96 salutes
to mark the passing of Her Majesty the Queen
Elizabeth II.

5. Conclusions

Noise measurements were made from the firing of
two types of rounds from a saluting gun: the current
round and a new round. Measurements were made at
the firer’s and the loader’s positions. Twelve rounds
of the current ammunition and 24 rounds of the new
ammunition were fired during the assessment. The
highest C-weighted peak sound pressure levels for the
firer and the loader were 173.1 dB and 170.6 dB, re-
spectively for the current round and, 166.8 dB and
163.0 dB, respectively, for the new round. Lower peak
sound pressure levels were measured when new rounds
were fired compared with the current rounds: the dif-
ference in median peak sound pressure levels were



252 Archives of Acoustics – Volume 50, Number 2, 2025

8.8 dB and 9.8 dB for the firer and the loader, respec-
tively. Sound exposure levels, a parameter which is nor-
malised to a period of 1 s, again were higher for cur-
rent rounds (A-weighted median values of 141.3 dB and
136.6 dB for the firer and loader, respectively) com-
pared with new rounds (A-weighted median values of
131.8 dB and 126.8 dB for the firer and loader, respec-
tively).
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Good speech intelligibility in university classrooms is crucial to the learning process, ensuring that students
can clearly hear all conversations taking place in the classroom. While it is well known that speech intelligibility
depends on the geometrical characteristics of a space and the properties of its surfaces, other factors need also to
be considered. Among the most important are: the heating, ventilation, and air conditioning (HVAC) systems
used in classrooms. Fan noise from HVAC systems increases the background noise level (BNL), negatively
affecting speech intelligibility. In addition, the movement of air caused by these systems alters room acoustic
variables. Although this dynamic situation is often overlooked in the early design stages, HVAC systems are
often active during lectures and influence acoustics variables, especially the speech transmission index (STI).
In this study, the impact of HVAC systems on the STI was measured in five different unoccupied classrooms in
the Rafet Kayış Faculty of Engineering at Alanya Alaaddin Keykubat University. The results were evaluated
according to relevant standards. The results of these evaluations offer insights for researchers, architects, and
engineers working in the field of acoustics.
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1. Introduction

The act of learning is a process influenced by and
related to a number of factors, including the environ-
ment, infrastructure, the student, and the instructor.
The acoustic performance of a space is an impor-
tant factor that affects students’ learning outcomes.
Educational institutions should provide well-designed
and appropriate spaces in order to improve the qual-
ity of education. Speech intelligibility plays an impor-
tant role in educational settings by directly affecting
the quality of communication between students and
instructors. Several studies suggest that poor room
acoustic performance have a negative impact on speech
intelligibility and affects verbal communication be-

tween students and instructors (Yang, Mak, 2018;
Choi, 2020; Engel et al., 2020; Kawata et al., 2023;
Di Loreto et al., 2023).
For effective communication, it is not enough to

simply hear what the instructor says, as hearing and
understanding what is said without loss is an im-
portant component of communication. In the field of
education, an area where communication is actively
used, the quality of communication (information ex-
change) between instructors and students is closely
related to speech intelligibility. Acoustic conditions
have been shown to directly affect students’ ability
to understand speech, often leading to inefficient com-
munication in the classroom (Rabelo et al., 2014).
When speech intelligibility is inadequate, instructors

https://acoustics.ippt.pan.pl/index.php/aa/index
mailto:akin.oktav@alanya.edu.tr
https://creativecommons.org/licenses/by/4.0/
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may have to raise their voice, students may have prob-
lems to maintain focus, and key information may not
be conveyed accurately. This situation negatively af-
fects communication between instructors and students
and undermines the realization of the learning out-
comes intended for the course.
In the courses offered at Alanya Alaaddin Keyku-

bat University (ALKU) Rafet Kayıs, Faculty of En-
gineering, lecturers support the educational process
by using various visual communication tools, such as
slides, graphics, and videos, to teach course material
more effectively. While visual aids are commonly used,
the primary communication remains verbal. The lan-
guage of instruction in most departments at this fac-
ulty is English. For students whose first language is
not English, challenges related to pronunciation, vo-
cabulary, and grammatical structure can hinder proper
understanding. These linguistic barriers make it even
more difficult for non-native speakers to follow the
courses. Non-native speakers require a 4 dB to 5 dB im-
provement in the signal-to-noise ratio (SNR) to achieve
equivalent level of speech intelligibility as native speak-
ers (International Organization for Standardization
[ISO], 2003).
Speech intelligibility is related to several objective

acoustic metrics such as reverberation time (RT), back-
ground noise level (BNL), useful energy (first 50ms),
the early-to-total energy ratio (D50), and the SNR.
Some studies have shown that RT has a significant ef-
fect on speech transmission index (STI). Payton and
Shrestha (2008) showed that STI measures the ex-
tent to which speech envelope modulations are pre-
served in degraded listening environments. Recently,
Chinese speech intelligibility scores has been exam-
ined in university classrooms using a hybrid method
(Huang et al., 2023). The results show that to achieve
better speech intelligibility, RT at all frequencies
should be shorter, and it is better when an RT is flat
at low frequencies. The STI is an objective metric that
correlates well with the intelligibility of speech, a sub-
jective metric, which is degraded by additive noise and
reverberation.
While it is common to categorize students into age

groups, typically under 12 and over 12 years old, there
are additional factors to be considered in university
classrooms (Minelli et al., 2022). In many universi-
ties around the world, students are taught in a sec-
ond language, different from their mother tongue in
education settings. It is important to take this lan-
guage barrier into account when assessing speech in-
telligibility. Moreover, there is not enough informa-
tion on how the speech intelligibility parameter is af-
fected by HVAC systems, particularly through their
impact on BNL and SNR. It has been shown that these
systems, which are actively used in the educational
process, negatively affect SNR ratio, which is one of
the acoustic parameters, as well as speech intelligibil-

ity (Di Loreto et al., 2023; Zhu et al., 2024). Consid-
ering the possible effects of various factors, studies on
speech intelligibility in university classrooms remain
relatively scarce.
In this study, acoustic measurements were con-

ducted in five different spaces, both with HVAC sys-
tems inactive and operating at different fan speed
levels. From the raw acoustic data measured, pa-
rameters, including: RT, center time (Ts), D50, STI,
strength (G), and SNR, were obtained across seven
octave bands (125Hz–8000Hz). The results presented
are compared for the five different spaces. The acous-
tic performance of each space is evaluated according
to relevant standards. The results of these evaluations
are then utilized to draw conclusions of interest to re-
searchers, architects and engineers working in the field
of acoustics.

2. Methods and data

2.1. Descriptors of room acoustics for speech
intelligibility

The RT, specifically T30, is defined according to
Schroeder curves (SC) obtained from the impulse re-
sponse (g(t)) (Rossing et al., 2014):

T30 = 2[t(SC = −35dB) − t(SC = −5dB)], (1)

where

SC = 10 log10
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Ts is the ratio of early energy to late energy, defi-
ned as

Ts =

∞
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. (3)

D50 is the ratio of useful energy (the first 50ms)
to total energy, and it is expressed as

D50 =

50ms

∫
0

g2(τ)dτ

∞

∫
0

g2(τ)dτ
≤ 1. (4)

G is the energy gain in a reverberant room com-
pared to a free field with a 10m distance, where the-
oretically no reverberation occurs, and it is defined as

G = 10 log10
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where tdir refers to the direct sound. SNR is

SNR (ω) = 10 log10 (
m(ω)

1 −m(ω)
), (6)

where m(ω), the complex modulation transfer func-
tion, is given by International Electrotechnical Com-
mission [IEC] (2020):

m(ω) =

∞

∫
0

g2(τ)e−jωτ dτ

∞

∫
0

g2(τ)dτ
. (7)

STI is given by Mejdi et al. (2019):

STI =min
⎛

⎝
1.0,

7

∑
k=q

αkMTIk −
6

∑
k=q

βk
√
MTIkMTIk+1

⎞

⎠
,

(8)

where MTI is the modulation transfer index; 6 and 7
are octave bands, α and β are weighting and redun-
dancy factors, respectively; q = 1 for male speakers and
q = 2 for female speakers, which correspond to 125Hz
and 250Hz, respectively.

2.2. Spaces

Acoustic measurements were conducted in five ed-
ucational spaces, each with different dimensions, at
ALKU Rafet Kayış Engineering Faculty. Three of these
spaces – classrooms A203, D107, and T206 – are used
for theoretical courses. The other two spaces where
measurements were conducted serve as laboratories:
A208 is a computer laboratory and D110 is the Vibra-
tion and Acoustics Laboratory. Due to concerns about
variations in background noise and for operational rea-
sons, acoustic data were collected during the summer,
when there were no students at the university.
The selected spaces represent different types of ed-

ucational rooms within the faculty. The dimensions of
each space are shown on the scaled plans shown in
Figs. 1–5. The number of seats in each space is as
follows: 99 seats in A203, 64 seats in D107, 60 seats
in T206, 58 seats in A208, and space and seats for

Fig. 1. Scaled plan of classroom D107.

Fig. 2. Scaled plan of Vibration and Acoustics Laboratory,
D110.

Fig. 3. Scaled plan of classroom A203.

Fig. 4. Scaled plan of classroom T206.

Fig. 5. Scaled plan of classroom A208.

8 researchers in D110. Each space, except D110, is
equipped with a lectern located 2 meters in front of
the whiteboard. The HVAC system employed in these
spaces is a Daikin FXFQ125 round flow cassette model.
There are two units installed in A203, A208, and T206,
while one unit is located in D107 and D110. The lo-
cations of the HVAC systems are shown in Figs. 1–5,
as well. The HVAC system can operate at three differ-
ent fan levels (L, H, HH), with corresponding fan flow
rates of 33.0m3/min, 26.5m3/min, and 19.9m3/min,
respectively.
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The materials used in the design of the spaces
are as follows. Stoneware tiles were selected for the
floor covering. The side walls are constructed with
brick, finished with basic plaster and thin plaster lay-
ers. The windows have double-glazed window systems,
while solid wood doors are used throughout. To im-
prove acoustics, micro-perforated acoustic panels were
installed on the ceiling. The tables and chairs are made
of wood, and ceramic-enameled whiteboards are used
as writing surfaces. In addition, roll curtains made of
polyester material were installed to cover the windows.

2.3. Measurements

The indirect method used in this study to deter-
mine acoustic parameters consists of measuring the re-
sponse of an enclosed space to an impulse signal. The
Sinus Qohm QS12 sound source is suitable for measure-
ments between 50Hz–16 000Hz with a level of 122 dB
across a uniform broadband spectrum. The required
omnidirectionality for the measurements is in compli-
ance with the relevant standards (ISO, 2014; 2021).
In addition, the sound source meets directivity val-
ues as it meets the maximum permissible deviation
values in the octave bands of pink noise specified by
the relevant standard (ISO, 2009). During the mea-
surements, the height of the sound source was set to
1.5m from the ground.
Exponential sine sweeps (ESS) are used for impulse

stimulation in the measurements due to their abil-
ity to separate harmonic distortion and yield higher
impulse-to-noise ratios under typical test conditions
(Meng et al., 2008; Guidorzi et al., 2015; Anto-
niadou et al., 2018). A Focusrite Scarlett 18i20 exter-
nal sound card is used as the audio interface to trans-
mit the sound source and microphone signals to the
computer. The response of the space is recorded using
omnidirectional GRAS 46AE microphones. The soft-
ware used to record the raw audio signals and process
the data is Dirac v7. Prior to measurements, the mi-
crophones are calibrated.
The BNL values of the classrooms were determined

prior to the measurement survey. According to the rel-
evant standard (American National Standard, 2010),
the BNL values in classrooms are expected to be lower
than 35 dBA. This standard value applies to unoc-
cupied classrooms and includes environmental noise

Table 1. Measured BNLs in dBA.

Space No fan
0m3/min

Fan level I (L),
19.9m3/min

Fan level II (H),
26.5m3/min

Fan level III (HH),
33.0m3/min

D107 29.0 34.7 41.3 47.2

D110 40.2 41.2 43.3 47.4

A203 29.7 38.5 44.0 49.5

T206 31.0 36.5 42.7 47.9

A208 33.6 37.3 43.0 48.2

and HVAC-related noise. The measured BNL values
(LA90) for classrooms D107, D110, A203, T206, and
A208 are presented in Table 1. Upon analyzing the
values in the table, it is evident that in most cases,
the BNL values exceed the recommended standard
value. These values are shown in bold in the table.
The measurements were conducted during the sum-
mer period when there were no students on campus
and environmental noise levels were minimal. It is clear
that the most important contributor to the elevated
BNL values is the HVAC system. As the fan speed in-
creases, the noise level also increases, which leads to
higher BNL values. As will be explained in the next
section, HVAC noise also has a significant impact on
the SNR. HVAC noise reduces the SNR, which, in turn,
has a negative impact on speech intelligibility.
Classroom D110 is an actively used research lab-

oratory. There are two uninterruptible power sup-
plies (UPS) running 24 hours a day in this space. As
shown in the values in Table 1, these devices increase
the background noise and have a negative impact on
speech intelligibility.
The sound source, representing the instructor, is

located behind the lectern. A distance of at least 1m
was maintained between the sound source and the side
walls. Microphones, representing the students, were
positioned 1.2m above the ground and at least 1m
away from the walls in accordance with ISO (2009).
The distance between the sound source and the mi-
crophone is an important variable for speech intel-
ligibility. Therefore, microphones were positioned at
different distances from the sound source. The loca-
tions of microphones and the sound source are shown
in Figs. 1–5 for the studied spaces. During the mea-
surement survey, the temperature and relative humid-
ity were continuously monitored and recorded.
The spaces were stimulated with a 21.8 s ESS sig-

nal, in the frequency range 20Hz–20 000Hz. During
the measurements, the polyester roll curtains, win-
dows and doors were closed. The measurements were
repeated with the HVAC system off and operating
at three different fan levels, as indicated in Table 1.
To account for measurement uncertainty, all measure-
ments were repeated three times, and the average of
the processed values was considered for analysis. The
photographs taken during the measurement survey are
shown in Figs. 6–10.
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Fig. 6. Experimental study conducted in classroom D107,
microphone position: R2, temperature: 26.5 ○C.

Fig. 7. Experimental study conducted in laboratory D110,
microphone position: R1, temperature: 25.0 ○C.

Fig. 8. Experimental study conducted in classroom A203,
microphone position: R3, temperature: 26.5 ○C.

Fig. 9. Experimental study conducted in classroom T206,
microphone position: R1, temperature: 26.5 ○C.

Fig. 10. Experimental study conducted in laboratory A208,
microphone position: R2, temperature: 26.5 ○C.

3. Results and discussion

The intelligibility of speech in an enclosed space de-
pends on the BNL, the distance between the speaker
and the listener, the directivity of the speech, the sig-
nal strength of the speech, the sound spectrum of the
speech, and reverberation characteristics of the space.
While the audio signal of speech spans a wide range of
frequencies across 7-octave bands, the 500Hz–4000Hz
range is critical for speech intelligibility. According to
the relevant standard (IEC, 2020), STI is calculated
as the weighted sum of the MTI, one for each oc-
tave frequency band in the 7-octave band; each MTI
value is obtained from modulation transfer function
(MTF) values over 14 different modulation frequencies
(Elliott, Theunissen, 2009).
The SNR values in 7-octave bands are shown in

Fig. 11 for the various spaces. BNL can be neglected if
the SNR exceeds 15 dB in each octave frequency band
of interest (in this case, the 7-octave band). However,
the strength of the sound source may need to be in-
creased for this to occur. In practice, this means that
the instructor needs to raise their voice. Average vocal
effort levels are usually measured in anechoic chambers
for classification (Cushing et al., 2011). Average vocal
effort levels in anechoic conditions, measured at 1m,
are presented in Table 2. During the measurement sur-
vey, the generated sound was adjusted to be at least
15 dB above the BNL.

Table 2. Average vocal effort and sound level in dBA.

Normal Raised Loud Shouting

Male 58 67 76 89

Female 56 64 70 82

The SNR results clearly show the negative impact
of HVAC systems: as the fan speed increases the SNR
values decrease, which, in turn, affects speech intelligi-
bility. The variation in SNR is sensitive to frequency,
and although the trends are similar, the geometry of
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Fig. 11. Variation of SNR in the spaces: a) D107; b) D110; c) A203; d) T206; e) A208.

the space also affects the changes. One way to com-
pensate for the drop in SNR values is for the instruc-
tor to raise their voice. The values presented in Ta-
ble 2 give an idea of the vocal effort required. SNR
values in the spaces tend to decrease after 4000Hz.
However, the frequency range 500Hz–4000Hz is deci-
sive for speech intelligibility and, within this range, the
1000Hz and 2000Hz bands are critical.
The acoustic parameters measured in the spaces are

presented in Tables 3–7. The acoustic parameters and
their units are as follows: SNR [dB], T30 [s], G [dB],
Ts [ms], D50 (unitless [0–1]), and STI (unitless [0–1]).
Speech intelligibility depends on the speaker’s voice

reaching the listener directly, as well as the effects of re-
verberation and background noise. Reverberation and
background noise have a distorting effect on the sound
that reaches the listener directly. In terms of objec-
tive measures, reverberation can be quantified by T30
and background noise by BNL. Since SNR is the ra-
tio of speech to BNL, it is a key factor in determin-
ing intelligibility. The focus of the presented work is

primarily on the impact of HVAC systems on speech
intelligibility, which can be related to SNR. The aver-
age SNR values at 500Hz and 1000Hz SNR measured
in the spaces, plotted against the blowing flow rate of
the HVAC used are shown in Fig. 12. The results show
that SNR values tend to decrease as the fan blowing
speed of the HVAC systems increases, which, in turn,
negatively affects speech intelligibility.

Fig. 12. Variation of SNR in the spaces depending
on the impact of HVAC systems.
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Table 3. Acoustic parameters measured at D107 for four different fan settings.

Fan Parameter
Frequency

125 250 500 1000 2000 4000 8000

No fan

SNR 18.33 25.33 30.66 31.33 33.66 27.66 17.33

T30 1.56 1.13 0.94 0.83 0.86 0.81 0.65

G 23.28 21.16 20.27 19.96 20.26 19.78 18.68

Ts 107.47 68.57 56.13 50.47 50.53 52.13 36.70

D50 0.46 0.58 0.64 0.65 0.64 0.61 0.74

STI 0.66

Fan L

SNR 11.33 16.33 22.00 24.00 27.67 25.67 16.00

T30 1.43 1.13 0.87 0.82 0.86 0.80 0.64

G 23.12 21.17 20.14 20.15 20.24 19.78 18.70

Ts 107.83 69.50 54.47 50.13 51.23 52.87 37.23

D50 0.46 0.56 0.67 0.65 0.63 0.60 0.73

STI 0.65

Fan H

SNR 7.67 11.67 15.67 17.00 20.67 22.00 16.67

T30 1.45 1.10 0.87 0.83 0.86 0.80 0.65

G 22.36 20.01 19.09 19.18 19.12 18.26 17.85

Ts 105.60 68.90 54.00 51.03 50.40 52.87 36.83

D50 0.47 0.56 0.67 0.64 0.64 0.62 0.74

STI 0.65

Fan HH

SNR 2.67 7.00 10.67 9.67 13.00 14.33 14.00

T30 1.35 0.98 0.82 0.78 0.83 0.80 0.64

G 23.21 21.23 20.24 19.97 20.05 19.66 18.71

Ts 109.33 67.67 54.43 50.53 51.53 52.53 37.17

D50 0.46 0.57 0.66 0.65 0.63 0.62 0.73

STI 0.63

Table 4. Acoustic parameters measured at D110 for four different fan settings.

Fan Parameter
Frequency

125 250 500 1000 2000 4000 8000

No fan

SNR 21.50 21.00 28.50 26.00 32.50 34.00 27.50

T30 0.77 0.77 0.70 0.66 0.67 0.63 0.54

G 24.81 22.98 22.76 21.54 22.12 21.53 20.76

Ts 49.25 36.20 50.50 43.10 40.00 39.65 31.50

D50 0.80 0.84 0.66 0.69 0.71 0.72 0.79

STI 0.69

Fan L

SNR 17.50 20.50 27.00 25.50 32.50 32.50 27.00

T30 0.70 0.76 0.71 0.68 0.65 0.62 0.54

G 24.30 23.60 22.83 21.88 22.28 21.72 20.71

Ts 53.60 39.10 47.70 40.45 40.10 38.70 31.45

D50 0.73 0.82 0.69 0.69 0.71 0.73 0.79

STI 0.69

Fan H

SNR 13.50 17.50 23.50 23.00 28.50 31.00 26.50

T30 0.70 0.73 0.75 0.65 0.66 0.63 0.54

G 24.21 23.57 22.91 21.93 22.33 21.60 20.68

Ts 54.05 39.05 48.80 41.35 40.05 39.85 31.00

D50 0.73 0.81 0.67 0.69 0.71 0.72 0.80

STI 0.68

Fan HH

SNR 6.50 14.00 19.50 19.00 21.50 24.00 22.50

T30 0.83 0.78 0.69 0.66 0.67 0.62 0.52

G 24.37 23.59 22.92 21.88 22.25 21.40 20.73

Ts 57.30 39.60 48.10 41.70 38.50 40.15 31.20

D50 0.71 0.81 0.68 0.69 0.73 0.72 0.79

STI 0.63
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Table 5. Acoustic parameters measured at A203 for four different fan settings.

Fan Parameter
Frequency

125 250 500 1000 2000 4000 8000

No fan

SNR 23.67 30.33 36.00 34.33 33.33 29.00 21.00

T30 1.32 1.07 0.87 0.98 1.12 1.04 0.84

G 20.24 20.01 18.93 19.47 19.93 19.67 18.22

Ts 98.90 70.63 57.90 64.33 71.23 65.40 50.90

D50 0.46 0.56 0.64 0.59 0.52 0.57 0.64

STI 0.61

Fan L

SNR 5.67 14.67 20.33 22.33 26.67 27.67 18.33

T30 1.26 1.05 0.89 0.99 1.10 1.06 0.85

G 20.35 19.94 18.75 19.45 19.84 19.52 18.15

Ts 101.53 71.13 58.40 64.87 71.87 66.37 51.17

D50 0.45 0.56 0.63 0.59 0.52 0.56 0.64

STI 0.60

Fan H

SNR 1.00 9.00 14.67 15.67 18.67 19.67 17.00

T30 1.25 0.94 0.85 0.97 1.06 1.04 0.85

G 20.54 19.93 18.75 19.35 20.12 19.72 18.39

Ts 101.87 72.77 59.30 65.17 71.10 66.57 52.27

D50 0.45 0.56 0.62 0.58 0.53 0.56 0.63

STI 0.60

Fan HH

SNR −4.00 5.00 10.00 9.33 12.00 11.67 12.67

T30 1.02 0.91 0.87 0.98 1.07 1.05 0.83

G 20.60 20.14 18.73 19.28 19.98 19.55 18.32

Ts 105.50 71.77 59.27 64.60 70.67 65.77 52.50

D50 0.44 0.55 0.64 0.59 0.54 0.57 0.62

STI 0.57

Table 6. Acoustic parameters measured at T206 for four different fan settings.

Fan Parameter
Frequency

125 250 500 1000 2000 4000 8000

No fan

SNR 19.67 24.17 32.5 33.30 37.83 34.83 24.00

T30 2.23 1.48 1.12 1.15 1.23 1.17 0.91

G 20.79 18.30 17.06 17.48 18.14 17.72 16.23

Ts 116.58 77.08 77.88 71.15 74.70 69.35 50.87

D50 0.50 0.56 0.50 0.56 0.54 0.55 0.65

STI 0.60

Fan L

SNR 13.17 18.00 23.83 26.17 30.33 31.67 22.83

T30 2.28 1.46 1.12 1.15 1.23 1.17 0.90

G 20.84 18.75 17.04 17.49 18.17 17.71 16.27

Ts 117.03 77.70 77.32 70.70 74.83 69.13 50.90

D50 0.50 0.56 0.50 0.56 0.54 0.56 0.65

STI 0.60

Fan H

SNR 7.83 12.17 17.50 19.00 21.17 20.50 18.17

T30 2.04 1.43 1.10 1.15 1.22 1.15 0.90

G 20.78 18.79 17.09 17.45 18.14 17.69 16.34

Ts 119.07 78.45 78.12 72.25 74.42 69.72 51.02

D50 0.50 0.55 0.50 0.55 0.54 0.54 0.65

STI 0.59

Fan HH

SNR 1.67 7.17 12.17 11.83 14.00 15.00 15.50

T30 1.79 1.46 1.11 1.12 1.18 1.13 0.88

G 20.84 18.82 16.99 17.46 18.03 17.65 16.28

Ts 119.95 78.00 78.45 71.25 75.22 69.88 51.63

D50 0.49 0.56 0.50 0.56 0.53 0.54 0.64

STI 0.58
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Table 7. Acoustic parameters measured at A208 for four different fan settings.

Fan Parameter
Frequency

125 250 500 1000 2000 4000 8000

No fan

SNR 19.50 25.00 29.25 30.50 33.00 30.75 24.50

T30 1.31 0.79 0.79 0.82 0.86 0.84 0.71

G 19.86 17.50 17.55 17.82 18.06 17.06 17.21

Ts 90.58 64.33 63.83 58.28 59.63 58.30 44.33

D50 0.52 0.57 0.52 0.59 0.58 0.58 0.69

STI 0.64

Fan L

SNR 14.25 19.00 24.25 24.75 28.25 29.25 23.25

T30 1.17 0.79 0.79 0.79 0.85 0.85 0.71

G 19.91 17.47 17.47 17.57 18.01 17.91 17.09

Ts 90.63 64.70 64.35 59.30 59.95 58.43 45.68

D50 0.52 0.57 0.52 0.58 0.57 0.58 0.67

STI 0.63

Fan H

SNR 8.00 13.50 20.25 20.75 23.50 25.75 23.25

T30 1.23 0.80 0.78 0.80 0.86 0.83 0.71

G 19.96 17.43 17.61 17.66 18.04 17.90 17.13

Ts 90.18 65.45 64.55 59.03 59.88 58.30 44.70

D50 0.52 0.56 0.52 0.59 0.58 0.59 0.68

STI 0.63

Fan HH

SNR 4.50 9.75 15.75 15.00 17.25 18.25 19.75

T30 1.05 0.73 0.77 0.79 0.83 0.83 0.70

G 20.10 17.52 17.56 17.63 18.11 17.92 17.21

Ts 91.35 64.80 63.75 58.53 59.50 57.95 43.63

D50 0.52 0.57 0.52 0.59 0.57 0.58 0.69

STI 0.62

The variation in T30 due to the fan blowing speed
is also examined. The average T30 values at 500Hz and
1000Hz T30, measured in the spaces against the blow-
ing flow rate of the HVAC used, are shown in Fig. 13.
The results show that variations in T30 can be ne-
glected if the just noticeable difference (JND) is taken
as 5% relative, according to (ISO, 2009).

Fig. 13. Variation of T30 in the spaces depending
on the impact of HVAC systems.

In line with the above discussion, objective mea-
sures for speech intelligibility include STI (Houtgast,
Steeneken, 1985), ALC (articulation loss of conso-
nants) (Peutz, 1972), and U50 (useful-to-detrimental
ratio) (Lochner, Burger, 1964). Among these, STI
is studied in this work to quantify speech intelligibil-
ity. The variation in STI in the spaces, depending on

the impact of HVAC systems, is shown in Fig. 14. The
ranking presented in the figure is based on the IEC
(2020) standard. The results from the measurement
survey indicate that the STI values for all five spaces
can be categorized as ‘good’, even though the values
tend to decrease with increasing fan speed. Note that
the JND for STI is 0.03.

Fig. 14. Evaluation of STI in the spaces depending
on the impact of HVAC systems.
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On the other hand, it should be noted that some
departments in the faculty offer courses in a second
language. While the 0.6 threshold is considered ‘good’
for native English students, recent research suggests
that this may not be the case for non-native speakers
(ISO, 2003; Minelli et al., 2022). For students whose
first language is not English but who use English as
a daily second language, an STI value of 0.68 and above
can only be considered ‘good’. For students with an
intermediate level of proficiency and those with low
level of their second language use, an STI value of 0.86
and above can be considered ‘good’.

4. Conclusion

Background noise, RT, and the distance between
the listener and speaker all affect STI values. Since
SNR is the ratio of speech compared to BNL, it can
be considered a key factor in speech intelligibility. The
impact of HVAC systems on SNR is significant and
negatively affects speech intelligibility, as reflected in
the reported STI values.
As highlighted in previous studies (Longoni et al.,

2016; Razali et al., 2024), the presence of HVAC sys-
tems increases BNL, decreases SNR and deteriorates
speech intelligibility. Recommended values for speech
intelligibility are T30 between 0.7 s and 1.2 s and D50
>0.5 in rooms (Masovic, 2021). For classrooms, opti-
mum T30 values are <0.6 s for students under 12 years
old and <0.8 s for students aged 12 and above (Build-
ing Bulletin, 2015; Minelli et al., 2022). The studied
spaces partially meet these optimal ranges.
The results show that SNR values tend to decrease

as the fan blowing speed of HVAC systems increases,
which negatively affects speech intelligibility.
Another concern is whether HVAC systems alter

acoustic parameters that affect speech intelligibility,
such as RT. The results of the study indicate that the
impact of HVAC systems on the reverberation char-
acteristics of space is negligible when the JND value
is considered. On the other hand, it is clear that as
the size of the space decreases, the RT also decreases,
leading to a better STI value.
Previous research (Astolfi et al., 2012; Murgia

et al., 2023) suggests that speech intelligibility for
learners aged 12 and under requires an STI value of
0.65 and above, while for learners aged 12 and above,
STI values of 0.6 and above are considered accept-
able. For university students, it can be concluded that
if STI values of 0.6 and above are achieved, there is
no cause for concern in terms of speech intelligibil-
ity. The relevant standard (ISO, 2003) categorizes STI
values between 0.6 and 0.75 as ‘good’. However, it is
worth noting that for non-native speakers of English,
the STI value must fall between 0.68–0.86, depending
on their level of English proficiency, to be considered
‘good’.
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characterized, and a piezoelectric energy harvester (PEH) beam with a natural frequency of 50Hz is designed
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varying values is discussed. Based on the results, design schemes 1O∼ 6O demonstrate advantages in terms of
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1. Introduction

Intelligent devices in the current digital era require
constant monitoring to ensure long-term operation and
functionality, establish operational profiles, and antic-
ipate specific malfunctions. Electrical devices generate
minor wideband vibrations during regular operation.
Before malfunctions occur, oscillations that cause vari-
ations in displacement, frequency, and other related
parameters can be distinguished from steady-state op-
erations. Multiple sensors are needed to monitor the
devices during operation, and it has become common
to seek an appropriate power source from these elec-

trical devices. At present, the most promising method
for powering wireless sensors is to capture the vibration
energy produced by the device itself. The vibration fre-
quencies generated by these devices are generally in
the power spectrum and harmonic waves. This study
focuses on the optimal design of an piezoelectric en-
ergy harvester (PEH) for 50Hz vibrations excited by
an electric motor, with the objective of increasing en-
ergy output while also improving the structure’s dura-
bility.
Piezoelectric materials have the ability to convert

mechanical vibration energy into electrical energy and
have been widely investigated for energy harvesting
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due to their high energy density (Li, Lee, 2022). Piezo-
electric energy harvesting is a bourgeoning topic that
has been investigated for use in construction, machin-
ery, automobiles, and aerospace, owing to the signifi-
cant amount of wasted vibration energy produced by
these systems. These devices are frequently utilized as
a power source for self-powered wireless sensors and
employed in situations where external power is un-
available and using batteries is not a practical solu-
tion. The initial application of PEH was presented by
Panda et al. (2022), where a lead zirconate titanate
(PZT) patch was attached to the root of a cantilever
beam.
Piezoelectric elements may experience considerable

deformation due to the cantilever beam’s ability to
modify the frequency and increase the vibration ampli-
tude when a mass block is applied. This configuration
is currently the most widely used because of its ease
of implementation, high efficiency, and well-developed
technology. Extensive research has been carried out
over the past two decades on the design, functionality,
and application of cantilever beam piezoelectric har-
vesters. Zhang et al. (2022) indicated that vibration-
based PEHs may produce maximum power when op-
erated at the resonant frequency, and the power out-
put drops dramatically as the natural frequency of the
PEH deviates from the vibration frequency. Accord-
ing to Rafique and Bonello (2010), it was found
that the resonant frequency of the cantilever beam is
negatively correlated with its length while its thick-
ness is positively correlated with the resonance fre-
quency. When the vibration characteristics of the PEH
match the vibration frequency of the surrounding envi-
ronment, the harvester will undergo multi-modal res-
onance, resulting in significant deformation and caus-
ing large stress and strain at the end of the cantilever
beam. The harvester’s lifespan may be impacted over
time by fatigue damage due to the prolonged concen-
tration of stress and strain. Additionally, the output
voltage is proportional to its length and inversely pro-
portional to its width and thickness (Wang et al.,
2019).
To match the low-frequency vibrations of the

surroundings and increase the PEH output voltage,
the cantilever beam’s length and mass must also
be increased, or its width and thickness need to be
decreased. However, Roundy et al. (2005) concluded
that as the aspect ratio increases (as natural frequen-
cies differ across structures), the strain at the root of
the cantilever beam changes drastically, causing the
overall deformation of the piezoelectric layer to in-
crease. As a result, the piezoelectric layer experiences
an increase in stress, which has a substantial effect on
its fatigue life.
Relevant research has indicated that fatigue life and

output voltage are incompatible and cannot be opti-
mized by a single variable. Current research has de-

voted considerable effort to optimizing the structure of
energy harvesters based on structural strain and ma-
terial strength to improve energy harvesting conver-
sion efficiency and power output. Few studies address
the contradictions between fatigue damage and out-
put voltage caused by structural parameters. However,
there are almost no references studying the coupling
effects of multiple variables on output voltage and fa-
tigue life. A few commercially PEHs are available, but
they are limited by a narrow bandwidth of operational
frequency and concerns regarding the reliability and
durability of the structure.
Although numerous studies have investigated the

structural parametric and fatigue-related issues of
PEH, most have focused on the impact of a single
variable on either output voltage or fatigue life. There
are not many studies that systematically examine and
discuss the relationships among structural size, fa-
tigue damage, and output voltage. Moreover, most re-
search adopts the approach of matching external vibra-
tion excitation to the natural frequency of the struc-
ture, rather than adjusting the structure’s inherent fre-
quency to match a specific external vibration source.
However, modifying a single variable can cause changes
in the natural frequency of the structure, limiting the
practical value of comparing the performance of struc-
tures with different natural frequencies in a consistent
vibration environment in terms of energy absorption.
The most important aspect of designing a PEH beam
to match a specific surrounding frequency is to exam-
ine the combine influence of multiple variables. These
relationships do not have a simple linearly increasing
or decreasing relationship, and a practical approach
is required to optimize appropriate structural dimen-
sions.
To address this gap, the main aim of this study

is to design PEHs integrated into an electric motor
by evaluating their energy output and fatigue life, us-
ing PEHs with similar natural frequencies but different
sizes through laboratory testing and numerical sim-
ulation. Then, the optimal design of PEH beams is
determined to achieve an optimal balance between fa-
tigue damage and maximum output voltage. This work
is organized into six major sections. First, the back-
ground, and recent advances in PEHs are reviewed.
The second section introduces the electro-mechanical
model and the energy harvesting system. In Sec. 3, the
dynamic characteristics of the motor and PEH beams
with a natural frequency of 50Hz of natural frequen-
cies are measured and developed, and their electro-
mechanical characteristics are then examined using
both ANSYS software and experimental validation. In
Sec. 4, three sets of PEHs are theoretically modeled,
their output voltages and maximum stress are simu-
lated, and five beams are selected for further analysis.
In Sec. 5, the fatigue life of the selected beams is calcu-
lated, and the design strategies under different usage
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environments are discussed. The conclusion summa-
rizes the major findings and the research value of this
work.

2. Electro-mechanical model of PEH

Currently, the most commonly used PEH struc-
ture is the cantilever beam type (Sezer, Koç, 2021),
mainly composed of a piezoelectric layer, a beam, and
a mass block, as shown in Fig. 1.

Load

Mass block Beam
Fix end

g(t)

h(t)
Piezoelectric layer

Fig. 1. Piezoelectric cantilever beam model.

Assume that the length of the piezoelectric can-
tilever beam is L, width is b, thickness of the piezo-
electric layer is H, thickness of the elastic substrate
layer is D, and the mass block weight is M . The sys-
tem is subjected to translational excitation g(t) and
a small rotational excitation h(t) at the base. Due
to the large aspect ratio of the beam, the effects of
shear deformation and rotational inertia of the beam
are neglected, and the beam is treated as an equiva-
lent Euler–Bernoulli beam. The free vibration equation
of the piezoelectric beam can be expressed as (Feng
et al., 2023)

E
∂4w(x, t)

∂4x
+m

∂2w(x, t)

∂t2
= 0, (1)

where E represents the bending stiffness of the piezo-
electric beam, m is the mass per unit length of the
piezoelectric beam, and w(xt) represents the trans-
verse displacement at position x along the beam’s neu-
tral axis relative to the fixed inertial system. The trans-
verse vibration displacement of the piezoelectric can-
tilever beam can be expressed as

w(x, t) = wb(x, t) +wrel(x, t), (2)

where wb(x, t) is the base excitation displacement, and
wrel(x, t) is the displacement relative to the fixed end.
Considering the electromechanical coupling effect, the
dynamic equation of the piezoelectric cantilever beam
can be further written as

E
∂4wrel(x, t)

∂4x
+ csI

∂5wrel(x, t)

∂4x∂t

+ ca
wrel(x, t)

∂t
+m

∂2wrel(x, t)

∂t2
+ ξV0 (t)

= − [m +Mδ(x −L)]
∂2wb(x, t)

∂t2
, (3)

where cs is the strain damping coefficient, ca is the air
viscoelastic damping coefficient, and ξ is the electrome-
chanical coupling coefficient. Using the modal superpo-
sition method, the solution to Eq. (3) can be written as

wrel (x, t) =
∞

∑
r=1

∅r(x)qr(t), (4)

where ∅r(x) is the normalized mode shape function
for the r-th mode of the piezoelectric cantilever beam,
and qr(t) is the corresponding generalized modal co-
ordinate. Solving Eq. (4) yields the relative vibration
response of the beam:

wrel (x, t) = αe
jωt

∞

∑
r=1

ω2G0 [mγ
ω
r +M∅r (L) −XrVm]

ω2
r − ω

2 + j2ζrωrω

⋅ [cos
λr
L
x − cosh

λr
L
x

+ K (sin
λr
L
x − sinh

λr
L
x)], (5)

where

γωr =

L

∫
0

∅r(x)dx, (6)

G0 is the base excitation displacement amplitude,
ω is the excitation frequency, j is the imaginary unit,
λr is the dimensionless frequency of the r-th mode, α is
the modal amplitude constant, ωr is the undamped
natural frequency of the r-th mode, Xr is the modal
electromechanical coupling coefficient, ζr is the me-
chanical damping ratio, Vm is the voltage amplitude,
and the expression for K is:

K =
sinλr − sinhλr + λr

M
mL
(cosλr − coshλr)

cosλr + coshλr − λr
M
mL
(sinλr − sinhλr)

. (7)

According to Kirchhoff’s law and the electrical re-
sponse equation, the expression for the power output
of the piezoelectric cantilever beam can be written as

P (t)=
V 2(t)

R
=
1

R

⎛
⎜
⎜
⎜
⎝

∞

∑
r=1

µr
jω3
[mγω
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ω2
r−ω

2+j2ζrωrω

∞

∑
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jωXrµr

ω2
r−ω

2+j2ζrωrω
+
jωψ+1
ψ

G0e
jωt

⎞
⎟
⎟
⎟
⎠

2

,

(8)
where

ψ =
Rεs33bL

H
, (9)

µr =
−d31YpeH

εs33L

d∅r (x)
dx

∣
x=L

, (10)

εs33 = ε
t
33 − d

2
31Yp, (11)

where Yp is the elastic modulus of the piezoelectric
layer, d31 is the piezoelectric constant, e is the distance
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from the middle layer of the piezoelectric cantilever
beam to the neutral axis, and εt33 represents the elastic
compliance constant.
Solving Eqs. (5) and (8) reveals that the geometric

dimensions and material parameters of the piezoelec-
tric cantilever beam have a significant impact on its
electromechanical response. This observation provides
a theoretical foundation for subsequent finite element
modeling and simulation analysis (Bao et al., 2021;
Chen et al., 2020).

3. Structural design of PEH

3.1. Dynamic test and characteristics
of electric motor

The majority of PEHs are designed for general-
purpose applications and are evaluated under simpli-
fied harmonic excitations. However, this approach is
still far from being ready to be used in real-world ap-
plications.
It is well established that vibration-based PEHs

generate maximum power when operated at their res-
onant frequency. A straightforward and effective solu-
tion to address this is to broaden the bandwidth of the
beam’s resonant frequency. The natural frequencies of
the motor (shown in Fig. 2a) and the system’s dy-
namic properties under operating conditions must be
first tested and analyzed before conducting the PEH
design and experiment. These parameters are critical
data for conducting the structure design of the PEH
(Lu, 2018).
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Fig. 2. a) Electric motor (Gaomeng, 2020); b) acceleration
frequency spectrum under working condition.

The resonance between the PEH and the motor’s
natural frequency is not considered here because the

motor’s modal test results, conducted earlier, indicated
a very high natural frequency. The acceleration of the
motor under working conditions (maximum speed) was
measured, and the corresponding frequency spectrum
is shown in Fig. 2b. From the figure, it can be observed
that the motor exhibits several vibration peaks dur-
ing operation. The peak acceleration response, which
is generated by electromagnetic excitation, occurs at
50Hz, 100Hz, and 150Hz – multiples of 5Hz. These
vibration frequencies generated during the operation
of electrical devices, such as motors, are at the main
operating frequency (50Hz) and its harmonics. Hence,
studying energy harvesting from the vibration frequen-
cies of motors offers significant applicability.

3.2. Finite element analysis

Finite element analysis (FEA) is one of the reliable
methods for studying the performance of any designed
system prior to its prototype development. Studies by
Zhu et al. (2010) and Augustyn et al. (2014) con-
ducted parametric studies using FEA to determine the
ideal system configuration. Meanwhile, studies by Ab-
delkefi et al. (2014) and Avvari et al. (2017) em-
ployed FEA to validate the experimental and analyti-
cal models of PEHs to guide further simulation. This
work utilizes FEA to guide preliminary structural de-
sign and the subsequent structural parametrization,
along with dynamic characteristics analysis.

3.2.1. Parameter selection and analysis

Material selection and optimal structural design are
crucial for energy harvesting. One important limita-
tion of existing energy harvesting techniques is that
the power output performance is subjected to the res-
onant frequencies of ambient vibrations, which are of-
ten random and broadband. To address this issue, re-
searchers have focused on developing efficient PEHs
using novel piezoelectric materials by adjusting the
natural frequency of the harvester to match the de-
sired vibration frequency. In terms of materials, piezo-
electric materials can be categorized into natural and
synthetic types. Synthetic materials are further subdi-
vided into ceramic and polymer-based categories. The
widely used piezoelectric material is PZT, known for
its excellent piezoelectric properties and high dielectric
constant. However, it is prone to fatigue fracture under
high-frequency cyclic vibration, leading to certain lim-
itations in its application (Niasar et al., 2020). Thus,
polymer-based transducers, such as polyvinylidene di-
fluoride (PVDF) and macro fiber composite (MFC),
have gained popularity in recent years due to their
flexibility, durability, and resistance to humidity (Shi
et al., 2017).
In this study, a laminated structure consisting of

a piezoceramic plate, electrodes, and polymer mate-
rials, referred to as as P-876 DuraAct patch trans-
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ducer, is selected (Abdul Satar et al., 2022). This
material has the advantages of high piezoelectric co-
efficients and dielectric constants and can be applied
onto curved surfaces or used for integration into struc-
tures. The operation mode of d31 is chosen, with the
polarization of the electric potential perpendicular to
the stress direction. In terms of the structure, a classic
rectangular cantilever beam PEH is adopted, in which
the piezoelectric patch is attached to the base near the
fixed end, and a tip mass is attached at the free end
to decrease the natural frequency.
The structural parametric study can be divided

into size, shape, and topology. Size parametric study
involves adjusting structural dimension parameters,
such as cross-sectional area and thickness, to im-
prove structural performance while maintaining the
basic shape and topological configuration. This para-
metric study involves applying mathematical model-
ing, simulation, and specific algorithms to find the op-
timal combination of structural parameters that meet
performance, cost, and weight constraints. Given the
type and basic dimensions of the piezoelectric sensor
have been determined, the research focuses on the ef-
fects of beam length and width on output voltage to
achieve maximum energy production. The preliminary
design of the cantilever harvester base uses an alu-
minum alloy with a width equal to that of the piezo-
electric patch, and a thickness of 0.2mm (Abdul Sa-
tar et al., 2022). As discussed in Sec. 2, the experi-
ment results indicate that the acceleration response is
mainly attributed to the working frequency of the mo-
tor. Therefore, the fundamental frequency of the PEH
should be tuned to match the motor’s working fre-
quency of 50Hz. The structural design and parametric
study of the PEH will be carried out using the motor’s
operating frequency of 50Hz as a target operating fre-
quency, considering both the fatigue life and energy
output of the PEH beams.

3.2.2. Validation of PEH

Using the piezoelectric coupling analysis module
in ANSYS, the SOLID5 element, specifically designed
for piezoelectric analysis, is chosen for the piezoelec-
tric layer, while SOLID45 elements are selected for
the metal layer and end mass block. Voltage degrees
of freedom coupling are applied to the piezoelectric

Table 2. Material parameters.

Parameter Symbol Piezoelectric
patch

Substrate layer
(aluminum alloy)

Mass
(structure steel)

Density [kg/m3] ρ 7500 8920 7850

Young’s modulus [GPa] Em 56 71.7 210

Volume [mm] L ×W × t 60× 35× 0.8 90× 35× 0.2 35× 5× 2.5

Poisson’s ratio u 0.36 0.33 0.31

Piezoelectric constant [C ⋅m−2] d31 2.74× 10−10 – –

Dielectric constant [nF ⋅m−1] εt 3.01× 10−8 – –

layer as electrical constraints, and zero displacement
constraints are applied to the fixed end as mechani-
cal constraints for modal analysis. The structural nat-
ural frequencies and mode shapes can be determined
using this analysis to further ascertain its size and in-
herent characteristics.
The FE modeling and the first three-order modes

of the PEH are presented in Table 1. The first-order
mode, at 50.05Hz, aligns precisely with the frequency
at which the motor operates. The second-order natural
frequency is 125.90Hz, which is much higher than the
first-order mode. The red region of the vibration mode
indicates the maximum deformation, while the blue
region represents the minimum deformation. The first
modal shape exhibits bending deformation, as shown
in Table 1, where the maximum displacement occurs
at the tip mass block and gradually decreases to-
wards the fixed end. The second mode shape involves
shear deformation, with the maximum deformation
occurring at positions along the edge of the piezo-
electric element, away from the fixed end. The third
mode shape is mainly associated with twisting defor-
mation around the horizontal axis. Unlike the bend-
ing mode, in the case of torsional vibration, the dis-
placement at the midpoint of the cantilever beam is
minimal, while the displacements on both sides in the
width direction are larger.

Table 1. Modal frequency and mode shapes.

Modal
order

Modal
frequency
[Hz]

Mode shapes

1 50.05
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The first-order mode of the PEH is the fundamental
mode and the most appropriate for obtaining the max-
imum output, making it suitable for the d31 working
mode. Hence, only the first-order mode is considered
in this paper. Table 2 presents the material parameters
of the PEH, along with the structural dimensions.
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4. Fabrication and experimental verification
of PEH

The surface of the piezoelectric patch is coated with
a silver electrode, and external wires are led out from
here. The piezoelectric patch is bonded to an aluminum
substrate using epoxy resin. Furthermore, the PEH is
clamped in a rigid holder and mounted on an elec-
tromagnetic shaker to provide the base excitation, as
illustrated in Fig 3.
An algorithm to generate a sinusoidal voltage signal

is constructed using LabVIEW software, and this sig-
nal is supplied through an output module (NI cDAQ
9263), which is then amplified by a power amplifier
to drive the shaker (Sentek BTM-100-M). The har-
vested voltage from the PEH and the measured accel-
eration are then fed back to LabVIEW software for
data monitoring and analysis through the input mod-
ule (NI cDAQ 9234). The control algorithm for the
harvested voltage and output acceleration of the PEH,
in terms of time domain and frequency response, is de-
signed in LabVIEW software for further analysis and
data validation.
The PEH experimental setup is shown in Fig. 4.

The energy harvesting system operates as a cou-
pled field of mechanical and piezoelectricity (electro-
mechanical system). In the experiment, a signal of fre-
quency sweep from 0Hz to 100Hz was supplied to

Shaker amplifier

Accelerometer
NI cDAQ 9234

NI cDAQ 9263

Computer with 
LabVIEW software

Shaker

PEH

Fig. 3. Diagram of PEH experiment.

Feedback system: 
monitoring and analyzing

Acceleration
voltage

Shaker amplifier
ExcitationComputer:

data logging and control

Fig. 4. Experimental setup for PEH experiment.
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Fig. 5. Comparison of output voltage and acceleration in the frequency-domain.

the PEH using an open-circuit sinusoidal excitation,
with the input acceleration load recorded at 3m/s2.
The resulting tip acceleration-frequency and voltage-
frequency responses from this experiment are shown
in Fig. 5. It can be observed that when an external
excitation frequency approaches the natural frequency
of the cantilever beam, the vibration acceleration and
output voltage of the PEH reach their peaks. The curve
of voltage peaks on both sides exhibits a symmetrical
decreasing trend, which indicates that the fabricated
piezoelectric oscillator has a clear natural frequency of
50Hz.
The harmonic response analysis simulation is then

carried out on the PEH model under the same excita-
tion levels using ANSYS software. The comparison be-
tween the simulation and experimental voltages with
open circuits is also illustrated in Fig. 5. This figure
indicates that the peak voltage and natural frequency
obtained from the simulation are nearly identical to
experimental measurements with a 98.5% correlation.
The voltage drops sharply when the frequency deviates
from the resonant frequency.
It should be noted that the peak voltage obtained

from the FEA simulation is slightly higher than the
experimental values because of the ideal boundary
and loading conditions of FEA. Nevertheless, the FEA
modeling results agree well with the experimental val-
ues, with the frequency differences at peak voltage values
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falling within a range of 0.5Hz to 1Hz. Therefore, the
FEA model is valid for the fatigue-based structural
design study of the PEH.

5. Fatigue-based mechanism
and parametric study

5.1. Design of structural parameters

The natural frequency and output voltage of piezo-
electric cantilever beams are influenced by several fac-
tors. Therefore, it is necessary to perform a statistical
analysis of various influencing factors and choose the
optimal solution that achieves a natural frequency of
50Hz, a large output voltage, and acceptable fatigue
reliability. By varying the height (t) of the tip mass,
a batch of piezoelectric cantilever beams with equal
areas but different aspect ratios are designed based on
the results from Sec. 3, targeting a natural frequency
of 50Hz. The width and length are rounded to one dec-
imal place to account for constraints during physical
experiment.
In order to accurately ascertain the specific size and

inherent characteristics, modal analysis of PEHs with
the same sectional area but different shapes was con-
ducted using ANSYS software. The voltage-frequency
and stress-frequency responses of the PEHs were mea-
sured under harmonic base excitation with an acceler-
ation of 3m/s2, as this work aimed to evaluate how the
harvesters of different sizes performed when subjected
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Fig. 6. a) Voltage-frequency response of different beam aspect ratios;
b) voltage and stress induced by different beam lengths.

Table 3. Dimensions and performance parameters of Fig. 6.

Aspect ratio (L/W) L ×W × t [mm] Frequency [Hz] Voltage [V] Stress [MPa]

1.56 70× 45× 9.2 50.2 47.39 48.62

1.79 75× 42× 7.2 50.3 59.15 58.91

2.05 80× 39× 5.6 50.2 52.27 60.39

2.30 85× 37× 4.3 50.3 71.28 78.28

2.45 88× 35.8× 3.8 2O 50.3 65.86 88.23

2.57 90× 35× 1.4 1O 50.1 68.34 92.69

to identical loading conditions. The output voltage was
used as the key parameter tom assess the performance
of the harvester, while the maximum stress in the PEH
beam provided further insight into the behavior of the
beam. In this study, only the stress and fatigue life of
the piezoelectric patch were considered, as the fatigue
strength and bending strength of the matrix material
are noticeably higher than those of the piezoelectric
patch.
As expected, the fundamental frequency of the de-

signed PEHs with different aspect ratios is close to
50Hz, as shown in the PEH voltage-frequency re-
sponses in Fig. 6a. Meanwhile, the variations in out-
put voltage and stress versus the beam length are
shown in Fig. 6b. The different sizes of PEHs com-
bined with their natural frequency, output character-
istics, and stress are summarized in Table 3. From Ta-
ble 3 and Fig. 6, we can observe that both the out-
put voltage and maximum stress exhibit an upward
trend as the aspect ratio of the beams increases, with
the stress increases being more noticeable. A turn-
ing point is reached at a 85mm length and a 4.3mm
mass height, where the output voltage starts to drop,
and the stress increases. The reason may be that
the tip mass has an amplifying effect on the output
voltage, as supported by pertinent data in (Li, Lee,
2022), and the maximum coupling effect occurring be-
tween the beam length and mass height. Subsequently,
with the height of the tip mass fixed at 4.3mm, a set
of PEHs with variable lengths and widths will be con-
structed with a 50Hz natural frequency as the target.



272 Archives of Acoustics – Volume 50, Number 2, 2025

a) b)

45.9071.28
138.54

75.62

25.81

13.38

212.00

210

168

128

84

42

0

100500

36
37

38

39

40
42

44

W
idt

h [
mm]

V
ol

ta
ge

 [V
]

Frequency [Hz]
4442403836

0 0

100 100

200 200

300 300

Width [mm]

Voltage [V]

V
ol

ta
ge

 [V
]

Stress [MPa]

St
re

ss
 [M

Pa
]

Fig. 7. a) Voltage-frequency response of different beam widths;
b) voltage and stress induced by different beam widths.

Table 4. Dimensions and performance parameters of Fig. 7.

L ×W × t [mm] Frequency [Hz] Voltage [V] Stress [MPa]

84.6× 36× 4.3 50.2 45.90 57.17

85× 37× 4.3 4O 50.3 71.28 78.28

85.2× 38× 4.3 50.3 75.62 85.43

85.5× 39× 4.3 50.1 212.00 249.71

86.2× 40× 4.3 3O 50.1 138.54 82.66

86.6× 42× 4.3 49.9 25.81 28.14

89.8× 44× 4.3 49.8 13.38 17.92
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Fig. 8. a) Voltage-frequency response of different beam lengths;
b) voltage and stress induced by different beam lengths.

Table 5. Dimensions and performance parameters of Fig. 8.

L ×W × t [mm] Frequency [Hz] Voltage [V] Stress [MPa]

90× 35× 1.4 50.1 68.34 92.69

85× 35× 1.9 49.8 21.87 28.34

80× 35× 3.2 50.2 25.52 33.52

75× 35× 4.8 50.4 16.64 21.56

70× 35× 5.9 5O 50.1 55.49 62.51
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The voltage-frequency responses of the designed
PEHs with different beam widths are shown in Fig. 7a,
and the variations in output voltage and stress versus
beam width, using the same tip mass, are shown in
Fig. 7b. The specific dimensions and related charac-
teristics of the beam are shown in Table 4. From Ta-
ble 4 and Fig. 7, we can conclude that as the length
and width increase, both the voltage and stress ini-
tially grow and subsequently drop. The voltage is at its
maximum when the width is 39mm, while the stress
is also relatively significant, even exceeding the mate-
rial’s yield limit of 108MPa (Wu, 2013). The output
voltage is relatively high when the width is 40mm,
but the absolute value of the stress is lower than the
voltage, which meets the PEH selection criteria. Fi-
nally, by using a fixed width of 35mm (the minimum
width, equal to the width of the PEH), with the beam
length and mass height as variables, a set of PEHs has
been investigated, as shown in the voltage-frequency
responses in Fig. 8a, and the variations in voltage and
stress versus beam length are shown in Fig. 8b. Spe-
cific dimensions and related characteristics are listed
in Table 5. From these figures and table, the results
indicate that with the increase of the beam length and
the decrease in the mass height, both output voltage
and stress initially decrease and then increase. When
the beam is at its minimum length of 70mm, the out-
put characteristics are significantly influenced by the
mass block; on the other hand, when the mass height
is at its minimum of 1.4mm, the output characteristics
are primarily influenced by the beam length.
Based on the foregoing analysis, five beams, labeled

1O to 5O, are chosen for further fatigue life analysis.
These beams are chosen based on the criteria of having
a higher output voltage and a maximum stress smaller
than the material’s yield strength limit.

5.2. Prediction of fatigue life

The main methods for fatigue life analysis in-
clude the nominal stress method and local stress-strain
methods (Zhang et al., 2014). The former involves es-
timating life based on the S-N curve using fatigue cu-
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Fig. 9. a)–b) FE simulation results; c) actual PEH beam under study.

mulative damage theory, which is appropriate for high-
cycle fatigue failures with cycles greater than 104. The
latter calculates the crack initiation life using the lo-
cal stress-strain approach and predicts crack propaga-
tion life using fracture mechanics, making it suitable
for low-cycle fatigue failures with cycles less than 104

(Salazar et al., 2021). Both methods are based on the
fatigue characteristics of materials and fatigue cumu-
lative damage theory. Since piezoelectric transducers
are subject to high-cycle fatigue, the nominal stress
method approach is used in this study.
The fundamental principle of performing fatigue

analysis using ANSYS software is to use FEA to ob-
tain the stress and strain distribution of a structure
under external periodic loads. These results are then
combined with the material fatigue performance curve,
and fatigue theory is applied to calculate the fatigue
life distribution of the components. This process aids
in predicting potential failures of structural compo-
nents due to fatigue over long durations of operation.
Stress-life curves for piezoelectric patch materials are
not available in the ANSYS material library. There-
fore, it is necessary to set up the fatigue properties of
piezoelectric patch materials by generating stress-life
curves using parameters provided by the manufacturer,
such as elastic modulus and fatigue limit, which allows
for the simulation and analysis of the fatigue behavior
of piezoelectric patch transducer.
The analysis is conducted by applying the identi-

cal constant excitation equal to the initial resonant
frequency to five PEHs. After obtaining the required
parameters and calculating the stress distribution and
fatigue life, the simulation results indicate that the
maximum stress occurs at the root of the cantilever
beam. Stress concentration and early fatigue failure oc-
cur at both ends of the cantilever beam, as illustrated
in the fatigue life contour map for the piezoelectric
patch layer in Fig. 9a and 9b. The blue areas repre-
sent the maximum fatigue life, while the red areas
indicate the minimum fatigue life that the PEH can
withstand. The yellow circles in Fig. 9c illustrate the
specific locations on the PEH that are prone to fatigue
damage, based on the simulation. This conclusion can
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Table 6. Fatigue life of beams.

Serial number Beam Output voltage Fatigue life

1O 90× 35× 1.4 68.34 1.76× 107

2O 88× 35.8× 3.8 65.86 1× 109

3O 86.2× 40× 4.3 138.54 2.21× 106

4O 85× 37× 4.3 71.28 1.03× 107

5O 70× 35× 5.9 55.49 1× 109

serve as a reference for future structural parameters
and optimization studies.
For typical fatigue analysis, if a specimen does not

fail after 107 stress cycles, it is assumed that the speci-
men will not fail even after an infinite number of stress
cycles (Wang et al., 2021). As shown in Table 6, it
can be observed that under the same external loads,
beams 1O, 2O, 4O, and 5O have the fatigue life exceed-
ing 107 cycles, indicating that fatigue failure is unlikely
to occur. For a certain natural frequency of the beams,
both output voltage and fatigue life are influenced by
the combined effects of the mass block and the struc-
tural length-to-width ratio, and this influence is non-
linear. In general, the larger the output voltage, the
shorter the lifespan. Therefore, when designing a PEH
for a specific frequency, it is critical to consider the cou-
pling effects of the mass block and aspect ratio, while
balancing the trade-off between output voltage and fa-
tigue life to select the best solution that fits the actual
vibration environment. In terms of the motor usage en-
vironment, that is for indoor electrical devices (such as
machine tools), design schemes 1O and 4O are recom-
mended. They maximize output voltage while meeting
the fatigue life requirements. For outdoor application,
with an uncertain vibration environment (such as au-
tomotive), design scheme 2O is recommended to en-
sure the cantilever beam has a sufficient safety margin
to withstand extreme external loads. If space is lim-
ited, design scheme 5O can be considered. If the output
power of the chosen beam is insufficient to meet certain
requirements, increasing the surface area of the piezo-
electric layer can be an alternative solution. Option 3O
is suitable for situations with high output power de-
mands and a low requirement for safety margin.

6. Conclusion

Long-term vibration loading at a constant ampli-
tude of excitation in a PEH can induce fatigue dam-
age at the root of the cantilever beam in the long run.
In this study, three sets of PEHs with distinct fixed
and variable values were designed for an electric mo-
tor with a 50Hz vibration frequency. After comprehen-
sively considering the output voltage and fatigue life
of the piezoelectric cantilever beam, suitable design so-
lutions for various environments and operational con-
ditions were investigated. The conclusions are summa-
rized as follows:

– The dimensions of the beam and the weight of
mass will result in the optimal solution for output
voltage and fatigue life at the maximum coupling
effect position for a PEH with specific natural fre-
quency of 50Hz. When designing the structure of
the PEH beam, output voltage should not be the
sole design objective; instead, comprehensive con-
sideration of both the output voltage and the fa-
tigue life of the piezoelectric layer is necessary.
– Five optimized design schemes with a frequency
of 50Hz were selected in this study, and these are
recommended for application in different opera-
tional environments and for varying design pur-
poses.
– The structural parametric study of the PEH with
a specific natural frequency of 50Hz, along with the
determination and analysis of the optimal scheme,
provides a simple and effective method for the
structural optimization design of PEH beams.
Based on these conclusions, it is necessary to con-

duct further research to determine the optimal pa-
rameters for the elastic beam in PEH. The fundamen-
tal correlations between the parameters and structural
properties, as obtained in this study, are shown in Ta-
ble 7, which will be useful as a reference for future PEH
design research.

Table 7. Parameters correlation analysis in designing PEH.

Parameters Length Width Mass

Relationship with
structural frequency

Negative
correlation

Positive
correlation

Negative
correlation

Relationship with
output voltage

Positive
correlation

Negative
correlation

Positive
correlation
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Switching to renewable energy has been accelerated in recent decades due to the depleting fossil fuel reserves
and the need to mitigate environmental and climate degradation. Wind power, especially in urban areas, has
seen a significant growth. A critical consideration in the urban wind turbine installation is the noise impact on
residents. This study investigates the noise generated by wind turbines under different operational conditions,
comparing single-segment and five-segment rotor designs. Various acoustic analyses were conducted, including
broadband analysis with weighting curves Z, A, C, and G, a narrowband analysis using 1/12 octave bands, and
broadband calculations of sound quality indicators such as sharpness, roughness, and fluctuation strength (FS).
The FS was also examined in the Bark scale frequency domain. The study linked the acoustic analysis with the
rotor efficiency related to power production. The findings indicate that five-segment rotors generate less acoustic
energy due to phase shifts, enhancing dissipation rates, and acoustic energy decreases with the increasing load,
peaking when rotors are free at high revolutions per minute (RPM). While single-segment rotors show higher
efficiency, they produce more noise. In contrast, five-segment rotors offer a better sound quality, making them
preferable despite a lower efficiency. This research provides essential insights into designing urban wind turbines
that balance efficiency and noise, crucial for sustainable energy solutions.
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1. Introduction

Noise from wind turbines is a significant con-
cern in energy production, linked to various health
issues including irritation, elevated blood pressure,
and sleep disturbances (Abbasi et al., 2019; Anjum,
Kumari, 2022; Zare et al., 2020; Kotus, Kostek,
2008). High-frequency noise can cause headaches,
fatigue, and immune system suppression (Münzel
et al., 2018; Szychowska et al., 2018; Anjum, Ku-
mari, 2022), while residents near wind farms of-
ten experience annoyance, impacting their daily tasks
(Pawlaczyk-Łuszczyńska et al., 2014; Hafke-Dys
et al., 2016). Previous research indicates that individ-
uals within a 500m radius of wind energy plants ex-
hibit significant responses to the turbine noise, with

annoyance extending to 1900m (van den Berg,
2004). However, further investigations are needed due
to limited empirical data linking public annoyance di-
rectly to the wind turbine noise.
Wind turbine noise can be classified based on fre-

quency as tonal or broadband, originating from aero-
dynamic or mechanical sources (Hansen, Hansen,
2020). Environmental factors such as temperature,
humidity, and obstacles can affect noise propaga-
tion, with the turbine blade motion particularly no-
ticeable at night (Deshmukh et al., 2019; Nguyen
et al., 2020). To mitigate noise pollution, govern-
mental guidelines specify maximum permissible noise
levels, necessitating adherence to local factors dur-
ing turbine deployment (Davy et al., 2018; Gallo
et al., 2016).

https://acoustics.ippt.pan.pl/index.php/aa/index
mailto:shivangi_sachar@hotmail.com
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Horizontal axis wind turbines (HAWTs) domi-
nate wind energy extraction but face limitations such
as size and maintenance requirements (Davy et al.,
2018; Gallo et al., 2016). In contrast, vertical axis
wind turbines (VAWTs) offer reduced mechanical noise
transmission and diminished aerodynamic noise lev-
els (Möllerström et al., 2014; Graham, Pearson,
2022). However, research on VAWTs remains some-
what limited, prompting a need for comprehensive
evaluations to optimize efficiency while minimizing
noise disruption (Dumitrescu et al., 2010; Iida et al.,
2004).
The Savonius VAWT (SVAWT) emerges as a prom-

ising option due to its reduced noise emission and suit-
ability for urban environments (Akwa et al., 2012;
Doerffer et al., 2021). Despite producing less noise
than HAWTs, the trade-off for noise reduction leads to
a decreased energy output (Oerlemans, Fuglsang,
2012; Ghasemian, Nejat, 2015). Enhancements such
as rotor segmentation have been proposed to improve
efficiency (Kacprzak et al., 2013; Mahmoud et al.,
2012; Sun et al., 2012; Driss et al., 2014).
Research in wind energy has shifted towards ur-

ban integration and regulatory compliance, driven by
environmental concerns (New World Wind, n.d.; IBIS
Power, n.d.). Nevertheless, a detailed analysis of the
VAWT power production and acoustics remains lack-
ing (Akwa et al., 2012; Sachar et al., 2023; Jeong
et al., 2014). Thus, evaluating Savonius VAWTs for
urban environments, considering noise-efficiency trade-
offs, is crucial for public acceptance (New World Wind,
n.d.; IBIS Power, n.d.). This study aims to address this
gap by conducting experiments on a standard Savo-
nius rotor, exploring the impact of segmentation and
assessing the sound quality (Fastl et al., 2007).

2. Wind turbine model and experimental setup

Various configurations of the Savonius rotor were
devised and tested for the research detailed in this pa-
per, with wind velocities ranging from 7m/s to 12m/s.
The experimentation was conducted within a dedi-
cated test section, depicted in Fig. 1, established at the
Institute of Fluid Flow Machinery Polish Academy of
Sciences (IMP PAN). This facility comprises three inlet
fans capable of operating at adjustable speeds. A wind

Fig. 1. Test section used in experiments.

velocity of 8.5m/s was maintained for the investiga-
tions reported herein.
The calibration of the test stand posed a chal-

lenge in achieving uniformity in the outlet stream.
Three streams from propulsion fans were uniformly
distributed by changing the local density of meshes at
the screen between fans and the test section. An ade-
quate location of one-, two-, and three-layers of meshes
allowed obtaining a satisfactory uniformity of the out-
let stream. On top of that a honeycomb straightener
was inserted to reduce the transversal fluctuations in
the air stream. The velocity was measured at the
measurement points forming a grid with a spacing of
100mm to confirm the uniformity of the outlet stream.
This was obtained with the help of a support line hold-
ing nine Prandtl probes across the stream as shown in
Fig. 3. It was measured that the standard deviation of
the outlet velocity was around 10%. This uniformity
of the incoming stream was satisfactory in such a sim-
ple test stand. As shown in Fig. 3, a Prandtl probe
is mounted in the middle of the outlet box to provide
a reference stream velocity.
The test section can operate one rotor at any given

time, while it can accommodate the simultaneous
mounting of three distinct rotors for storage pur-
poses (Fig. 1). Additionally, a pulley system facilita-
tes the manipulation of these rotors. The three ro-
tor configurations utilized in this study include single-,
double-, and five-segment variants, each with a height
of 2.2m and a diameter (D) of 0.5m. An integral fea-
ture of the test section is its loading apparatus, en-
abling the modification of the load exerted on the
tested rotors. This functionality allows for a compar-
ative analysis under various loading conditions, with
concurrent noise measurements captured via micro-
phones. Specifically, this study focuses on a comparison
between single and five-segment rotor configurations.
The single-segment rotor mirrors the conventional
Savonius rotor design, comprising ‘S’-shaped buckets
spanning between two end plates at a height denoted
as ‘H’. In contrast, the five-segment rotor configura-
tion consists of five rotors of identical height stacked
atop one another, each rotated at 90○ relative to the
preceding segment orientation. This arrangement is il-
lustrated in Fig. 2.
The measurement scenario consisted of quantifying

the performance of the two wind turbines at their com-
plete operational TSR range. The noise emissions were
mainly focused on four cases:
– stopped rotor at different wind speeds;
– no-load condition/free run: the load is being with-
drawn and the rotor is at its maximum speed of
rotation at any given wind speed;
– loaded condition: rotor working under different
load conditions;
– the background noise consisted only of the test
section in the lab (without a rotor).
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Fig. 4. Noise measurement setup and block diagram of the measurement procedure.

a) b) c)

Fig. 5. Acoustic measurement setup: a) test section outlet configuration; b) CFD of the outlet flow TSR = 0.9;
c) CFD of the outlet flow TSR = 1.8.

The experiment involved both rotors, with a micro-
phone positioned as depicted in Fig. 4. The microphone
location is indicated by the red ellipse. It is placed at
the same location for all the tests carried out. The mi-
crophone is located in the middle of the test section
outlet in the vertical direction. In the horizontal direc-
tion, it is placed outside the stream leaving the test
section. It is at a distance of 0.28m away from the
test section outlet plane, making sure that the micro-
phone is sheltered from the air jet.
At the jet outlet the static pressure is the same

as the ambient pressure, therefore one may assume
that the free shear layer generated downstream of the
test section wall should follow the wall direction. Such
a free shear layer starts at the test section outlet and
expands with the angle of ±7○ due to turbulent mix-
ing. This is indicated in Fig. 5a showing that the shear
layer is far away from the microphone location.
The presence of the rotor close to the outlet plane

may impose further deflection of this shear layer. In
order to make sure that the rotor does not enforce
the interaction of the shear layer with microphone, the
numerical simulations for the investigated configura-
tion have been carried out. This simulations have been
done for the two limiting cases: no-load (TSR = 1.8)
and maximum-load (TSR = 0.9).
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Numerical simulations were performed using the
FINE/Open NUMECA/CADENCE software, which
employs a finite volume method with a central dif-
ferencing scheme enhanced by artificial dissipation for
spatial discretization, and a Runge–Kutta type time
integration scheme. The time step in each case cor-
responds to a rotor rotation of 2○. A full multigrid
strategy was applied to enhance the convergence rate.
The calculations were carried out under the assump-
tion of a two-dimensional, incompressible, and turbu-
lent flow (at the mid-span of the wind tunnel), us-
ing the k-ω SST turbulence model. Boundary condi-
tions were defined based on the values measured on
the experimental setup. To allow for the full develop-
ment of the flow, simulations were conducted over 20
full revolutions. The computations were then contin-
ued for an additional 10 revolutions, over which the
results were time-averaged. The results of the numer-
ical simulations, presented in Figs. 5b and 5c, were
obtained based on experience with unsteady flow con-
figurations including aeroacoustic effects (Flaszynski
et al., 2021; Grzelak et al., 2024; Suresh et al.,
2024). In Figs. 5b and 5c, the time-averaged veloc-
ity (over 10 rotations) is shown. These results indicate
that the free shear layer developing downstream of the
wind tunnel wall is far from the microphone location.
The induced air flow around the microphone is of very
low velocity, confirming that the jet downstream of the
wind tunnel does not affect microphone recordings.
The objective of the tests was to assess the over-

all noise generated by the rotor under various load-
ing conditions. Subsequently, the same procedure was
repeated, with each rotor type subjected to identical
operating conditions. Noise measurements were taken
using a sampling method, employing a class 1 Sound
Level Meter SVAN 979 with a high quality omnidi-
rectional G.R.A.S. 1/2′′ measuring prepolarized free-
field microphone, type 40AE and the SV 17 pream-
plifier. The sound level meter was calibrated before
and after the measurements using the SV 36 acoustic
calibrator. The raw sound data was recorded during
the noise measurements for further analysis using the
SVANPC++ software, version 3.4.4. Measurements
were repeated three times for each case N = 3, with
each sample recorded for T equal to 60 s. The measur-
ing microphone was positioned using a tripod, halfway
up the rotor, outside the mainstream from the test
section exit, at a distance of 0.7m from the rotor axis.
A windscreen was used for the microphone.
Simultaneously, measurements were taken to deter-

mine the rotor performance characteristics and estab-
lish the relationship between the coefficient of power
(Cp), TSR, and revolutions per minute (RPM). These
experiments were conducted under conditions consis-
tent with the noise measurements, with the fan fre-
quency set to 35Hz to produce a wind velocity of
8.5m/s.

It is essential to note that the relative noise pro-
duction discussed in this study between single and five-
segment rotors does not fully represent the noise levels
produced by rotors individually in real-world condi-
tions, where factors such as inlet turbulence, temper-
ature, humidity, and shear may significantly influence
the noise levels.
The recorded acoustic data was analyzed using sev-

eral methods, as shown in Fig. 4. First, the broadband
analysis was performed. In this case the equivalent
continuous sound pressure level (Leq) for four weight-
ings curves (Z, A, C, and G) was determined. Next,
the analysis of the sound pressure level (SPL) was
extended using a narrow band analysis. This analy-
sis was performed using a 1/12 octave band analyzer.
The 1/12 octave band equivalent SPL with the weight-
ing curve Z was determined to evaluate the actual
noise production between the considered rotors. The
main aim of this analysis was to evaluate the actual
noise production between the considered rotors. Those
analyses were performed using the SVANPC++ soft-
ware, version 3.4.4 and the Pulse Reflex software. The
Leq, for a given measurement period (T ), was calcu-
lated using the selected weighting filter: Z, A, C, or G.
The indicator LZeq,Avg.(f) was computed for each

1/12 octave band spectrum, and the average value was
calculated as follows:

LZeq,Avg.(f) = 10log10 (
1

N

N

∑
i=1

10LZeq,T (f)/10) [db], (1)

where f is the frequency of the 1/12 octave band, 180
filters were used for the frequency range from 0.71Hz
up to 22000Hz, N is the number of recorded samples.
The third method was a psychoacoustic analysis. In

this case selected metrics related to the sound quality
such as sharpness, roughness, and fluctuation strength
(FS) were determined. Sharpness is a hearing sensa-
tion related to frequency and independent of loudness.
Sharpness corresponds to the sensation of a sharp,
painful, high-frequency sound and is a comparison of
the amount of high frequency energy to the total en-
ergy (Fastl, Zwicker, 2007). Roughness is a com-
plex effect which quantifies the subjective perception
of the rapid (15Hz–300Hz) amplitude modulation of
a sound. The unit of measure is asper. One asper is de-
fined as the roughness produced by a 1000Hz tone of
60 dB which is a 100% amplitude modulated at 70Hz
(Fastl, Zwicker, 2007; Cox, n.d.). The FS is sim-
ilar in principle to roughness except that it quanti-
fies a subjective perception of a slower (up to 20Hz)
amplitude modulation of a sound. The sensation of
the FS persists up to 20Hz, then at this point, the
sensation of roughness takes over (Fastl, Zwicker,
2007; Cox, n.d.). The main purpose of this analysis
was to extend the knowledge about phenomena re-
lated to the perception of the sound emitted by the
examined rotors by human beings. A psychoacoustic
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analysis was conducted using the Pulse Reflex soft-
ware, version 21.0.0.567, provided by Bruel & Kjaer
(Fastl, Zwicker, 2007).
For all types of the performed analysis, three inde-

pendent recordings (independently for each rotor type
and considered conditions), with T set to 60 s, were an-
alyzed. Finally, the average value was calculated and
presented.

3. Results and analysis

The findings from experiments conducted on
a single- and five-segment rotor installed in the test
section, as illustrated in Fig. 4, and operated at a wind
speed of 8.5m/s, are depicted in Fig. 6 (see Sub-
sec. 3.2). This wind velocity, generated by the fans,
corresponds to a frequency of 35Hz and is denoted by
a dashed vertical line in the plots. It is essential to ac-
knowledge that the acoustic emissions from the fans
were notably high. Therefore, the comparison between
the two rotors should focus solely on the difference
in the SPL, rather than absolute values.
The noise measurements were conducted under the

three following conditions:

– rotor under the maximum-loading condition, where
the single-segment rotor operated at 300RPM
(equivalent to a frequency of 5Hz), and the five-
segment rotor operated at 250RPM (equivalent to
a frequency of 4.17Hz);
– rotor without loading, with the five-segment rotor
operating at 500RPM (equivalent to a frequency
of approximately 8.5Hz) and the single-segment
rotor operating at 575RPM (equivalent to a fre-
quency of 9.55Hz);
– test section with the rotor in a stationary (non-
rotating) position.

The aforementioned conditions were applied to:

– the test section with the five-segment rotor;
– the test section with the single-segment rotor;
– the test section noise without a rotor (fan noise).

The obtained measurement data was used to perform
4 types of analysis. First, a broadband analysis was
performed.
The effect of the rotor presence and the background

noise of the test stand, generated mainly by the propul-
sion fans, is presented in Fig. 6a. The rotor type plays
a minor role on the generated noise. Nevertheless, its

Table 1. Comparison of sound levels for one-segment and five-segment rotors.

Measurement case
One-segment rotor Five-segment rotor

LAeq LCeq LZeq LGeq LAeq LCeq LZeq LGeq

Fan noise 95.7 101.9 102.0 82.8 95.7 101.9 102.0 82.8

Stopped rotor 96.2 102.1 102.4 88.2 95.7 101.9 102.2 89.8

Free run 99.0 105.3 109.3 117.1 95.7 102.3 103.3 98.5

Rotor with load 96.1 103.0 111.7 110.0 95.7 101.9 104.1 96.7

implementation contributes significantly to the noise
generated by the propulsion fans. However, this con-
tribution takes place below the frequency of f < 130Hz
only.
The detailed results are shown in Subsec. 3.1. Next,

the narrowband analysis is detailed in Subsec. 3.2. In
Subsec. 3.3., the acoustic analysis was extended by the
selected sound quality measures. Finally, a relation be-
tween the noise produced and the rotor efficiency is
detailed in Subsec. 3.4.

3.1. Broadband analysis

The main aim of the broadband analysis was to
show the total level of noise using three types of fre-
quency weighting curves: A, C, Z. For better under-
standing of the considered phenomena, the broadband
analysis was extended by a low frequency analysis,
including infrasound, using the weighting curve G.
The average equivalent SPL was calculated for this
purpose for all the considered cases: stopped rotor,
rotor with load (maximum-loading conditions), ro-
tor without load (free-run). The fan noise (the noise
level without a rotor) was used as a reference for the
cases discussed, as seen in Fig. 6. The average val-
ues were calculated using three samples of equivalent
sound pressure levels. Each sample value was calcu-
lated for 60-second sound recordings. The obtained re-
sults are shown in Table 1.
The detailed assessment of the noise level emitted

by a rotor in the presented measuring setup is dif-
ficult for the following reasons: the used fan system
produced a very high level of background noise;
the noise emission from the rotating rotor is closely
related to the wind speed; and the rotor is not a wind-
independent source of the noise. For these reasons, the
traditional method of evaluating acoustic emissions
– measuring the noise immission and the acoustic
background, then calculating the noise emission as the
energy difference between them – is not appropriate.
In the measurement system used, the rotor acts
as a background noise modulator and, in selected
situations, causes an increase in the noise level. The
way in which the background noise is modulated is
directly related to the design of the rotor and the way
of its rotation, depending on the load. Taking this
fact into account, it was proposed to assess the rotor
noise using simply the difference between the noise
level with the rotor (in a particular state) and the fan
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noise level. Based on this assumption, the difference
levels were calculated for both the considered types of
rotors. These calculations were done for two cases.
First, the difference between the emission and the

background noise levels was determined. The result
was marked using symbol ∆. The obtained results are
shown in Table 2. Next, the difference between the
rotors was calculated. The one-segment rotor values
were used as a reference for this purpose. The results
are shown in Table 3. The noise of the stopped rotor re-
sults from a static disturbance of the airflow. The noise
level exceeding the background acoustic level results
from the turbulence introduced by the rotor structure
in the air stream because the rotor is stopped. For the
single-segment rotor, higher noise levels were recorded
for each indicator type (see Table 1). For the free-run
mode for the single-segment rotor, the noise level was
3 dB higher compared to the acoustic background for
curves A and C and by 7.3 dB for curve Z (see Ta-
ble 2). For a five-segment rotor, the change in the
acoustic background level is very small. An increase
in the background noise level of 2.1 dB was noticeable
only for the load mode and for the curve Z analysis.
The greatest differences for the curve G were noticed
between the fan noise and the added rotor. Placing
the stopped rotor in the air flow increased the noise
level by over 5 dB for the single-segment rotor and by
over 7 dB for the five-segment rotor. This situation can
be noticed in figures presented in Subsec. 3.2. In the
free-run conditions for a single-segment rotor, the LGeq

level increased by over 34 dB compared to the level of
the fan itself. The noise level for the five-segment ro-
tor in the free-run conditions was 18.6 dB lower than
for the single-segment rotor. In the load conditions,
the noise level for the single-segment rotor decreased
by 7.1 dB compared to the free-run conditions. In the
case of the five-segment rotor, the difference between
the noise level for the free-run and the load conditions
was 1.8 dB. The noise level for the single-segment rotor
in the load phase was over 13 dB higher compared to
the noise level generated by the five-segment rotor.
An additional analysis involved determining the

differences in the noise level between the single-
segment rotor and the five-segment rotor. Even when
the rotors were not rotating, the noise level was
(slightly) higher for the single-segment rotor than for
the five-segment rotor. The noise level for the single-
segment rotor in the free-run mode was 3 dB higher
than the acoustic background (for curves A and C) and

Table 2. Noise difference analysis results calculated in relation to fan noise.

Measurement case
One-segment rotor Five-segment rotor

∆LAeq ∆LCeq ∆LZeq ∆LGeq ∆LAeq ∆LCeq ∆LZeq ∆LGeq

Stopped rotor 0.6 0.2 0.4 5.4 0.0 0.0 0.2 7.1

Free-run 3.3 3.4 7.3 34.3 0.0 0.4 1.3 15.7

Rotor with load 0.4 1.1 9.7 27.2 0.0 0.0 2.1 13.9

6 dB for curve Z. The difference between curves A, C,
and Z is affected by the strong attenuation introduced
by curves A and C for low frequency. The noise level
for a single-segment rotor in the load mode was slightly
higher for A- and C-corrected indicators and 7.6 dB
higher for the curve Z. This means that the differences
between the rotors occur mainly in the low-frequency
range, with higher levels recorded for the single-
segment rotor. Based on the research, it has been found
that a single-segment rotor causes a greater increase
in the background noise level than a five-segment ro-
tor, and a single-segment rotor causes a measurable
increase in the acoustic background level, especially
for the free run mode and weighting curves A and C.
A loaded single-segment rotor causes only a slight in-
crease in the acoustic background level for weighting
curves A and C. The greatest increase in the noise level
was recorded for the correction curve Z, especially for
the loaded single-segment rotor. The five-segment ro-
tor did not cause any significant change in the acous-
tic background level for the weighting curves A and C.
A slight increase in the level was noted only for the
load mode and the curve Z. In practice, this means
that a five-segment rotor will be less noticeable (in the
acoustic field) than a single-segment rotor. Its design
ensures that the acoustic background level does not
change during its operation.
Based on the broadband analysis, it was found for

the curve G that the greatest differences in the noise
emission, regardless of the rotor type, occurred for the
indicator corrected by the weighting curve G. This
clearly indicates a low-frequency type of emission.
More detailed considerations regarding the distribu-
tion of acoustic energy in the frequency domain are
presented in Subsec. 3.2. Quantitatively, it has been
shown that low-frequency noise emissions, expressed
by the indicator LGeq, for a single-segment rotor are
many times higher than for a five-segment rotor.
The single-segment rotor in the free-run phase, under
the given test conditions, emitted energy nearly 73
times higher than the five-segment rotor. In the load
conditions, the acoustic energy emitted by the single-
segment rotor was 21 times higher than the acoustic
energy emitted by the five-segment rotor. Therefore,
the working conditions had a significant impact on the
level of emissions. Low-frequency emissions were
the highest in the free-run phase. The results obtained
have considerable practical significance. First of all,
they indicate that the problem of noise emissions con-
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cerns low frequencies. The design of the rotor signifi-
cantly affects noise emissions. The five-segment rotor
is characterized by significantly lower acoustic energy
emissions, regardless of the operating conditions. The
biggest differences occurred in the free-run phase. To
extend the analysis, calculations were performed using
sound quality measures. Indicators sensitive to signal
modulation, such as roughness and the FS, are of par-
ticular importance. The results of this study are shown
in Subsec. 3.3.

Table 3. Noise difference analysis between rotors∗.

Measurement case
Indicator type

∆LAeq ∆LCeq ∆LZeq ∆LGeq

Stopped rotor 0.6 0.2 0.2 –1.6

Free-run 3.3 3.1 6.0 18.6

Rotor with load 0.4 1.1 7.6 13.3

*positive value: the single-segment rotor produced a greater
SPL; negative value: the five-segment rotor produced a greater
SPL.

3.2. Narrowband analysis

In this section, the narrowband analysis results
are presented. As mentioned before, the narrowband
analysis was performed using a constant percentage
bandwidth analyzer with a 1/12 octave band resolution.
The results are presented in two groups of figures: first
separated for the considered state (Fig. 6), second sep-
arated for the considered rotors (Fig. 7).
As depicted in Fig. 6a, both rotors exhibit similar

noise level outputs when the rotor is stationary, al-
lowing for a direct comparison under both no-load and
loaded conditions (Figs. 6b and 6c). Notably, the angu-
lar position of the stopped rotor relative to the wind
direction did not influence the results. The RPM of
the rotors were standardized as the reference value for
each scenario, with the corresponding frequencies and
recorded sound energy levels [dB].
Distinct differences in the acoustic energy distribu-

tion among the considered rotors are observable, par-
ticularly at low frequencies, notably between 1Hz and
51Hz, as illustrated in Figs. 6b and 6c. A significant
disparity in both frequency and acoustic energy pro-
duction within this range is evident (as was mentioned
in the previous section, especially for the weighting
curve G). Consequently, the collective SPL for this
frequency band was computed. An analysis of the en-
tire frequency spectrum reveals discrepancies not only
in the low-frequency range but also around 1000Hz.
Specifically, the single-segment rotor generated higher
sound levels than the five-segment rotor, particularly
under no-load conditions (Fig. 6c). For loaded condi-
tions, differences are primarily observed in the low-
frequency range, leading to analysis limited to frequen-
cies between 1Hz to 51Hz (Fig. 6b).
The initial peak corresponds to a weak impulse

frequency of approximately 4.8Hz when maximum-
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 Fig. 6 1/12 octave bands spectrum for examined rotors presented separately for considered conditions: a) stopped rotor, b) rotor 
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loading is applied, aligning with the complete rotor
RPM of 286 (4.78Hz). This phenomenon is also ev-
ident in unloaded conditions. Additionally, the effect
of two blades is apparent in both scenarios, corre-
sponding to an RPM value of 572 (9.55Hz), indi-
cating a doubling of the frequency relative to the
RPM. Notably, low-frequency, narrow-band rotational
components typically occur at the blade passage fre-
quency (the rotational speed multiplied by the number
of blades) and its integer multiples, consistent with
the findings presented in (Pearson, Graham, 2014).
Mathematically, the acoustic energy for all sub-bands
needs to be summed from 1Hz to 51Hz. Specifically,
75 sub-bands are present from 0.71Hz up to 51Hz.
A unified value for this frequency range was computed.
Initially, the SPL is converted to a relative exposure,
representing the square of the acoustic pressure divided
by the square acoustic reference pressure, for each con-
sidered sub-band using the equation:

Ex = 10(l/10),

where Ex denotes the relative exposure and l repre-
sents the SPL expressed [dB]. Subsequently, these val-
ues are aggregated. Finally, the sum of the relative
exposure is transformed to the SPL using logarithms
via the equation:

L = 10 ∗ log 10(sum(Ex)).

The discrepancy between the rotors was subse-
quently determined: this difference = −1 dB for sta-
tionary rotors, indicating a nearly identical SPL for
these conditions; for rotors under no-loading, this dif-
ference = 11.2, signifying that the single-segment ro-
tor generated an SPL 11.2 dB higher than the five-
segment rotor. Hence, it can also be inferred that the
acoustic energy produced by the single-segment rotor
is 13.3 times greater than that of the five-segment ro-
tor. A comparable difference of 11.4 is observed for the
loaded rotor. In this instance, the acoustic energy pro-
duced by the single-segment rotor is 13.8 times greater
than that of its five-segment counterpart.
As previously mentioned, an elevation in the noise

produced by the single-segment rotor is noted, be-
tween approximately 500Hz and 1500Hz. This region
is delineated by a red ellipse in Fig. 7a and is ab-
sent in the case of its five-segment counterpart. Ad-
ditionally, it was observed that noise peaks in the case
of a five-segment rotor transitioned towards broad-
band frequencies and attenuated at a faster rate.
This phenomenon arises from the heightened mix-
ing of complex vortices formed in the case of a five-
segment rotor compared to two rotors under simi-
lar testing conditions, disrupting the coherence pat-
terns. This effect, akin to the addition of serrations
in aircraft wings, serves to distribute noise-generating
vortices, consequently reducing noise levels (Moreau,

Doolan, 2013; van der Velden, Oerlemans, 2017;
Mathew et al., 2016; Oerlemans et al., 2009). This
observation elucidates the acoustic energy distribution
presented in Fig. 7, where identical frequencies are
recorded with varying sound levels for each scenario.
Upon evaluation of both cases, it becomes appar-

ent that the unloaded rotor generates more noise com-
pared to its loaded counterpart, as depicted in Fig. 7.
It is evident from the plots and tables that the five-
segment rotor yields a lower sound energy compared
to its single-segment counterpart, a conclusion further
validated by calculating the sound intensity difference
between the two cases.

3.3. Psychoacoustics

For the next part of the research, psycho-acoustics
related to sound quality was analyzed based on the
studies presented in (Sahai, 2016; Blauert, 2005).
Figure 8 shows a variation in the different sound pa-
rameters under consideration. The FS, representing
the modulation in sound, is at its peak value for a fre-
quency of about 4Hz.
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Fig. 8. Information about sound quality for single and five-
segment rotor under different operational conditions, the
units are as follows: FS [vacil], roughness [asper ], sharpness

[acum].

A higher FS draws more attention to it and can
thus cause more irritation. It is evident from Fig. 6b
that a peak related to the BPF (blade passing fre-
quency) takes place about this frequency for the case
when the rotor is under maximum-loading. This is
also seen in Fig. 8. Another factor under considera-
tion is the sound roughness which reaches a maximum
at a frequency of about 70Hz. As anticipated from
the power spectrum plots, sharpness, which is related
to how pleasant one feels when hearing the noise, is
mainly dominated by higher frequencies and is similar
in all the cases.
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A broadband analysis of selected SQ parameters
showed that it was the FS that was the metrics dis-
tinguishing the examined rotor types. Differences in
the FS parameter values occurred both in the free-run
(slight differences) and the load mode (larger changes).
An extended analysis of this indicator in the frequency
domain was performed to more precisely check the
properties of the tested rotors in terms of diversity
in the FS parameter. Due to the fact that SQ mea-
sures refer to perceptual phenomena, the FS spectrum
is presented on the Bark scale. The analyses were per-
formed for a free run and load phases. The obtained
results are shown in Fig. 9. A higher value of the FS
indicator (related to the five-segment rotor) in the free
run mode for a single-segment rotor occurred for the
frequency bands covering the Bark scale from 5 to 8
(the widest range), 11–13, and 17–19. A slight increase
in the FS index was noted only for the 3-Bark band in
the load phase of the five-segment rotor. It can be sum-
marized that the FS in this rotor type does not depend
on the type of rotation and that this rotor type does
not induce this type of sensation. In the case of a single-
segment rotor, a drastic increase in the FS value was
observed in the load conditions. Moreover, a significant
increase in the number of bands in which an increase in
the FS took place was also observed. The lower range
was expanded by a band of Bark 3. The two higher
sub-ranges were merged into one range from 10 to 17
Barks. This means that the impression of the mod-
ulation strength expanded in the frequency domain,
taking on a broadband character and its strength in-
creased significantly.
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A single-segment rotor modulates background noise
much more effectively. This results directly from its
design. The wide blade of the wing captures a large
volume of air at a given moment (which is the center
of acoustic wave propagation), causing instantaneous
rapid changes in the sound pressure (resulting from
the rotor rotational speed), which is audible as a noise
modulator (a sound similar to a flag flapping or flap-

ping in the wind). This was confirmed by a higher value
of the FS index for a single-segment rotor. The modu-
lation of the background noise in a five-segment rotor is
very low, and the obtained indicators do not differ sig-
nificantly from the values obtained for the background
noise. Less disturbance of the acoustic background for
a five-segment rotor comes at the cost of a lower en-
ergy efficiency of this structure. A single-segment rotor
is characterized by greater efficiency and more notice-
able changes in the acoustic background. The broad-
band SQ results presented for the fan only, especially
the FS, obtained for the fan noise (without rotors),
have similar values as the stopped rotors and the five-
segment rotor with load.
The frequency domain analysis of the fan noise

(without rotors) indicated that the FS distribution was
similar to the five-segment rotor (for both conditions:
free run and load) and was even greater for Bark 2–4
than for this rotor. It means that the five-segment ro-
tor efficiently reduced the modulation of the sound.

3.4. Rotor efficiency and noise

The final finding, which explores the impact of seg-
mentation on efficiency alongside noise, is illustrated
in Fig. 10. The performance variation across the en-
tire operational range of TSR has been depicted. No-
tably, the single-segment rotor exhibits superior Cp
values throughout the TSR range under examination.
It should also be noted that the maximum efficiency
can be seen at a TSR value of about 1 for both cases,
corresponding to a rotor rotational speed of 300RPM.
The maximum rotational speed in the no-load case
takes place just above 500RPM. A single-segment ro-
tor achieves a maximum efficiency of 33.15%, whereas
a five-segment rotor attains a maximum efficiency of
26.45%. A relative decrease of 20% in efficiency is ob-
served for a segmented rotor compared to a conven-
tional Savonius rotor.
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Fig. 10. Performance characteristics with respect to TSR.

Additional plates are inserted in the case of a seg-
mented rotor (Fig. 2). These plates introduce addi-
tional surfaces at which boundary layers are formed,
inducing viscous losses in the rotor. In addition, these
boundary layers are inserted into the highly curved



286 Archives of Acoustics – Volume 50, Number 2, 2025

blades, which generate a pressure gradient normal to
the blade surface. Such a pressure gradient gener-
ates a transverse flow within the boundary layer, be-
coming a source of 3D flow structures. These two rea-
sons become a source of increased losses at a segmented
rotor.
Comparing these results to the SPL analysis pre-

sented in Subsec. 3.2, it should be recalled that the SPL
in stopped rotors (RPM = 0) is nearly the same. In the
case of maximum-loading rotors, the single-segment ro-
tor produces a much higher SPL than the five-segment
rotor. It should be taken into account that the in-
troduction of additional plates in the segmented ro-
tor becomes a source of streamwise vorticity, which
is intersecting blade span-wise vortices. This vortex
disintegration mechanism reduces noise but often in-
creases losses. This may also shift the emitted noise
from low to higher frequencies. The differences occur
mainly in the low-frequency region (1Hz–51Hz). Thus,
it can be concluded that an increase in power produc-
tion is redeemed at the expense of an increase in noise
emissions. The contribution of noise emissions from
a single-segment in the free-run condition of the rotor
is still higher and includes contributions from higher
frequencies (around 1000Hz), as well.

4. Conclusions

The presented study indicates that the noise pro-
duced by a wind turbine is influenced by its operational
parameters. This research involves a comparative ana-
lysis between a single-segment rotor and a five-segment
rotor, offering insights into the most favorable operat-
ing conditions and the rotor type that minimizes the
noise while maximizing the efficiency. It can be inferred
from the results obtained that:

– a five-segment rotor produces less overall acoustic
energy as compared to that produced by a single-
segment rotor. The changing phase of the seg-
ments breaks the coherence of the flow and shifts
the noise energy content to higher frequency spec-
tra, where the dissipation rate is faster;
– the amount of acoustic energy produced decreases
as the load increases, peaking when the rotor is
spinning without any external-load;
– the greatest differences in noise emissions between
the considered types of rotors concern low fre-
quency noise.
– under the specified test conditions at a wind speed
of 8.5m/s, a single-segment rotor demonstrates
a greater efficiency compared to a five-segment ro-
tor, achieving a maximum performance efficiency
of 32% as opposed to 26.5% for the five-segment
rotor;
– following the conclusions, the sound quality of
a five-segment rotor makes it a preferable choice.

Very practical conclusions can be drawn from the ana-
lysis: if the lowest possible noise level is a critical pa-
rameter in a given area, it is recommended that multi-
segment structures are used. However, if the priority
is to obtain the highest possible efficiency of the sys-
tem, then the first choice will be to use single-segment
systems.
The analysis of the sound quality measures indi-

cated that the metrics such as roughness and sharp-
ness are similar for both rotors. The significant dif-
ferences between the examined rotors were noticed in
the FS. The greater value of these metrics occurred
for the single-segment rotor. The SQ metric values in
the case of the five-segment rotor were similar in all
conditions (free-run and with load) to the values ob-
tained for the fan noise. Further analysis is required in
a quieter environment to maintain the efficiency of the
single-segment rotor with low noise levels. An exper-
imental campaign has been planned in collaboration
with the Technical University of Delft to localize the
noise sources using a microphone array in contrast to
a single microphone used for this study. This will help
in optimizing the design and reaching our final aim of
more production of power with less noise disturbance.

Funding

The project received funding from the European
Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie grant
agreement no. 860101-zEPHYR and was supported by
CI TASK (Gdańsk, Poland).

References

1. Abbasi M. et al. (2019), Assessment of role of
job components and individual parameters on the
raised blood pressure in a noisy industry, Archives of
Acoustics, 44(3): 575–584, https://doi.org/10.24425/
aoa.2019.129272.

2. Akwa J.V., Vielmo H.A., Petry A.P. (2012), A re-
view on the performance of Savonius wind turbines, Re-
newable and Sustainable Energy Reviews, 16(5): 3054–
3064, https://doi.org/10.1016/j.rser.2012.02.056.

3. Anjum S., Kumari A. (2022), Evaluation of noise pol-
lution in Bengaluru City, India during COVID-19 pan-
demic, Archives of Acoustics, 47(2): 131–140,
https://doi.org/10.24425/aoa.2022.141644.

4. Blauert J. (2005), Communication Acoustics, Springer,
https://doi.org/10.1007/b139075.

5. Cox T. (n.d.), Roughness – Fluctuation Strength,
https://hub.salford.ac.uk/sirc-acoustics/psychoacoustics/
sound-quality-making-products-sound-better/an-intro
duction-to-sound-quality-testing/roughness-fluctuation
-strength/ (access: 27.03.2024).

6. Davy J.L., Burgemeister K., Hillman D. (2018),
Wind turbine sound limits: Current status and rec-
ommendations based on mitigating noise annoyance,

https://doi.org/10.24425/aoa.2019.129272
https://doi.org/10.24425/aoa.2019.129272
https://doi.org/10.1016/j.rser.2012.02.056
https://doi.org/10.24425/aoa.2022.141644
https://doi.org/10.1007/b139075
https://hub.salford.ac.uk/sirc-acoustics/psychoacoustics/sound-quality-making-products-sound-better/an-introduction-to-sound-quality-testing/roughness-fluctuation-strength/
https://hub.salford.ac.uk/sirc-acoustics/psychoacoustics/sound-quality-making-products-sound-better/an-introduction-to-sound-quality-testing/roughness-fluctuation-strength/
https://hub.salford.ac.uk/sirc-acoustics/psychoacoustics/sound-quality-making-products-sound-better/an-introduction-to-sound-quality-testing/roughness-fluctuation-strength/
https://hub.salford.ac.uk/sirc-acoustics/psychoacoustics/sound-quality-making-products-sound-better/an-introduction-to-sound-quality-testing/roughness-fluctuation-strength/


S. Sachar et al. – Aeroacoustic Effect of Savonius Rotor Segmentation 287

Applied Acoustics, 140: 288–295, https://doi.org/
10.1016/j.apacoust.2018.06.009.

7. Deshmukh S., Bhattacharya S., Jain A., Paul A.R.
(2019), Wind turbine noise and its mitigation tech-
niques: A review, Energy Procedia, 160: 633–640,
https://doi.org/10.1016/j.egypro.2019.02.215.

8. Doerffer K., Telega J., Doerffer P., Hercel P.,
Tomporowski A. (2021), Dependence of power char-
acteristics on Savonius rotor segmentation, Energies,
14(10): 2912, https://doi.org/10.3390/en14102912.

9. Driss Z.,Mlayeh O., Driss D.,MaaloulM., AbidM.S.
(2014), Numerical simulation and experimental vali-
dation of the turbulent flow around a small incurved
Savonius wind rotor, Energy, 74: 506–517,
https://doi.org/10.1016/j.energy.2014.07.016.

10. Dumitrescu H., Cardos V., Dumitrache A., Frun-
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