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In Memoriam

Professor Eugeniusz Kozaczka

1942 – 2025

Professor Eugeniusz Tadeusz Kozaczka, member
of the Polish Academy of Sciences, passed away on
May 27, 2025, in Gdynia. We write these words with
profound sorrow and deep regret, mourning the loss
of such an exceptional person as Professor Eugeniusz
Kozaczka.
Eugeniusz Tadeusz Kozaczka was born on July 22,

1942, in Ćwików, Dąbrowa County, in the Lesser Po-
land Voivodeship. He completed his primary education
in his hometown of Ćwików, then attended the Min-
ing Vocational School in Katowice, after which he con-
tinued his studies at the Mining Technical Secondary
School in Dąbrowa Górnicza.
While studying at the Technical School, one of his

teachers encouraged him to pursue higher education,
and he successfully passed the entrance examinations
for both the AGH University of Science and Technol-
ogy and the Jarosław Dąbrowski Military University
of Technology in Warsaw (WAT). He chose the Mil-
itary University of Technology, which he graduated
from in 1971, earning a Master of Science in Engi-
neering in the field of Technical Physics on the ba-
sis of a thesis entitled ‘Studies of Thin BiMn Layers’
(Bismuth-Manganese).
In 1976, at the Szewalski Institute of Fluid-Flow

Machinery of the Polish Academy of Sciences, he ob-
tained his PhD after defending his dissertation entitled
‘Studies of Hydroacoustic Disturbances in Bounded
Media’.

In 1980, at the Faculty of Mechanical Engineer-
ing of the Military University of Technology, after pre-
senting his dissertation ‘Study of Underwater Acous-
tic Disturbances Generated by a Ship Propeller’, he
earned his habilitation degree. In 1990, he was awarded
the title of Professor of Technical Sciences, conferred
through a procedure conducted at the Polish Naval
Academy in Gdynia.
He served with the rank of Commander in the Pol-

ish Navy and worked for many years at the Polish
Naval Academy named after the Heroes of Wester-
platte. Later, he was employed at several other uni-
versities, including the Faculty of Ocean Engineer-
ing and Ship Technology of the Gdańsk University
of Technology, the Bydgoszcz University of Science
and Technology, and the Koszalin University of Tech-
nology.
Eugeniusz Kozaczka was a specialist in hydrome-

chanics and hydroacoustics, and a passionate explorer
and observer of the marine environment.
He conducted research on the generation and prop-

agation of elastic waves in water, including: underwa-
ter noise produced by a moving vessel; the transmis-
sion of mechanical energy from the hull into the water;
the transfer of vibrations into the marine environment
by rotating blade systems; hydroacoustic noise gener-
ated by a cavitating propeller; and the propagation of
underwater noise produced by a moving ship in shal-
low seas. His work also encompassed methodologies

https://acoustics.ippt.pan.pl/index.php/aa/index
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and systems for measuring underwater noise; nonlin-
ear hydroacoustics; the theory of high-intensity waves
propagating in the specific nonlinear medium of seawa-
ter, including low-salinity seawater; the development of
unique measurement and research tools for exploring
the marine environment; the study of seabed structure
using methods of linear and nonlinear acoustics; the
theory of waveguide (modal) propagation of waves in
shallow seas; and variability in the propagation condi-
tions of elastic waves in the southern Baltic, resulting
in unique studies of the acoustic climate of this region
of the Baltic Sea.
His major theoretical achievements included: de-

veloping the theory of underwater noise generation by
a ship’s propeller; advancing the theory of nonlinear
interactions of elastic waves in low-salinity seawater;
and contributing to the theory of wave propagation in
bounded aquatic environments.
His most important practical achievements in-

cluded: a series of solutions for reducing vibrations
in ship machinery and the associated underwater
noise, implemented in the production of mine sweep-
ers for the Polish Navy (7 patents); the construction
of a shore-based hydroacoustic control and measure-
ment station for naval vessels, which was introduced
into service in the Navy in 1991 and is still used today
to measure underwater noise from ships; the develop-
ment and construction of the first measurement hy-
drophone in Poland; and carrying out globally unique
measurements of the seabed sediments in the Gulf of
Gdańsk using nonlinear acoustic methods.
He reviewed 11 applications for professorships,

22 habilitation theses (including 6 publication-based
ones), and 16 doctoral dissertations, and he supervised
18 PhD graduates himself.
He participated in numerous research projects

funded by the Committee for Scientific Research, the
Ministry of Science and Higher Education, and the Na-
tional Center of Research and Development.
He was a member of numerous Scientific Councils:

the Faculty of Navigation and Naval Weapons of the
Polish Naval Academy, the Institute of Oceanology
of the Polish Academy of Sciences, the Faculty of
Mechanical Engineering of the Koszalin University

of Technology, the Faculty of Telecommunications and
Electronics at ATR in Bydgoszcz, the Institute of
Fluid-Flow Machinery of the Polish Academy of Sci-
ences, and the Faculty of Ocean Engineering and
Ship Technology of the Gdańsk University of Tech-
nology.
He was a member of numerous scientific societies

and organizations, in which he held important posi-
tions. From 2002 to 2011, he served as Chairman of
the Main Board of the Polish Acoustical Society; from
2003 to 2007, as Vice-Chairman of the Main Board
of the European Acoustics Association; from 2007 to
2013, as a member of the board of the International
Commission for Acoustics.
From 2011 to 2020, he was Chairman of the Acous-

tics Committee of the Polish Academy of Sciences, and
since 2018 he has served as Chairman of the Scientific
Commission of the PAS Branch in Gdańsk, ‘Acoustics
in Technology, Medicine, Marine Research, and Under-
water Security Systems’, actively contributing to the
development of the national scientific community and
international cooperation.
He was also a member of the Editorial Commit-

tee of Hydroacoustics and Chairman of the Editorial
Board of Archives of Acoustics.
Professor Kozaczka, a corresponding member of the

Polish Academy of Sciences since 2016, was awarded
the Knight’s Cross and the Officer’s Cross of the Or-
der of Polonia Restituta, as well as medals from the
National Education Commission, the Ignacy Malecki
Medal, and the Mikhail Lomonosov Medal. He also re-
ceived numerous other awards, including those named
after Xawery Czernicki, as well as awards from the
Minister of Science and Higher Education, the Minis-
ter of National Defence, and the Rectors of the Gdańsk
University of Technology and the Commandant of the
Polish Naval Academy.
His scientific and educational accomplishments

have left a lasting mark on Polish science. He will re-
main in our memory as a person of profound knowl-
edge, devoted to his work, and service.

Professor Bogumił Linde, D.Sc.
Dr. Iwona Kochańska, D.Sc.
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This article compares two methods for determining the airflow resistivity of porous and coating materials
– a key parameter in sound absorption modelling. The analysis involves a modified static airflow measurement
procedure in accordance with International Organization for Standardization [ISO] (2018), using a linear ap-
proximation algorithm (PLA), and a reverse method consisting of matching the measured absorption coefficient
in an impedance tube to the Miki model. The analysis was conducted on both porous materials utilised in
acoustic panel fillings and thin coverings. It is evident that both methods yield analogous outcomes for materials
exhibiting low resistivity. However, for materials characterised by higher resistivity, discrepancies of up to 50%
were observed. Nevertheless, a high degree of agreement was obtained between the calculated and measured
absorption coefficients. For thin coating materials, an air gap of at least 70mm is required. For materials with
a thickness of up to approximately 30mm, differences in resistivity do not significantly affect the absorption
coefficient. It is evident that both methods can be used to determine the airflow resistivity of porous materials
and layered structures, supporting the effective selection of materials according to requirements.

Keywords: airflow resistivity; specific airflow resistance; sound absorption coefficient; impedance tube; porous
materials.

Copyright © 2025 The Author(s).
This work is licensed under the Creative Commons Attribution 4.0 International CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Porous media are used in various practical ap-
plications such as sound absorption and noise con-
trol (Allard, Atalla, 2009; Gibson, Ashby, 1997;

Tao et al., 2021). Porous structures present excep-
tional sound-absorbing properties in the mid-to-high-
frequency ranges (Cao et al., 2018; Zhao et al., 2016).
Porous materials are mesh-like structures with inter-
connected pores (Oliva, Hongisto, 2013). The pro-

https://acoustics.ippt.pan.pl/index.php/aa/index
mailto:jrubacha@agh.edu.pl
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cesses inside the pores, associated with the fluid’s vis-
cosity, generate heat from sound energy (Crocker,
2007; Huang et al., 2023). Porous structures can be
organic, inorganic, or mixed composite materials, in-
cluding stone, wood, sponge, foam, rubber, non-woven
fabrics, and textiles (Doutres et al., 2010; Johnson
et al., 1987; Lafarge et al., 1997).
The basic parameter describing the sound-absorb-

ing properties of a material is its sound absorption co-
efficient a, defined as the part of incident energy that
is not reflected (Allard, Atalla, 2009):

a = 1 −
Er

Etot
, (1)

where Er and Etot are the acoustic energies of the re-
flected and incident waves, respectively.
The sound absorption coefficient can be determined

by measurements in an impedance tube, using either
the standing wave method (ISO, 1996) or the trans-
fer function method (ISO, 2023). Measurements in the
impedance tube are characterized by very good ac-
curacy, cost-effectiveness, and testing flexibility. The
sound absorption coefficient can also be established in
a reverberation room (ISO, 2003; Vorländer, 2008).
This procedure allows for the measurement of both
flat and spatial elements, including auditorium chairs
(Cuenca et al., 2022; Rubacha et al., 2012). How-
ever, this technique requires the use of specialized re-
verberation rooms. As an alternative to physical mea-
surements, the sound absorption coefficient can also
be determined using empirical models. These models
are based on a large number of measurements of dif-
ferent materials, and the interpretation of the phys-
ical processes occurring in these materials. Delany
and Bazley (1970), and later Miki (1990) proposed
the simplest empirical models, which require only one
parameter: airflow resistivity. Johnson et al. (1987),
as well as Allard and Champoux (1992), sug-
gested a more accurate physical model (the Johnson–
Champoux–Allard (JCA) model) with five input pa-
rameters. Unfortunately, these parameters are usually
difficult to estimate accurately. Bonfiglio and Pom-
poli (2013) presented an inverse method for determin-
ing the physical parameters of porous materials for use
with the JCA model. Also, Vorländer (2008) dis-
cussed the difficulties in determining the parameters
of porous media due to the complexity and variability
of these materials, including factors such as geometri-
cal configuration, porosity, and tortuosity for the JCA
model. This means that more complex models may give
worse results, with errors that are difficult to estimate.
Airflow resistivity is one of the basic parameters

describing porous and nonwoven materials. It is used
as input parameter for models, enabling the calcu-
lation of the sound absorption coefficient of single-
and multi-layer materials using the transfer matrix
method (Cox, D’Antonio, 2016; Dell et al., 2021;

Herrero-Durá et al., 2019; Hou et al., 2017).
Kamisiński et al. (2012) showed that it can also be
used to calculate the sound absorption coefficient of
materials with coverings. The measurement of airflow
resistivity is conducted according to two standards:
ASTM C522-03 (2022) and ISO 9053-1 (2018). The
primary distinctions between these two standards per-
tain to the measurement conditions specified for assess-
ing airflow resistivity. ASTM C522-03 allows measure-
ments in flow directions other than perpendicular, pro-
vided the airflow remains constant. On the other hand,
ISO 9053-1 allows variable airflow measurements, but
solely for flow that is perpendicular to the sample.
Both standards mandate measurements to be con-

ducted under laminar flow conditions, ensuring the air-
flow resistance remains constant as flow speed varies.
The ISO standard specifies that airflow resistance
should be determined at a flow speed of 0.5 ⋅ 10−3m/s,
either directly or by extrapolation from higher values
if direct measurement is unfeasible at such a low veloc-
ities. Meanwhile, the ASTM standard mandates mea-
surements at three different laminar flow rates, each
differing by at least 25%.
Melnyk et al. (2018) proposed a modification to

the standardized method of measuring airflow resistiv-
ity. They suggested using the previous linear approx-
imation method (PLA) method to improve the accu-
racy of the technique for measuring airflow resistance
under static airflow conditions. Moreover, they ana-
lyzed an inverse method for determining airflow resis-
tivity based on fitting sound absorption coefficients.
Similarly, Sebaa et al. (2005) proposed a method

for determining the airflow resistivity of porous ma-
terials by analyzing the reflection of a plane wave
from the porous material. The described method in-
volves fitting the measured impulse reflected from the
tested material to an impulse calculated with a time-
domain model. The model, developed by Johnson
et al. (1987), integrates porosity and airflow resistivity
and was used in the computations. Sensitivity analy-
sis showed that sound reflection is most sensitive to
airflow resistivity, while the influence of porosity is
minimal. Jeong (2020) also presented a parallel tech-
nique for estimating airflow resistivity. However, his
method was based on fitting the measurements of the
sound absorption coefficient acquired in a reverbera-
tion chamber. Currently, machine learning (ML) tech-
niques are widely used in the inverse method to charac-
terize porous acoustic materials (Müller-Giebeler
et al., 2024; Zea et al., 2023).
This paper aims to compare two methods used to

estimate airflow resistivity. The first one is a modi-
fied standardized method that calculates static airflow
through a porous material. The second method is an
inverse method, based on fitting the sound absorption
coefficient calculated from the airflow resistivity to the
values measured in an impedance tube. The paper also
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includes an extension of the inverse method for deter-
mining airflow resistivity in thin upholstery materials.
The obtained results allow for an analysis of the accu-
racy of the investigated methods for determining air-
flow resistivity across different types of materials.

2. Methods for determining airflow resistivity

2.1. Standardized method – static airflow method

The standardized method for testing the airflow re-
sistivity of porous materials, as outlined in (ASTM,
2022; ISO, 2018), is based on static airflow. This
method involves the control of the airflow through the
sample under examination while simultaneously mea-
suring the pressure before and after the sample. The
measurement should be conducted with airflow veloc-
ities ranging from 5 ⋅ 10−4m/s to 4 ⋅ 10−3m/s (ASTM,
2022) or 50mm/s (ISO, 2018). By recording the sound
pressure drop ∆p and the volumetric airflow rate qv,
it is possible to calculate the airflow resistance R:

R =
∆p

qv
. (2)

Then, the specific airflow resistance (Rs) is deter-
mined, a parameter independent of the area of the sam-
ple:

Rs = R ⋅A =
∆p

qv
⋅A =

∆p

Au
⋅A =

∆p

u
, (3)

where u = qv/A is the airflow velocity, and A is the
area of the sample perpendicular to the airflow.
Finally, a parameter independent of the thickness

of the sample – the airflow resistivity rs is determined:

rs =
Rs

D
, (4)

where D is the thickness of the material.

Linear airflow u [m/s]

Sp
ec

ifi
c 

ai
rfl

ow
 re

si
st

an
ce

 R
s [

Pa
·s

/m
]

Fig. 1. Airflow resistance Rs of a porous material as determined in the measurement and a comparison of the regression
line determined for the entire measurement range with the proposed PLA interpolation method.

The standard method for measuring the pressure
drop involves the use of the smallest possible value
of airflow velocity, u = 5 ⋅ 10−4m/s. An alternative ap-
proach involves a gradual reduction of the airflow ve-
locity. In this approach, the relationship between air-
flow resistance and airflow velocity is determined for
each sample using linear regression Rs(u), and the fi-
nal value of Rs is taken at 5 ⋅ 10−4m/s.

2.2. Modification of the standardized method

Melnyk et al. (2018) conducted a study that pro-
posed modifications to the airflow resistivity measure-
ment method described in ISO (2018). Their research
demonstrated that at low airflow velocities u, there
is a significant nonlinearity in the relationship be-
tween the airflow resistance Rs and airflow velocity u
(see Fig. 1). As a result, applying linear regression
for extrapolation at low airflow velocities can lead to
substantial errors. To circumvent this issue, a mod-
ification to the static airflow method was proposed,
called the PLA iteration method. This method in-
volves first the determination of a polynomial that de-
scribes the relationship between airflow velocity and
pressure drop q(∆p), followed by the transformation of
this polynomial into a linear approximation of airflow
resistance as a function of airflow velocity. The process
commences at the highest airflow velocity, and in each
iteration, the range is extended to include lower air-
flow velocity values. The error between the measured
results and the linear regression model is calculated at
each iteration, and iterations continue until the error
does not exceed a predefined value. Finally, the deter-
mined polynomial is extrapolated to obtain the airflow
resistance value at u = 5 ⋅ 10−4m/s.
Figure 1 illustrates the relationship between airflow

resistance and the linear velocity of a porous ma-
terial, as determined in the experiment. The graph also
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presents regression lines calculated for the entire set of
measurement data (yellow line), as well as for the data
sets restricted by the proposed PLA method (red line).
The proposed PLA interpolation method, improves

the alignment of the regression line with the measure-
ment data in comparison to the linear approximation
over the entire range of linear velocities u. This method
effectively identifies the range of linear relationship be-
tween airflow resistance and airflow velocity by elimi-
nating outliers. Consequently, it enhances the accuracy
of airflow resistance determinations.
To automate the process of measuring airflow re-

sistance, the laboratory setup (Fig. 2) uses sensors
that are compatible with data acquisition cards. The
measurement procedure involves the following steps:
first, the test sample is mounted inside a cylinder. Air
is then passed through the sample while simultane-
ously recording both the airflow rate and the pres-
sure difference across the sample. For each test sample,
a graph is created to illustrate the relationship between
pressure and airflow. Finally, the airflow resistance at
a linear velocity u = 5 ⋅ 10−4m/s is determined using
the PLA method.

Sample

Correlated 
flowmeter 

Cole-Parmer 
PMR1-020364

Airflow sensors 
Honeywell 
AWM5104 

0 l/min–20 l/min

Pressure sensors 
Sontay PA-60-2-HA

Fig. 2. Laboratory stand for determining the airflow
resistivity of porous materials.

2.3. Inverse method for determining the airflow
resistivity of porous materials

The proposed inverse method involves determin-
ing the flow resistivity through fitting the theoretical
sound absorption coefficient to the measured value.
To estimate the theoretical sound absorption coeffi-
cient, the Miki empirical model (Miki, 1990) was em-
ployed, which is a modification of the Delany–Bazley
model (Delany, Bazley, 1970). The empirical model
is based on experimental results and is a simplified de-
scription of the complex acoustic phenomena that oc-

cur in porous materials. It describes the relationship
between key acoustic parameters of porous materials,
such as characteristic impedance and propagation con-
stant, and the physical parameter of airflow resistivity.
The accuracy of the model is limited by the range of
experimental data from which it was developed.
This model requires only a single parameter: the

flow resistivity of the porous material. The model as-
sumes that the solid phase is perfectly rigid and only
considers the motion of the fluid. It is applicable to
fibrous porous media with a porosity close to unity
and provides the best fit to the experimental data in
the range 0.01 < (f/rs) < 1. These models enable the
prediction of the acoustic properties of porous materi-
als, including specific impedance (zc) and propagation
constant (kc).
In order to solve the inverse problem, it is necessary

to find the minimum of the cost function U(rs), which
is defined as follows:

U(rs) =

¿
Á
Á
Á
ÁÀ

n

∑
i=1
(αt(fi, rs) − am(fi))

2

N
, (5)

where αt(fi, rs) is the predicted sound absorption co-
efficient for the i-th frequency band and for a given
airflow resistivity rs; am(fi) is the experimental sound
absorption coefficient for the i-th frequency band,
and N is the number of frequency bands. The bisec-
tion method is used to find the minimum of the cost
function U(rs). By subdividing the initial interval into
ten subintervals, calculations are accelerated, leading
to faster results. The algorithm is fully detailed in the
comprehensive study by Melnyk et al. (2018).
According to Miki’s model, the propagation of

sound in an isotropic, homogenous material is deter-
mined by two complex quantities:
– the characteristic impedance:

zc(f) = ρ0c0 [R(f) + jX(f)], (6)

– the propagation constant (wavenumber) kc(f):

kc(f) = α + jβ. (7)

Based on the airflow resistivity rs for a given ma-
terial, the characteristic quantities can be determined
using:

R(f) = ρ0c0 [1 + 0.070(
f

rs
)

−0.632
], (8)

X(f) = ρ0c0 [−0.107(
f

rs
)

−0.632
], (9)

α =
ω

c0
[1 + 0.109(

f

rs
)

−0.618
], (10)

β =
ω

c0
[0.160(

f

rs
)

−0.618
], (11)
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where ω = 2πf , f is the frequency, ρ0 is the air density,
c0 is the sound speed in air, and rs is the airflow resis-
tivity. Equations (8)–(11) were derived from regression
models fitted to the relationship between the real parts
R(f) and a(f), and the imaginary parts X(f) and
b(f), of the acoustic impedance and propagation con-
stant, respectively, with respect to the normalised flow
resistance – expressed as (f/rs) (Miki, 1990). The val-
ues for flow resistivity, acoustic impedance, and prop-
agation constant were determined from measurements
conducted on different materials (Delany, Bazley,
1970).
The surface impedance is then determined by

zw = −i ⋅ zc ⋅ cot (kc ⋅D), (12)

where D is the thickness of the material.
The formula to calculate the sound reflection coef-

ficient R is

R =

zw
ρ0c0

cos (θ) − 1
zw
ρ0c0

cos (θ) + 1
, (13)

where θ is the incidence angle, and for normal incidence
θ = 0.
The formula for the sound absorption coefficient

at,i is
αt,i = 1 − ∣R

2∣ . (14)

2.4. Inverse method for determining the airflow
resistivity of covering materials

The inverse method has also been used to calculate
the airflow resistivity of covering materials. Similar to
porous materials, a numerical model is required to find
the sound absorption coefficient. For porous materials,
it was assumed that the sound absorption coefficient
can be determined for a model of the covering material
placed on an air gap with a thickness of D. Therefore,
the model describing the acoustic impedance of the
surface of the material zw, placed at a distance, was
used to determine the sound absorption coefficient:

zw =
−jzs0zc cot (kcL) + z

2
c

zs0 − jzc cot (kcL)
, (15)

where zs0 = −jz0 cot (k0L) is the surface impedance at
the top of the air layer of thickness L behind the mate-
rial, z0 = ρ0c0 is the acoustic impedance of air, k0 is the
wave number in air, and zc, kc are the characteristic
impedance and wave number of the covering material,
respectively. Then, using Eqs. (13) and (14), the re-
flection coefficient R and sound absorption coefficient
at,i were calculated. The values of airflow resistivity
were determined by the inverse method by finding the
minimum of the cost function.

2.5. Sensitivity analysis of the porous material models

A sensitivity analysis was conducted for both the
porous material model and the covering model where

the covering material is mounted with an air gap be-
hind, to investigate their applicability for the inverse
method. The sensitivity of the models to changes in
airflow resistivity was investigated. To evaluate the
sensitivity of the models, the sensitivity index Si was
determined using the following relationship (Saltelli
et al., 2004):

Si =
∂αi

∂rs

rs
αi

, (16)

where the differential ∂αi

∂rs
was calculated numerically

for the sound absorption coefficient ai at the i-th fre-
quency for a given airflow resistivity rs. The index pro-
vides a non-dimensional measure of sensitivity, show-
ing how much the sound absorption coefficient is af-
fected by a unit change in airflow resistivity. A higher
Si value indicates greater sensitivity, meaning that
small variations in airflow resistivity lead to signifi-
cant changes in the sound absorption properties of the
material.
The analysis of porous materials was performed for

materials with:

– low airflow resistivity (rs = 5000Pa ⋅ s/m2),

– medium airflow resistivity (rs = 15000Pa ⋅ s/m2),

– high airflow resistivity (rs = 50000Pa ⋅ s/m2)

for two material thicknesses: 15mm and 30mm (Figs. 3a
and 3b, respectively). For the covering material (thick-
ness D = 2.5mm), the analyses were performed with
no distance behind the material and with a distance
L = 100mm behind the material (Figs. 3c and 3d, re-
spectively).
The obtained results show the frequency ranges

where the sound absorption coefficient is the most sen-
sitive to changes in airflow resistivity. These results
were used to formulate recommendations for the in-
verse method for determining airflow resistivity.
The analysis shows that the sensitivity index Si

of the sound absorption coefficient for porous materi-
als changes with frequency and depends on the airflow
resistivity rs and the material thickness D (Figs. 3a,
3b). Sensitivity analysis has revealed that for materi-
als with low airflow resistivity, the greatest sensitiv-
ity to changes in airflow resistivity occurs in the fre-
quency range where the sound absorption coefficient
increases from 0 to its maximum value. In contrast,
for materials with high airflow resistivity, the range of
greatest sensitivity shifts to the range where the ab-
sorption coefficient reaches its maximum. The value of
airflow resistivity also determines the maximum value
of the sound absorption coefficient and the frequency
at which the maximum occurs. As a result, the value
and frequency of the maximum absorption coefficient
serve as key indicator for adjusting the sound absorp-
tion characteristics.
On the other hand, high negative values of the sen-

sitivity index Si can be observed in the low-frequency
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Fig. 3. Sensitivity indexes Si of the sound absorption coefficient model to changes in airflow resistivity calculated for
porous materials and covering materials across different airflow resistivity ranges. The results of calculations for porous
material thicknesses: a) D = 15mm, b) D = 30mm; and for the covering material with thickness D = 2.5mm: c) with no

gap behind the material (L = 0mm), d) with a gap (L = 100mm).

range, indicating relatively large changes in the ab-
sorption coefficient. However, the absolute change in
the absorption coefficient is small. Therefore, in this
frequency range, the effect of changes in airflow resis-
tivity is minimal, making it less significant when fitting
the absorption characteristics to the measured values.
To increase the accuracy of the inverse airflow resistiv-
ity determination, it is advantageous to fit the results
over a frequency range that includes both the range
in which the absorption coefficient increases and the
region of the local maximum of the absorption coeffi-
cient.
In the case of thin materials and coverings that are

directly backed by a rigid surface, the frequency at
which the maximum occurs may be outside the mea-
surement range (Figs. 3a, 3c). It is therefore advanta-
geous to fit the sound absorption coefficient of a mate-
rial sample placed over an air gap. The presence of an
air gap behind the material has been shown to result
in a shift of the sound absorption coefficient’s maxi-
mums to lower frequencies (Fig. 3d). This effect serves

to enhance the frequency range in which sensitivity
is high, thereby facilitating improved matching across
a broader frequency range.

3. Comparison of the methods

This section is concerned with a comparison of the
two methods for determining airflow resistivity. The re-
search was performed on seven different kinds of thick
materials, which are primarily used as acoustic panel
fillings, and two thin materials – polyester felts, which
are mostly used as acoustic panel coverings or furniture
upholstering (Fig. 4).

3.1. Covering materials

The airflow resistivity of thin materials was deter-
mined by employing both of the previously described
methods. Measurements were taken for two different
polyester felts, each with fibers of a different diame-
ter and, presumably, different airflow resistivities. The
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Polyester fabric I
D = 30mm, ρ = 45 kg/m3

Polyester fabric II
D = 30mm, ρ = 25 kg/m3

Polyurethane foam
D = 20mm, ρ = 15 kg/m3

Mineral wool with a fiberglass veil
D = 30mm, ρ = 50 kg/m3

Glass wool
D = 20mm, ρ = 125 kg/m3

Melamine foam I
D = 17mm, ρ = 9 kg/m3

Melamine foam II
D = 30mm, ρ = 9.6 kg/m3

Polyester felt I
D = 2.5mm, ρ = 120 kg/m3

Polyester felt II
D = 3mm, ρ = 170 kg/m3

Fig. 4. Description of the measurement samples.

sound absorption coefficient was measured by plac-
ing the felts at the back of the impedance tube, with
a distance ring to maintain the desired air gap L.
The measurements of the sound absorption coefficient
were performed for 10 different distances within the
range L = 10mm–200mm (Fig. 5).
The matching was performed separately for three

frequency ranges: f = 50Hz–1600Hz, which corresponds
to measurements in the impedance tube of a large di-
ameter (ø = 100mm), f = 1600Hz–6400Hz (small im-
pedance tube, ø = 29mm), and for the wide frequency
range f = 100Hz–6400Hz.
As the results show, increasing the air gap be-

hind the sample L produces more local maxima as-

sociated with quarter-wavelength resonances (Fig. 5).
In the inverse method, these maxima represent impor-
tant points for obtaining more accurate matching. The
choice of the frequency range for which the matching
was performed is also important. The results from the
large tube (Fig. 5a) include both the range in which
the sound absorption coefficient increases and, depend-
ing on the distance L, also the local maxima. In con-
trast, the results from the small tube contain mainly
local maxima, not always including the range in which
the sound absorption coefficient increase starts from
a minimum (Fig. 5b). Choosing a wide frequency range
ensures that both the information about the sound ab-
sorption coefficient increase and the local maxima are
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Fig. 5. Sound absorption coefficient of 2.5mm-thick felt, where L is the air gap behind the specimen and f is frequency
range: a) for large (ø = 100mm) diameter tube, b) small (ø = 29mm) diameter tube, c) for wide frequency range – combined

results from both tubes.

acquired (Fig. 5c). As a result, the choice of the air gap
behind the sample L and the frequency range trans-
late into the value of airflow resistivity determined by
matching the sound absorption coefficient.
The influence of the air layer L behind the mate-

rial on the calculation of airflow resistivity using the
inverse method is shown in Fig. 6.
The analysis showed that the 3mm-thick felt with

thinner fibers has significantly higher airflow resistiv-
ity. For the large tube, the results are mainly lower
than those from the small tube. The results of the
calculations performed for the wide frequency range
are the average of the airflow resistivity obtained from

both large and small tubes (Fig. 6). The obtained re-
sults of airflow resistivity differ most for air gaps of
10mm and 50mm for both felts. For the remaining air
gaps, the results did not change significantly with the
change of L. This confirms that the air gap improves
the repeatability of the inverse method for determining
airflow resistivity.
Table 1 compares the airflow resistivity values ob-

tained with both methods. The results for the in-
verse method are the average values calculated for
all the air gaps. A comparison of the determined air-
flow resistance values for both coverings reveals that
the 2.5mm-thick felt obtained values that are approx-
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Fig. 6. Airflow resistivity of the porous materials, depending on the air gap behind the measurement sample
and the frequency range (impedance tube measurement).

Table 1. Airflow resistivity of the covering under study.

No. Material
Density

ρ
[kg/m3]

Thickness
D
[mm]

rs
[Pa ⋅ s/m2]

(Inverse method)

rs
[Pa ⋅ s/m2]

(PLA – static airflow)
1 Polyester felt I 120 2.5 49 309 36 864

2 Polyester felt II 170 3 114 913 142 189

imately 25% lower when measured using the PLA al-
gorithm, while the 3mm felt obtained values are 23%
higher for this method.
The comparison of sound absorption coefficients

calculated using the airflow resistivities determined for
both presented methods are shown in Fig. 7. The re-
sults of the sound absorption coefficients calculated
and measured for the 3mm-thick felt with a 70mm
air gap are in a good agreement for medium and high
frequencies. Larger differences (though still not exceed-
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Fig. 7. Sound absorption coefficients measured and calculated based on the airflow resistivity determined with the inverse
method and airflow resistivity measurement (PLA algorithm) for a 3mm-thick polyester felt mounted at a 70mm air gap.

ing 0.1) can be observed at frequencies below 500Hz.
This means that the model is not very sensitive to
changes in airflow resistivity and the value of sound
absorption coefficient can be determined with reason-
able accuracy.

3.2. Porous materials for filling acoustics panels

As demonstrated in Table 2, the values of airflow
resistivities obtained by the inverse method and the
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Table 2. Airflow resistivity of materials used for filling the acoustic panels.

No. Material
Density

ρ
[kg/m3]

Thickness
D
[mm]

R2
rs

[Pa ⋅ s/m2]
(Inverse method)

rs
[Pa ⋅ s/m2]

(PLA – static airflow)

Relative error
d
[%]

1 Polyester fabric I 45 30 0.993 2436 2435 0.04

2 Polyester fabric II 25 30 0.973 5024 4840 3.80

3 Mineral wool with fiberglass veil 50 30 0.983 16 474 18 603 11.44

4 Glass wool 125 20 0.960 102 893 126 154 18.44

5 Polyurethane foam (CME = CV) 15 20 0.965 5099 5040 1.17

6 Melamine foam I 9 17 0.995 6941 7922 12.38

7 Melamine foam II 9.6 30 0.988 8701 8652 0.57

static airflow measurement method (PLA algorithm)
for a wide frequency range are shown. In order to eval-
uate the results, the relative error between the values
obtained from the two methods was determined. This
was done by using the following equation:

δ =
∣rs1 − rs2∣

rs1
, (17)
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Fig. 8. Sound absorption coefficient: measured and calculated based on the airflow resistivity determined with the inverse
method and with the airflow resistivity measurement method (PLA algorithm) for: a) mineral wool, b) glass wool.

where rs1 is the airflow resistivity from the inverse
method and rs2 is the value obtained from modified
static airflow measurements. It is acknowledged that
the true value of airflow resistivity is unknown, so the
relative error serves a comparison between the two
different measurement techniques. The analysis of
airflow resistivity shows that for materials with low air-
flow resistivity (up to around 10 000Pa ⋅ s/m2), the dif-
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ferences in the determined values of airflow resistivity
do not exceed 12%. However, as the airflow resistiv-
ity values increase, the discrepancy between the values
obtained by the two methods also increases, reaching
up to 18% for glass wool.
However, the comparison of the sound absorption

coefficient values determined and measured for mineral
wool and glass wool shows good agreement (Fig. 8).
The largest differences between the determined val-

ues do not exceed 0.1 and can be observed at high fre-
quencies. Mineral wool demonstrates a better match
compared to glass wool, particularly in the range where
the absorption coefficient is increasing (Fig. 8a). To
improve the fitting of the curves, a different model
specifically developed for glass wools could be used
(Fig. 8b). Similarly to the covering materials, the cal-
culation model is not very sensitive to changes in air-
flow resistivity, and even for large changes in airflow
resistivity, the values of the sound absorption coeffi-
cient can be determined with good accuracy.

4. Discussion

The findings of the research indicate that both
methodologies employed for the estimation of the air-
flow resistivity of porous materials, with densities rang-
ing from 9.6 kg/m3 to 45 kg/m3, facilitate the precise
calculation of the sound absorption coefficient. How-
ever, a higher discrepancy is observed in the estimation
of airflow resistivity for materials characterized by high
density and high airflow resistivity (Table 2).
The discrepancy between the methods may be

attributed to the selection of the computational model
for the inverse method. Empirical models are fitted
to specific data sets, thus constraining their ability to
predict the behavior of materials with significantly
different properties or under conditions significant-
ly different from those under which measurements were
made (Komatsu, 2008). Consequently, these models
may be less accurate in predicting acoustic properties
across a broader range of material parameters, such as
density or flow resistance. The accuracy of the inverse
method is contingent on the execution of the fitting
procedure within the applicable range of the rele-
vant approximations (Bonfiglio, Pompoli, 2013).
Conversely, the outcomes derived from the inverse
method are also directly influenced by the quality of
the experimental data, such as the sound absorption
coefficient. Errors in the input data can propagate to
the inversion results (Pelegrinis et al., 2016).
The complexity and imprecision inherent in the

determination of the physical parameters of porous
materials constitute a substantial challenge, espe-
cially for more complicated models (Bonfiglio, Pom-
poli, 2013). Consequently, the present study opted for
a more straightforward model that necessitates only
flow resistivity for the inversion method.

The flow resistivity measurement method under
discussion is subject to factors that can influence mea-
surement error, with one potential source of error be-
ing the leakage of air through the side of the mate-
rial sample mounted in the holder during the airflow
method. Other issues arise from non-linearities in the
relationship between airflow resistance Rs and airflow
velocity u (Melnyk et al., 2018).
However, it is worthwhile to analyze the signifi-

cance of the observed discrepancies and their impact
on the prediction of sound absorption coefficients. The
findings for both upholstery and thicker porous mate-
rials demonstrate that the discrepancies in the deter-
mined airflow resistivity values for low-density mate-
rials (up to ρ < 50 kg/m3) and low-resistivity airflows
(up to rs < 30000Pa ⋅ s/m2) do not exceed 15% be-
tween the methods. For materials with higher densi-
ties and flow resistivities, the differences can reach up
to 18%. Nevertheless, a comparison of sound absorp-
tion coefficients calculated from airflow resistivity val-
ues obtained by both methods with values measured
in the impedance tube revealed that these differences
do not significantly affect the sound absorption coeffi-
cient values. According to these results, the process of
determining airflow resistivity can be simplified by us-
ing the inverse method for measurement samples with
a diameter of 100mm only. The study also investigated
the impact of the method used to mount thin and cov-
ering materials on the accuracy of determining airflow
resistivity using the inverse method. It was found that
mounting the material with an air gap is necessary
for obtaining accurate results, and that for achieving
repeatable results, a minimum distance of 70mm is
required.

5. Conclusions

In the present study, two methods for determining
the airflow resistivity of porous materials were com-
pared and validated. The first method was a mod-
ified version of the standardized method based on
static airflow, as proposed by Melnyk et al. (2018).
In this method, a linear approximation was used to
improve the fit between the measured airflow resistiv-
ity and sound absorption coefficient results. The sec-
ond method, known as the inverse method, involved
matching the theoretical sound absorption coefficient
with the impedance tube measurement results. The
primary objective of the research was to evaluate the
accuracy of airflow resistivity measurement for certain
materials and to assess the effect of this parameter on
the agreement between the predicted sound absorp-
tion coefficient and the impedance tube measurement
results.
The study was carried out on different types of

porous materials with thicknesses ranging from 2.5mm
to 30mm and densities from 9 kg/m3 to 170 kg/m3.
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Thin covering materials, used for upholstery, were in-
vestigated as well as thicker porous materials typically
used in acoustic panels or as furniture infill. The selec-
tion of materials for testing was based on their different
airflow resistivities.
The results of the research suggest that for porous

materials up to approximately 30-mm thick, variations
in measured airflow resistivity values do not have a sig-
nificant effect on the sound absorption coefficient. Con-
sequently, both methods can be used to determine the
airflow resistivity required to calculate the sound ab-
sorption coefficient of porous materials and layered
structures, including upholstery, without the need for
repeated measurements of specific configurations. This
will greatly speed up the process of selecting materials
and upholstery for specific acoustic purposes.
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Acoustic resonators are useful for damping low frequencies. In cylindrical silencers (mufflers), the imple-
mentation of the resonance concept consists in selecting such a length of the expansion chamber (EC) that
a wave of opposite phase is created in it, and with this opposite phase the incident wave is damped. Based
on the plane wave theory (1D) and simple analytical calculations, it is possible to approximately determine
the shortest length of the EC for a selected frequency; such a chamber represents the simplest silencer. Its ef-
ficiency is measured by the transmission loss (TL) value; increasing the TL value indicates that the silencer
efficiency increases as well. The efficiency was improved in two ways: first, in single EC, by adding inlet, outlet,
or both horizontal extensions, and second, by adding another EC. In the first case, the influence of the length of
the horizontal extensions on TL was analyzed. In the second study, another dedicated EC was added, and the
influence of the width and orifice diameter of the transverse partition on TL was analyzed. All analytical results
were confirmed experimentally. The results indicate that, first of all, a simple silencer (single EC) is found to
damp a dedicated frequency. In addition, simple changes in the structure of such a silencer significantly increase
its efficiency.

Keywords: acoustic silencer; transmission loss coefficient (TL); expansion chamber (EC); transverse partition;
horizontal inlet/outlet extensions to a single D-EC.
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1. Introduction

Acoustic silencers are used in many areas of
live, e.g., in the automotive industry, HVAC ducts,
and firearms (Munjal, 1987; Nilsson et al., 2021;
Karami et al., 2024). They are mainly dissipative si-
lencers, which work on the phenomenon of successive
reflection of sound waves and the conversion of their
energy into heat.
General requirements for the design of silencers are

described in many studies (e.g., Potente, 2005; Rah-
man et al., 2005; Munjal, 2013; 2014; Jokandan
et al., 2023). The desirable properties of a silencer are,
above all, simple construction, small size and sound
attenuation over a wide frequency range. To meet the
first two requirements the main challenge is to reduce
the volume of the silencer’s expansion chamber (EC),
in practice its length.

Generally, the effectiveness of a silencer is mea-
sured, by, e.g., the transmission loss (TL) coefficient
(Lee et al., 2020). There are many analytical and
numerical methods to calculate TL (at the silencer
design stage), as well as experimental TL measure-
ments on a real silencer. Among analytical methods,
1D (in simple structures), 2D (cylindrical wave), and
3D (three-dimensional wave) theories are used. Also,
numerical methods such as FEM/BEM (Selamet,
Radavich, 1997; Strek, 2010; Cui, Huang, 2012;
Wei, Guo, 2016) and computational programs, e.g.,
SYSNOISE, COMSOL, and ANSYS (Swamy et al.,
2014), are widely used. In the aforementioned meth-
ods, only the problem of reflection is taken into ac-
count, while other aspects of sound propagation in
silencers are omitted (Rahman et al., 2005). Three
experimental methods are also used, i.e., the ‘tradi-
tional’ laboratory method, the four-pole transfer ma-
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trix method and the three-point method; they are com-
pared in (Bilawchuk, Fyfe, 2003; Tao, Seybert,
2003; Zalte, Sature, n.d.).
The TL of a single circular EC can be in-

creased through a variety of simple internal config-
uration. For example, the TL value was analyzed
depending of the following parameters: EC length
(Selamet, Radavich, 1997), surface absorption co-
efficient (Chiu, Chang, 2014), locations of horizontal
partitions (Selamet et al., 1998; Yu, Cheng, 2015),
horizontal inlet/outlet extensions (Chaitanya, Mun-
jal, 2011; Munjal, 2013; Rafique et al., 2022), and
also multi-chamber silencers with transverse partitions
(Selamet et al., 2003; Yu, Cheng, 2015; Yu et al.,
2015; Xiang et al., 2016). In the mentioned studies,
the influence of silencer structure on TL in a certain
frequency range was considered.
The aim of this article is to demonstrate that it

is possible to build a structurally simple silencer for
a dedicated frequency, using of course conclusions from
previous studies. This is important because, apart from
starting and breaking, mechanical devices typically
generate noise at an approximately constant frequency.
Such a silencer should be therefore most effective at
this dedicated frequency compared to other similar de-
signs. Assuming that an objective function is TL, max-
imizing TL will indicate the optimal silencer for the
dedicated frequency.

2. TL of the cylindrical EC

Due to the purpose of silencers, it is advisable to
predict the maximum TL at the design stage. It turns
out that the most important parameter is the geometry
of the EC. For a given diameter of a cylindrical EC, the
remaining task is to determine its length (Bilawchuk,
Fyfe, 2003).
To define TL, we first define the sound power trans-

mission coefficient (TC), atr =Wout/Win, where Wtr =

Wout is the outgoing (transmitted) acoustic power, and
Win is the incident (incoming) acoustic power. The TL
is then expressed in terms of the TC (in dB) (Barron,
2003; Swamy et al., 2014):

TL = 10 log10 (Win/Wout) = 10 log(1/atr). (1)

For a plane wave, at the inlet and outlet one has:

Win =
p2in
2z0

Sin, Wout =
p2out
2z0

Sout, (2)

where z0 = ρc is the characteristic impedance, S is
the surface area, pin and pout are the average (root
mean square (RMS)) pressures at the inlet and outlet,
respectively.
Hence,

1

atr
=

Win

Wout
=

p2in
p2out

Sin

Sout
. (3)

Primary approach to sound transmission through
the EC is the 1D theory (Selamet, Radavich, 1997;

Barron, 2003; Tao, Seybert, 2003; Zhang et al.,
2020; Rafique et al., 2022). After some calculations,
the following useful equation is obtained:

1

atr
=

1

4

S1

S3
{(1 +

S3

S1
)

2

+[(
S2

S1
+
S3

S2
)

2

− (1 +
S3

S1
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2

] sin2(k2ℓ2)}, (4)

where, see Fig. 1, Sν = πr2ν , ν = 1, 2, 3 are the cross-
sectional areas of the inlet, EC, and outlet, and uν,i

and uν,e denote the incident and reflected plane waves,
respectively.

r3

r2

r1
u1,i

u1,e u2,e

u2,i u3

2

Fig. 1. Plane wave transmission through the EC.

Note that the TL, Eq. (1), reaches a maximum if
1/atr is also a maximum. For this to happen, sin

2
(kℓ2)

ought to be one. So:

kℓ2 =
π

2
+ nπ, n = 0,1,2, ... (5)

Hence,

ℓ2 = (1 + 2n)
λ

4
, n = 0,1,2, ... (6)

The minimum chamber length ℓmin is for n = 0:

ℓmin = λ/4 = c/(4f). (7)

In this way, the minimal length of the EC is obtained,
for which the TL reaches its maximum values. How-
ever, note that the 1D theory is valid only up to the
‘cut off’ frequency (Potente, 2005).
In fact, sound transmission through a single EC

is somewhat different from what the 1D theory sug-
gests. As indicated in (Kang, Ji, 2008; Chaitanya,
Munjal, 2011), the difference between 1D analysis
and experimental, 3D, or numerical analyses is due to
the presence of three-dimensional waves. Therefore, as
pointed out in (Yu, Cheng, 2015), the 1D model can
be used to approximately calculate the TL maxima,
but only if the cross-section of the EC is sufficiently
small.

3. Numerical calculations and experiments

The construction of a structurally simple silencer
for a dedicated frequency was realized in the following
steps:

1) Based on the 1D theory, the minimum length
of the EC was found. Due to the inaccuracies of
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this theory, this length was then experimentally
corrected, so the length of the dedicated expan-
sion chamber (D-EC) was obtained.

2) The TL was increased by adding horizontal in-
let/outlet extensions to a single D-EC.

3) The TL was further increased by adding another
D-EC, which was achieved by adding a transverse
partition to the corresponding EC length:

– the influence of the transverse partition
widths was determined at a fixed orifice di-
ameter,
– the influence of the transverse partition ori-
fice diameters was determined at a fixed
width.

All measurements below were performed using the
Brüel & Kjær set, based on the four-pole matrix.
They were conducted for frequencies f = {1,2,3,
4,5,6} × 103Hz, while results were presented at
selected frequencies, i.e., f = {1,3,5} × 103Hz.

3.1. Attached length of the EC → D-EC

The influence of the single EC length lmin, Eq. (7),
on the TL was analyzed, where

ℓmin = {8.5,2.83,1.7} ⋅ 10
−2m.

Furthermore, the TL was calculated according to
Eq. (1), using the following parameters: r1 = 0.003m,
r2 = 0.018m, r1 = r3, hence S1 = S3 = 2.827 ⋅ 10

−5m2,
S2 = 1.0179 ⋅10

−3m2, k2 = k = (2πf)/c, ℓmin = λ/4. The
results are presented in Fig. 2.
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Fig. 2. TL for a single EC, solid line – calculated values
Eq. (1); dashed line – measured values.

As can be seen in Fig. 2, the experimental results
do not agree with the 1D theory, which predict the TL
maximum occurs at the dedicated frequency. So, in or-
der to account for the influence of three-dimensional
wave effects, the length ℓmin ought to be increased by
some length ℓa, so that the chamber length ℓ = ℓmin + ℓa

corresponds exactly to a quarter-wave length; this ad-
justed length leads to the D-EC.
The attached length ℓa can be estimated based

on numerical calculations, such as the finite element
method (FEM) (Komkin et al., 2012), or through the-
oretical considerations (Selamet, Radavich, 1997;
Kang, Ji, 2008). In this study, ℓa was determined ex-
perimentally. For this purpose, the TL was measured
as a function of frequency for different values of ℓa,
Fig. 3.

a)

500 600 700 800 900 1000 1100 1200 1300 1400 1500
f [Hz]

0

5

10

15

20

25

30

TL
 [d

B
]

mm
mm
mm

b)

2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500
f [Hz]

10

15

20

25

30

35

40

45

TL
 [d

B
]

mm
mm
mm

c)

4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500
f [Hz]

30

32

34

36

38

40

42

44

46

48

50

TL
 [d

B
]

mm
mm
mm

Fig. 3. Influence of different ℓa values on the maximum TL
at selected frequencies: a) 1000Hz, b) 3000Hz, c) 5000Hz.
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For each frequency, the value of ℓa was chosen,
which produced a TL value closest to its maximum.
So, these results were ℓa = {40,23,10,7,5,0}mm for
f = {1,2,3,4,5,6}×103Hz, respectively. From discrete
ℓa values, based on an approximation theory, an empir-
ical formula was derived, as a function of frequency f ,
i.e., ℓa = ℓa(f). This relationship is given based on an
approximation theory and depicted in Fig. 4:

ℓa = −4.6895 +
46398.7

f
.

1000 2000 3000 4000 5000 6000 7000
f [Hz]

0
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m
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Fig. 4. Approximate value of ℓa as a function of frequency f .

3.2. Influence of the horizontal inlet/outlet extensions
on a single D-EC

First, the influence of the length ℓp,i or ℓp,o or both
of the horizontal extensions of the D-EC on the TL
was analyzed. These considerations are similar to those
published in (Selamet et al., 2003; Łapka, 2007;

a)

r1 r3

  p,i
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Fig. 5. Cross-section of the silencer with the horizontal inlet
extension ℓp,i (a); effect of ℓp,i = {10,20,30,40}mm on the

TL, f = 1000Hz (b).

Chaitanya, Munjal, 2011; Munjal, 2013; Xiang
et al., 2016; Chang et al., 2019; Zhao, Li, 2022) but
here they refer to the dedicated frequency.
At a frequency of 1000Hz, the same horizontal ex-

tensions length ℓp,i = 30mm (first case) or ℓp,o = 30mm
(second case) resulted in the same TL increase of about
9 dB; further increase in these lengths did not yield
additional TL increase (Figs. 5 and 6). Whereas, us-
ing both horizontal extensions of the inlet and outlet
lengths ℓp,i = ℓp,i = 40mm (third case) produced a TL
increase of about 21 dB (Fig. 7). However, if in the
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Fig. 6. Cross-section of the silencer with the horizontal out-
let extension ℓp,o (a); effect of ℓp,o = {10,20,30,40}mm on

the TL, f = 1000Hz (b).
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Fig. 7. Cross-section of the silencer with both horizon-
tal inlet and outlet extensions ℓp,i and ℓp,o (a); effect
of the ℓp,i = ℓp,o = ℓp = {10,20,30,40}mm on the TL,

f = 1000Hz (b).
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third case the sum of these lengths, i.e., ℓp,i + ℓp,o, is
approximately equal to the length of ℓp,i (first case)
or ℓp,o (second case), i.e., about 30mm, then the TL
increase is about 14 dB.
For frequency 3000 Hz the same horizontal exten-

sions length ℓp,i = 30mm (Fig. 8) or ℓp,o = 30mm
(Fig. 9) and for frequency 5000Hz the same hori-
zontal extensions length ℓp,i = 15mm (Fig. 11) or
ℓp,o = 15mm (Fig. 12) gave the same maximum TL
increase of about 9 dB. However extensions of the in-
let and outlet by the same length ℓp,i = ℓp,o = 15mm
for 3000Hz (Fig. 10) and ℓp,i = ℓp,o = 5mm–10mm for
5000Hz (Fig. 13) gave the TL increase also of about
9 dB (cf. Chaitanya, Munjal, 2011).

1000 1500 2000 2500 3000 3500 4000 4500
f [Hz]

20

25

30

35

40

45

50

55

TL
 [d

B
]

mm
mm
mm

Fig. 8. Effect of ℓp,i = {10,20,30}mm on the TL,
f = 3000Hz.
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Fig. 9. Effect of ℓp,o = {10,20,30}mm on the TL,
f = 3000Hz.

3.3. Influence of the second D-EC

The simplest way to increase the TL of a silencer
at the dedicated frequency is to connect two D-ECs in
series. This is possible by inserting a transverse parti-
tion into the EC of the appropriate length, so that two
D-ECs are formed. However, the geometric parameters
of this partition also affect the TL value.
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Fig. 10. Effect of ℓp,i = ℓp,o = ℓp = {5,10,15}mm on the TL,
f = 3000Hz.
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Fig. 11. Effect of ℓp,i = {5,10,15}mm on the TL,
f = 5000Hz.
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Fig. 12. Effect of ℓp,o = {5,10,15}mm on the TL,
f = 5000Hz.

First, for a selected baffle width of h = 5mm and
with the orifice diameter d0 equal to the inlet and out-
let diameters, i.e., d0 = 2r1 = 2r3 = 6mm, the TLs
of a single D-EC and of two D-ECs were compared,
Fig. 14.



440 Archives of Acoustics – Volume 50, Number 4, 2025

0 1000 2000 3000 4000 5000 6000 7000
f [Hz]

0

10

20

30

40

50

60

70

TL
 [d

B
]

mm
mm

Fig. 13. Effect of ℓp,i = ℓp,o = ℓp = {5,10}mm on the TL,
f = 5000Hz.
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Fig. 14. Influence of the number of D-ECs on the TL at
selected frequencies; solid lines – single D-ED, dashed lines

– two D-EC.

It can be seen that an increase in the number of
D-ECs from one to two causes an increase in the TL;
this conclusion is qualitatively obvious. Furthermore,
the double D-EC does not significantly shift the maxi-
mum TL, and it still functions as a dedicated silencer.
Moreover, with an increase of dedicated frequency, the
difference in maximum TL between one D-EC and dou-
ble D-EC also increases, i.e., at 1000Hz – the difference
is about 7 dB, at 3000Hz – about 17 dB, and at 5000Hz
– about 19 dB.
Next, the effect of the transverse partition width

h between the D-ECs on the TL is analyzed. It is as-
sumed that the partition orifice, as well as the inlet
and outlet diameters, are the same as aforementioned;
the results are depicted in Fig. 15.
As can be seen from Fig. 15, assuming a fixed trans-

verse partition orifice diameter d0, the transverse par-
tition width h between the D-ECs influences the TL
value at the dedicated frequency. In the analyzed fre-
quencies, the optimal width h is about h = 10mm,
while a TL increase is about 7 dB–8 dB.
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Fig. 15. Effect of the transverse partition width h [mm],
d0 = 6mm, between D-ECs on the TL for selected frequen-

cies: a) 1000Hz, b) 3000Hz, c) 5000Hz.

Finally, the influence of the transverse partition ori-
fice diameter d0 between the D-ECs on the TL is ana-
lyzed. It is assumed that the partition orifice width is
h = 5mm, with the inlet and outlet diameters as afore-
mentioned; the results are presented in the Fig. 16.
From Fig. 16, it follows that assuming a fixed trans-

verse partition width h, the smallest orifice diameter d0
of the transverse partition between the D-ECs provides
the largest TL value at the dedicated frequency; here
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Fig. 16. Effect of the diameter of the transverse partition
d0 = {6,10,12.5,15}mm, h = 5mm, between D-ECs on
the TL for selected frequencies: a) 1000Hz, b) 3000Hz,

c) 5000Hz.

it is d0 = 6mm. However, the smallest diameter is dic-
tated by technical operating conditions. By doubling
the diameter d0, e.g., from 6mm to 12.5mm, the TL
value decreases by 10 dB–8 dB and the TL maximum
slightly shifts towards higher frequencies.

4. Summary and general conclusions

It was shown that it is possible to build a simple
silencer to damp noise at a dedicated frequency; it may

even consist of a single EC. The effectiveness of such
a silencer can also be easily increased, for example, by
adding horizontal extensions to the inlet, the outlet, or
both. Another simple method to improve noise reduc-
tion efficiency is to connect identical silencers in series.
The most important conclusions from this study are as
follows:
1) The plane wave theory gives a basis for determin-
ing the EC length for the dedicated frequency,
and by adding an additional length, the D-EC
is obtained. The D-EC is the simplest silencer
for a dedicated frequency. The attached length
was obtained from an empirical formula based on
approximation theory for discrete experimentally
obtained data.

2) For all analyzed frequencies, horizontal extension
lengths, either ℓp,i or ℓp,o, different for different
frequencies, gave a TL increase of about 9 dB.
A similar increase in TL was obtained for hori-
zontal inlet and outlet extensions, provided that
their combined length is the same as in the first
and second case. Only at 1000Hz, this increase is
slightly greater.

3) Increasing the number of D-ECs obviously in-
creases the TL. Moreover, as the dedicated fre-
quency increases, the TL also increases.

4) For a fixed orifice diameter d0 of the transverse
partition between the D-ECs, there is an optimal
width h that maximizes the TL value at the ded-
icated frequency.

5) For a fixed width h of the transverse partition be-
tween the D-ECs, the smallest orifice diameter d0
provides the largest maximum TL value at the
dedicated frequency. However, the smallest diam-
eter d0 is most often imposed due to technical rea-
sons.
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1. Introduction

The problem of detecting speech in an acoustic sig-
nal involves identifying segments that contain speech.
The detection mechanism for these segments is com-
monly used in various tasks where the signal serves
as an input data source. This includes speech recog-
nition, speaker identification, keyword spotting, and
speech coding in telecommunications systems, all of
which directly impact the effectiveness of classification.
Although many speech detection systems, such as voice
activity detector (VAD), have been developed so far,
numerous new solutions have emerged recently. This is
because VAD systems must operate under real-world
conditions and incorporate adaptation mechanisms to
handle varying acoustic environments. Additionally,
their use in communication systems requires designers
to develop models that account for hardware and time
constraints. In speech detection, the main challenge
arises from the non-stationary nature of speech signals
and the diverse acoustic environments in which the sig-
nals are captured. Acoustic events and the momentary
appearance and disappearance of sound sources influ-

ence the variability of the acoustic environment over
time. Additionally, different acquisition conditions can
introduce various types of noise into the speech sig-
nal at varying signal-to-noise ratios. These conditions
make it difficult for machine learning models to ac-
curately detect speech within a highly non-stationary
signal.
Currently, existing and developed VAD systems are

built based on different deep neural network archi-
tectures which very often use attention mechanisms
(Song et al., 2022; Wang et al., 2022; Zhang et al.,
2023; Zhao, Champagne, 2022). Basic issues covered
by such systems are connected with noise robustness
and low use of energy and hardware resources. For
example, Yang et al. (2024) introduced the sVAD
model, which is based on an attention mechanism
and achieves noteworthy robustness to noise. More-
over, as the authors state, it is characterized by low
power consumption. Similarly, Zhao and Champagne
(2022) described a VAD system built on top of the
transformer architecture with an attention mechanism,
which supports noise immunity and has moderate com-
putational complexity. Kim et al. (2022) presented

https://acoustics.ippt.pan.pl/index.php/aa/index
mailto:lsmietanka@zut.edu.pl
https://creativecommons.org/licenses/by/4.0/
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ADA-VAD, which uses an adversarial domain adap-
tation mechanism to determine the properties of noisy
signals. As a result, the proposed VAD is highly ro-
bust to various types of noise. SG-VAD model was
proposed in (Svirsky, Lindenbaum, 2023). It was
designed to work in a low-resource environment and
comprises two neural networks. The model contains
only 7800 parameters, which makes it suitable for run-
ning the system on edge devices. Despite a focus on
noise robustness and low resource requirements, solu-
tions for more complex scenarios, such a speech detec-
tion in multi-talker environments, have also been pro-
posed (Aloradi et al., 2023). Various issues related
to the hardware implementation of 21 VADs, includ-
ing performance criteria, limitations, and effectiveness,
are discussed in (Yadav et al., 2023).
In this work, we analyze the potential for decision

fusion across ten VAD models by using an optimiza-
tion process with three objective functions as exam-
ples. The paper is organized as follows: Sec. 2 discusses
our VAD models, their architectures, and the dataset
used in the experiments; in Sec. 3, we describe the fu-
sion models, briefly discuss the optimisation process,
and present the results; Sec. 4 concludes the paper.

2. Voice activity detection

This study aims to develop a VAD system capable
of identifying speech segments containing speech sig-
nals in long audio recordings. Since our acoustic scene
analysis system operates with a frame length of one
second, the same frame length was used in the devel-
oped VAD modules and for comparisons with other
VAD systems. To support this application, we created
a custom dataset, generated from a variety of publicly
available sources1.

2.1. Dataset

In our dataset, we included three types of source
signals: speech, music recordings without singing, and
1The list of data sources is available at: https://github.com/

staticvoice/ovad/blob/main/FusionDataSources.md
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Fig. 1. General architecture for detecting speech-containing segments in acoustic signals.

background noise. We randomly selected one-second
frames from each group for the training set, con-
verted them in to the appropriate representation, and
used them for model training.
Table 1 presents the characteristics of the training

and validation sets. The test set was created by ran-
domly selecting fragments from the source data, each
lasting between 5 s and 15 s, with segments ranging
from 3 to 20 in number. These selected segments were
then joined consecutively to form a single test signal.
In total, 1000 such test signals were generated in this
manner, 49 of which contained no speech segments.

Table 1. Characteristics of the one-second frame sets used
in the training and validation process.

Process Speech Music Background noise Total

Train 2100 1050 1050 4200

Validation 900 450 450 1800

Total 3000 1500 1500 6000

2.2. VAD architectures

Our approach is based on signal frame classifica-
tion. The input signal is divided into frames, from
which one of four representations (r̃) is derived. A de-
cision module is then utilized, which outputs the prob-
ability (p) that the analyzed frame contains a speech
signal. In the final stage, thresholding is applied, result-
ing in a binary value. If the probability exceeds 50%,
a value of 1 is generated at the output; otherwise, the
output is 0. The entire process is illustrated in Fig. 1.
To determine speech segments in an audio signal, we
decided to use popular neural network architectures in
conjunction with three time-frequency audio represen-
tations. Nine VAD models were designed in total.
Audio samples were converted in to three two-

dimensional representations, which include spectro-
gram (spect), CQT-spectrogram (cqt), and mel-
spectrogram (mel). The spectrogram uses a linear
frequency scale, whereas the CQT-spectrogram uses
a constant-Q transform (Schörkhuber, Klapuri,
2010), and in the mel-spectrogram, the frequency scale
is mapped into mel scale (Rabiner, Schafer, 2010).

https://github.com/staticvoice/ovad/blob/main/FusionDataSources.md
https://github.com/staticvoice/ovad/blob/main/FusionDataSources.md
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All data were calculated using the Librosa Library
(McFee et al., 2015), and we used the following con-
figuration of these representations:

– spectrogram (spect): n fft: 1024, win length: 512,
n features: 513, hop length: 512;
– CQT-spectrogram (cqt): n bins: 90, bins per oc-
tave: 12, n features: 90, hop length: 512;
– mel-spectrogram (mel): n mels: 128, n fft: 1024,
n features: 128, hop length: 512.

The following three neural networks architectures were
used in the design of our VADmodels2:

1) BiLSTM (Ma et al., 2022)
A simple model built with three recurrent layers,
a single linear layer and a dropout layer. The first
utilized architecture is a BiLSTM (Fig. 2). It is
a simple model consisting of three recurrent lay-
ers: two unidirectional layers (LSTM layers) sep-
arated by a bidirectional layer (BiLSTM layer).
The hidden size of the first unidirectional layer
and the subsecuent BiLSTM layer is determined
by the number of features (n features) in the in-
put representation. In turn, the hidden size of the
second LSTM layer is equal to 2 ⋅ n features. Ad-
ditionally, to mitigate the phenomenon of model
overfitting during the training process, the bidi-
rectional recurrent layer is preceded by a dropout
layer with a rate of 0.2. The entire model con-
cludes with a fully connected (FC) layer with a sig-
moid activation function.

• Mel-Spectrogram (mel): n_mels: 128, n_fft: 1024, n_features: 128, hop_length: 512,

Three following neural networks architectures were used in the design of our VAD models2:

1. BiLSTM – [?]

A simple model built with three recurrent layers, a single linear layer and dropout block: The

first utilized architecture is BiLSTM (Figure 2). It is a simple model consisting of three recur-

rent layers: two unidirectional layers (LSTM layers) separated by a bidirectional layer (BiL-

STM layer). The hidden size of the first unidirectional layer and BiLSTM layer is determined

by the number of features (n_features) in the input representation. In turn, the hidden size of

the second LSTM layer was equal to 2 · n_features. Additionally, to mitigate the phenomenon

of model overfitting during the training process, the bidirectional recurrent layer is preceded by

a Dropout layer with rate 0.2. The entire model concludes with a fully connected (FC) layer

with a sigmoid activation function.
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Figure 2: VAD decision module based on BiLSTM architecture.

2. ResNet50 – [?]

The next model, ResNet50 (Figure 3), is a slight modification of the original architecture with

the same name, differing only in changes to the first convolutional layer and the final fully

connected layer. The first difference arises from the type of data provided to the network’s

input. In the original architecture, the input consists of RGB images with three channels. In

contrast, the variant used in this study takes spectrograms as input, which are single-channel

images. This necessitates the use of a single input channel in the first convolutional layer instead

2All proposed models can be found here:
https://github.com/staticvoice/ovad/models/

5

Fig. 2. VAD decision module based on the BiLSTM
architecture.

2) ResNet50 (He et al., 2016)
The next model, ResNet50 (Fig. 3), is a slight
modification of the original architecture with the
same name, differing only in changes to the first
convolutional layer and the final FC layer. The
first difference arises due to the type of data pro-
vided to the network’s input. In the original ar-
chitecture, the input consists of RGB images with
three channels. In contrast, the variant used in
this study takes spectrograms as input, which are
single-channel images. This necessitates the use
of a single input channel in the first convolutional
layer instead of three. The second modification in-
volves adapting the final FC layer of the model

2All proposed models can be found at: https://github.com/
staticvoice/ovad/models/

of three. The second modification involves adapting the final layer (FC) of the model for binary

classification. The primary component, which is the sequence of Residual Blocks (Figure 6a),

remains unchanged. Similarly, the layers responsible for dimensionality reduction (MaxPool,

AvgPool) and the layer that converts data into a one-dimensional vector (Flattening) also remain

unaltered.
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Figure 3: VAD decision module based on ResNet architecture.

3. ViT – [?]

The third utilized architecture is the classic Vision Transformer (Figure 4). In this model, the

input data is first divided into patches of size 16×16. Each patch is then mapped (via linear pro-

jection) to a 128-dimensional vector, which is supplemented with positional information within

the sequence. Subsequently, the entire input is processed through a sequence of 12 transformer

blocks (Figure 6b). Each block consists of eight attention heads (MHA), normalization layers

(Norm), and linear layers (MLP). The architecture concludes with an MLP Head composed

of fully connected linear layers with a sigmoid activation function. Additionally, due to the

need to divide the input data into patches, each input spectrogram was scaled to the following

dimensions: cqt and mel to 128×128, and spect to 128×512.

4. AugViT – [?]

The final architecture used is AugViT (Figure 5). This model is based on the standard sequence

of transformer blocks, but it is preceded by a block that incorporates additional augmentation.

6

Fig. 3. VAD decision module based on the ResNet
architecture.

for binary classification. The primary component,
which is the sequence of residual blocks (Fig. 6a),
remains unchanged. Similarly, the layers responsi-
ble for dimensionality reduction (MaxPool, Avg-
Pool) and the layer that converts the data into
a one-dimensional vector (flattening) also remain
unaltered.

3) ViT (Dosovitskiy et al., 2021)
The third utilized architecture is the classic vi-
sion transformer (ViT), see Fig. 4. In this model,
the input data is first divided into patches with
a size of 16 × 16. Each patch is then mapped
(via linear projection) to a 128-dimensional vec-
tor, which is supplemented with positional infor-
mation within the sequence. Subsequently, the en-
tire input is processed through a sequence of 12
transformer blocks (Fig. 6b). Each block consists
of eight attention heads (MHA), normalization
layers (norm), and linear layers (MLP). The archi-
tecture concludes with an MLP head composed of
fully connected linear layers with a sigmoid activa-
tion function. Additionally, due to the need to di-
vide the input data into patches, each input spec-
trogram was scaled to the following dimensions:
cqt and mel to 128× 128, and spect to 128× 512.
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Figure 4: VAD decision module based on ViT architecture.

Unlike the three previous models, the input to this architecture is raw audio. A random augmen-

tation is applied to a copy of this raw signal. In the next stage, MFCC coefficients are computed

separately for both the original and augmented signals. Subsequently, both MFCC representa-

tions are divided independently into patches (each patch corresponds to a single MFCC col-

umn). These patches are linearly projected into 8-dimensional vectors and supplemented with

positional information within the sequence. Next, these sequences are passed to the Aug Block
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Figure 5: VAD decision module based on AugViT architecture.

(Figure 6c). Compared to the original transformer block (Figure 6b), this block consists of two

attention heads: one processes data from the original audio signal, while the other processes

data from the augmented signal. The subsequent stages follow the standard ViT structure: a

sequence of 8 transformer blocks (each with two attention heads) followed by an MLP Head.
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Fig. 4. VAD decision module based on the ViT
architecture.

4) AugViT (Smietanka, Maka, 2023)
The final architecture used is AugViT (Fig. 5).
This model is based on the standard sequence
of transformer blocks, but it is preceded by a block
that incorporates additional augmentation. Un-
like the three previous models, the input to this

https://github.com/staticvoice/ovad/models/
https://github.com/staticvoice/ovad/models/
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Unlike the three previous models, the input to this architecture is raw audio. A random augmen-

tation is applied to a copy of this raw signal. In the next stage, MFCC coefficients are computed

separately for both the original and augmented signals. Subsequently, both MFCC representa-

tions are divided independently into patches (each patch corresponds to a single MFCC col-

umn). These patches are linearly projected into 8-dimensional vectors and supplemented with

positional information within the sequence. Next, these sequences are passed to the Aug Block
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Figure 5: VAD decision module based on AugViT architecture.

(Figure 6c). Compared to the original transformer block (Figure 6b), this block consists of two

attention heads: one processes data from the original audio signal, while the other processes

data from the augmented signal. The subsequent stages follow the standard ViT structure: a

sequence of 8 transformer blocks (each with two attention heads) followed by an MLP Head.
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Fig. 5. VAD decision module based on the AugViT
architecture.

architecture is raw audio. A random augmenta-
tion is applied to a copy of this raw signal. In the
next stage, MFCC coefficients are computed sepa-
rately for both the original and augmented signals.
Subsequently, both MFCC representations are
divided independently into patches (each patch
corresponds to a single MFCC column). These
patches are linearly projected into 8-dimensional
vectors and supplemented with positional infor-
mation within the sequence. Next, these sequences
are passed to the AugBlock (Fig. 6c). Compared
to the original transformer block (Fig. 6b), this
block consists of two attention heads: one pro-
cesses data from the original audio signal, while
the other processes data from the augmented sig-
nal. The subsequent stages follow the standard
ViT structure: a sequence of eight transformer
blocks (each with two attention heads) followed
by an MLP head.
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Figure 6: Auxiliary blocks used in VAD modules: residual (a), transformer (b), and augmentation (c)
blocks.

The following parameters characterized the training procedure of each of these models:

• Number of epochs in the training stage: 100 or less if, after 20 epochs, there is no improvement

in classification (F1-score does not increase) for the validation set,

• For further stages, a model from the checkpoint that obtained the highest F1-score on the vali-

dation set was selected.

• The batch_size was equal to 16.

• Adam optimiser was selected with learning_rate equal to 0.001.

• Selected loss function: Binary Cross Entropy (BCELoss).

2.3 Evaluation

Each of our speech detectors was tested on the entire test set. Additionally, the same data was used

to carry out tests with two popular VADs: Silero [?] and Brouhaha [?]. The results of the tests are

presented in the form of a distribution of F1-score values as shown in Figure 7. All the proposed

VADs exhibit comparable classification efficacy, with the ResNet50-cqt model achieving the highest

8

Fig. 6. Auxiliary blocks used in the VAD modules:
residual (a), transformer (b), and augmentation (c) blocks.

The following parameters characterized the train-
ing procedure of each of these models:
– number of epochs in the training stage: 100 or less
if, after 20 epochs, there is no improvement in clas-
sification (F1-score not increase on the validation
set);
– for further stages, the checkpoint model that ob-
tained the highest F1-score on the validation set
was selected;

– the batch size is equal to 16;
– Adam optimizer was selected with a learning rate
equal to 0.001;
– selected loss function: binary cross entropy
(BCELoss).

2.3. Evaluation

Each of our speech detectors was tested on the en-
tire test set. Additionally, the same data was used to
carry out tests with two popular VADs: Silero (Team,
2024) and Brouhaha (Lavechin et al., 2023). The re-
sults of the tests are presented as F1-score distribution,
as shown in Fig. 7. All the proposed VADs exhibit com-
parable classification efficacy, with the ResNet50-cqt
model achieving the highest accuracy on the test set.
For a detailed comparison of our best model with the
Silero and Brouhaha VADs, we computed the confu-
sion matrices, which are presented in Fig. 8.
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Fig. 7. Comparison of F1-score distributions for prediction
of speech segments in our proposed models and two com-

petitive models obtained using test signals.

To compare the prediction speed and accuracy
of the selected models, we predicted an audio sig-
nal of 138 seconds in length, containing four speech
segments (30.07% of the audio file) among nine other
segments. The predictions were performed on a ma-
chine equipped with an i5-13600K CPU, an RTX
4070Ti GPU, and 32 GB of RAM. The results, includ-
ing the models’ memory requirements, are presented
in Table 2. In the case of the ResNet50 architecture,
there is no difference in the number of parameters or
model size due to the first layers’ independence from
the complexity of the input data. The first layer in
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Fig. 8. Confusion matrices of our best model ResNet50-cqt (a), Brouhaha (b), and Silero (c) VADs.

Table 2. Comparison of models in predicting speech segments for an example test signal. The prediction times measured
using both the CPU and GPU are presented, along with the model sizes, the number of parameters for each model, and

the achieved prediction performance expressed as the F1-score.

Model CPU [s] GPU [s] F1-score Parameters Size [MB]

Silero 0.6118 (±0.1102) 0.7076 (±0.1248) 0.889 462 594 2.1

Brouhaha 2.1283 (±0.0484) 0.3879 (±0.0076) 0.941 3 930 599 45

ViT-spect 2.0145 (±0.2207) 0.4116 (±0.1235) 0.895 2 446 721 9.4

ViT-mel 11.3619 (±0.4708) 0.6790 (±0.0048) 0.838 2 422 145 9.3

ViT-cqt 2.8021 (±0.2333) 2.0526 (±0.0031) 0.886 2 422 145 9.3

ResNet50-cqt 4.4269 (±0.0410) 2.0888 (±0.0321) 0.950 23 503 809 90

ResNet50-mel 4.2817 (±0.0345) 0.7287 (±0.0023) 0.925 23 503 809 90

ResNet50-spect 9.2796 (±0.0017) 0.4187 (±0.0089) 0.937 23 503 809 90

BiLSTM-cqt 2.1067 (±0.0024) 1.9555 (±0.0027) 0.817 457 381 1.8

BiLSTM-mel 0.8850 (±0.0071) 0.5373 (±0.0072) 0.865 922 881 3.5

BiLSTM-spect 7.5258 (±0.1073) 0.8784 (±0.0562) 0.897 14 759 011 56.3

AugViT 0.3921 (±0.0005) 0.5100 (±0.0720) 0.886 10 681 0.4

this architecture is a convolutional layer (Conv2d) with
a fixed number of filters across all audio representa-
tions. For the ViT architecture, there is a slight differ-
ence in model size when using the spectrogram com-
pared to other audio representations. This variation is
due to differences in the number of patches into which
the input can be divided. However, this number has
minimal influence on the overall number of parameters.
For instance, both cqt and mel spectrograms have the
same number of parameters because both were inter-
polated to a size of 128× 128, whereas the standard
spectrogram was interpolated to 512× 128. In contrast,
for the BiLSTM models, the size of the initial LSTM
layer depends on the number of rows (i.e., frequency
bins) in the input representation. This, in turn, affects
the total number of intermediate states in subsequent
layers.

3. Data fusion

Fusing classifier outputs can be implemented in
various ways (Kittler et al., 1998). The basic clas-
sifier fusion techniques include so-called voting tech-
niques: hard voting and soft voting. In the case of the
first voting technique, a given class is determined as
the one selected by the majority of classifiers. The

second method involves averaging the probabilities
and comparing them against a predefined threshold
(Rokach, 2005). All of the 10 classifiers described in
Subsec. 2.2 were used to fuse their individual decisions
to improve speech signal detection on the test set.
Because we obtained vectors with probabilities from
the classifiers’ outputs, we decided to use them to de-
termine the final decision. For this purpose, for each
vector, the probability of each classifier, we assigned
αn ∈ (0,1) coefficients to scale the entire vector, and
thus the degree of its impact in merging the decisions
of all classifiers. To determine what values αn coeffi-
cients should be assigned to the individual vectors; we
used optimization procedures and proposed the follow-
ing three models for fusion. The first model is a linear
combination of the probabilities from individual VAD
modules:

f̂1(k) =
N

∑
n=1

pn(k) ⋅ αn. (1)

The second model is also a linear combination of deci-
sions, but only from those modules where the proba-
bility of speech presence in a given frame exceeds 60%:

f̂2(k) =
N

∑
n=1

pn(k) ⋅ α̃n; α̃n =

⎧⎪⎪
⎨
⎪⎪⎩

αn if αn > r,

0 otherwise,
(2)
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where r = 0.6, N = 10, ϵ = 10−8, pn(k) is the probability
of the k-th frame of the n-th classifier, and αn is the
model coefficient for the n-th classifier.
In the case of the third model, the result of the first

model is used, with its decision trajectory dynamics
altered by applying a logarithmic function:

f̂3(k) = log [f̂1(k) + ϵ]. (3)

The process of combining decisions from the set of
proposed VAD systems and decision fusion models de-
scribed by Eqs. (1)–(3) is implemented as the optimiza-
tion of parameters αn to maximize the F1-score. The
mechanism for tuning these coefficients is schemati-
cally illustrated in Fig. 9. The process of determining
the objective function for a single fusion model is car-
ried out in the following steps:

1) for αn coefficients, determine the resulting func-
tion signal, according to the specified model (f̂1,
f̂2, f̂3);

2) normalize the obtained signal to the (0,1) range;

3) apply threshold-based detection with h = 0.5;

4) compute the F1-score value between the detected
and target signals which is the final value of the
objective function.

The F1-score is computed as the harmonic mean
of precision and recall (Rijsbergen, 1979). Using the
true positives (TP), the false positives (FP), and the
false negatives (FN) values, the score can be described
as follows:

F1-score =
2 ⋅TP

2 ⋅TP + FP + FN
. (4)

maximize the F1-score. The mechanism for tuning the coefficients is schematically illustrated in

Figure 9. The process of determining the objective function for a single fusion model is carried out in

the following steps:

1. For αn coefficients, according to the specified model ( f̂1, f̂2, f̂3), the resulting fusion signal is

determined.

2. Normalization of the obtained signal to the (0,1) range.

3. Detection with threshold h = 0.5.

4. The F1-score value between the detected and target signals is the final value of the objective

function.
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Figure 9: General framework for optimizing decision fusion models obtained from a set of VAD
modules.

The F1-score is computed as the harmonic mean of precision and recall [?]. Using the TP (True

Positives), the FP (False Positives), and the FN (False Negatives) values, the score can be described

by the following formula:

F1-score =
2 ·TP

2 ·TP+FP+FN
. (4)
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Fig. 9. General framework for optimizing decision fusion models obtained from a set of VAD modules.

We used both gradient-free (Opt I) and gradient-based
(Opt II) optimization processes to determine the coef-
ficients of the three proposed models. The entire pro-
cess of optimizing the model coefficients is depicted
in Fig. 9. Since every signal in the dataset was auto-
matically generated and labeled, the optimization pro-
cess was provided with an audio signal and its cor-
responding valid VAD trajectory. To determine the
gain or loss during optimization, we used the following
rule, where the value G is expressed as a percentage
G ∈ (−100,100):

G = 100 ⋅ (1 −
F̂1-score

F̃1-score
), (5)

where F̂1-score is the best score obtained for whole set
of VAD modules, and F̃1-score is the best score for the
fused architecture.

3.1. Gradient-free optimization

For this type of optimization we used the random
annealing algorithm (Blanke, 2020), which uses a hill-
climbing technique with a variable step in time, sim-
ilarly as in the simulated annealing method. We de-
cided to use this algorithm after conducting a series
of experiments with signals generated in the same way
as those from our test set. This algorithm achieved
the best results for each of the proposed models.
The optimization procedure was performed separately
for each objective function and for all signals in the
test set. The procedure was carried out for each sig-
nal by maximizing the F1-score over 1000 iterations.
The coefficients αn were searched within the range of
0 to 1, and the step size was equal to 0.2.
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3.2. Gradient-based optimization

As a gradient optimiser, we utilized the Adam
(adaptive moment estimation) algorithm, an extended
version of stochastic gradient descent algorithm. The
Adam algorithm is known for its efficiency and ro-
bustness, and therefore we use it in the optimization
process (Kingma, Ba, 2015). The optimisation proce-
dure was performed as follows. First, we initialized the
weight vectorWα with a uniform distribution with val-
ues in the (0,1) range. The variable Bf was initialized
with 0; the role of this variable is to hold the highest
value of the objective function. The variable BWα con-
tains the weights for the best F1-score. We used the bi-
nary cross entropy (BCELoss) loss function, a learning
rate LR = 0.001, and the number of epochs was equal
to 1 000 000. In each epoch, the given fusion model was
calculated from the probabilities of ten classifiers and
the weight vector Wα. From the resulting signal, the
objective function was calculated. If the value of ob-
jective function (g) was higher than Bf , then Bf = g
and BWα = Wα. Then, an optimization of weight vec-
tor Wα using the obtained loss was performed. When,
after 1000 epochs, Bf did not increase, the learning
rate was reduced: LR = LR ⋅ 0.01. Early stopping was
applied if, after 10 000 epochs, Bf did not increase. In
the end, resulting BWα weights were the final coeffi-
cients of thea given model. In this case, we resigned
from limiting the coefficients αn to the range (0,1) for
comparison purposes with the previous algorithm, as
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Fig. 10. Gains and losses in the test set from the optimisation process for model 1 (a), model 2 (b), and model 3 (c)
using non-gradient optimization (Opt I).

this limitation could have a negative impact on the op-
timization quality. This caused negative values in the
signal after the fusion process, and in this case, it elim-
inated the f̂3 model from use.

3.3. Results

To determine the effectiveness of the proposed fu-
sion models, we conducted a series of experiments
involving the individual fusion of each signal from
the test set. The obtained coefficients were used to
determine the new detection trajectory and the cor-
responding F1-score, which was then compared to the
F1-score of the best of our VAD model for a given sig-
nal. Based on this comparison, gain or loss was deter-
mined. Table 3 shows its smallest, largest, and average
values. The average gain in the best cases resulting
from classifier fusion was less than one percent. Fig-
ure 10 depicts the gains and losses obtained on the

Table 3. Fusion results for the test set.

Fusion type
Gain(+) / Loss(−) [%]

Minimum Maximum Average

Hard voting −48.03 7.41 −1.53

Soft voting −41.18 7.41 −1.28

Opt I (model 1) −10 9.71 +0.67

Opt I (model 2) −10 10.91 +0.67

Opt I (model 3) −10 11.76 +0.74

Opt II (model 1) −15.79 12.59 +0.69

Opt II (model 2) −5.26 16.08 +0.89
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Fig. 11. Gains and losses in the test set from the optimization process for model 1 (a), and model 2 (b) using gradient
optimization (Opt II).

test set for non-gradient optimization, whereas Fig. 11
for gradient optimization. In both figures, deteriora-
tion in F1-score is marked in red, and improvement
in blue, compared to the best VAD model for indi-
vidual signals. As shown in Fig. 10, the highest num-
ber of cases with improved classification accuracy was
achieved with model 3, where only 9% of test signals
experienced a decline in classification performance. For
each of the fusion models used, the number of cases
with neither improvement nor deterioration in classifi-
cation was similar, amounting to approximately 46%.
In the case of gradient optimization, the results in-

clude only two models. As mentioned in Subsec. 3.2,
the possibility of weight coefficients dropping below
zero and the use of a logarithm in model 3 made its
inclusion in the experiments impossible. Based on the
obtained results in this case, it can be observed that
the number of instances where classification perfor-
mance deteriorated due to fusion is almost halved com-
pared to non-gradient optimization. Additionally, the
highest gain achieved in this case exceeded 16%.
Because, in the case of non-gradient optimization,

the coefficients αn directly influenced the significance
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Fig. 12. Variability of the α coefficients in model 3 of the fusion (Opt I),
showing the highest average value across 1000 test signals.

of the probabilities in each of the VAD models, Fig. 12
shows their distribution for the entire test set in the
best case where model 3 was used. Based on the ob-
tained results, it can be concluded that the great-
est contribution to the final decision comes from the
ResNet50-spect model (α7), BiLSTM-mel (α3), and
AugViT (α1).
Interestingly, for the same architectures but differ-

ent representations, there are significant differences in
the distribution of weight coefficients (e.g., α5, α6, and
α7) determining the fusion of individual VAD modules.
This indicates that the representation of the acoustic
signal also plays a significant role in the effectiveness
of the VAD module.
Table 4 presents the percentage contribution of in-

dividual VAD models to the correct classification of
frame groups. Each group represents frames from the
test set that were correctly classified by at least one
and at most all classifiers. Additionally, the last row of
the table shows what percentage of the entire test set
each group represents.
A total of 74.1% of frames were correctly classi-

fied by all classifiers. In 15.2% of cases, frames were
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Table 4. Percentage contribution of VAD models to the classification of individual frame groups.

VAD
Group

1 2 3 4 5 6 7 8 9 10

AugViT 24.3 35.9 44.5 50.9 50.4 56.3 58.2 58.5 53.3 100

BiLSTM-cqt 16.1 23.5 31.1 41.2 45.5 57.4 68 80.5 91.7 100

BiLSTM-mel 6.1 15 24.9 33.2 41.4 49.8 61.6 74.3 95.1 100

BiLSTM-spect 8.5 20.9 35.7 48.1 54.6 67.2 75.7 82.5 95 100

ResNet50-cqt 2.7 7 24.4 36 57.3 72.8 89 95.4 99.2 100

ResNet50-mel 4.4 11.7 19.6 33.7 52.8 66.3 81.8 91.1 97.5 100

ResNet50-spect 11.8 32.6 45.6 54 67 74.9 85.1 92.5 97.7 100

ViT-cqt 10.6 21.1 30.6 36.9 45.9 58.3 64.5 73.9 84.8 100

ViT-mel 6.8 12.2 14.1 28 34.4 41.4 53.7 75 92.3 100

ViT-spect 8.7 20 29.5 38.1 50.7 55.5 62.4 76.3 93.3 100

Number of frames 0.4 0.4 0.4 0.5 0.7 1.1 1.9 4.5 15.2 74.1

correctly classified by any nine models. A smaller part
of the set, 4.5%, was correctly classified by any eight
models, with ResNet VAD being the most accurate. On
the other hand, 0.4% of frames were correctly classified
by only a single model, with AugViT VAD performing
the best. A similar situation is observed for frames cor-
rectly classified by 2 to 7 classifiers. In these cases, each
model correctly classified only a portion of the frames,
but the fusion of their decisions positively affected the
final result. The number of frames not correctly clas-
sified by any model was 964 (0.8%).

4. Conclusion

In the case of analyzing the fusion mechanisms, the
individual VADs learned on the same data and there-
fore the fusion influence in such a case was small. All
the VADs we proposed were quite efficient, with an
average F1-score above 0.8, which directly impacts the
fusion of decisions. This may lead to the conclusion
that the chosen network architecture and signal in-
put representation have less impact on the efficiency
of VAD performance compared to the quality of the
data used to train these models. When examining the
resulting trajectory after detection, one can see that
there many single frames that are wrongly classified.
Thus, applying well-known post-processing techniques
(Peinado, Segura, 2006) may improve the accuracy
of frame classification. In this work, we attempted to
analyze the decision fusion process in ten VAD mod-
ules. As the results demonstrate, the decision to imple-
ment the fusion process in a practical solution must be
based on factors such as computational and memory
resource constraints, the characteristics of the source
data, and the conditions of signal acquisition. These
factors directly impact the effectiveness of VAD models
and, consequently, the potential contribution of fusion
process in improving the overall classification perfor-
mance.
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When evaluating speech intelligibility (SI) in automotive cabins, binaural measurements typically employ
a fixed dummy head. However, the impact of listener head positions on SI in nonuniform cabin sound fields
remains unclear. This study analyzed SI under various listener head positions in an automotive cabin. An
artificial mouth was regarded as the speaker, which was placed in three passenger positions. Binaural room
impulse responses were measured using a dummy head in the driver’s seat with various head positions. The
results show that head position significantly affects SI, with variations of up to 7 dB in octave band magni-
tudes, more than one just-noticeable difference in the speech transmission index, and shifts of up to 2.5 dB
in the speech-reception threshold. SI variability depends on the speaker’s location. Directivity patterns play
a crucial role in the front-passenger position, while seat occlusion affects SI at the back-right position, causing
substantial decreases below a certain height threshold. At the back-left position, head positions close to the
headrest enhance SI due to distance and reflections. Minor head displacements (4 cm apart) generally have
insignificant effects on SI, except near seat obstructions or reach critical thresholds.

Keywords: automotive cabin; speech intelligibility; head position; speech reception threshold; speech trans-
mission index.
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1. Introduction

In recent years, the automobile has evolved from
a simple means of transportation into an essential part
of everyday life, often referred to as thr third space.
Consequently, acoustic comfort has emerged as a no-
table area of concern due to increasing consumer de-
mands (Miqueau et al., 2024). Speech intelligibility
(SI) is strongly associated with the level of acous-
tic comfort perceived by passengers within automotive
cabins (Biswas et al., 2022). Thus, it plays a vital role
in enhancing safety and the overall travel experience.
However, the acoustic environments within auto-

motive cabins possess unique characteristics that dis-
tinguish them from traditional rooms, thereby render-

ing SI in automobiles a specific concern (Parizet,
1993). The confined dimensions and intricate bound-
ary conditions within automotive cabins result in a no-
table low-frequency resonance and rapid attenuation of
high-frequency sounds (Granier et al., 1996; Rum-
sey, 2016; Meissner, 2017). Many of the reflections
are early reflections (Granier et al., 1996; Kleiner,
Tichy, 2014; Rumsey, 2016), which are considered
advantageous for SI (Bradley et al., 2003; Ar-
weiler, Buchholz, 2011; Warzybok et al., 2013).
Consequently, the adverse effects of reverberation on
intelligibility can be disregarded (Samardzic, No-
vak, 2011a; 2011b; Gerrera et al., 2016; Ebbitt,
Remtema, 2015). Furthermore, seatbacks play a piv-
otal role in sound absorption within automobiles
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(Parizet, 1993; Visintainer, VanBuskirk, 1997;
Cao et al., 2022). Seat occlusions diminish speech en-
ergy transmission from rear speakers to listeners in the
front (or vice versa), significantly impairing SI (Liang
et al., 2021). Moreover, background noise in auto-
motive cabins has a substantial impact on SI, as it
exhibits unique and fluctuating characteristics based
on speed, operating conditions, and road conditions,
which are absent in traditional indoor environments
(Samardzic, Novak, 2011a; 2011b; Parizet, 1992;
Wang et al., 2012; Samardzic, 2014). The interior en-
vironment of automotive cabins demonstrates the con-
siderable signal-to-noise ratio (SNR) variations (Dal
Degan, Prati, 1988; Ferrari et al., 2023). In con-
trast to the quieter and more constant background
noise prevalent in traditional indoor settings, the SI
within automotive cabins is influenced by background
noise (or SNR) rather than reverberation (Ebbitt,
Remtema, 2015; Samardzic, Novak, 2011a; 2011b;
Gerrera et al., 2016; Liang et al., 2021).
Furthermore, the extremely confined dimensions

of automotive cabins place the speaker and listener
within the near-field zone, which further complicates
the SI variations within the cabin (Liang, Yu, 2020).
Specifically, SI measurements within automotive cab-
ins are more sensitive to factors such as speaker di-
rectivity, orientation, and position compared to typ-
ical indoor environments (Bilzi et al., 2005; Liang,
Yu, 2023b). Moreover, binaural listening phenomena,
including binaural interactions and the head shadow
effect (van Wijngaarden, Drullman, 2008), intro-
duce an effective SNR that differs between the ears
of the listener (Liang, Yu, 2020). These phenomena
have a direct impact on SI in automobiles. The SI in
automotive cabins is strongly influenced by the direc-
tion and distance of the speaker relative to the lis-
tener’s ears. The combination of the near-field head
shadow effect and the unique sound field characteris-
tics within automotive cabins (such as the nonuniform
distribution of early reflections and seatback occlu-
sions) renders SI under binaural listening conditions in
automobiles more complex than in traditional indoor
environments (Liang et al., 2021; Liang, Yu, 2023b).
Consequently, for an accurate SI evaluation within au-
tomotive cabins, it is imperative to use binaural mea-
surements (Samardzic, Moore, 2021) and consider
the orientation of the listener’s head (Liang et al.,
2021; Liang, Yu, 2023b). Neglecting these factors can
result in substantial deviations in the SI assessment.
In previous studies evaluating SI within automo-

tive cabins, binaural signals were typically captured
using a dummy head in a static position (Ebbitt,
Remtema, 2015; Samardzic, Novak, 2011a; 2011b;
Liang et al., 2021; Liang, Yu, 2023b; Samardzic,
Moore, 2021). However, the nonuniform sound pres-
sure distribution within automotive cabins is influ-
enced by acoustic resonances and the irregular distri-

bution of absorptive and reflective surfaces (Granier
et al., 1996; Rumsey, 2016). Given the interplay be-
tween the binaural effect and the unique sound field
characteristics within the confined acoustic space of
an automobile, it is anticipated that the variations in
listener head position would result in significant dif-
ferences in the sound pressure level (SPL) experienced
by the ears (Ghanati, Azadi, 2020; Granier et al.,
1996; Rumsey, 2016). Consequently, the SI may un-
dergo considerable fluctuations due to the uncertainty
introduced by the passenger head displacement. To the
best of our knowledge, this issue has not yet been thor-
oughly examined.
This work aims to investigate the impact of the

listener head position on SI evaluations within an au-
tomotive cabin. Specifically, the primary objective is to
quantify the extent to which SI discrepancies arise due
to changes in listener head positions and to estab-
lish a benchmark for SI measurements in such envi-
ronments. Initially, binaural room impulse responses
(BRIRs) were measured with a speaker at three pas-
senger locations: the front passenger (FP), back left
(BL), and back right (BR) seats. During these mea-
surements, an artificial mouth was used to emulate the
speaker. A dummy head was placed in the driver’s seat
and at various spatial locations, encompassing four dif-
ferent heights multiplied by five horizontal positions,
resulting in a total of 20 head positions. Subsequently,
the magnitude spectra of the BRIRs, speech transmis-
sion indices (STIs), and speech reception thresholds
(SRTs) in Mandarin Chinese were evaluated.

2. Methods and materials

2.1. BRIR measurements

The measurements for this study were conducted
within a Volkswagen Tiguan L, with dimensions of
4733mm by 1839mm by 1673mm in length, width,
and height, respectively. A simplified top-down view
of the automobile is depicted in Fig. 1. To stream-
line the analysis and focus on prevalent scenarios, the
listener was in the driver’s seat for this study, rep-
resented by a dummy head. The dummy head used
in this study is a statistical shape model-based av-
erage head model (SSMAH) (Wang, Yu, 2025) cre-
ated from 100 Chinese adults (74 men and 26 women).
The dummy head’s primary components, including the
torso, head, and shoulders, were fabricated using ABS
plastic, while the pinnae were crafted from silicone rub-
ber. To rigorously investigate the impact of head posi-
tion on SI evaluation results, this study excluded the
consideration of head displacement resulting from seat
adjustments, which could potentially alter the sound
field within the automotive cabin. To ensure stability
during measurements, the seat was securely fixed in
place.
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Fig. 1. Schematic of the experimental setup in the automotive cabin.

To streamline the problem and align with typical
scenarios, the analysis focuses solely on the front-back
and up-down dimensions of the listener’s head posi-
tion. A thick rectangular plastic plate with markings
was laid horizontally on the driver’s seat to maintain
the dummy head’s uniform movement in the horizon-
tal plane. Following the measurement of one height,
a 4 cm thick plastic plate was added to facilitate the
dummy head’s movement in the vertical direction.
Consequently, the dummy head was positioned cen-
trally in the left-right dimension of the driver’s seat,
facing forward. The ear canal entrance of the dummy
head was systematically placed in 20 distinct locations,
comprising 4 vertical levels (designated as H1 to H4,
representing various heights above the seat cushion)
and 5 horizontal points (designated as X1 to X5, rep-
resenting different distances from the headrest). Each
position was spaced 4 cm apart, as illustrated in Fig. 1.
The precise location of the ear canal entrance was cali-
brated using a 3D laser calibrator (LSG686SPD), posi-
tioned outside the side window of the automobile. The
positioning of the dummy head’s head at the H1 height
signifies that its ear canal entrance was 1.22m above
the ground plane.
The experiment used an artificial mouth (GRAS

44AB) as the speaker, which exhibited comparable
directivity and frequency response characteristics to
a human mouth. It is important to highlight that
the GRAS 44AB, as initially outlined in its prod-
uct documentation, was designed primarily for testing
telephone mouthpieces and comparable microphones
within communication systems, intended specifically
for the close-proximity use. The directivity pattern
of this artificial mouth might not perfectly match
that of a human speaker at slightly longer distances.
Nonetheless, considering that the automotive cockpit
environment, which this study examines, inherently

represents a unique near-field range, the influence of
minor variations in directivity is expected to be rel-
atively minor. The speaker was sequentially placed
in the FP, BR, and BL locations, with its front con-
sistently oriented towards the listener (refer to Fig. 1).
The speaker was placed at a height of 1.28m above the
ground; a value determined through measurements of
the mouth height of a representative sample of Chinese
males with an average stature of 1.70m. When at the
FP, BR, and BL locations, the speaker was arranged
at distances of 0.68m, 1.13m, and 0.89m, respectively,
from the listener occupying the (H1, X1) coordinate.
Furthermore, the speaker was oriented at approximate
angles of −19○, 52○, and 90○ to the right of the listener’s
position.
During the measurements, all windows, doors, and

the automotive air conditioning system were meticu-
lously closed to eliminate extraneous noise. A maxi-
mum-length sequence, characterized by a 48 kHz sam-
pling frequency, a duration of 6 s, and 24-bit quan-
tization, served as the excitation signal. This signal
was converted from digital to analog format using the
Roland Studio Capture 1610 sound card and subse-
quently fed to the speaker. To capture the binaural sig-
nals, a pair of DPA 4060 miniature microphones were
precisely positioned within the occluded ear canal en-
trances of the dummy head. Following this, the noise-
free BRIRs were derived through deconvolution using
cross-correlation between the original excitation signal
and the recorded binaural signals.

2.2. STI calculation

Previous studies have comprehensively established
that STI can effectively predict SI within automo-
tive cabins (Samardzic, Novak, 2011a; Liang et al.,
2021), despite the negligible temporal characteristics of
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the transfer function within these environments. The
modulation transfer function represents the intelligi-
bility interference arising from the temporal modu-
lation reduction by the transmission system, as out-
lined in previous research (International Electrotechni-
cal Commission [IEC], 2011; Houtgast et al., 1980).
Using the indirect method theory (Schroeder, 1981;
Rife, 1992), the STI computation necessitates only the
acquisition of the impulse response (refer to BRIRs in
Subsec. 2.1) and the SNR.
Varying listener head positions and speaker posi-

tions can introduce significant variations in the
speech levels received by each ear, potentially lead-
ing to discrepancies in the SNR perceived by the lis-
tener. To ensure a consistent transfer function, the
BRIRs were employed to indirectly obtain the bin-
aural speech signals. To create a monaural speech
sample, pink noise was first generated and then fil-
tered using the Chinese standard spectrum speci-
fied in (GB/T 7347-1987, 1987). Subsequently, the
corresponding BRIRs obtained in Subsec. 2.1 were con-
volved with the monaural speech sample to produce
the binaural speech signals. Additionally, background
noise was sourced from actual measurements of bin-
aural noise at 100 km/h within a fuel-powered vehicle.
In reality, the SPLs of the binaural noise signals were
very close between the left and right ears, with a dif-
ference of less than 0.3 dB(A). Using stationary noise
and the binaural speech signals, the SNRs were indi-
rectly derived for different listener head positions and
speaker positions. Typically, it is necessary to measure
the SPLs of both the noise and the binaural speech
signal independently for determining the SNR needed
to calculate the STI. In this study, both the speech sig-
nal and noise were considered virtual signals, making
the SNR a relative value. This approach is primarily
used to emphasize the changes in STI resulting from
variations in the transfer function due to different head
and speaker positions. Consequently, we select an ap-
propriate value to observe the trend of STI changes.
Then, the STI was calculated using the SNRs and
BRIRs through the indirect STI approach, as speci-
fied in the IEC (2011) standard.
Actually, STI is essentially a monaural model. Ac-

cording to (IEC, 2011), when performing binaural
STI measurements using an artificial head, the recom-
mended approach is to use the results of STI for the
better ear, i.e., selecting the better (larger) value from
the pair of STIs. In practice, the better-ear STI can-
not fully show the benefit of listening with two ears.
To date, no standard for combining different STI mea-
surements from the two ears has been developed, and
so the advantages of binaural hearing in SI are al-
ways disregarded (van Wijngaarden, Drullman,
2008; Liang et al., 2022). Nonetheless, the better-ear
STI is still the most effective indicator compared with
the existing binaural STI model (van Wijngaarden,

Drullman, 2008), thus it is adopted in the present
study.

2.2.1. Subjective experiment

In practice, the STI falls short of accurately captur-
ing the impact of binaural hearing and low-frequency
components on SI within the confined space of an au-
tomotive cabin, offering merely a partial estimation
of the true SI level, as noted in (van Wijngaar-
den, Drullman, 2008; Huang et al., 2023). To ad-
dress this limitation, a supplementary subjective ex-
periment was conducted to obtain the SRTs, defined
as the SNR required for 50% intelligibility. This sub-
jective experiment encompassed 36 test conditions, fac-
toring in 3 distinct speaker positions (namely, FP, BR,
and BL) and 12 head positions, which were determined
by 4 different heights (namely, H1–H4) and 3 horizon-
tal coordinates (namely, X1, X3, and X5).

2.2.2. Participants

For this study, 12 volunteers were recruited, com-
prising an equal gender distribution with 6 males and
6 females. The study participants ranged in age from
20 to 25 years, with a mean age of 21.83 years. They
were drawn from a pool of undergraduate and gradu-
ate students at Guangxi University. Each participant
reported normal hearing and was a native Mandarin-
speaking Chinese individual hailing from diverse geo-
graphical regions. As a token of appreciation, partic-
ipants were compensated for their involvement in the
study.

2.2.3. Stimuli and procedure

The Mandarin Chinese matrix sentence test served
as the source of sentences comprising the target speech,
as reported in (Hu et al., 2018). Each sentence within
the corpus adhered to a pre-established syntactic struc-
ture containing five words: name, verb, number, adjec-
tive, and object. This framework was both grammat-
ically correct and semantically unpredictable. A to-
tal of 40 lists, each containing 20 sentences, was used.
Employing auralization technology, the target speech
was emitted from various passenger locations to the
driver’s position by convolving it with the correspond-
ing BRIR. The interfering signal was the binaural noise
captured in authentic automotive environments, which
had previously been used for STI calculations. The in-
terferer’s level was set to approximately 60 dB(A) for
each ear to ensure comfort. Prior to convolution with
the BRIR, the target speech’s level was adjusted to
achieve different SNRs. The binaural interferer was
then combined with the convolved binaural target
speech to produce the final binaural signals.
The experiment was conducted in a room with am-

bient noise levels below 30 dB(A). An adaptive up-
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down method, initiated with an SNR of 10 dB, was
used to measure the SRTs, following the procedure
outlined in (Brand, Kollmeier, 2002). Notably, the
SNR referred to the difference between the interferer
and target speech levels prior to convolution, rather
than the actual SNR at the listener’s ears. Stimuli were
presented using Sennheiser HD650 headphones pow-
ered by a Roland Studio Capture 1610 sound card.
Participants were instructed to independently mark
the terms they heard and understood on a MATLAB
graphical user interface (GUI) during the close-set re-
sponse format assessments. Across the 36 test condi-
tions considered, each participant completed a total of
72 runs, with each test condition repeated two times.
The final SRT was obtained by averaging the SRTs
from the two repetitions. Given that the total num-
ber of runs (72) exceeded the number of lists (40),
some lists were used twice. However, this had no ef-
fect on the outcomes, as the corpus was designed to
be semantically surprising and suitable for two uses by
the listener, as noted in (Hu et al., 2018). Participants

Fig. 2. Variations in the magnitude spectra (125Hz–8000Hz octave bands and the overall magnitude) of measured binaural
room impulse responses (BRIRs) under different head positions compared to the reference position (X3, H3), when the

speaker was located in the FP, BR, and BL positions.

Table 1. Magnitude variation among 20 head positions, including the 125Hz–8000Hz octave bands
and the overall magnitude.

Speaker Ear
Magnitude variation [dB]

125Hz 250Hz 500Hz 1 kHz 2 kHz 4 kHz 8 kHz Overall

FP position
Left 1.38 1.55 3.82 2.08 2.76 2.61 3.30 1.03

Right 1.63 2.31 3.25 2.63 1.49 2.64 1.96 1.26

BR position
Left 0.69 2.66 2.70 4.99 4.48 2.98 3.18 0.76

Right 1.23 4.15 4.99 6.85 5.92 1.28 1.07 1.01

BL position
Left 2.28 1.89 2.41 3.46 3.12 3.24 1.43 1.36

Right 2.95 2.58 1.65 2.91 2.64 2.05 1.50 1.40

were presented with random lists and test conditions
in different sequences. To minimize listener fatigue, the
72 runs, each lasting 4 to 4.5 minutes, were divided
into two sessions spaced at least 12 hours apart, with
a 20-minute break after every eight runs. Each session
began with a training period.

3. Results and discussion

3.1. Effect of listener head position
on BRIR magnitude spectra

The magnitude spectra of the BRIRs measured
in Subsec. 2.1 were computed for diverse head posi-
tions, with the speaker at the FP, BR, and BL loca-
tions. Figure 2 illustrates the variations in the magni-
tude spectra of the measured BRIRs relative to the ref-
erence position (H3, X3), encompassing results across
the 125Hz–8000Hz octave bands as well as the over-
all results. Table 1 provides the range of magnitude
variations among the 20 different head positions.
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As depicted in Fig. 2 and Table 1, irrespective of
the speaker’s location, the overall magnitude variation
induced by the displacement of the listener’s head falls
within a range of 1 dB to 1.5 dB. Specifically, when the
speaker is at the BL location, the magnitude variation
is slightly more pronounced compared to other speaker
positions, whereas it is minimal when the speaker is
situated at the BR location. Furthermore, there are
disparities in the magnitude fluctuations between the
two ears across various listener head positions. No-
tably, the magnitude difference for the ipsilateral ear
(i.e., the right ear in the case of the FP and BR speaker
positions) is significantly greater than that for the con-
tralateral ear, with a difference approaching 0.2 dB.
Regarding the outcomes observed for each octave

band, the magnitude difference resulting from the dis-
placement of the listener’s head is more pronounced,
occasionally approaching a value of 7 dB (as shown in
Table 1). Notably, the octave bands ranging from 500Hz
to 4000Hz exhibit larger magnitude variations com-
pared to other frequency bands. When the speaker is
at the BR location, the magnitude recorded in the right
ear at the H1 height is significantly reduced in most fre-
quency bands below 4 kHz (excluding the 500Hz band)
when compared to higher heights (H2 to H4). This re-
duction can be attributed to the direct obstruction of
sound waves emitted by the speaker at the BR position
by the driver’s seatback when the listener’s ear canal
is at the H1 height. The opposite trend observed in the
500Hz octave band may be due to standing wave phe-
nomena within the automotive cabin, as the resonance
zone typically falls within the 1 kHz range (Rumsey,
2016). Indeed, the standing wave phenomenon within
the cabin often results in inconsistent trends in mag-
nitude variations within the 125Hz to 500Hz octave
bands compared to higher frequency bands (as de-
picted in Fig. 2).

3.2. Effect of listener head position
on STI results

Figure 3 illustrates the better-ear STIs recorded us-
ing a dummy head at various head positions, encom-

a) b) c)

Fig. 3. Speech transmission index (STI) results obtained through a dummy head positioned at various locations when the
speaker was situated in three different seats: a) the front passenger (FP); b) the back right (BR); c) the back left (BL)

positions.

passing the results obtained when the speaker was situ-
ated at the FP, BR, and BL positions. When the speak-
er is at the FP location, the overall variation in the
STI value resulting from the listener’s head position re-
mains within 0.024, which is below the just noticeable
difference (JND, 0.03) as reported in (Bradley et al.,
1999). When the head is at the horizontal coordinate
X3, the STI value tends to be higher at the same verti-
cal level compared to other head positions (see Fig. 3a).
This is primarily because in the X3 coordinate, the
listener’s head is positioned nearest to the principal
axis direction of the artificial mouth (speaker), as well
as is closer to it. Furthermore, the radiation character-
istics of the artificial mouth dictate that the radiation
intensity peaks in the direction of its principal axis
(Liang, Yu, 2023a).
When the speaker is at the BR location, the over-

all variation in the STI value due to the changes in
listener head position is as high as 0.043, exceeding
1 JND. This variation is significantly larger compared
to the scenario where the speaker is located at the FP
position. The fluctuation in STI is primarily evident
in the substantial difference between the heights of H1
and H2. Conversely, the differences among the heights
of H2, H3, and H4 remain within 0.01 (as illustrated in
Fig. 3b). This observation aligns with the BRIR mag-
nitude results depicted in Fig. 2, which is attributed to
the direct obstruction caused by the driver’s seatback.
When the speaker is positioned directly behind the

listener, specifically in the BL position, the overall vari-
ation in the STI value is 0.033, exceeding 1 JND. This
variation is slightly lower than that observed in the BR
position but slightly higher than that in the FP posi-
tion. For head positions situated closer to the headrest,
such as X1, there is a tendency for larger STI values,
particularly at the H1 and H2 heights, as depicted in
Fig. 3c. This phenomenon may be attributed to the
proximity of the listener to the speaker or the fact that
the reflection area generated by the left rear window is
situated closer to the headrest. Relevant insights can
also be gleaned from previous results for the magni-
tude spectra, specifically the magnitude observed at
the left ear in Fig. 2.
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In general, the STI values observed when the speak-
er is in the FP location, ranging from 0.64 to 0.664, sur-
pass those observed in the BR position (0.492 to 0.535)
and the BL position (0.508 to 0.541). This disparity is
predominantly due to the fact that, when the speaker
is in the FP position, the radiated sound waves are able
to reach the listener’s ipsilateral (right) ear without
any impediments. Conversely, for speakers in the rear
(the BR and BL positions), the sound energy received
at both ears is substantially diminished as a result of
obstructions posed by seatbacks, as well as the lis-
tener’s head and external ear (pinna) (Liang et al.,
2021).

3.3. Effect of listener head position on SRT results

Figure 4 illustrates the Chinese SRT results ob-
tained when the speaker is at the FP, BR, and BL
locations, along with the corresponding average values
and the standard error of the mean (SEM). When the
speaker occupies the FP position, the SRT value, aver-
aging −14.9 dB, is consistently lower than that of rear-
position speakers, which average more than −8.8 dB.
Specifically, the SRT typically attains its highest level
when the speaker is at the BL location, averaging as
high as −6.9 dB, except in instances where it is occa-
sionally lower than the BR position at the H1 height.

Head position

FP-position BP-position BL-position

SR
T 

[d
B

]

Fig. 4. Speech reception threshold (SRT) results (mean
±standard error of the mean, SEM) from measurements
with the dummy head with various head positions when
the speaker was in the front passenger (FP), the back right

(BR), and the back left (BL) positions.

As depicted in Fig. 4a, when the speaker is lo-
cated at the FP position, the SRT value fluctuates
around −15dB. Specifically, the SRT reaches a min-
imum of −16.3 dB at the coordinates (H1, X3) and
a maximum of −13.9 dB at the coordinates (H4, X1),
yielding a variation range of 2.4 dB. Furthermore, at
a constant height, the SRT values recorded at the hor-
izontal coordinate X3 are consistently lower than those
at other horizontal coordinates, exemplified by the co-
ordinates (H1, X3), (H2, X3), (H3, X3), and (H4, X3).
This observation aligns with the STI results, primar-
ily attributed to the directional characteristics of the
speaker (artificial mouth), as illustrated in Fig. 3.

When the speaker is at the BR location, the SRT
value ranges from −7 dB to −8 dB at the H1 height,
marking a significant increase compared to other head
positions. For the remaining head positions, the SRT
value fluctuates around −9 dB, with a narrow variation
range of approximately 1 dB (refer to Fig. 4b). This
finding is in accordance with the previously presented
magnitude spectra and STI results (Figs. 2 and 3),
which are attributed to seat occlusion. Specifically, the
SRT attains its minimum value of −9.7 dB at the coor-
dinates (H2, X3) and its maximum value of −7.4 dB at
the coordinates (H1, X1), resulting in an overall vari-
ation range of 2.3 dB.
When the speaker is at the BL location, the SRT value

attains a minimum of −8.5 dB at the coordinate (H1, X1)
and a maximum of −6 dB at the coordinate (H4, X5),
encompassing an overall variation range of 2.5 dB
(Fig. 4c). Additionally, at a fixed height, the SRT value
increases as the head position moves further away from
the headrest (or towards the front), suggesting a cor-
responding decrease in intelligibility. This pattern is
consistent with the STI results, primarily due to dis-
tance factors and the arrangement of reflection areas
generated by the rear side window. Overall, irrespec-
tive of the speaker position, certain displacement of
the listener’s head results in an SRT difference of at
least 2 dB, signifying a substantial variation in SI. The
SRT distinction for the FP and BL speaker positions is
primarily manifested in horizontal displacement, which
is influenced by the speaker’s directional patterns and
the distribution of reflected sound. Conversely, the BR
position exhibits a primary difference due to vertical
displacement, attributed to seat obstruction.
A two-way analysis of variance (ANOVA) with re-

peated measures indicated that the SRT results in Man-
darin Chinese were significantly influenced by both the
speaker position and the head position, with statisti-
cal significance demonstrated by F (2,22) = 422.9 and
F (11,121) = 5.64, respectively (both p < 0.0001). Fur-
thermore, a significant interaction was observed be-
tween these two factors for the SRT value, as evidenced
by F (22,242) = 11.64 (p < 0.0001). This suggests that
the impact of head position on SRT varies depending
on the speaker’s position, and conversely, the influence
of speaker position on SRT also varies with changes in
head position.
Post-hoc pairwise comparisons, employing Bonfer-

roni corrections, were conducted to assess differences
in SRT changes across various head positions. Results
indicated that when the speaker was at the FP lo-
cation, statistically significant differences (p < 0.05)
were observed between the SRT values at the coordi-
nate (H1, X3) and other head positions, except for the
coordinate (H1, X1) and (H2, X3). These differences
ranged from 1.16 dB to 2.43 dB. Conversely, at heights
H3 and H4, the SRT values across various head po-
sitions exhibited nonsignificant differences (p > 0.05),
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with variations not exceeding 1 dB. When the speaker
was at the BR location, a significant difference was ob-
served solely between the H1 height and other heights.
When the speaker was at the BL location, the signif-
icant differences emerged between the SRT values of
the head position at the (H1, X1) coordinate and other
coordinates.

3.4. Implications and limitations

From the above results and analysis, there are con-
siderable variations in SI caused by listener’s head
positions in automotive cabins, especially when the
speaker is in the rear. Small head displacements do not
cause significant changes in SI. Significant changes in
SI occur only when head displacement reaches a critical
threshold or is obstructed by the seatback. Differences
in SI caused by driver’s heights can be ignored unless
their height difference exceeds a certain limit.
These insights offer the reference value for follow-

up studies and other researchers involved in binaural
SI measurement. For the acoustic design of the au-
tomotive cabin, the relevant conclusions in this study
emphasize the significance of optimizing seat occlusion
for verbal communication between front and rear pas-
sengers. From the perspective of the front row speaker
having a higher SI level for the listener in the driver
seat than that of a speaker in the rear, or from the
perspective of the impact of seat occlusion on head
position changes, a design with a certain gap between
the backrest and headrest may be more advantageous.
This study has inherent limitations, including the

use of a single vehicle model and a monolingual par-
ticipant group, which may restrict the generalizability
of the results. Different vehicle models feature varying
seat structures, which may lead to different results.
Additionally, the interior space dimensions and inte-
rior materials also affect the in-cabin acoustic envi-
ronment. To address these limitations, our future re-
search plans include testing multiple vehicle models,
conducting cross-lingual studies, and conducting dy-
namic driving scenario experiments. It is expected that
these conclusions will be like those for other car mod-
els, as issues such as seat distribution and seat obstruc-
tion in cars share strong similarities. Changes in body
shape and details should have a minimal impact on the
conclusions drawn from this study.

4. Conclusions

To investigate the variations in speech intelligibil-
ity (SI) within an automotive cabin as a function of
the listener’s head position under various speaker lo-
cations, this study conducted an exhaustive analysis
encompassing BRIR magnitude spectra, STI, and SRT
results across various experimental conditions. The re-
search results demonstrate that the SI within the auto-
motive cabin was markedly influenced by the displace-

ment of the listener’s head. Across different head posi-
tions, notable differences were observed, including oc-
tave band magnitudes varying by approximately 7 dB,
STI discrepancies exceeding 1 JND, and SRT shifts as
substantial as 2.5 dB.
A notable interaction effect on SI was observed

between the speaker position and the head posi-
tion. Specifically, the magnitude of the influence that
the head position exerts on SI is contingent on the
speaker’s position. Conversely, the effect of speaker po-
sition on SI also varies in response to alterations in the
listener head position. When the speaker was at the FP
position, the directivity pattern of the speaker signif-
icantly influenced the results. Horizontal coordinates
that aligned closely with the speaker’s principal axis
direction exhibited increased the BRIR magnitude and
STI values, coupled with lower SRT values, collectively
indicating superior SI. At elevated head heights, the
variations in SI were minimal, with SRT changes lim-
ited to within 1 dB. In scenarios where the speaker was
at the BR position, a substantial decrease in SI was ob-
served when the listener’s head was positioned below
a certain height threshold. This decrease was primar-
ily attributed to direct obstruction by the seatback,
resulting in a decrease in STI by 0.035 and an increase
in SRT by more than 2 dB. Conversely, at unobstructed
heights, the STI variations remained below 0.01, and
SRT changes were generally limited to less than 1 dB.
Hence, for speakers at the BR position, the influence
of head position on SI was predominantly governed
by seat occlusion, particularly in the vertical dimen-
sion. When the speaker was located at the BL position,
head positions closer to the headrest yielded higher SI,
primarily due to the combined effects of distance and
reflections from the rear side window. Subjective re-
sults revealed insignificant differences among various
listener head positions, i.e., the SRT variation did not
surpass 1 dB, except for those at the lowest height po-
sitions.
Overall, except for head positions at lower heights

when the speaker was at the BR position, the dif-
ferences in STI and SRT values between adjacent
measurement points (spaced 4 cm apart) were minor.
This suggests that during binaural measurements for
SI assessment, minor head displacements do not elicit
significant changes. Significant alterations in SI only
occur when the head displacement reaches a critical
threshold or is obstructed by the seat. This study has
systematically analyzed the impact of head position on
SI, and its findings offer significant value as a bench-
mark for future binaural assessments of SI within au-
tomotive environments.
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This study explores the localization of virtual sound source reproduced by the crosstalk cancellation system
under different reflective conditions in virtual rooms and analyzes the localization results with binaural cues.
Binaural room impulse responses are generated using the high-order image source method. By modifying the
acoustic parameters of the virtual room to manipulate the intensity and temporal structure of the reflection,
psychoacoustic experiments were conducted using headphone reproduction. The experimental results indicate
that, changes in reflection intensity within a certain range by altering the room reverberation time (RT)
do not cause noticeable variations in virtual source localization. Increasing the loudspeaker–listener distance
(changing temporal structure of reflections) deteriorates localization performance. The primary distinction
between variations in the loudspeaker–listener distance and RT lies in whether the temporal structure of the
reflection component changes. Overall, the study highlights the importance of the reflection temporal structure
in the virtual source localization. The analysis of binaural cues indicates that, even in reverberant environments,
the interaural time difference exhibits greater consistency with localization than the interaural level difference.
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1. Introduction

Binaural reproduction attempts to accurately re-
construct the desired auditory events in the listener’s
ear. Through binaural reproduction, listeners can per-
ceive the spatial impression of acoustic scenes that
have been recorded elsewhere or synthesized. This
technique is commonly employed in immersive vir-
tual reality (Lentz, 2008; Villegas, 2015). Both
headphones and loudspeakers can be used to re-
produce binaural signals. For loudspeaker reproduc-
tion, the crosstalk phenomenon inevitably occurs be-
tween the loudspeaker and the listener’s ears. Crosstalk
is defined as the sound transmitted from one loud-
speaker to the opposite ear, which always deteriorates
the sound source localization performance and timbre
(Masiero et al., 2011). Crosstalk cancellation (CTC)
filters eliminate or reduce the contributions from cross-
paths (Gardner, 1998). These filters are typically de-
rived by inverting the head-related transfer function

(HRTF) matrices, indicating that the CTC system
is best suited to anechoic environments. However, in
practical applications, CTC systems are routinely em-
ployed in various acoustic environments, such as lis-
tening rooms, offices, living rooms, etc. The reflections
in actual reproduction environments may disrupt bin-
aural cues, i.e., interaural time difference (ITD) and
interaural level difference (ILD).
Regarding the localization performance, researchers

have mainly focused on the influence of low-order re-
flections on the direction localization of the CTC
system. By simulating the low-order reflection from
an wall with different distances, it is possible to in-
vestigate the impact on virtual sources reproduced by
the CTC system, with the results explained in terms
of binaural cues (Kosmidis et al., 2014; Sæbø, 2001;
Tan et al., 2023). Other studies have also investigated
the localization performance of reflections on the
CTC system through loudspeaker experiments under
multiple reflective surfaces (Bahri, 2019; Sæbø, 1999).
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In general, existing studies have been restricted to sim-
plified reflection situations, investigating only a limited
order of reflections without considering the realistic
situation of a full sequence of reflections. On the other
hand, despite many studies that have investigated the
localization of real sources in reflective environments
(Blauert, 1997; Brown et al., 2015; Hartmann,
1983; Rakerd, Hartmann, 2010), differences exist in
the sound field generated by virtual and actual sound
sources. For a virtual source under reflective condi-
tions, the reflections are determined by the position,
input signal intensity, and phase of the loudspeakers
reproducing the virtual source (Tan et al., 2023).
However, in the case of a real source, the reflections
are only determined by the real source itself. There-
fore, the binaural signal received by the listener differs
significantly in the two cases, potentially resulting in
localization disparities. Given this, a systematic study
on the localization performance of virtual sources
reproduced by CTC systems under different reflective
conditions is essential.
This study aims to examine the localization of vir-

tual sources reproduced by the CTC system under
varying reflective conditions within enclosed spaces.
Although the geometric dimensions of rooms, absorp-
tion boundary conditions, and other parameters are
complex and varied, reflections can still be character-
ized by their temporal structure and intensity. There-
fore, we explore the effect of reflections with vary-
ing temporal structures and intensities on localiza-
tion of the virtual sound source reproduced by the
CTC system, where we manipulate the reflection in-
tensity and temporal structure by changing reverber-
ation time (RT) of the virtual room and the distance
between the listener’s position and the loudspeakers.
Considering that modifying the acoustic parameters in
a real room and conducting virtual source localiza-
tion experiments using loudspeakers are laborious and
time-consuming tasks, and implementing such tests
poses significant challenges. Thus, the research ob-
jectives are achieved using virtual reproduction tech-
nology (auralization) based on headphones. The cru-
cial aspect for virtual sound reproduction based on
headphones is to produce the correct binaural room
impulse response (BRIR). There are two main ap-
proaches for obtaining BRIRs in different reflective
environments: binaural measurement (Genuit, 1992;
Li, Peissig, 2020; Møller, 1992) and simulation
(Lehnert, Blauert, 1992;Møller, 1992). The mea-
surements are relatively accurate, but it can be chal-
lenging to alter the acoustic parameters of the room.
This difficulty can be solved by simulation methods,
if the simulation methods are validated by numerical
simulations and experimental measurements, such as
the validation of the reverberation room model sim-
ulated in the ODEON program (Nowoświat, Ole-
chowska, 2022) and room-acoustics diffusion theory

(Visentin et al., 2013). The image source method
(ISM) is commonly used for acoustic simulations.
The ISM is prevalent in architectural acoustics and
provides a valuable method for evaluating a room’s
acoustic quality (Allen, Berkley, 1979; Habets,
2010). The localization performance of sound sources
based on the BRIRs generated by the ISM and the
stochastic scattering method has been validated via
headphones, revealing that it is generally equivalent
to the measured BRIR (Rychtáriková et al., 2009).
In this study, the high-order ISM is employed to

simulate the spatial room impulse responses (SRIR) in
empty rectangular rooms of different sizes under var-
ious RTs and loudspeaker distances. The BRIRs un-
der different acoustic conditions are then synthesized
by the combination of SRIRs and the corresponding
HRTFs. Furthermore, the BRIRs are processed by a se-
ries of CTC filters, followed by a synthesis of binaural
signals at different target azimuths and conditions. The
subjective experiments via headphones are conducted
to examine the localization of virtual sound sources
generated by the CTC system under the above acous-
tic conditions. The localization results are analyzed in
terms of the ITD and ILD, which are calculated based
on a binaural auditory model that accounts for the
precedence effect, and discussed from the perspective
of psychoacoustics.
The rest of this paper is organized as follows: Sec. 2

introduces the CTC system and the method of generat-
ing BRIRs; Sec. 3 conducts the experiment about vir-
tual source localization under different reflective con-
ditions and analyze the experimental results; Sec. 4
analyses the localization cues for experimental results;
Sec. 5 conducts a discussion for the results, and fi-
nally Sec. 6 presents the conclusions to this study.

2. Simulation of the CTC system
in a virtual room

2.1. CTC system

For the two-loudspeaker CTC system in an ane-
choic room, the transmission of sound signals is shown
in Fig. 1. When the loudspeakers of the CTC system
emit sound, one of the listener’s ears can simultane-
ously receive signals from both the left and right loud-
speakers. To reduce directional distortion caused by
crosstalk, binaural signals should be processed through
a series of CTC filters before being delivered to the
loudspeakers. For the CTC system in the frequency
domain, the transmission of sound signals is given by

[
PL

PR
] = [

HLL HRL

HLR HRR
] [

CLL CRL

CLR CRR
] [

HL

HR
]E0, (1)

or
P =H ⋅C ⋅E, (2)
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where PL and PR are binaural pressures in an anechoic
room, respectively. HIJ are the elements of H, repre-
senting the HRTF of the I-th source to the J-th ear,
where I and J denote L or R. The elements CIJ of C
are the corresponding CTC filters. The HRTF of the
target virtual source are denoted as HL and HR. E0

is the monaural signal and E represents the binaural
signal.

RL

CLL CLR CRL CRR

+ +

PL PR

HLR

HRE0

HLL

HRL
HRR

S

HR

HL

HLE0

90° -90° 

0° 

Anechoic room

RL

CLL CLR CRL CRR

+ +

PL PR

HLR
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HLL

HRL
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S
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HL
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90° -90° 

0° 

Anechoic room

Fig. 1. CTC system in an anechoic room. The coordinate
system is represented in the diagram. The virtual source
is denoted by ‘S’; ‘L’ and ‘R’ represent the left and right

loudspeakers for reproduction.

To eliminate crosstalk, the product of H and C
should equal the identity matrix I, that is,

HC = I. (3)

In consequence, C is the inverse matrix of H. Due
to HRTFs are nearly singular and cannot be inverted
at some frequencies. To enhance the robustness of the
solution, we utilized a regularization method to com-
pute the matrix C (Kirkeby, Nelson, 1999). Con-
sequently, C can be computed as the pseudoinverse
of H:

C =(HTH+λI)
−1

HT, (4)

where the superscript T represents the conjugate trans-
pose, λ is the regularization parameter. In Eq. (4), λ can
be adjusted to 0.001 to balance accuracy and the sta-
bility of virtual source. The HRTFs used in the present
work were obtained from the simulated KEMAR
(Knowles Electronics Manikin for Acoustics Research)
artificial head HRTF database. The spectral range of
the HRTF starts at 50Hz and extends up to 22.5 kHz
with a spatial resolution of 1○ and an increment of
50Hz between each step, which was computed by the
boundary element method (Katz, 2001; Rui et al.,
2013) as executed in Mesh2HRTF (Ziegelwanger
et al., 2015).

2.2. BRIR simulations

To obtain BRIRs in rectangular empty rooms with
different reverberations, the high order ISM was used

to generate spatial room impulse responses (SRIR).
The ISM is based on the principle that a wavefront ar-
riving from a point source and reflections from an infi-
nite plane can be modeled as emanating from an image
source. This image source can therefore be visualized
as a mirror source. Consider a rectangular room with
dimensions of {Lx, Ly, Lz} and a sound source posi-
tioned at {sx, sy, sz}. The relative positions of the im-
age sources with respect to the receiver position can
be written as

(xi, yi, zi)=(
(1 − 2u)sx + 2nLx, (1 − 2v)sy + 2lLy,

(1 − 2w)sz + 2mLz

), (5)

where {u, v,w} and {n, l,m} are integer vector triplets;
u, v, and w can take values of 0 or 1, whereas the
possible values of n, l, and m are based on the order
of the reflections.
For simplification, only omnidirectional sound

sources are considered here, and RT are used to re-
place the variation of sound absorption boundary con-
ditions. Energy absorption by the walls of the room
and attenuation over distance for sound propagation
(Ocheltree, Frizzel, 1989) are integrated into the
calculations of the impulse responses of different or-
der image sources. In this study, the precise materials
corresponding to the given absorption coefficients were
not specified. For the sake of simplification, a uniform
absorption coefficient was assigned to all surfaces in
the simulation, thereby enabling a focused investiga-
tion of the impact of reverberation time and the delay
and intensity of reflected sound.
To incorporate enough reflections in the simula-

tion, the order of the image sources is configured to
be sufficiently high, ensuring that the energy attenua-
tion of the image source exceeds 60 dB at that order.
After performing the inverse discrete Fourier transform
(IDFT) on the corresponding HRTFs, the correspond-
ing head-related impulse responses (HRIRs) are ob-
tained. Next, the corresponding HRIRs were convolved
with the impulse represented by the direct source and
each image source, and the resulting responses were
summed to obtain the BRIR. The process of obtaining
BRIR is shown in Fig. 2.
Considering the loudspeaker angles in Fig. 1 in

a virtual room, we use the binaural room transfer func-
tion (BRTF) to replace the HRTF matrix in Eq. (1).
Finally, the binaural sound pressure produced by the
CTC system in a virtual room can be expressed as

[
P ′L
P ′R
] = [

BLL BRL

BLR BRR
] [

CLL CRL

CLR CRR
] [

HL

HR
]E0, (6)

where P ′L and P ′R are the binaural sound pressures
at each ear in a virtual room and BIJ is the transfer
function for the I-th loudspeaker to the J-th ear.
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3. Experiment: Different temporal structures
and intensities reflections

The change in the reflection environment (condi-
tion) is essentially a variation in the temporal struc-
ture and intensity of the reflection. Therefore, in this
section, we attempt to explore the effect of reflections
of different temporal structure and intensity on the lo-
calization of virtual source reproduction by the CTC
system by varying the acoustic parameters of the room
and loudspeaker arrangement.

3.1. Experimental design

3.1.1. Experimental condition

Due to the fact that variations in RT and loud-
speaker distance will respectively alter the intensity
and temporal structure of the reflections (with in-
tensity changing concurrently), both will also change
the direct-to-reverberant energy ratio (DRR), which
could potentially affect the localization of virtual
sound sources. Therefore, in the present experiment,
we consider controlling the RT and the loudspeaker
distance to modify the intensity and temporal struc-
ture parameters of the reflections.
Although the actual room types, acoustic parame-

ters within the rooms, and other factors are numerous
and highly complex, in order to qualitatively analyze
the impact of reflection intensity and temporal struc-
ture parameters on the localization of virtual sound
sources reproduced by the CTC system, we selected
two representative acoustical spaces of different scales
for the experiments.
The empty room 1O 6.4m (length) × 5.6m (width)

× 2.7m (height), and the empty room 2O measures

Table 1. Variation in reflection parameters due to RT changes.

RT
[s]

Minimum delay
[ms]

Intensity of the minimum
delay reflection [dB]

Total intensity
of early reflections [dB]

Total intensity
of late reverberation sound [dB]

0.3 3.90 −4.8 1.4 −0.8

0.8 3.90 −3.4 5.5 4.7

1.2 3.90 −3.2 6.4 8.0
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Fig. 3. Room and loudspeaker layouts. The distance be-
tween the sound source and the listeners is 1.5m. Coordi-
nate positions of both the listeners and the loudspeakers

are shown for each listening scenario.

8.0m (length) × 7.0m (width) × 3.5m (height). The
two rooms and their loudspeaker arrangements are
shown in Fig. 3. The center position of the listener’s
head is set at a nonspecial location in the central area
of the room. The initial distance between the sound
source and the wall is maintained at 2m or more to
avoid the occurrence of reflections with a small delay.
The sound source is positioned at a height of 1.2m,
aligning with the center of the listener’s head. The ar-
rangement angle of sound source is 60○.
Experiment condition 1: different intensities of

reflections. In this experiment condition, the listener
position and loudspeaker layout are identical to those
in the room 1O. RT values of 0.3 s, 0.8 s, and 1.2 s are
configured, encompassing the typical RTs of the acous-
tic environments used by CTC systems. Under these
conditions, only the intensity of the reflections will
change (as shown in Table 1, all reflections parameters
are calculated relative to the direct sound). In this
scenario, the minimum delay of the reflections remains
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Table 2. Variation in reflection parameters due to loudspeaker distance changes.

Loudspeaker
distance [m]

Minimum
delay [ms]

Intensity of the minimum
delay reflection [dB]

Total intensity
of early reflections [dB]

Total intensity
of late reverberation sound [dB]

1.50 3.90 −6.5 2.1 0.5

2.50 2.80 −3.9 6.3 4.4

3.50 2.20 −2.7 9.4 7.7

around 3.90ms, which is within the suppression range
of the precedence effect. Therefore, the temporal struc-
ture of the reflections does not change, while the in-
tensity of the early reflections increases by approx-
imately 5.0 dB and the late reverberation increases by
about 8.8 dB.
Experiment condition 2: different temporal struc-

tures of reflections. We employ the method of changing
loudspeaker distance to control temporal structures of
reflections. Under this experimental condition, the size
of the virtual room, the loudspeaker arrangement, and
the listener’s position are consistent with room 2O in
Fig. 3, and the RT is set to 0.7 s. The loudspeaker
distances are set at 1.50m, 2.50m, and 3.50m, re-
spectively, while the loudspeaker span angle remains
at 60○. As the distance of the loudspeaker increases,
the minimum delay of the reflection decreases from
3.90ms to 2.20ms, shifting from the suppression range
of the precedence effect (usually greater than 3ms) to
the range where the precedence effect begins to take
effect. Additionally, the intensity of the reflection in-
creases accordingly, as shown in Table 2. Unlike chang-
ing the RT, altering the loudspeaker distance simulta-
neously changes both the temporal structure and the
intensity of the reflections.

3.1.2. Subjects

The experiment involved eight participants, com-
prising five males and three females, with ages ranging
from 20 to 26 years old. All participants were Master’s
degree candidates. They self-reported as having typical
hearing abilities and had previously engaged in sound
localization studies. Compensation was provided for
their involvement in the experiment.

3.1.3. Experimental procedure

The BRIRs in the virtual rooms were obtained us-
ing the method described in Sec. 2, where the im-
age source order was set to 40. The calculations were
implemented in MATLAB on a personal computer.
Three stimuli were chosen: music (from Blue Danube),
speech (from a Chinese corpus read by a baritone), and
a 6-second duration of pink noise processed with fade-
in and fade-out. The pink noise was passed through
a 10 kHz low-pass finite impulse response filter and re-
produced using the Etymotic Research (ER-2) insert
earphone. The ER-2 earphones are inserted into the ear
canal and bypass the pinna’s acoustic effects, their cor-

responding headphone transfer function does not in-
clude pinna coloration. Given that the flat frequency
response of the ER-2, no additional headphone equal-
ization was applied. Each stimulus was presented ran-
domly and repeated three times. The average binaural
sound pressure level in the condition of the room 1O
was calibrated to approximately 65 dB(A). The vir-
tual source’s target azimuths were categorized into sev-
en distinct directions, ranging from −90○ to 90○, with
each direction separated by 30○ intervals.
Listening tests were performed in an isolated con-

trol room. Participants initially engaged in a training
session, where they listened to the test stimuli, be-
ing clearly informed that the stimuli could emanate
from any location within the frontal plane. Feedback
on responses was not given throughout the training
stage. The azimuth of the virtual source was deter-
mined using the Polhemus Fastrak G4�, a portable and
mobile wireless electromagnetic tracker that achieves
full 6-degrees-of-freedom localization. Each subject
held a lightweight carbon fiber rod in their hand with
a sensor attached at the end. When the subject
heard a stimulus, they pointed the sensor towards
the perceived location of the sound source. The sen-
sor recorded the position information and transmit-
ted it to a personal computer. After real-time pro-
cessing, the subject’s perceived angle was determined
and recorded. The experiments were divided into three
groups, i.e., different room types, different RTs, and
different loudspeaker distances. Subjects are required
to take a break every 15 to 20 minutes.

3.2. Experimental results

Figure 4 shows the virtual source localization re-
sults of the CTC system in rooms with different in-
tensities of reflections (different RTs). At a ±90○ tar-
get azimuth, the average perceived azimuth (absolute
value) under the RT condition of 0.3 s is slightly larger
than the average perceived azimuth under other RT
conditions. At other target azimuths, there is no signif-
icant difference in the average perceived azimuth under
different RT conditions (i.e., 0.8 s and 1.2 s). Addition-
ally, the standard deviation of the lateral perceived az-
imuth under RT conditions of 0.8 s and 1.2 s is slightly
higher than that under the RT condition of 0.3 s, with
a difference ranging from about 1○ to 4○. A multifac-
tor repeated measures analysis of variance (ANOVA)
showed that the main effects of RT and signal type
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Fig. 4. Localization results at different RTs (different intensities of reflections): a) speech; b) music; c) pink noise.
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Fig. 5. Localization results of different distance condition (different temporal structures of reflections):
a) speech; b) music; c) pink noise.

were not significant. Overall, the localization results in-
dicate that even with a significant increase in the inten-
sity of reflections, when the reproduction loudspeakers
are positioned away from the wall (more than 2m),
the subjects can still locate the virtual sound source.
The localization accuracy of the CTC system’s repro-
duced virtual sound sources does not significantly de-
cline. Therefore, when the loudspeakers are relatively
far from the wall, changes in RT within a certain
range, that is, changes in the intensity of the reflec-
tions (without altering the temporal structure of the
reflections), do not affect the localization of the virtual
sound source.
Figure 5 displays the localization results for the

cases of different loudspeaker distances (different tem-
poral structures of reflections). For front target sound
sources (0○, 30○, and −30○), there is little difference
in the perceived azimuth under different loudspeaker
distance conditions. However, for lateral target sound
sources (±60○ and ±90○), the perceived azimuth (abso-
lute value) tends to decrease with the increasing loud-
speaker distance. For example, in the case of the speech
signal and the 90○ target azimuth, the perceived az-
imuths at loudspeaker distances of 1.5m, 2.5m, and
3.5m are 80○, 72○, and 67○, respectively. In addition, as
the loudspeaker distance is raised, there is a noticeable
increase in the SD of the lateral perceived azimuths
(±60○ and ±90○). For instance, with a 1.5m loud-
speaker distance, the SD of lateral perceived azimuths
ranges from 6○ to 8○, whereas at larger loudspeaker dis-
tances, this range increases to 8○ to 13○. This indicates

that participants experience an increase in localization
variability when localizing virtual sources at larger dis-
tances.
The perceived azimuths were subjected to multifac-

tor repeated measures ANOVA. No significant main ef-
fects are found for either distance or signal type. How-
ever, pairwise comparisons with Bonferroni corrections
show that, for the −90○ target azimuth, a significant
difference exists between the localization for distances
of 1.5m and 3.5m (with different stimuli, all p < 0.05,
refer to the asterisks in Fig. 5 for more details). For 90○

and ±60○ target azimuths, significant differences exist
for some signals between the localization for distances
of 1.5m and 3.5m, e.g., for speech at 90○, p = 0.017.
The ANOVA analysis results confirmed the previ-

ously described trends in localization changes. Specif-
ically, at lateral target angles, the perceived azimuths
are smaller under conditions of greater loudspeaker
distances compared to smaller loudspeaker distances.
This indicates that the temporal structure of the reflec-
tions affects the localization of virtual sound sources.

4. Localization cues analysis

4.1. Binaural auditory model

To analyze the changes in binaural cues under dif-
ferent reflection conditions, a binaural auditory model
was introduced. The model architecture considered
throughout this section is shown in Fig. 6. The binaural
signal (right and left channels) was obtained by simu-
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Fig. 6. Binaural auditory model structure of the cross-correlation-based precedence effect.

lation, as described in Sec. 2. The peripheral compo-
nents contain the middle and inner ear. The influence
of the middle ear on the localization is typically omit-
ted, and its effect on the signal is uniform for both ears,
thus leaving the ITD and ILD unaffected. The inner
ear frequency selectivity was modeled using a gamma-
tone filter bank (Slaney, 1993) of 42 bandpass equiva-
lent rectangular bandwidth (ERB) channels. The cen-
ter frequencies of the filter bank varied from 100Hz to
10 kHz, because the main energy of the stimuli was be-
low 10 kHz. A gammatone filter bank is often used as
the front end in cochlea simulations, converting intri-
cate sounds into multi-channel activity patterns akin
to those observed in the auditory nerve. The nonlin-
ear behavior of the hair cell was then simulated by
applying half-wave rectification to the output of the
gammatone filters (Braasch, 2013;Cooke, 2005).
To account for the precedence effect, suppression

and release mechanisms for reflections were employed.
A segmented function was adopted to fit the original
function proposed in (Martin, 1997; Yost, Goure-
vitch, 1987). Figure 7 shows the delay-varying func-
tion of the precedence effect on the lag component
in localization. In the first few milliseconds, the influ-
ence of the delayed sound diminishes as the delay in-
creases. When the delay reaches about 3ms, the weight
is approximately 0, and this value is maintained until
the delay is 15ms. This stage corresponds to the in-
hibition process. As the delay continues to increase,
inhibition slowly releases, and the weight gradually in-
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Fig. 7. Function simulating the precedence effect

on lag sounds.

creases until the delay reaches 35ms. For delays greater
than 35ms, the weights remain unchanged.
In this model, the stage of binaural processing oc-

curs after the precedence effect. The binaural processor
was simulated using a cross-correlation model, with the
following cross-correlation function employed to obtain
the ITD:

ΦLR(τ) =

+∞

∫
−∞

BL,N (t + τ)BR,N (t)dt

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

+∞

∫
−∞

B2
L,N (t)dt

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

+∞

∫
−∞

B2
R,N (t)dt

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

1/2 , (7)

where BL,N and BR,N represent the binaural signals of
the N -th ERB channel. The range of ΦLR(τ) is from 0
to 1. This equation gives the maximum value of ΦLR(τ)
in the case of ∣τ ∣ ≤ 1ms, which represents the interau-
ral cross-correlation coefficient (IACC). Lower IACC
values (greater than 0) typically indicate a larger au-
ditory source width, potentially resulting in an in-
creased localization variability (SD of perceived az-
imuth) (Blauert, 1997; Morimoto, Iida, 1995).

4.2. Modified binaural localization cues

As described in Eq. (7), under anechoic conditions,
τ = τmax corresponding to this maximum value is de-
fined by the ITD (Xie, 2013). Under reflective condi-
tions, the interference between the reflected sound and
the direct sound causes severe fluctuations in binau-
ral factors with frequency variations (Kosmidis et al.,
2014; Tan et al., 2023). This also leads to apparent
multi-peak situations, where the ITD obtained from
the peak corresponding to the maximum value usu-
ally has difficulty matching the actual perceived direc-
tion of the sound source. Therefore, we calculated the
delay values corresponding to all peaks of the cross-
correlation function and selected the one closest to the
ITD value under anechoic conditions as the ITD in
the reflective sound environment (i.e., choosing a rea-
sonable ITD value) (Tollin, Henning, 1998).
The ILD is defined as

ILD(f) = 20 log10 ∣
PR(f)

PL(f)
∣, (8)
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where PR(f) and PL(f) represent the binaural sound
pressures at frequency f .
Drawing on the auditory system’s mechanism of

amalgamating spatial cues across different frequency
ranges, we calculated the average value and SD of
the ITD below 1500Hz (corresponding to ERB chan-
nels 1 to 21) and the ILD from 1.5 kHz to 10 kHz
(corresponding to ERB channels 22 to 42). Moreover,
the sensitivity of observers to the ITD in the fre-
quency range centered around 700Hz is widely rec-
ognized (Bilsen, 1973; Folkerts, Stecker, 2022;
Zwislocki, Feldman, 1956); this frequency band is
described as ‘the dominance region’. Here, we set up
an empirical frequency weighting function to simulate
this phenomenon (Stern et al., 1988). For frequencies
below 1200Hz, this function is fitted as a cubic polyno-
mial, and for frequencies above 1200Hz, the weight co-
efficients are equal to the value at 1200Hz. The weight-
ing function is shown in Fig. 8.
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Fig. 8. Empirical frequency weighting function of ITD.
The data were gathered by Raatgever (1980).

The weighted average ITDs under the different ex-
perimental conditions are shown in Fig. 9. Compared
with the localization results of Figs. 4 and 7, the ITDs
under these conditions exhibit analogous trends. First,
regardless of the experimental conditions, the ITD
increases with the target azimuth. Second, as shown
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Fig. 9. Weighted average of ITDs under different: a) RTs
(reflection intensities); b) distances (temporal structures).

in Fig. 9a, the ITD does not change with RT or the
intensity of the reflections at most target azimuths.
In Fig. 9b, with increasing distance, the delay of the
reflection decreases, the intensity of the reflection in-
creases, and the ITD of lateral target azimuths de-
creases. The above ITD trends generally align with
the trends observed in localization results. However, in
some cases, the ITD results do not match the localiza-
tion results (e.g., at −30○ under RT conditions of 0.8 s
or 1.2 s). This discrepancy may be due to the general
binaural auditory model not being applicable to all ex-
perimental conditions. Generally, even under larger RT
conditions, ITD factors can provide relatively accurate
localization information.
The average ILDs at different azimuths under the

different experimental conditions are shown in Fig. 10.
The absolute values are significantly smaller in the
higher reverberation condition than in the low re-
verberation condition. For example, the ILDs with
RT = 0.3 s are larger than those for RT = 1.2 s or 0.8 s.
This is because the late reverberant reflections can
come from any direction, causing both ears to re-
ceive late reverberant energy of equal intensity. Con-
sequently, ILD (absolute value) decreases towards zero
as the DRR decreases, making it less reliable (Shinn-
Cunningham et al., 2005). A comparison between the
results for the average ILDs and the localization re-
sults shows that there are almost no similar trends.
This validates the unreliability of ILDs under low-DRR
conditions.
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5. Discussion

5.1. Effects of reflection intensities (change RTs)

An increase in reflection intensities will decrease
both the DRR and the ILD. The ILD cues (high-
frequency cues) indicate that the perceived direction
tends to be biased toward the front as the RT in-
creases. However, the localization results in Sec. 3 show
that the perceived azimuths are largely unaffected by
changes in RT within the range of our experiments
(i.e., 0.3 s–1.2 s). Similar findings have been observed in
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the localization of real sound sources, where alter-
ing the RT (within the moderate reverberation range)
alone did not markedly reduce the subjects’ ability to
localize sound sources (Rakerd, Hartmann, 2010;
Rychtáriková et al., 2009; 2011). This indicates that
the ILD is not reliable under low-DRR conditions,
as reported in a previous study (Shinn-Cunningham
et al., 2005). In contrast, the results in Fig. 9a demon-
strate the robustness of the ITD against changes in
reflection intensities (RT), which agrees with the lo-
calization results. Owing to the large distance from
the loudspeaker to the wall, the earliest delay exceeds
11.40ms (calculated based on geometric distance). In
this situation, early reflections are largely suppressed
by the precedence effect, resulting in little effect on lo-
calization cues. Furthermore, late reverberation adds
uncorrelated signals with approximately equal ampli-
tudes into two ears, which decreases the IACC but has
little influence on the ITD. The IACC and ITD are
calculated using the maximum peak value within a cer-
tain delay range of the cross-correlation function and
the position at which this maximum peak value oc-
curs, respectively. The cross-correlation function, i.e.,
Eq. (7), can be rewritten as

ΦLR =
(BL,dir +BL,rev) ⊗ (BR,dir +BR,rev)

∣BL,dir +BL,rev∣∣BR,dir +BR,rev∣
, (9)

where BL,dir and BL,rev represent the direct sound and
reverberation sound of the left impulse response, re-
spectively, and similarly for the right impulse response.
The symbol ⊗ denotes the correlation operation.
We hypothesize that the role of early reflection in

localization is largely suppressed, and the late rever-
beration creates an ideal diffuse sound field. Hence,
the correlation between direct and late reverberation
sound, as well as the correlation with binaural late re-
verberation, is zero. Equation (11) can then be further
simplified as

ΦLR =
BL,dir ⊗BR,dir

(B2
L,dir +B

2
L,rev)

1/2
(B

2
R,dir +B

2
R,rev)

1/2 . (10)

Considering our experimental conditions, the late
reverberation increases with increasing RT, and so the
denominator in Eq. (10) becomes larger. Moreover,
the maximum peak value of the cross-correlation func-
tion decreases, indicating a decrease in the IACC (this
implies a slight increase in the SD of the perceived azi-
muths with increasing RT). However, the position of
the maximum peak remains unchanged, resulting in an
unchanged ITD.
Based on the above analysis, the possible reason

for the slight effect of the reflection intensities (RTs) on
the localization of virtual sources are that listeners are
more reliant on the ITD (low-frequency cues) than the
ILD (high-frequency cues) for the localization in a re-
verberant environment. Previous studies have shown

that subjects struggle to rely on the ITD for localiza-
tion when stimuli lack transient information (Hart-
mann, 1983). Although the pink noise in our study was
subjected to fade-in and fade-out processing, its local-
ization does not differ significantly from other tran-
sient signals. This can be attributed to the fact that
pink noise is composed of a series of small impulses,
which have random amplitude fluctuations. These fluc-
tuations are transient, meaning that the subjects are
still able to utilize the ITD information within it for
localization.

5.2. Effects of temporal structures of reflections
(change loudspeaker distances)

For a virtual room with constant acoustic pa-
rameters, changes in loudspeaker distance will alter
the temporal structure and intensity of the reflec-
tion. Under the condition of a 3.50m loudspeaker
distance, the minimum delay of the reflection is ap-
proximately 2.20ms. This delay falls within the range
where the precedence effect is actively suppressing
(below 3ms to 5ms). At this point, the relatively
high-energy early reflections are not completely sup-
pressed by the precedence effect. A series of par-
tially unsuppressed reflections interfere with the di-
rect sound, causing the ITD to fluctuate with fre-
quency. The average ITD changes with the loud-
speaker distance (as shown in Fig. 9), and this interfer-
ence also leads to a decrease in IACC (Gourevitch,
Brette, 2012; Rakerd, Hartmann, 2010; Shinn-
Cunningham, Kawakyu, 2003; Tan et al., 2023).
Moreover, the localization results in Sec. 3 demonstrate
the same trend as the ITDs, that is, as the distance
increases, the localization performance (including the
SD and deviation of localization) of lateral virtual
sources deteriorates. According to the auditory mech-
anism that merges locational data throughout various
frequency bands (Hancock, Delgutte, 2004; Xia,
Shinn-Cunningham, 2011), the degraded localization
performance of the virtual source may arise from fluc-
tuations in the ITD with frequency and the deviation
of the mean ITD.
Variations in both the RT and loudspeaker distance

change the DRR (as illustrated in Fig. 11), but only
the loudspeaker distance affects the localization of vir-
tual sources (as shown in Figs. 4 and 5). Even when the
DRR is similar under different conditions, e.g., an RT
of 1.2 s and loudspeaker distance of 3.5m, there may be
significant differences in the localization results. This
indicates that the DRR alone may not adequately pre-
dict the localization performance in rooms. The tem-
poral structure of reflections, i.e., the time distribution
of reflection sequences, may indeed play a crucial role
in the localization of the sound source. It is also reason-
able to believe that reflections with small delay have
a more disruptive effect on the localization of virtual
sound sources compared with later reverberations with
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Fig. 11. DRR of the right ear under different: a) RTS
(reflection intensities); b) distances (temporal structures).
DRR is calculated as the ratio of the sound pressure levels
between direct and reflected sound. As the DRR is obtained
from the impulse response of the right ear, the DRR of the
target azimuth on the right side (30○ to 90○) is expected to
be greater than that on the left side (−30○ to −90○).

higher intensity. These findings provide the following
guidance for CTC applications: even in rooms with-
out acoustic decoration, placing the loudspeaker far
enough from the wall (ensuring that the earliest delay
is much longer than 1ms) enables good localization
performance of the CTC system.

6. Conclusions

This paper has investigated the influence of dif-
ferent temporal structures and intensity of reflections
on the localization of virtual sources reproduced by
a two-loudspeaker CTC system. The reasons for the
variations in localization under different reflective con-
ditions have also been revealed.
The principal conclusions derived from this study

can be encapsulated in the following points:

– when the reproduction loudspeaker is located far
from the wall (larger than 2m in this work), in
the RT variation range of our experiments (0.3 s
to 1.2 s), the increase in the intensity of reflec-
tions does not significantly affect the localization
performance of virtual sound sources due to the
suppression of the precedence effect;

– when the reproduction loudspeaker distance in-
creases (moving away from the listener and closer
to the wall), the delay of early reflections de-
creases, and the temporal structure of the reflec-
tion changes. This results in a series of early re-
flections that are not fully suppressed interfering
with the direct sound. This interference causes lo-
calization deviation and an increase in the degree
of variation in the localization of lateral target an-
gles of the virtual sound source;

– the DRR alone seems inadequate for determin-
ing the localization performance of virtual sources
in reverberant environments. The temporal struc-
ture of reflections may play an important role in

sound source localization. Compared to the late
reverberation, early reflections with short delays
(especially for that not fully suppressed by the
precedence effect) have a greater impact on the lo-
calization of virtual sound sources;
– the average weighted ITD calculated based on the
binaural auditory model accounting for the prece-
dence effect can qualitatively explain the exper-
imental results to some extent, but the average
ILD does not.

It should be noted that, in this study, headphone-based
binaural reproduction was adopted, and an acoustic
simulation based on the ISM was employed. In reality,
due to the material properties and geometric irregular-
ities of room surfaces, complex absorption and diffuse
reflection occur. While the ISM simplifies the model-
ing process and improves computational efficiency, it
does not fully capture the acoustic response of real
environments. Therefore, the results and conclusions
presented in this study are limited to the specific
experimental conditions (purely specular reflections
in the room simulation and headphone reproduction)
adopted herein.
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Metamaterials with Fabry–Pérot (FP) resonance have proven effective for underwater ultrasound imaging.
The propagation phenomenon can be understood as a spatial filter with linear dispersion over a finite band-
width. However, conventional imaging techniques are constrained by the diffraction limit or rely on a strong
impedance mismatch between the metamaterial and water. In this paper, we propose a columnar array meta-
material designed for underwater imaging based on FP resonances and validate the proposed design through
numerical simulations. The acoustic pressure transmission coefficient, together with the normalized acoustic
pressure distribution, is analyzed to quantitatively evaluate imaging quality and verify the physical effective-
ness of the model. This novel structure enables deep subwavelength imaging underwater, maintaining excellent
and stable imaging performance within a 0.4 kHz bandwidth centered around the operating frequency. We
use air-filled metamaterials to create strong acoustic coupling and establish effective sound isolation. This ap-
proach significantly enhances imaging resolution, while optimizing energy loss at multiple interfaces, an issue
in previous studies. Additionally, in contrast to resonance- or refraction-based approaches such as Helmholtz
resonators or hyperlens designs, the proposed FP-resonant metamaterial offers an alternative mechanism for
achieving near-field subwavelength imaging through controlled wave transmission and confinement. We also ex-
amine the influence of various parameters, such as imaging distance, incidence distance, and array periodicity,
on imaging performance. The results demonstrate that the columnar array metamaterial holds great potential
for underwater ultrasound imaging applications.

Keywords: Fabry–Pérot (FP) resonance; metamaterial underwater imaging; wire array metamaterial; air-
filled metamaterials; finite element simulation.
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1. Introduction

In recent years, the design and experimental re-
alization of artificial metamaterials have yielded nu-

merous extraordinary physical properties (Dong et al.,
2023;Kawata et al., 2008). The core purpose of acous-
tic metamaterials is to achieve precise control of sound
wave propagation through artificially designed struc-
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tures, breaking the physical limitations of natural ma-
terials, and thereby enabling acoustic functionalities
that are unattainable with conventional materials at
specific frequencies or in particular scenarios. A holey-
structured metamaterial has demonstrated potential
for near-field acoustic imaging beyond the diffraction
limit, due to the strong coupling between the evanes-
cent field components of a subwavelength object and
the Fabry–Pérot (FP) resonances within the holes
(Amireddy et al., 2017). However, the use of holey-
structured metamaterial made from metals and poly-
mers in underwater imaging faces significant challenges
due to the low acoustic impedance mismatch and high
viscous losses (Laureti et al., 2020; Astolfi et al.,
2019; Estrada et al., 2008; Pendry, 2000; Chris-
tensen et al., 2008; Belov, Silveirinha, 2006).
To address these limitations, we introduce the

concept of a ‘wire array’ metamaterial, fabricated
from a polymer with an acoustic impedance closely
matching that of water. This design creates FP reso-
nances within the array, while the air-filled gaps be-
tween the wires enhance acoustic isolation, enabling
more efficient transmission of evanescent waves for
deep-subwavelength underwater imaging (Molerón,
Daraio, 2015). This approach paves a way for deep-
subwavelength imaging using polymer-based acous-
tic metamaterials underwater (Gulia, Gupta, 2019;
Deng et al., 2009).
It is well known that the resolution of traditional

acoustic imaging devices is limited by the diffraction
limit, which is half the operating wavelength, as these
devices are unable to capture evanescent waves (Zhou
et al., 2010; Yan, Yuan, 2015; Zhang et al., 2009;
Ambati et al., 2008). These evanescent waves carry
the fine details of objects but decay exponentially
with distance (Christensen, Garćıa de Abajo,
2010). To achieve subwavelength resolution beyond
the diffraction limit, hyperlenses and superlenses in
artificial acoustic metamaterials have garnered sig-
nificant attention by enhancing the transmission of
evanescent waves (Amireddy et al., 2016; Simonet-
ti, 2006). Hyperlenses are non-resonant, strongly
anisotropic metamaterials that can convert evanes-
cent waves into propagating waves (Liu et al., 2007;
Guenneau et al., 2007; Silveirinha et al., 2008).
In contrast, superlenses exhibit either single-negative
or double-negative acoustic characteristics, achieved
by using membrane-type metamaterials or Helmholtz
resonators (Li, Chan, 2004). Superlenses achieve sub-
wavelength resolution by reconstructing evanescent
components through negative-index behavior, whereas
Helmholtz-resonator designs utilize resonant enhance-
ment of local acoustic fields to improve spatial con-
finement. Compared to these resonance- or refraction-
based mechanisms, FP-resonant metamaterials offer
a pathway to realize near-field imaging through con-
trolling wave transmission and confinement within

the structure. The effectiveness of holey-structured
metamaterials has been demonstrated in air. In some
instances, enhanced evanescent wave magnitude has
been observed due to highly anisotropic equifrequency
contours.
However, traditional metal materials struggle to

create a strong impedance mismatch with water. To
address this, Astolfi et al. (2019) employed tung-
sten in additive manufacturing to achieve a sig-
nificant acoustic impedance mismatch with water,
thereby improving the propagation of evanescent
waves. Nonetheless, tungsten is challenging to pro-
cess and it is quite heavy, making it inconvenient for
underwater applications. Consequently, several holey-
structured polymer-based metamaterials utilizing FP
resonance have been proposed for subwavelength imag-
ing (Liu et al., 2009). However, for underwater imaging
with holey-structured metamaterials at higher fre-
quencies, key challenges arise, including multimode
coupling caused by weak acoustic impedance mis-
match and high viscous losses between water and
the metamaterial (Lafleur, Shields, 1995; Lau-
reti et al., 2014; 2016). Underwater imaging with
holey-structured metamaterials presents unique chal-
lenges. To address it, Laureti et al. (2020) introduced
the concept of using trapped air, where the acoustic
impedance mismatch between a polymer and water is
strongly enhanced when air is confined within the bulk
material in a particular way. Additionally, the authors
demonstrated that ultrasound imaging of broadband
subwavelength apertures in water can be achieved us-
ing FP resonance. While these studies reported on
polymer-based metamaterials functioning in water,
acoustic coupling from the water-filled holes into the
polymer is expected to degrade their performance
(Laureti et al., 2020).
Recent advances have also explored alternative

approaches to achieve subwavelength imaging be-
yond FP-based metamaterials. For example, neural-
network-assisted ultrasonic imaging methods, such
as the back propagation neural network-total focus-
ing method (BPNN-TFM), have demonstrated the
ability to resolve defects separated by only 0.5λ,
outperforming several existing super-resolution tech-
niques (Lin et al., 2025). In the optical domain,
semiconductor nanophotodetector (NPD) arrays, sim-
ulated with the multi-level multi-electron (MLME)
finite-difference time-domain (FDTD) method, have
achieved detection resolutions of about one-tenth of
the operating wavelength, comparable to near-field
scanning optical microscopy (Kim et al., 2008). These
studies highlight the diversity of subwavelength imag-
ing strategies across different physical platforms and
provide a broader context for situating the present
metamaterial-based approach, which offers a compact
and efficient solution for underwater acoustic appli-
cations.
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In this paper, we propose the use of polymers with
acoustic impedance closely matched to that of water as
columns in our metamaterial arrays. These arrays are
surrounded by air and sealed with thin cover plates
on both the front and back. The proposed design ad-
dresses the performance losses typically observed be-
tween water and polymers in traditional metamate-
rials, while it also eliminates efficiency reductions at
the water-polymer-air interfaces found in trapped-air
configurations. Furthermore, the significant impedance
mismatch between the polymer and the surrounding
air enhances the FP resonance. This design enables
the minimum feature imaging size to be optimized
to 0.12λ, compared to 0.135λ presented in the prior
studies. Our findings demonstrate that these air-filled
wire-array metamaterial exhibit outstanding imaging
performance at deep subwavelength scales, along with
a relatively broad bandwidth.
Through simulations, we optimized imaging fre-

quency, distance, and incident conditions, and we also
examined the effects of cover layer thickness and ar-
ray periodicity on imaging quality. These insights offer
valuable guidance for selecting material parameters.
With the right configuration, the metamaterials can
achieve optimal imaging performance and support po-
tential practical applications. The proposed air-filled
metamaterial design holds promise for several real-
world applications that benefit from high-resolution
underwater acoustic imaging. In the field of marine
exploration, such a structure could be deployed for
detailed seabed mapping and the detection of small-
scale defects in underwater infrastructures. The abil-
ity to achieve subwavelength imaging in the near field
allows fine structural details to be resolved, which
are often blurred by the diffraction limit in conven-
tional sonar systems. In addition, the approach is rel-
evant to biomedical diagnostics in aqueous environ-
ments, such as high-frequency ultrasound imaging of
tissues or monitoring of microscale biological processes.
The strong impedance contrast between the water-like
columns and the surrounding air provides efficient FP
resonance, enabling enhanced focusing and improved
image clarity. These capabilities suggest that the meta-
material design could serve as a compact, low-loss
platform for next-generation acoustic microscopes or
targeted biomedical sensing devices. Overall, position-
ing the proposed structure within such application-
oriented contexts highlights its potential impact be-
yond theoretical demonstration.

2. Structural designs

The FP resonance condition describes a scenario
in which an acoustic wave undergoes repeated reflec-
tions between two parallel boundaries within a cavity,
and constructive interference arises when the round-
trip propagation distance equals an integer multiple of

the wavelength. Under this condition, acoustic energy
becomes strongly confined within the cavity, result-
ing in resonance and enhanced transmission through
the structure. In the context of acoustic metamateri-
als, this mechanism plays a critical role in amplifying
evanescent components and thereby sustaining high-
resolution imaging performance. By exploiting FP res-
onances, the metamaterial can overcome part of the
diffraction limit and achieve subwavelength focusing
or imaging in underwater environments.
Among the various sonic metamaterial designs, ho-

ley structures can achieve specific properties, such
as extraordinary acoustic transmission or absorption.
Previous studies have shown that, when diffraction
effects can be neglected, the transmission process is
primarily governed by the fundamental propagation
modes within the holes. In this case, the zeroth-order
transmission coefficient of an acoustic plane wave can
be expressed as

t(λ, k) =
4 ∣S0∣

2Y exp (iqzh)

(1+Y ∣S0∣
2)

2
− (1−Y ∣S0∣

2)
2
exp (2iqzh)

, (1)

where the parallel momentum k =
√
k2x + k

2
y and qz =

k = 2π/λ is the propagation constant of the mentioned
waveguide mode, S0 = a/A and Y = k0/

√
k20 − k

2 (Zhu
et al., 2010). Objects positioned at the input surface of
the holey plate can achieve near-perfect acoustic im-
age transfer to the output side, owing to the plate’s
unique waveguiding properties. In this configuration,
the transmission coefficients of both the transmitted
and swift waves are unity. A simple analysis of a single
hole in a structure with an infinite impedance mis-
match with water predicts FP resonances at frequen-
cies fn, given by

fn = N
c

2H
, (2)

whereN is a positive integer representing the harmonic
number, c is the speed of sound in water (1480m/s),
and H is the metamaterial thickness (the channel
length) (Lorenzo et al., 2021).
Previous studies have also interpreted the efficient

transmission of subwavelength details in such struc-
tures through the concept of evanescent wave canali-
zation, in which high spatial-frequency components are
guided or transformed into propagating modes inside
the metamaterial. This mechanism has been widely
used to explain near-field image transfer in both acous-
tic and electromagnetic metamaterials.
However, these analyses typically rely on the exam-

ination of spatial frequency spectra, such as Fourier-
domain representations or explicit separation between
near-field and far-field contributions, to reveal how
evanescent components are transmitted through the
structure. In contrast, the present work focuses pri-
marily on near-field imaging behavior, characterized by
spatial pressure distributions, without performing a di-
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rect decomposition of the field into its spatial fre-
quency components. This approach emphasizes the
practical imaging performance of the designed meta-
material, rather than the detailed modal evolution in-
side the structure.
In this paper, we introduce a new class of acous-

tic metamaterials designed for near-field underwater
imaging applications. Figure 1 shows a typical struc-
ture, which consists of a soft wire array (easily pene-
trable by sound waves) with a width of H = 50mm.
The array forms a periodic structure with a lattice pa-
rameter A = 2mm (the distance between the centers of
two adjacent arrays), and features deep-subwavelength
square wires with a side length of a = 1mm. The gaps
between wires in the array are filled with air, sealing
the whole structure. This facilitates the generation of
acoustic isolation and greatly enhances imaging qual-
ity (Belov et al., 2008; Astolfi et al., 2019). All
the wires are arranged in parallel within a square hol-
low soft box, with front and rear cover thicknesses of
h = 0.5mm and wall thicknesses of c = 2mm. Both the
soft wire array and the hollow structure are designed to
be easily penetrable by underwater sound waves, using
materials such as soft polymers. This metamaterial has
an acoustic impedance closely matched to that of wa-
ter, eliminating the traditional coupling losses caused
by water-filled holes in polymer substrates, thereby
improving imaging efficiency. In the simulations pre-
sented in this paper, the array and the metamate-
rial hollow cubic shell around the array are modeled
with Young’s modulus of 2400MPa, a Poisson’s ratio
of 0.4, and a density of 1100 kg/m3. This ‘wire array’
metamaterial fabricated from polymers with acoustic
impedance close to that of water, supports the forma-
tion of FP resonances inside the array, facilitating the
transmission of evanescent waves and thus achieving
subwavelength underwater imaging.
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Fig. 1. Schematic diagram of a typical metamaterial
structure.

It is worth noting that the acoustic impedance
of the wires in array is close to that of water
(Zpolymer ≈ Zwater = 1.48×10

6 Pa ⋅ s/m), and the acous-
tic impedance of air around the wire array (Zair =

411.6Pa ⋅ s/m) is very low. The evanescent waves scat-
tered from the object under- water are confined within

each soft polymer wire, enhancing acoustic isolation
due to the strong acoustic impedance mismatch be-
tween the polymer wire and air (Zpolymer

Zair
≈ 3.6 × 103).

FP resonances occur in each individual polymer wire.
Since the polymer arrays exhibit FP resonances un-
der free boundary conditions in air, the significant
impedance mismatch between the polymer wires and
air ensures that viscous losses at the wire-air interface
can be safely neglected during evanescent wave prop-
agation in the metamaterial. The speed of sound and
density are shown in Table 1.

Table 1. Material properties.

Material Velocity [m/s] Density [kg/m3]

Water 1500 1000

Air 343 1.2

Polymer 1477.1 1100

3. Assumption of simulation

To enhance clarity and reproducibility, the key
modeling assumptions adopted in this work are sum-
marized further.
In this study, the interfaces between the front and

back cover plates, the array columns, and the hol-
low outer shell are assumed to be perfectly bonded,
without air gaps or leakage channels. This assump-
tion is supported by practical fabrication processes,
where robust bonding techniques generally ensure re-
liable sealing. Although minor imperfections may ex-
ist in practice, their effect on acoustic transmission is
expected to be negligible compared to the dominant
resonance and cavity–plate interactions.
The array columns are composed of metamaterial

whose acoustic impedance closely matches that of wa-
ter, while the surrounding regions are filled with air.
This configuration minimizes interaction between the
columns and the ambient medium, thereby suppress-
ing unwanted scattering and allowing FP resonance to
govern the system’s response.
The side walls are modeled as acoustically hard

boundaries, justified by their high stiffness and
firm bonding to adjacent components, which render
their vibrations negligible. In contrast, the thin front
and back cover plates, directly exposed to the sur-
rounding medium, are explicitly treated with acoustic–
structure interaction, because their vibration signifi-
cantly influences transmission.
All acoustic processes are considered linear, as the

operating pressure levels are well below the thresholds
for nonlinear effects such as harmonic generation, cav-
itation, or turbulence. Neglecting these effects avoids
unnecessary computational complexity while preserv-
ing physical fidelity.
These assumptions are commonly adopted in

acoustic metamaterial modeling and provide a bal-
anced trade-off between physical realism and compu-
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tational efficiency. While relaxing them might slightly
alter quantitative metrics such as resonance amplitude
or transmission efficiency, the essential FP resonance
behavior and the associated imaging performance re-
main unaffected.

4. Simulation and results

To validate the subwavelength imaging capabilities
of the wire array metamaterial, we conducted com-
prehensive 3D numerical simulations using COMSOL
Multiphysics. The simulation was performed in the
pressure acoustic-frequency domain, coupled with solid
mechanics, to study the problem in detail. In the acous-
tic domain, we applied plane wave radiation condi-
tions, sound absorption boundaries, and hard sound
field boundaries. In the solid mechanics domain, con-
strained boundary conditions were set. We generated
an acoustic-solid coupling boundary that encompasses
the surfaces of the front and back covers of the meta-
material, as well as the perimeter of the array columns.
Our overall model construction is mainly di-

vided into four parts, consisting of front-end water,
metamaterial, back-end water, and perfectly matched
layer (PML) (Fig. 2).

a) PM
L
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W
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Back cover
Front cover

Hard sound field boundaries

b)PM
L

W
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W
ater

Back cover
Front cover

Hard sound field boundaries

Fig. 2. a) Schematic of the simulation domain division;
b) schematic of the full simulation model.

As described previously, the metamaterial array
column is encapsulated within a hollow cubic shell,
with both ends of the cube sealed by front and rear
covers. The internal cavity of the cubic enclosure, ex-
cluding the space occupied by the array structure, is
filled with air and maintained in a hermetically sealed
condition. The front and rear cover thicknesses are de-
fined as 0.5A, where A is the period of the array. The
side length of each square array column is denoted as a,
the lateral (vertical) length of the array column is H,
and the wall thickness of the surrounding hollow cubic
shell is c.
We constructed an accurate simulation model to

replicate a underwater environment for various test
scenarios using COMSOL Multiphysics (Fig. 2), es-
tablishing the necessary theoretical conditions for the
simulation. A plane wave is emitted, passes through
the water, propagates to the metamaterial, generates
resonance, and then forms an image on the oppo-
site side. To ensure the simulation’s accuracy, we in-
cluded a PML (Fig. 2), beyond the water, with a wave

speed identical to that of water (1480m/s) to simulate
an infinite domain. Additionally, impedance matching
was applied around the metamaterial to ensure consis-
tency and physical realism in the simulation.
To simulate plane wave emission for the image

source, our approach is to first establish plane wave
radiation conditions using a plane of the same size as
the cover plate. As the sound wave propagates, we cre-
ate a working plane of the same size as the plane wave
emitting surface, referred to as ‘E’. Outside the ‘E’
region, we apply hard acoustic field boundary condi-
tions, while the area within the ‘E’ is left as a hollow
space. This allows the acoustic wave to pass through
the working plane and propagate toward the metama-
terial surface. The ‘E’ structure consists of three hori-
zontal rectangles, each measuring 46mm in length and
6mm in width, and one vertical rectangle measuring
62mm in length and 6mm in width, together form-
ing the shape of the letter ‘E’ (hereafter referred to
collectively as ‘E’).
This well-structured model is also facilitates precise

mesh generation, resulting in concise calculations that
meet the accuracy requirements for this work. We first
applied swept meshing to the water domains and the
PML, ensuring that the mesh size in the water region
is less than λ/6, with the PML consisting of 20 lay-
ers, which complies with the established meshing crite-
ria. Next, we applied mesh sweeps to the columns, the
hollow metamaterial cubic shell, and the air domains
within the metamaterials. The remaining connections
between the front and rear cover plates were con-
structed using a free tetrahedral mesh. We conducted
a grid convergence study by refining the mesh until the
resonant frequency variation was below 0.05%. In ad-
dition, we verified the numerical stability by adjusting
solver tolerance and frequency step size, both of which
showed negligible influence on the results.
Additionally, to better evaluate the imaging perfor-

mance on the receiving surface, we analyzed the sound
pressure distribution along a 3D cut line (Fig. 3). This
allowed us to observe the variation trends in sound
pressure. As illustrated, the 3D cut line lies along the
yz -plane at the intended focal distance, positioned at
the center of the hollow ‘E’ structure on the working
plane, thereby encompassing its three horizontal edges.
The vertical axis spans from 0m (near the lower edge)
to 0.092m (near the upper edge). By examining the
sound pressure distribution along this line, we can
assess the imaging quality. An optimal focusing ef-
fect should exhibit the following characteristics:
1) a smooth and continuous pressure profile,
2) peak sound pressure at the three edges of the ‘E’
structure,

3) minimum sound pressure in the regions between
the adjacent edges,

4) approximately uniform sound pressure magni-
tudes across all three edges.
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Fig. 3. 3D cut line.

In this model, since the sound wave propagates
in the negative x-direction, the sound pressure value
obtained on the imaging plane is inherently negative.
Therefore, the absolute sound pressure value should
be used for comparative analysis of the sound pressure
magnitude.
Before initiating the simulation test groups, we

measured the acoustic pressure transmission coefficient
of the material. The sound source setup is identical to
the one presented the previous section: a plane wave
is emitted from the rightmost plane, passing through
the hollow ‘E’ to reach the front cover of the meta-
material. The output face is defined as the end face of
the cover farthest from the sound source, from which
we extract the total acoustic pressure (Pout). The in-
put face, closer to the sound source, is used to extract
the total acoustic pressure (Pin). The sound pressure
transmission coefficient is calculated as the ratio of
Pout to Pin. We selected a frequency range of 27 kHz
to 34 kHz and plotted the sound pressure transmis-
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Fig. 4. Transmission coefficient range from 27 kHz to 34.0 kHz.

sion coefficient curve, as shown in Fig. 4. From the
curve, we observe that the transmission coefficient ex-
ceeds 0.82 within the frequency range of 30.6 kHz to
31.6 kHz, maintaining a broad bandwidth. This infor-
mation is crucial for identifying the optimal incidence
frequency. However, there may be a slight deviation
between this frequency range and the actual frequency
that yields the highest imaging quality.
The preceding analysis of the acoustic pressure

transmission coefficient (Pout/Pin) provides a quantita-
tive, physics-based measure of the metamaterial’s abil-
ity to transmit both propagating and evanescent com-
ponents. In principle, more detailed metrics such as the
point-spread function (PSF) or modulation transfer
function (MTF) could be extracted from full-wave sim-
ulations using tools such as the finite-difference time-
domain (FDTD) or transfer matrix method (TMM),
which compute the response to different transverse
wave vectors (kx,ky) (Zhu et al., 2018). The Pout/Pin

analysis employed here captures the essential physics of
energy transmission and validates the effectiveness
of the overall model, providing a simplified yet rigor-
ous basis for subsequent visual evaluation of near-field
subwavelength imaging performance.

4.1. Optimal imaging frequency comparison

To determine the optimal imaging frequency, the
incident frequency was first varied, revealing a range
between 27.5 kHz and 30 kHz in which clear imaging
was achievable. A step size of 0.1 kHz was used for
a frequency sweep. For these simulations, the imag-
ing distance of 1.5A and the incident distance of 0.1A
were tentatively set. The corresponding visual imaging
results are shown in Fig. 5, and the quantitative sound
pressure distributions across the image plane for se-
lected frequencies are shown in Fig. 7.
As shown in Figs. 5 and 6, we observed that

imaging quality is poor between 27.5 kHz to 28.5 kHz,



G. Li et al. – Subwavelength Underwater Imaging of a Wire Array Metamaterial. . . 483

27.5 28.0 28.5 29.0 29.5 30.0

Pa

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1

Fig. 5. Overall imaging frequency range
from 27.5 kHz to 30.0 kHz.
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Fig. 6. Optimal imaging frequency range
from 28.8 kHz to 29.2 kHz.

Fig. 7. Sound pressure curves in the frequency range
of 27.5 kHz to 30.0 kHz.

the sound pressure distribution along the three bound-
aries of the ‘E’ is uneven, and fine details are not well
presented. Additionally, at the vertical junctions, de-
focusing occurs, resulting in an unclear outline of the
object. When the frequency exceeds 29.2 kHz, a no-

ticeable thinning occurs at the center of the image
‘E’, which does not satisfy our imaging quality require-
ments. In contrast, Fig. 6 shows the optimal imaging
frequency range from 28.8 kHz to 29.2 kHz, where these
issues are resolved.
In the 29.5 kHz–30 kHz image, the second side of

the ‘E’ is not well imaged, the outline of the image
‘E’ improves, though some intermittent areas remain.
It can be seen from the sound pressure curve in Fig. 7
that, consistent with our imaging effect, the 27.5 kHz
sound pressure curve is not smooth near the 0.03mm
and 0.06mm positions. The reason is that there is de-
focusing at the boundary, and the background field
sound pressure and the transmitted sound pressure
cannot be distinguished well. This situation results
in poor presentation of image detail information. The
sound pressure transmission at the lowest peak of
the 28 kHz sound pressure curve, which is the second
side of ‘E’, is good, but the sound pressure transmis-
sion at the other two sides (the first and third lowest
peaks) differs and cannot be transmitted very evenly,
which caused the center of the ‘E’ to be clearly im-
aged while the surrounding areas appear blurred.
At 28.5 kHz, the curve is very smooth as a whole,

smooth at the position of 0.03mm and 0.06mm posi-
tions of the sound pressure curve section, and the
sound pressure at the three lowest peaks is nearly
equal. However, the 29 kHz curve shows higher trans-
mission sound pressure and a larger difference between
the maximum and minimum peaks, resulting in better
imaging quality. At 29.5 kHz curve, the absolute value
of the sound pressure at the second minimum point
is smaller than the transmission sound pressure at
the other two sides, that is, the resolution effect of the
second side of the ‘E’ is poor. At 30 kHz, the sound
pressure on the second side is not less than 0, so the
second side of the ‘E’ is almost invisible. After compari-
son, we determined that the optimal imaging frequency
lies between 28.8 kHz and 29.2 kHz (Fig. 6). This fre-
quency range demonstrates good imaging quality and
robustness.
Comparing the sound pressure curves in Fig. 8, it is

found that within the frequency range of 28.8 kHz to
29.2 kHz, the sound pressure curves are very smooth
and the imaging effect is good, but there is a slight
difference between the minimum and maximum peaks.
At 29 kHz, the transmission sound pressure values at
the three minimum peaks of the curve are closer. In
addition, there is a large difference between them and
the maximum peak, enabling better distinction of the
image details. The imaging effect at 29.2 kHz is infe-
rior to that at 29 kHz because the absolute value of
the sound pressure of the second side of the ‘E’ is
lower. Consequently, we selected 29 kHz as the opti-
mal frequency for subsequent analyses. The imaging
quality across the frequency range is summarized in
Table 2.
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Fig. 8. Sound pressure curves in the frequency range
of 28.8 kHz to 29.2 kHz.

Table 2. Imaging quality under different incident
frequencies.

Frequency
range
[kHz]

Imaging
quality

Main features / issues

27.5–28.5 Poor
Uneven sound pressure;
defocusing at junctions;

poor details

28.8–29.2 Good

Smooth curves;
balanced transmission
across edges;
robust imaging

29.2–30.0 Degraded
Central thinning,
edge degradation;

second edge fades at 30 kHz

4.2. Comparison of optimal imaging distance

After establishing the incident frequency at 29 kHz,
we proceeded to determine the optimal imaging dis-
tance. During this phase, the distance from the ‘E’
sound-emitting surface to the front cover plate of the
metamaterial was fixed at 0.1A, while all other pa-
rameters were kept constant. Cross-sections were gen-
erated at intervals ranging from from 0.1A to 3A to
adjust the receiving surface and obtain the correspond-
ing images (Fig. 9).
As shown in Fig. 9, the imaging distance has a sig-

nificant impact on image quality. At 0.1A, the imaging
surface is closest to the cover plate, where the sound
pressure distribution is relatively uniform and the out-
line of the ‘E’ is clear, with minimal edge defocusing.
This results in a more realistic reconstruction. As the
imaging distance increases, the absolute sound pres-
sure on the three sides of the ‘E’ decreases markedly,
the contrast with the background weakens, and junc-
tion details become blurred. This degradation arises
from evanescent wave decay: high-frequency spatial
Fourier components (kz > k0) diminish exponentially
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Pa

0

–0.5

–1

–1.5

Fig. 9. Imaging performance comparison from 0.1A to 3A
for optimal distance selection.

with distance e−∣kz ∣z, leading to the loss of subwave-
length information.
The sound pressure curves in Fig. 10 further val-

idate these observations. At 0.1A, the transmitted
sound pressure of the three sides of the ‘E’ reaches
its maximum, with noticeable peaks and stronger con-
trast between maxima and minima, which enhances
detail resolution despite some extra oscillations. With
increasing distance, the curves become smoother and
extra peaks disappear, but the difference between the
highest and lowest values diminishes, reducing im-
age sharpness. Moreover, the peak distribution indi-
cates that the second side of the ‘E’ is imaged more
clearly than the upper and lower sides, leading to un-
even reconstruction. Although small oscillations re-
main at 0.1A, these can be mitigated using filtering
or curve-fitting algorithms (Allen, Vlahopoulos,
2002). Based on these results, the optimal imaging dis-
tance was determined to be 0.1A. The imaging perfor-
mance at different distances is summarized in Table 3.

A
A
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A
A

Fig. 10. Sound pressure curves at imaging distances ranging
from 0.1A to 3A.



G. Li et al. – Subwavelength Underwater Imaging of a Wire Array Metamaterial. . . 485

Table 3. Summary of imaging performance at different
distances.

Imaging
distance
(A)

Imaging
quality

Main features / issues

0.1 Good
Clear outline;

uniform sound pressure;
minimal defocusing

0.5–1 Medium
Reduced contrast;

partial blurring at junctions;
uneven side imaging

>1 Poor
Significant loss of detail;

weak contrast with background
due to evanescent wave decay

4.3. Comparison of optimal incidence distances

Through comparative simulations, we established
that the optimal incident frequency is 29 kHz and the
best receiving distance is 0.1A. Based on these pa-
rameters, we further analyzed the influence of incident
distance to determine a more suitable configuration.
During this process, the receiving plane was fixed at
0.1A from the back cover plate of the metamaterial,
while the incident plane was adjusted from 0.1A to 3A
(Fig. 11). The model parameters and meshing were in-
dependently recalculated for each distance, while the
acoustic boundary conditions remained consistent with
the default boundary around the ‘E’.
As shown in Fig. 11, the imaging quality degrades

progressively as the incident distance increases. When
the incident distance is 0.1A, the ‘E’ image is sharp
and continuous, with a uniform sound pressure distri-
bution and minimal edge distortion. The short prop-
agation distance enhances evanescent wave coupling,

a) b) c)

d) e) f)
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Fig. 11. Comparison of optimal incidence distances: a) 0.1A; b) 0.3A; c) 0.5A; d) 1A; e) 2A; f) 3A.

resulting in strong transmitted sound pressure and
a clear reconstruction of all edges. As the incident dis-
tance increases to 0.3A–0.5A, the transmitted sound
pressure along the three edges of the ‘E’ decreases, ac-
companied by the emergence of stray peaks and mild
distortion in the image. At 1A, the central region of
the sound field becomes dominant, while the upper
and lower edges weaken, causing the ‘E’ to appear
blurred. When the incident distance further increases
to 2A–3A, the image of the ‘E’ becomes indistinct and
nearly disappears.
The sound pressure curves in Fig. 12 confirm this

trend. The decrease in transmitted sound pressure am-
plitude and the growing smoothness of the curves re-
flect the attenuation of high-frequency evanescent com-
ponents. Additionally, slight impedance mismatches

A
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A
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Fig. 12. Sound pressure curve for incidence distances from
0.1A to 3A.
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between the metamaterial covers and water cause mul-
tiple reflections between the ‘E’ baffle and the front
cover, introducing stray peaks and positional shifts
in the sound pressure extrema. These effects lead to
degradation of subwavelength imaging performance.
To preserve high-frequency information and minimize
wave interference, the incident plane should be posi-
tioned as close as possible to the metamaterial surface.
Consequently, 0.1A is determined to be the optimal in-
cident distance. The imaging performance at different
incident distances is summarized in Table 4.

Table 4. Summary of imaging performance at different
incident distances.

Imaging
distance
(A)

Imaging
quality

Main features / issues

0.1 Good
Strong evanescent coupling;
uniform sound pressure;
minimal edge distortion

0.3–0.5 Medium
Slight loss of edge sharpness;
reduced sound pressure;
appearance of stray peaks

1.0 Poor
Central sound field dominates;
weakened upper/lower edges;

image blurring

2.0–3.0 Very Poor
Strong reflection effects;
severe evanescent decay;
‘E’ shape almost invisible

4.4. Comparison of imaging quality after
changing cover thickness

As previously established, the optimal incident fre-
quency is 29 kHz, and both the optimal receiving and
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Fig. 13. Comparison of imaging quality for different cover thickness: a) 0.5mm; b) 1.0mm; c) 1.5mm; d) 2.0mm;
e) 2.5mm; f) 3.0mm.

incident distances are set to 0.1A. In the follow-
ing analysis, the thickness of the metamaterial’s front
and back cover plates was varied simultaneously from
0.5mm to 3.0mm to examine its influence on imag-
ing quality, while maintaining the optimal geometric
and acoustic conditions. To ensure accurate compar-
ison, the water region length in the model was kept
constant during all simulations.
As illustrated in Fig. 13, increasing the cover plate

thickness leads to a gradual degradation of imaging
quality. When the thickness is 0.5mm, the imaging of
the letter ‘E’ is clear and continuous, indicating good
acoustic transmission and minimal phase distortion.
As the thickness increases to around 1.0mm–1.5mm,
slight blurring and burrs appear along the middle
horizontal stroke of the ‘E’, and local discontinuities
emerge due to partial phase mismatching between the
transmitted and reflected sound waves. At 2.0mm,
the central line of the ‘E’ exhibits breakpoints, and
at 3.0mm, both the upper and lower horizontal edges
begin to curve and distort, with the overall image be-
coming defocused and noisy. This degradation is pri-
marily attributed to the multiple reflections within the
thicker cover layers, which induce phase interference
and attenuate the effective transmission of evanescent
components.
The sound pressure trends in Fig. 14 further

validate this observation. When the cover plate is thin
(0.5mm), the transmitted acoustic pressure along the
three edges of the ‘E’ reaches higher absolute values
and shows clear separation between peaks and troughs,
corresponding to sharp and distinct image bound-
aries. With increasing thickness, the sound pressure



G. Li et al. – Subwavelength Underwater Imaging of a Wire Array Metamaterial. . . 487

Fig. 14. Sound pressure curves for cover thicknesses ranging
from 0.5mm to 3.0mm.

curves become progressively irregular, with more spu-
rious peaks and reduced amplitude differences, indi-
cating uneven transmission and increased scattering
within the covers. At 2.0mm and beyond, the pres-
sure at the second edge of the ‘E’ weakens sharply,
while background pressure fluctuations intensify, caus-
ing image details to blur or disappear.
In summary, increasing the cover plate thickness

results in stronger internal reflection and enhanced
evanescent decay, leading to phase distortion and re-
duced subwavelength imaging fidelity. The 0.5mm
cover thickness provides the most stable and clear
imaging performance under the given conditions.

a) b) c)

d) e) f)

0

–0.8

–0.6

–0.4

–0.2

0.2

–1

–1.2

–1.4

–1.6

Fig. 15. Comparison of imaging quality with varying number of array columns:
a) 1; b) 2; c) 3; d) 4; e) 5; f) 6.

4.5. Comparison of imaging quality with changing
array cycles

The aim of this experiment is to maintain the size
and position of the letter ‘E’ while proportionally re-
ducing both the column bottom edge length (a) and
the array period, ensuring that their ratio to the orig-
inal model remains constant. In the original configu-
ration, each edge of the ‘E’ corresponds to the ortho-
center between two arrays. After scaling down, it is
crucial to preserve the alignment of the ‘E’ with this
orthocenter. However, if the dimensions of the ‘E’ re-
main unchanged, precise alignment of all three edges
with the intended array positions cannot be guaran-
teed. Therefore, the dimensions of the ‘E’ are fine-
tuned to ensure full alignment with the adjusted array
configuration. Throughout this process, both the inci-
dence and reception distances are maintained at their
optimal values, and the cover plate thickness is fixed
at 0.5mm to achieve the best imaging performance.
As shown in Fig. 15, the comparison across six sets

of experiments reveals that when only a single column
exists within the gap of the ‘E’, the resulting image
appears blurred, and the ‘E’ is indistinguishable at the
optimal imaging distance. With two columns, imaging
quality improves but remains suboptimal. When
the number of columns increases to three, the ‘E’
becomes distinctly visible, and its outline more closely
resembles that of the model at the incident plane. At
four columns, the image contours are clearer, with
straighter sides and nearly perpendicular intersections,
further enhancing fidelity to the original ‘E’. However,
as the number of columns increases to five and six,
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no substantial improvement is observed, indicating
that image quality reaches saturation at four columns.
From the sound pressure distributions shown in

Fig. 16, imaging with a single column is ineffective;
hence, analysis begins with two columns. When two
array columns are used, the absolute acoustic pressure
along the three edges of the ‘E’ is high, and the con-
trast with the background field is pronounced. How-
ever, numerous spurious peaks appear, and the back-
ground field is irregular. When the number of columns
increases to three, the absolute pressure at the ‘E’
edges slightly decreases, but the background field be-
comes more uniform. With four or more columns, the
sound pressure curves show minimal further change.
Although the absolute pressure at the edges contin-
ues to decrease slightly, the background field remains
evenly distributed, resulting in a stable and clearly de-
fined image.

Fig. 16. Sound pressure curves for array periods
corresponding to 2 to 6 columns.

It is worth noting that these imaging results were
obtained under idealized simulation conditions, with-
out considering real-world disturbances such as back-
ground acoustic noise, medium inhomogeneity, or ob-
ject motion, which are common in underwater envi-
ronments. Although this simplification enables a clear
evaluation of the intrinsic imaging performance of the
proposed metamaterial, future work will incorporate
these factors to assess the robustness and practical
applicability of the system under realistic underwater
conditions.

5. Conclusions

This work demonstrated that by placing the im-
age plane at a specific distance from the output plane,
a faithful representation of the ‘E’ pattern underwater
can be achieved. The imaging quality is influenced by
several factors, including incident frequency, incident

distance, imaging distance, cover thickness, and array
period. By adjusting the frequency, we can achieve
high-quality imaging within the range of 28.8 kHz to
29.2 kHz, with an optimum frequency of 29 kHz, indi-
cating that the metamaterial exhibits a broad band-
width response. We determined the optimal incidence
and imaging distances to be 0.2mm from both the
front and rear cover plates.
Additionally, we found that excessive cover thick-

ness negatively impacts imaging quality, with the op-
timal thickness being 0.5mm. Furthermore, we con-
firmed that the array period plays a significant role
in enhancing imaging quality. As the number of ar-
rays passing through the ‘E’ increases, the imaging
quality improves; however, when more than four ar-
ray columns are present, the quality tends to saturate
and does not significantly change with the addition of
more columns. These findings confirm that a wire ar-
ray metamaterial functions effectively as a near-field
acoustic imaging device capable of operating at very
deep subwavelength scales underwater. This imaging
capability and the associated principles provide some
theoretical support for applications. including medical
ultrasonography, micro-device flaw detection, and ul-
trasonic non-destructive evaluation.
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While acoustic vector sensors (AVS) are well-established for detection and direction-of-arrival (DOA) esti-
mation using co-located pressure and particle motion (PM) measurements, their potential for passive range es-
timation remains largely unexplored. This paper introduces a novel single-AVS method for passive range
estimation to an acoustic monopole source by exploiting the fundamental near-field dominance of PM energy.
We derive the frequency and the distance dependent ratio (ξ) of kinetic to potential acoustic energy density –
a key near-field signature inaccessible to conventional hydrophones. By leveraging simultaneous AVS pressure
and PM velocity measurements, our method estimates ξ, inverts the monopole near-field model to obtain the
Helmholtz number, and directly computes the range. Crucially, we demonstrate that PM sensors offer a po-
tential signal-to-noise ratio (SNR) advantage over pressure sensors within the near-field (>7.8 dB). Validation
under simulated noise conditions shows accurate range estimation (RMSE <10%) for low-frequency sources
(<100Hz) within 8m–25m ranges at 0 dB SNRs, with performance degrading as frequency increases or SNR
decreases. Critically, robustness is confirmed using recorded basin noise profiles, overcoming the isotropic Gaus-
sian noise assumption. This technique extends AVS functionality beyond DOA, enabling single-sensor passive
ranging without arrays, environmental priors, or reference signals where conventional methods fail.
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1. Introduction

In underwater environment, the use of electromag-
netic waves in detection systems faces significant chal-
lenges due to attenuation, scattering, and dispersion
(Kaushal, Kaddoum, 2016). However, acoustic de-
tection systems have proven to be more effective. The

Table 1. Comparison of different wireless underwater technologies (Kaushal, Kaddoum, 2016).

Parameter Acoustic RF Optical

Attenuation 0.1 dB/km–4 dB/km 3.5 dB/m–5 dB/m 0.39 dB/m (ocean)
11 dB/m (turbid)

Speed 1500m/s 2.3m/s× 108m/s 2.3m/s× 108m/s

Distance Up to km ≤10m ≈ 10m–100m

Frequency band 10 kHz–15 kHz 30MHz–300MHz 5Hz× 1014 Hz

widely used SONAR system, which is based on acous-
tic waves, provides a larger coverage area compared
to electromagnetic wave-based systems such as radio
frequency (RF) and optical systems (Kaushal, Kad-
doum, 2016; Eleftherakis, Vicen-Bueno, 2020)
(Table 1). Other techniques, such as magnetic detec-
tion systems, may also be employed; however, they are

https://acoustics.ippt.pan.pl/index.php/aa/index
mailto:saeir.mahmoud@hiast.edu.sy
https://creativecommons.org/licenses/by/4.0/
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limited by the low signature of certain underwater ob-
jects (Soldani et al., 2022).
SONAR systems are categorized as active or pas-

sive (Abraham, 2019). Active systems emit high-
energy pulses for echo analysis, enabling precise rang-
ing, at the cost of high-power consumption, ecolog-
ical impact, and operational expense (Hari et al.,
2015; Jin, Xu, 2020); conversely, passive systems lis-
ten to ambient sounds, providing low-cost, energy-
efficient, and environmentally benign surveillance (Jin,
Xu, 2020).
Acoustic fields arise from pressure fluctuations,

modeled as monopoles (pulsating spheres), dipoles
(out-of-phase monopole pairs), or higher-order multi-
poles (Kalmijn, 1988). These generate two measur-
able components: scalar pressure and the vector PM,
aligned with the wave direction in the free far-field
(Jansen et al., 2017). The pressure-PM relationship,
defined by specific acoustic impedance, is real-valued in
the far-field but complex in the near-field (Lin et al.,
2021). It is a critical distinction for ranging. Sensors
diverge in capturing these: hydrophones measure pres-
sure, while acoustic vector sensors (AVS) capture PM
(velocity/acceleration) and optionally pressure (Ti-
chavsky et al., 2001).
Single-hydrophone systems detect divers (Cole,

2019; Tu et al., 2020; Korenbaum et al., 2020), ships,
and biological sources (Ferguson et al., 2010) but fail
at passive ranging without environmental priors. Hy-
drophone array enable direction-of-arrival (DOA) es-
timation via beamforming (Krishnaveni et al., 2013)
or cross-correlation (Sutin et al., 2013) but incur pro-
hibitive cost and deployment complexity. While single
AVS advances support DOA estimation (Zhao et al.,
2018) and detect sources (Yuan et al., 2022), such
as divers (Mahmoud et al., 2025), air gun or boats
(Jansen et al., 2017; 2019), they remain prohibitively
expensive (Jansen et al., 2017), and research over-
whelmingly focuses on DOA – neglecting passive rang-
ing. Existing ranging techniques such as triangula-
tion (Abraham, 2019), multipath delays (Abraham,
2019; Lohrasbipeydeh et al., 2013; Ferguson et al.,
2010), dispersion curves (Li et al., 2023), or matched
filter (Liang et al., 2022) require arrays, environmen-
tal knowledge, shallow-water constraints, or reference
signals.
The fundamental near-field characteristic of PM

(exhibiting 1/r2 decay versus pressure’s 1/r decay) re-
mains unexploited for passive monopole ranging. We
introduce a novel, the unified AVS framework that
mathematically models monopole near-field/far-field
signatures and fuses pressure energy, particle kinemat-
ics, and frequency-dependent decay profiles to jointly
estimate the range and DOA using a single sensor. Our
key contribution enables single-sensor passive ranging
without arrays, environmental priors, or reference sig-
nals.

The structure of this paper is arranged as follows:
Sec. 2 outlines the fundamental equations governing
the propagation of acoustic signals in the underwater
environment; Sec. 3 presents an overview of the sen-
sors employed in the detection and localization process,
along with the challenges associated with their utiliza-
tion. The concepts of near-field and far-field, as well as
the relationship between pressure signal and PM sig-
nals within each field, are discussed in Sec. 4. Section 5
presents and evaluates our proposed methodology for
monopole source ranging. Finally, Sec. 6 concludes the
paper by summarizing the key findings and their im-
plications.

2. Underwater acoustic wave propagation

Acoustic wave propagation in underwater environ-
ments originates from pressure disturbances at the
source, governed by the wave equation under assump-
tions of a homogeneous, lossless, dispersionless, and
unbounded medium (Abraham, 2019):

∆2p −
1

c

∂2

∂t2
p = 0, (1)

where p is the acoustic pressure, c is the sound speed
in water, and t is time.
For a monopole point source (this study’s model),

the pressure at a distance r is

p(r, t) =
p0
r
cos (2πft − kr), (2)

where p0 is the pressure magnitude at 1m, f is the
frequency, k = 2πf/c is the wavenumber.
As the wave propagates, it induces oscillatory mo-

tion in water particles. The relationship between pres-
sure and PM is defined by Euler’s equation which is
given as (Lin et al., 2021):

dv
dt
= a = −

∇p

ρ
, (3)

where ρ is the water density, v is the particle velocity,
and a is the particle acceleration.
Substituting Eq. (2) in Eq. (3) yields:

a(r) = −i2πf
p(r, t)

ρc
(1 +

i

kr
)u, (4)

where u is the radial unit vector in spherical coordi-
nates. And the velocity formula v(r, t) is given as

v(r) = −
p(r, t)

ρc
(1 +

i

kr
)u. (5)

Another important term is the intensity I, rep-
resenting the power flux per unit area, is the time-
average product of pressure and particle velocity
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(Abraham, 2019). It is given by the following equation
(Nedelec et al., 2021; Hovem, 2007):

I(r) =
1

2ρc

p20
r2

u. (6)

This energy propagates as potential and kinetic en-
ergy. While the first corresponds to pressure and is
more likely to be measured by hydrophones, the sec-
ond corresponds to the PM and is more likely to be
measured by PM sensors. The formula of potential en-
ergy density Epot is given as (Nedelec et al., 2021):

Epot =
1

2ρc2
p2rms =

1

4ρc2
p20
r2

, (7)

where prms =
p2
0√
2r
is the root-mean-square pressure.

And the formula of kinetic energy density Ekin is
given as (Nedelec et al., 2021):

Ekin =
ρ

2
v2rms =

1

4ρc2
p20
r2
(1 +

1

(kr)2
), (8)

where vrms is the root-mean-square PM velocity.
Critically Epot decays solely with distance (∝ 1

r2
),

while Ekin exhibits frequency-dependent and distance-
dependent decay. This fundamental contrast in en-
ergy decay profiles underpins our proposed range-
estimation method exploiting the near-field PM dom-
inance.

3. Sensors employed for acoustic source
detection and localization

Underwater acoustic systems utilize two primary sen-
sor types for detection and localization: pressure sensors
(hydrophones) and acoustic vector sensors (AVS).
These may be deployed singly or in arrays, with the se-
lection driven by application-specific requirements for
precision, cost and environmental constraints.

3.1. Pressure sensors (hydrophones)

Hydrophones convert incident acoustic pressure
waves into electrical signals via piezoelectric elements
(Nedelec et al., 2021). Under plane-wave conditions, the
pressure p and the particle velocity v relate through
the specific acoustic impedance z0 = ρc as following:

p = z0v. (9)

Hydrophones exhibit an omni-directional response
when their size is small relative to the wavelength of
the acoustic signal of interest. In practice, their fre-
quency response typically ranges from a few hertz to
several hundred kilohertz (Abraham, 2019; Saheban,
Kordrostami, 2021), making them widely used in un-
derwater detection systems.

3.2. Acoustic vector sensor AVS

AVS captures both pressure and vector PM (ve-
locity/acceleration), enabling DOA estimation. Two
implementation approaches exist: the inertial method
and the pressure gradient method. The first method
utilizes accelerometers or geophones to directly mea-
sure the particle acceleration or velocity. This approach
contends with practical challenges including suspen-
sion system, geometry, and buoyancy (Gray et al.,
2016).
Alternatively, the pressure gradient method derives

the particle velocity from spatial pressure differences.
For the x-component the Euler equation yields:

ax(0, t) =

t

∫
τ=0

vx(t)dτ

≈
1

ρ

p (x + ∆x
2
, t) − p (x − ∆x

2
, t)

∆x
, (10)

where ∆x is the spacing between the two hydrophones.
Multi-axis particle measurements require additio-

nal hydrophones (e.g., Silvia et al. (2002) used six
sensors). Challenges include optimal spacing, calibra-
tion, and bandwidth limitation (Nedelec et al., 2021;
Gray et al., 2016).
The PM velocity or acceleration is an oscillatory

directional quantity that exhibits 180-degree ambi-
guity. This ambiguity can be resolved by measur-
ing the acoustic intensity, a non-oscillatory quantity
that aligns with the direction of wave propagation
(Nedelec et al., 2021). Consequently, incorporating
a pressure sensor with a multi-axis velocity or acceler-
ation sensor results in an intensity vector sensor com-
monly referred to as an intensity probe or is a key
component constituting the complete AVS system.
Furthermore, the dipole directivity pattern (figure-of-
eight response) inherent to PM sensors (Yuan et al.,
2022) provides a 4.8 reduction in isotropic ambi-
ent noise compared to omnidirectional (Levin et al.,
2012).

4. Near-field and far-field contrast

The PM equation, described by Eq. (5), governs
acoustic wave propagation and reveals a fundamen-
tal contrast between the near-field and far-field re-
gions surrounding a source. This equation comprises
two primary terms: the first term p(r,t)

ρc
represents the

propagating acoustic wave (far-field component), while
the second term ip(r,t)

ρckr
represents the local hydrody-

namic flow (near-field component) (Kalmijn, 1988).
Regions surrounding a source can be divided into three
zones as:
– far-field (kr ≫ 1): the local flow component be-
comes negligible compared to the propagating
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Fig. 1. Variation of energy ratio ξ with frequency and source distance for an acoustic monopole (logarithmic scale).

wave. Pressure and PM velocity are in phase and
related by specific acoustic impedance z0 = ρc as
in Eq. (9) and it is real and constant;
– near-field (kr ≪ 1): the local flow dominates over
the propagation wave component. Pressure and
PM velocity exhibit a quadrature relationship
(90-degree phase difference), and the acoustic
impedance becomes complex, frequency-depen-
dent, and varies with distance r and is given as
z = (p(rt))/(v(rt)) = −iρckr. Characteristically,
particle velocity decays faster with distance than
pressure;
– transition zone (kr ≈ 1): between these distinct
regions lies a transition zone (intermediate zone)
where neither component dominates completely.

The Helmholtz number (He = kr), representing the
number of wavelengths within the distance r (Jansen
et al., 2017), is the key parameter distinguishing these
regimes. Since k = 2πf

c
, He is not solely dependent on

the distance r but also on the frequency of the sig-
nal. The value of r becomes particularly significant for
low frequencies. For example, a 20Hz source, the near-
field is bounded by a distance r of approximately 12m
(considering c = 1500m/s), whereas it is bounded by
approximately 1m for a frequency of 240Hz.
The magnitude of PM velocity relative to pressure

increases as the Helmholtz number decreases (He→ 0).
Consequently, the contribution of kinetic energy to the
total energy also increases. This relationship can be ob-
served in the energy equations represented by Eqs. (7)
and (8). To quantify this relationship, we defined the
energy ratio ξ as the ratio of time-average kinetic en-
ergy density to potential energy density:

ξ =
Ekin

Epot

= ρ2c2
v2rms

p2rms

= (z0
vrms

prms
)
2

= 1 +
1

(kr)2
. (11)

In the far-field, prms = z0vrms, leading to ξ ≈ 1, in-
dicating equipartition of energy. As He decreases, ξ in-
creases significantly, reflecting a greater dominance of
kinetic energy over potential energy as shown in Fig. 1.
This figure graphically represents Eq. (11), it plots ξ

against a distance r for selected frequencies on loga-
rithmic axes, clearly showing this increase within the
near-field. For instance, at r ≈ 8m and f = 30Hz
(kr ≈ 1), ξ ≈ 2, meaning that the kinetic energy is
nearly twice the potential energy.
This energy distribution difference has implications

for the sensor SNR (signal-to-noise ratio). Consider
a source producing the potential energy Epot and the
kinetic energy Ekin = ξEpot at the sensor location. Un-
der isotropic ambient noise conditions (Levin et al.,
2012), the kinematic noise energy Enkin

and potential
noise energy Enpot satisfy Enkin

= 1
3
Enpot . Under these

assumptions, the SNR at the input of a PM sensor
SNRv and a pressure sensor SNRp satisfy the follow-
ing equation:

SNRv =
Ekin

Enkin

= 3 ⋅ ξ
Epot

Enpot

= 3 ⋅ SNRp (1+
1

(kr)2
). (12)

This yields a substantial near-field SNR gain for
PM sensors (>7.8 dB at kr < 1). While theoretically
significant, practical limitations such as bandwidth
constraints in pressure-gradient AVS implementations
may mitigate this advantage.

5. Estimating source distance using energy ratio

While conventional AVS applications focus on de-
tection and DOA estimation, this work proposes a nov-
el method for estimating the distance to an acoustic
source using a single AVS. This approach exploits the
fundamental near-field energy relationship characterized
by the ratio ξ (Eq. (11)), leveraging simultaneous pres-
sure p and PM velocity v(t) = [vx(t) vy(t) vz(t)]

T

measurements intrinsic to the AVS.

5.1. Methodological framework

The processing chain (Fig. 2) follows these steps:

1) the AVS outputs four time-domain signals: pres-
sure p(t) and orthogonal velocity components
vx(t), vy(t), vz(t), related by:
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Fig. 2. Proposed processing chain for monopole range estimation using single AVS.

v(t) = [vx(t) vy(t) vz(t)]
T
= −

p(t)

ρc
(1 +

i

k
)

⋅ [cos θ cosϕ sin θ cosϕ sinϕ]
T
, (13)

where ϕ is the elevation angle and θ is the azimuth
angle. In the DOA task the estimation of these two
angles are done;

2) for a tonal source at frequency fs, spectrum esti-
mation is performed using the fast Fourier trans-
form (FFT) which also serves in frequency esti-
mation f̂s . The potential energy density estimate
is calculated as

Êpot =
1

2ρc2
p̂ 2
rms =

1

4ρc2
∣P (fs)∣

2
, (14)

where P (fs) denotes the FFT coefficient of p(t)
at fs.
The kinetic energy density estimate follows as

Êkin =
ρ

2
v̂ 2
rms

=
ρ

4
(∣Vx(fs)∣

2
+ ∣Vy(fs)∣

2
+ ∣Vz(fs)∣

2
), (15)

with Vi(fs) representing FFT coefficients of ve-
locity components vi(t), where i corresponds to
the Cartesian coordinates x, y, or z, presents this
method;

3) the energy ratio ξ is computed as:

ξ̂ =
Êkin

Êpot

; (16)

4) the Helmholtz number He = kr is estimated by
inverting the monopole near-field relationship as
following:

Ĥe =
1

√
ξ̂ − 1

; (17)

5) finally, the range is derived:

r̂ =
cĤe

2πf̂s
. (18)

For M independent monopole sources emitting
distinct, non-overlapping frequencies {fs,1, ..., fs,M},
the method estimates Êk(fs,m) and Êp(fs,m) across
frequencies. Energy at each fs,m are isolated via
frequency-bin selection, and Eqs. (16)–(18) are applied
per source to estimate individual ranges r̂m.

5.2. Performance validation

To validate the proposed method, we first per-
formed numerical simulation of monopole radiation in
a homogeneous medium. The following assumptions
and configurations were adopted:

– sensor model: the AVs modeled as a co-located
unit consisting of one omnidirectional pressure
sensor and three orthogonal particle velocity sen-
sors. The pressure and velocity components were
assumed to be spatially collocated, consistent with
an analytical model in Eq. (13);
– medium parameters: a homogeneous, isotropic me-
dium with sound speed c = 1500m ⋅ s−1 and density
ρ = 1000 kg ⋅m−3;
– source model: a monopole source emitting tonal
signals at frequencies {30, 60, 120, 240, 480}Hz.
The source is placed at (θ, ϕ) which are ran-
dom generated, separated from AVS by a distance
r ∈ [1, 100]m, as shown in Fig. 3. Multipath and
depth-related effects were neglected;
– noise model: independent additive white Gaussian
noise (AWGN) was applied to each channel. SNR
values tested were −6 dB, 0 dB, and 6 dB per chan-
nel;
– computational environment: simulation was im-
plemented in Matlab. 1-second analysis window
was used. For each configuration, 1000 Monte
Carlo trials were run;
– performance metric: the range estimation error

δerr was quantified using the relative error defined
in Eq. (19):

δerr (%) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

100
∣r − r̂∣

r
ξ ≥ 1,

100 ξ < 1.

(19)
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Fig. 3. Geometry of the monopole source relative to AVS.
The Cartesian unit vectors (Vx,Vy,Vz) define the sensor’s
coordinate frame. The source direction is described by the
azimuth (θ) and elevation (ϕ) angles, the radial unit vector

(u), and the radial distance (r).

The resulting RMSE (root mean square error)
of δerr is calculated and logarithmically presented in
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Fig. 4. Range estimation RMSE at SNR = −6 dB.
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Fig. 5. Range estimation RMSE at SNR = 0 dB.
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Fig. 6. Range estimation RMSE at SNR = 6 dB.

Figs. 4–6, demonstrating the method’s range-frequency
dependence. Figure 5 shows that estimation with
a 10% error, for SNR = 0 dB, is achieved for distances
up to 25m when dealing with a source emitting 30Hz
frequency signal. This distance decreases to 6.6m
when the source frequency increases to 120Hz. These
results exhibit an enhancement when SNR increases:
in Fig. 6, with SNR = 6 dB, the 10% error is extended
to 37m at 30Hz. In contrast, when SNR decrease to
−6 dB (Fig. 4), the maximum distance decreases to
17m. Overall, all curves in Fig. 5 will rightward shift
with increasing the SNR (Fig. 6), while decreasing
SNR causes the curves to shift towards the left (Fig. 4),
confirming a strong SNR-frequency dependence.

5.3. Limitations and operational guidelines

The method achieves the highest accuracy where
kr ≲ 1 (x ≳ 2) exemplified by <6% error at 30Hz
within 20m. However, the far-field operation kr ≫ 1
(ξ ≈ 1) requires impractical SNR (SNR ≫ 0 dB).
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In high-frequency (≥ 480Hz) or noisy (SNR ≪ 0 dB)
environments, it primarily functions as a proximity
indicator. Accuracy assumes monopole-like radiation;
dipoles/quadrupoles alter the ξ vs. kr relationship. Ad-
ditionally, at low frequencies, large wavelengths yield
multipath effects in bounded environments, degrading
ranging affects this approach.
This technique extends AVS functionality beyond

DOA, enabling single-sensor ranging where conven-
tional methods fail – particularly valuable for near-
field targets in constrained applications. Operational
effectiveness peaks for low-frequency sources (<100Hz)
within 8m–25m ranges at 0 dB SNR.

5.4. Experimental validation with realistic noise
profiles

To validate robustness beyond the isotropic addi-
tive Gaussian noise assumption used in simulations, ex-
periments employed authentic ambient noise recorded
from an operational test basin (25m× 15m× 2m) us-
ing the AVS configuration characterized in (Mahmoud
et al., 2025) (see Fig. 4 for time-series and spectrogram
representations).
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Fig. 7. Measured AVS noise signal.
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Fig. 8. Range estimation RMSE under realistic ambient noise (SNR = 0 dB).

Analysis of the realistic noise (Fig. 7) revealed the
following key characteristics:

– pressure vs. velocity noise: noise in the pressure
channel exceeds that in the velocity channels, con-
sistent with its omnidirectional sensitivity;
– distinct self-noise profiles: the inherent self-noise
characteristics differ between the pressure sensor
and velocity sensor. The isotropic conditions are
not satisfied (when calculating the pressure power
and velocity power);
– velocity channel coherence: the three orthogo-
nal velocity channels exhibit the same levels and
waveforms noise;
– spectral tilt: noise energy decreased significantly
with increasing frequency;
– tonal interference: prominent tonal interference
was present.

To evaluate range estimation performance, we in-
jected a directional tonal signal into the recorded noise.
The amplitude was calibrated to achieve SNR = 0 dB
when added to the AVS pressure channel noise. The
same tonal signal, respecting its DOA, was injected
into the velocity channel noise signals. We applied
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the proposed algorithm to this combined signal-plus-
noise data.
Figure 8 shows estimated range vs true range under

realistic noise (SNR = 0 dB) for representative frequen-
cies. Performance was assessed using 1000 Monte Carlo
trials, each employing a different 1-second segment of
the recorded noise. The results demonstrate that the
proposed algorithm is significantly less affected by re-
alistic noise compared to simulated AWGN conditions.
For a 30Hz tonal signal at a range of 27m, the RMSE
corresponds to less than 10% relative error. This con-
firms the method’s viability and robustness in non-
ideal, real-world noise environments, extending beyond
the limitations of theoretical AWGN assumptions.

6. Conclusion

This study has established a novel framework for
passive monopole source ranging in underwater acous-
tics using a single AVS. By exploiting the funda-
mental near-field dominance of PM energy – quan-
tified by the kinetic-to-potential energy density ratio
(ξ) – we demonstrate that AVS measurements enable
single-sensor range estimation where conventional hy-
drophone arrays fail. Key findings reveal:

1) PM SNR advantage: PM sensors achieve higher
SNR than pressure sensors in the near field
(kr ≲ 1), validating the theoretical foundation for
our approach;

2) accurate passive ranging: the proposed energy-
decay method enables passive ranging up to 25m
for 30Hz sources at 0 dB SNR with <10% error;

3) real-noise robustness: validation using recorded
basin noise profiles confirms the method viability
despite violating the isotropic noise assumption.

While effective for near-field monopoles, limita-
tions exist: performance degrades at high frequencies
due to near-field contraction and in bounded envi-
ronments where a low-frequency multipath distorts
wave propagation. Future work will extend this frame-
work to broadband sources and experimental valida-
tion in complex channels. This technique significantly
advances passive sonar capabilities, enabling compact,
cost-effective solutions for close-range surveillance.
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In the deep-water reliable acoustic path (RAP), when estimating target depth using a vertical array,
a large-aperture array can enhance the extraction of the acoustic field interference structure under low signal-
to-noise ratio (SNR). However, this operation introduces slow envelope modulation (the envelope amplitude
of peak beam intensity decreases with frequency) to the broadband acoustic field interference pattern, sig-
nificantly degrading the performance of estimating the source depth. The Kraken normal-mode model can
accurately calculate low-frequency sound fields in deep-water environments. This paper uses this tool to find
that, in the deep-water direct arrival zone (DAZ), the peak beam intensity output of a vertical linear array varies
across a broadband frequency range, exhibiting a pattern combining periodic changes of Lloyd’s mirror interfer-
ence and inherent envelope attenuation changes. The physical mechanism of envelope attenuation is explained
through both theoretical derivation and simulation analysis, key factors affecting the envelope-attenuation
pattern are clarified, and the impact of beam-intensity envelope attenuation on the depth-estimation method
based on matched beam intensity processing (MBIP) is pointed out. Based on this, a modified target depth
estimation method of matched beam intensity processing (M-MBIP) that contains an attenuation coefficient
is proposed, and its effectiveness is verified through simulated data.
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1. Introduction

Three-dimensional acoustic target localization in-
volves the estimation of azimuth, range, and depth,
with target depth being a key indicator for surface
and underwater target identification (Gaul et al.,
2007). Recently, underwater target depth estimation
has gained significant attention from acousticians.
As a typical sound propagation mode in deep water,

the reliable acoustic path (RAP) propagation mode
is widely used for target detection in the upper wa-
ter column (typically within 200m from the surface).
RAP-based target localization has two main advan-
tages. First, the grazing angle of the received sig-
nal measured by a vertical array can be used to es-
timate the target range. Second, the acoustic signal

radiated by a near-sea surface source propagates to
a near-seabed receiver through the reliable acoustic
path. The acoustic signal of the receiver mainly comes
from the superposition of the direct acoustic signal and
the sea surface-reflected acoustic signal, forming a typi-
cal Lloyd’s mirror interference effect that produces dis-
tinct interference fringes in the acoustic field. These
fringes are highly sensitive to changes in source depth
(Worcester et al., 2013). Due to these advantages,
using Lloyd’s mirror interference for estimating source
depth has attracted extensive research (McCargar,
Zurk, 2013; Li et al., 2022; Duan et al., 2012; Wei
et al., 2020).
McCargar and Zurk (2012) were the first to ex-

plore the use of Lloyd’s mirror interference for esti-
mating source depth, showing that for narrowband sig-
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nals, acoustic intensity, as a function of range, is mod-
ulated by source depth. They proposed the generalized
Fourier transform (GFT) method for depth estima-
tion. Kniffin et al. (2016) later provided a theoretical
analysis of the GFT method’s performance and intro-
duced a more straightforward depth-estimation tech-
nique based on the spacing of beam-intensity nulls.
Lei et al. (2016) presented a passive source localiza-
tion method that uses deep-water multipath RAP and
cross-correlation matching for localizing source. Xu
et al. (2023), addressing the performance degradation
in GFT implementation in real-world deep-water envi-
ronments, designed a preprocessing resampling scheme
that enhances the periodicity of beam intensity in
the grazing angle sine domain and improves depth-
estimation accuracy when applied to GFT.
Zheng et al. (2020) pointed out that GFT

is a typical non-perfect match from the general-
ized matched-field processing perspective. They pro-
posed the matched beam intensity processing method
(MBIP), an incoherent processing technique that
matches data-beam intensity variations with those of
assumed source depth, achieving better accuracy for
near-surface source. Based on the research of Zheng
et al. (2020), Zhou et al. (2022) proposed a depth esti-
mation method that matches the interference structure
in the frequency domain for narrowband source-depth
estimation. This method can be used for real-time
or semi-real-time source-depth estimation and classi-
fication. Wang et al. (2021) presented a broadband
source-depth estimation method using the frequency-
grazing angle interference structure to distinguish mul-
tiple underwater targets, validated by both simulation
and experimental data.
The aforementioned methods and experiments were

conducted using a pressure hydrophone array, while
a vector hydrophone can simultaneously measure both
acoustic pressure and particle velocity at the same
point in the acoustic field. Zhang et al. (2025) ad-
dressed the passive detection problem using deep-water
vector vertical arrays in a RAP environment, and pro-
posed a coherent matched broadband complex acoustic
intensity interference pattern (CM-BCAIIP) method
for shallow-target depth estimation with high real-time
capability. Sun et al. (2016) studied the distribution
characteristics of the RAP vector acoustic field and es-
timated the range using derived from angle-of-arrival
information from the horizontal and vertical compo-
nents of complex acoustic intensity (see also, Zhu,
Sun, 2023).
Whether using pressure-field or vector-field broad-

band interference structures for target- depth estima-
tion in RAP, a low signal-to-noise ratio (SNR) causes
large errors in the acoustic-field broadband interfer-
ence structure extraction. This leads to poor perfor-
mance in target-depth estimation. Although increas-
ing the array aperture can increase array processing

gains and improve the SNR of tracking beams, thereby
enhancing the extraction of the broadband interfer-
ence structure, this approach introduces slow envelope
modulation. This causes the peak beam intensity to
decay with frequency, which can significantly degrade
the performance of traditional target-depth estimation
methods.
To address this, this paper reviews Lloyd’s mir-

ror interference theory, pointed out the fast calcula-
tion equation for peak beam intensity, the attenuation
law of peak beam intensity under vertical long array
was briefly analyzed (which will be verified later), and
based on this law proposes a M-MBIP method based
on the MBIP approach. It then utilizes the Kraken
normal-mode model to accurately compute the acous-
tic field at low-frequency (usually below 500Hz) in the
deep sea. This enables to analyze the key factors and
patterns causing broadband attenuation of beam in-
tensity through theory and simulation. Finally, sim-
ulation results are used to confirm that the proposed
M-MBIP method is superior to the conventional MBIP
method.

1.1. Lloyd’s mirror interference theory

Duan et al. (2012) presented the conventional
beamforming (CBF) output of a near-bottom vertical
line array (VLA) arranged as shown in Fig. 1 (see also,
Zhu et al., 2021), under the assumption of a constant
sound speed:

P (ω, zs, zj) ≈ −2iS(ω)
eikR

Rs
sin (kzs sin θS), (1)

B(ω, sin θ, zs) = ∣
N

∑
n=1

ejk(nd−z) sin θP (ω, zs, zj)∣

2

, (2)

where N represents the number of array elements,
d represents the spacing between array elements, z is
the depth of the VLA center, θ is the grazing angle of
the sound signal, S(ω) denotes the source strength,
P (ω, zs, zj) represents the complex sound pressure
received by the j-th hydrophone, B(ω, sin θ, zs) is
the beam intensity obtained after applying CBF to
the complex sound pressure field recorded by the VLA,
ω = 2πf is the angular frequency of the acoustic wave,
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Fig. 1. Diagram of the source and vertical line array (VLA)
geometry.
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k = k(ω) is the wavenumber of the acoustic wave, zj de-
notes the receiving depth of the j-th hydrophone,
zs is the source depth, Rs =

√
R2 + z2j , R is the hor-

izontal range between the source and the VLA, and
sin θS =

z√
z2+R2

.
When the signal’s detected grazing angle is θs, the

peak beam intensity B can be expressed as (Zheng
et al., 2020):

B(ω, sin θs, zs) = 2
∣S(ω)∣

2

z2
sin2 θs

⋅ [1 − cos (2kzs sin θs)]. (3)

Equation (3) represents the beam intensity under
a constant sound speed. In the actual process of sound
propagation, the change in the sound speed gradient
causes acoustic ray refraction. The equation of peak
beam intensity considering the bending of acoustic rays
is as follows:

B(ω, sin θs, zs) = 2
∣S(ω)∣

2

z2
sin2 θs

⋅ [1 − cos(2kzs

√

c2r/c
2 + sin θ2s − 1)], (4)

where cr is the sound speed at the receiving depth, and
c is the equivalent sound speed from the sea surface to
the source depth, expressed as

c =

¿
Á
Á
ÁÀ
⎛

⎝
zs/

zs

∫
0

1/c2(z)dz
⎞

⎠
. (5)

Then, the frequency interference period of the peak
beam intensity, considering the refraction of sound
rays, can be expressed as

∆fPD ≈
cr

2zs
√
c2r/c

2 + sin θ2s − 1
. (6)

It is clear from this formulation that the change
of beam intensity with frequency is periodic whether
under constant sound speed or varying sound speed.
Therefore, the behaviour of beam intensity variation
under broadband conditions can be studied based on
either case.

1.2. Broadband modified MBIP target depth
estimation method (M-MBIP)

Under the Lloyd’s mirror interference theory, the
MBIP method proposed in (Zheng et al., 2020) is
based on a small-aperture VLA. It constructs replica
beam intensity time series (referred to as replica en-
velopes) at different depths and matches them with the
actual output beam intensity time series from the array
(referred to as data envelopes) to estimate the source
depth. This process is completed through a fuzziness
function similar to Eq. (10). The replica envelopes are
calculated using Eq. (3). However, for large-aperture

VLAs, the peak beam intensity attenuates with fre-
quency increases after beamforming. In this case, the
replica envelope calculated by Eq. (3) does not match
the actual value, and using the MBIP method can lead
to erroneous depth estimates. To solve this, this paper
proposes a modified target depth estimation method
based on the MBIP method, as detailed further.
When the target source is within 5 km of the

VLA, the Kraken program (Porter, 1991) can be
used. In the simulated marine environment, attenu-
ated replica envelopes for different source depths can
be calculated. By matching these attenuated replica
envelopes with the data envelopes, the target depth
can be estimated. For target sources at a range of
5 km–15 km from the array, the peak attenuation of
its replica envelope is close to a constant value. By
using Kraken to calculate the envelope attenuation co-
efficient of the replica at any of the above ranges and
substituting it into Eq. (3), an approximate attenu-
ated replica envelope can be obtained. Matching this
approximate replica with the data envelope can quickly
provide the target source depth while reducing compu-
tation time. The main steps of the proposed method
are as follows:
1) estimate the target range re based on the VLA
measurement of signal’s arrival grazing angle θr;

2) for the given deep water environment, assum-
ing a frequency band ω ∈ [ωl, ωh], array depth
zr ∈ [zr1, zrN ], target range re, and target depth
zs ∈ [zs1, zsN ], generate the broadband sound field
p (ω; re, zs, zr) at a certain array element based on
Kraken;

3) when the target depth zs = z, the sound field ma-
trix of the entire array can be represented as

p = [p (ω; re, z, z
(1)
r ) , p (ω; re, z, z

(2)
r ) , ...,

p (ω; re, z, z
(N)
r )]

T
; (7)

4) when the arrival grazing angle is θr, the peak
beam intensity I of the array can be calculated as

I (ω; z; sin θr) =w
′pp′w, (8)

where w is the steering vector for beamforming,
which incorporates the spacing d between array
components. The steering vector w (incorporat-
ing the spacing d between array components) is
defined as

w = [1, ejkd sin θr , ..., ejk(N−1)d sin θr]
T
; (9)

5) calculate the ambiguity function of the broadband
modified MBIP target depth estimation method
by matching the peak beam intensity time se-
ries measured from data against a replica peak
beam intensity time series evaluated for an as-
sumed source depth, where its peak can be re-
garded as the real depth of the source:
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MM−MBIP(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωh

∫
ωl

Irp1(ω; z; sin θr)Idata(ω; z; sin θr)dω

¿
Á
Á
ÁÀ

ωh

∫
ωl

∣Irp1(ω; z; sin θr)∣
2 dω

¿
Á
Á
ÁÀ

ωh

∫
ωl

∣Idata(ω; z; sin θr)∣
2 dω

(r < 5km),

ωh

∫
ωl

(1 + µ ∗∆f)Irp1(ω; z; sin θr)Idata(ω; z; sin θr)dω

¿
Á
Á
ÁÀ

ωh

∫
ωl

∣(1 + µ ∗∆f)Irp1(ω; z; sin θr)∣
2 dω

¿
Á
Á
ÁÀ

ωh

∫
ωl

∣Idata(ω; z; sin θr)∣
2 dω

(5km ≤ r < 5km),

(10)

where Irp1 denotes the replica envelope, Idata de-
notes the data envelope, µ is the attenuation co-
efficient of the envelope, and ∆f is the frequency
interval.

Similar to MBIP, the depth corresponding to the
peak of the ambiguity function is the estimated target
depth.

2. Research and analysis of beam intensity
broadband attenuation pattern

This section studies the mechanisms responsible for
the attenuation of peak beam intensity in deep-water,
large-aperture VLAs. It also analyzes the patterns of
beam intensity attenuation under variations in array
aperture, source depth, and other related factors.

2.1. Sound field interference structure for a long VLA

To reasonably analyze the factors influencing the
extracted envelope of the sound field interference struc-
ture from a VLA, simulations are conducted using
the Kraken normal-mode acoustic field calculation pro-
gram. The simulation adopts a Munk sound speed pro-
file typical of deep water, as shown in Fig. 2, with
a critical depth of 4800m. A 128-element VLA is
laid near the seabed, with an element spacing of 5m,
the first element located at a depth of 4315m and

Sound speed [m/s]

D
ep

th
 [m

]

Fig. 2. Deep-water Munk sound speed profile.

the last element at 4950m, giving a total array aper-
ture of 635m.
In the simulation, the source is set at a depth of

50m and a horizontal range of 7 km. Broadband array
data spanning from 50Hz to 200Hz is generated using
the Kraken program. CBF is applied to the received
VLA data. The results are shown in Fig. 3, where
display peaks (red stripes) correspond to the graz-
ing angles of signal arrivals. Positive and negative val-
ues correspond to waves arriving from the sea surface
and seabed directions, respectively. The peak beam ex-
hibits pronounced interference in the frequency dimen-
sion.

sin �

Fr
eq

ue
nc

y 
[H

z]

Fig. 3. Conventional beamforming output as a function
of grazing angle and frequency.

The peak beam intensity at a grazing angle sine
(+0.59) is extracted from Fig. 3 and shown in Fig. 4.
It can be seen that the peak beam intensity changes
periodically with frequency, while the envelope of the
peak shows an almost linear attenuation. This atten-
uation pattern can lead to incorrect target depth es-
timation in MBIP, which could cause the omission of
information necessary for target depth identification.
To explore the cause of the peak beam intensity

attenuation, Fig. 5 shows the broadband transmission
loss at different receiver depths corresponding to the
source.
As shown in Fig. 5, the energy peaks correspond

to two frequency points: 190Hz (high-frequency) and
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Fig. 4. Peak beam intensity variation with frequency (red
dashed line in the figure shows the attenuation trend of the

peak).
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Fig. 5. Transmission loss at different depths.

74Hz (low-frequency). Figure 6 further illustrates the
variation of transmission loss with receiver depth. It is
observed that the transmission loss at 74Hz remains
relatively stable across depths, whereas at 190Hz, the
transmission loss progressively increases with depth,
leading to a gradual attenuation of beam energy. This
phenomenon results in a reduction of peak beam in-
tensity as frequency rises.

Depth [m]

190 Hz
74 Hz

TL
 [d

B]

Fig. 6. Transmission loss of sound propagation at different
frequencies.

It is evident that the transmission loss of high-
frequency acoustic signals increases with depth. This
is the main reason for the attenuation of peak beam in-
tensity with frequency after beamforming using a long
VLA.

2.2. Influence of array aperture on beam intensity
attenuation pattern

In the simulation environment described in Sub-
sec. 2.1, with the array element spacing and the depth
of the first array element kept constant, CBF is per-
formed for different array apertures: 32, 64, 96, and
128 elements. The resulting variation of peak beam in-
tensity with range and frequency is shown in Fig. 7.
Observing the energy variation from low to high

frequency in Fig. 7, it can be seen that at the same
range, as the frequency increases, the peak beam in-
tensity fluctuates periodically. Additionally, as the ar-
ray aperture increases, the energy attenuation with fre-
quency becomes faster. Figure 8 shows the variation of
peak beam intensity with frequency at different ranges
for 64 and 128 array elements. Comparing the two sub-
figures in Fig. 8, it can be seen that after 5 km, the
peak beam intensity at high frequencies for 128 array
elements is significantly lower than that for 64 array el-
ements, and the peak attenuation is close to linear, as
shown by the red dashed curve, while the red circles
indicate the extremes.

2.2.1. Linear attenuation coefficient

To quantify the attenuation pattern of beam inten-
sity across broadband frequencies, an in-band linear
attenuation coefficient is defined, with the calculation
method as follows (the µ in this section corresponds to
the same variable previously defined in Subsec. 1.2):

µ = (Ahp −Alp) / (fhp − flp), (11)

where, assuming there are multiple extreme points in
a frequency band of 50Hz–200Hz, Ahp

is the value
of the last extreme point, Alp is the value of the first
extreme point, fhp is the frequency corresponding to
the last extreme point, and flp is the frequency corre-
sponding to the first extreme point.
The linear attenuation coefficients for the 64-

element and 128-element arrays are calculated and
shown in Fig. 9. It can be seen that the linear attenu-
ation coefficient µ is related to the target range, with
around 5 km acting as a critical point. When the range
is less than 5 km, µ fluctuates greatly. When the
range is greater than 5 km, it varies within a cer-
tain range. Moreover, the larger the array apertu-
re, the greater the absolute value of µ, indicating that
the beam intensity attenuates more rapidly with fre-
quency change. This observation also confirms the ef-
fect of depth-dimension extension on peak beam inten-
sity, as mentioned in Subsec. 2.1.
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Fig. 7. Variation of peak beam intensity with range and frequency for different array apertures:
a) 32 array elements; b) 64 array elements; c) 96 array elements; d) 128 array elements.
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Fig. 8. Variation of peak beam intensity with frequency at different array apertures and horizontal ranges:
a) 64 array elements; b) 128 array elements.
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Fig. 9. Variation of linear attenuation coefficient
with target range.

2.3. Influence of source depth on beam intensity
attenuation pattern

Under the same simulation conditions and proce-
dures as described in Subsec. 2.1, the source depth
was varied at 50m, 100m, and 200m. The variations
of peak beam intensity as functions of range and fre-
quency are presented in Fig. 10.
From Fig. 10, it can be observed that, at the same

range, as the frequency increases, the peak beam inten-
sity fluctuates periodically, the number of interference
fringes increases significantly, and the amplitude of the
energy gradually decreases.
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Fig. 10. Variation of peak beam intensity with range and frequency at target depths of: a) 50m; b) 100m; c) 200m.

Furthermore, the peak beam intensity at a range
of 7 km under different source depth conditions is ob-
tained, and its variation with frequency is shown in
Fig. 11.
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Fig. 11. Variation of peak beam intensity with frequency
at 7 km range for different source depths.

It can be seen from Fig. 11 that as the source
depth increases, the period of the sound field interfer-
ence shortens and the number of interference fringes
increases, which is consistent with the analysis shown
in Fig. 10. The linear attenuation coefficients corre-
sponding to different source depths are calculated, and
the results are presented in Fig. 12. It can be seen that
as the source depth increases, the absolute value of
the attenuation coefficient decreases slightly, while the
attenuation trends of different source depths are basi-
cally the same. The absolute value of the attenuation
coefficient gradually increases within a range of 5 km,
and beyond 5 km, it tends to a constant value.
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Fig. 12. Variation of linear attenuation coefficient
with target for different target depths.

2.4. Influence of array depth on beam intensity
attenuation pattern

This section analyzes the broadband attenuation
pattern of beam intensity when the array deployment
depth varies. Using the same simulation conditions as
in Subsec. 2.1, the deployment depth of the array is
varied by changing the depth of the 128-th element to
3950m, 4450m, and 4950m. The variation of the peak
beam intensity with range and frequency is shown in
Fig. 13.
From Fig. 13, it can be seen that at the same

range, the peak beam intensity fluctuates periodically
from low to high frequency. However, as the array de-
ployment depth increases, there is no obvious trend
in the energy attenuation rate. Figure 14 further shows
the variation of peak beam intensity with frequency at
a range of 7 km for different array deployment depths.
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Fig. 13. Variation of peak beam intensity with range and frequency at different array deployment depths:
a) 3950m; b) 4450m; c) 4950m.
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Fig. 14. Variation of peak beam intensity with frequency
at 7 km range for different array deployment depths.

It can be seen from Fig. 14 that the attenuation
trends of the peak beam intensities at 7 km under dif-
ferent source depths are basically the same. The lin-
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Fig. 15. Variation of linear attenuation coefficient with tar-
get range for different array deployment depths.

ear attenuation coefficients corresponding to different
array deployment depths are calculated, as shown in
Fig. 15. It can be seen that the attenuation trends of
the beam intensity under different array deployment
depths remain basically the same, although the abso-
lute value of the linear attenuation coefficient decreases
as the deployment depth of the array increases.

2.5. Influence of sound speed profile on beam
intensity attenuation pattern

Given the unique characteristics of the deep-water
DAZ, this study compares isovelocity (1510m/s) with
Munk sound speed profiles to illustrate the influence
of the sound-speed profile on the broadband beam in-
tensity attenuation pattern.
Except for setting the sound-speed gradient as

a constant sound speed, the same simulation condi-
tions are adopted as those in Subsec. 2.1. After gener-
ating broadband array data with Kraken and perform-
ing conventional beamforming, the peak beam inten-
sity envelopes at different ranges are shown in Fig. 16.
Compared with Fig. 8b, when the range between

the source and array is greater than 5 km, the beam in-
tensity envelope shows nearly linear attenuation within
50Hz–200Hz.
Figure 17 further illustrates the variation of linear

attenuation coefficients with range for both isoveloc-
ity and Munk profiles, showing similar trends in both
cases.
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Fig. 18. Conventional beamforming output with an SNR of −10 dB at different source depths:
a) zs = 50m; b) zs = 100m; c) zs = 150m.

3. Simulation results for target depth estimation

To verify whether the depth-estimation perfor-
mance of the M-MBIP method under a long VLA is
better than that of the MBIP method, the Kraken
program is used for simulation. The simulation se-
lects a typical Munk sound channel, sets the source
depths to 50m, 100m, and 150m. The receiving ar-
ray is a 128-element VLA, the depth of the first ele-
ment is at 4315m and an element spacing is 5m. The
corresponding center frequency is at 125Hz, the receiv-
ing range is at 7 km, and Gaussian white noise with
an SNR of −10 dB is added to the VLA data. After
conventional beamforming, the results are presented
in Fig. 18.
As known from Subsec. 2.1, the peak beam inten-

sity at the sine of the grazing angle in Fig. 18 corre-
sponds to waves incoming from the sea surface, which
is used as the replica envelope of the M-MBIP method.
At the same time, the replica envelope of the MBIP
method is generated using Eq. (3), and both are com-
pared with the data envelope of the array output (see
Fig. 19).
It can be seen in Fig. 19 that the data enve-

lope is basically covered within the envelopes of both
M-MBIP and MBIP, but the envelope of M-MBIP
has a higher degree of coincidence with the data
envelope.
The source depth is estimated using the M-MBIP

method and the MBIP method, as shown in Fig. 20.
It can be seen from Fig. 20 that the depth-

estimation ambiguity function of the M-MBIP and
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Fig. 19. Interference envelopes of beam energy for different source depths:
a) zs = 50m; b) zs = 100m; c) zs = 150m.
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Fig. 20. Comparison of M-MBIP and MBIP methods for different source depths:
a) zs = 50m; b) zs = 100m; c) zs = 150m.

MBIP methods have similar estimation capabilities
when the source depth is 50m. The peak of the
M-MBIP method at the true depth is slightly higher
than that of the MBIP method; when the source depth
is 100m or 150m, the MBIP method performs poorly,
with false peaks appearing at shallow depths, resulting

in depth misjudgment problems. However, the peak of
the M-MBIP method at the true source depth is always
higher than that of the MBIP method, and no false
peaks appear. Therefore, the depth-estimation perfor-
mance of the M-MBIP method under a long VLA is
better than that of the MBIP method.
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4. Conclusion

This paper examined the issue of slow envelope
modulation in the broadband interference structure
of large-aperture VLA in deep water DAZ, which
degrades source depth estimation. Through theoreti-
cal and simulation analyses, the key factors affecting
the attenuation of peak beam intensity were identified,
and a modified M-MBIP method based on MBIP was
proposed. There are several conclusions that can be
drawn:
1) the increase in transmission loss of high-frequency
sound signal with depth is the key reason for the
frequency-dependent attenuation of peak beams
after beamforming in a VLA;

2) the attenuation rate of beam intensity is pro-
portional to the array aperture, inversely propor-
tional to the array deployment depth and source
depth, and largely independent of the sound speed
profile;

3) within a certain range, the M-MBIP method sig-
nificantly outperforms the MBIP method in esti-
mating source depth using a large-aperture VLA.
During data processing, it was observed that the

replica envelope may exhibit a frequency shift relative
to the data envelope. This phenomenon has the poten-
tial to impact the accuracy of source depth estimation
methods. Additionally, the M-MBIP cannot be vali-
dated due to the lack of experimental data. Therefore,
future research will focus on exploring the feasibility
of target depth estimation under conditions of under-
sampling in the frequency domain of the sound field
and verifying the effectiveness of the method with sea
trial data.
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In this paper, the potential use of parametric array loudspeakers (PALs) in acoustic measurements of
the room is analysed, especially in the assessment of the effectiveness of reflective panels and intentionally
angled surfaces. PALs are sound sources capable of emitting highly directional acoustic beams within the
audible frequency range. Their operation is based on the emission of a high-frequency (ultrasonic) carrier
modulated so that, through nonlinear demodulation in air, audible sound is generated. This process results
in a narrow, focused sound beam, enabling precise acoustic emission. To explore PALs potential for acoustic
measurement applications, the propagation behaviour of PAL-generated signals is first investigated under free-
field conditions, focusing on how different surface types influence sound reflection. Subsequent experiments
are carried out in a controlled indoor space, where impulse responses are recorded for various beam incidence
angles and receiver positions. The collected data are used to generate sound-level distribution maps, allowing
for the visualization and quantification of reflected sound coverage areas. The results show that PALs produce
beams with substantially reduced lateral dispersion compared to conventional loudspeakers, enabling precise
identification of reflection points and incidence angles. This directional precision makes it possible to accurately
assess how effectively the reflective acoustic elements and structures shape the sound field within the room.
Overall, these findings may contribute to optimising sound design in acoustically complex environments.
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1. Introduction

Localising acoustic flaws in rooms is one of the
key problems in modern acoustics. Most measurements
use omnidirectional speakers to record the room’s im-
pulse response, which can later be processed and analy-
sed. However, the omnidirectionality of such a speaker
causes the measurement to include reflections from ev-
ery element in the room. As a result, the influence
of certain elements may be masked in the recording
(Gallien et al., 2024). Using a speaker with high di-
rectivity may allow the user to examine only a chosen
structure, such as a reflective panel or a diffusor. Addi-
tionally, high directivity enables easier tracking of the
first reflection, which is, if not properly managed, one
of the most common causes of acoustic flaws in rooms.

In order to obtain a sufficiently narrow beam that
can generate sound waves in one direction only, some
speakers utilise the parametric array effect. This ef-
fect was discovered in the early 1960s byWestervelt
(1963). He demonstrated that, in theory, an end-fire ar-
ray of virtual sources at the difference frequency can
be produced by the interaction of two intense, colli-
mated beams with slightly different high frequencies.
These virtual sources arise because the instantaneous
sound speed, which is one of the physical parameters
depends inherently on the sound pressure or particle
velocity. The resulting virtual end-fire array generated
by this nonlinear interaction is therefore referred to
as a parametric acoustic array, or simply a parametric
array (Gan et al., 2012a). When two primary waves
of frequencies f1 and f2 (f2 > f1) are fully confined
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beams, the angle at which the sound intensity of the
difference frequency f = f2 − f1 is reduced by one-half
(3 dB), is approximately given by

θh ≈
√
2αT /k, (1)

where k is the wavenumber of the difference-frequency
wave, and αT is the total sound absorption coefficient
of the primary waves (Gan et al., 2012b).
Amplitude modulation of ultrasonic carrier waves

was introduced by Berktay (1965), who managed to
substitute the tonal difference-frequency with a full fre-
quency spectrum. Later, after Bennett and Black-
stock (1975) successfully carried out the paramet-
ric array experiment in air (Gan et al., 2012b), the
phenomenon was utilised in audio applications by
Yoneyama et al. (1983). When used as a parametric
array loudspeaker (PAL), audible sound can be gener-
ated through the self-demodulation of the carrier’s ul-
trasound and with the high directivity inherited from
the parametric array (Ju, Kim, 2010).
Previous research in the field of room acoustics em-

ployed high-directivity speakers for tracing reflection
paths or obtaining spatial impulse responses (Tervo
et al., 2009). However, while multiple studies analyse
reflective elements mostly under laboratory conditions,
in-situ measurements usually focus on tracing reflec-
tion paths in general, without assessing the perfor-
mance of a singular reflector or diffusor. This paper
studies potential applications of said speakers, focus-
ing on the analysis of modulated sound reflections gen-
erated by PALs from different surfaces of varying sizes
and materials.
The aim of this study is to determine whether the

PALs can serve as a tool for identifying sources of
acoustic flaws in rooms, such as determining the ef-
fectiveness of reflective panels or intentionally angled
surfaces.

2. Laboratory measurements

All measurements were performed using a Video-
tel Digital HyperSound HSS 3000 speaker (Videotel
Digital, 2014). First, the frequency response and di-
rectivity index were measured using a Klippel GmbH
near-field scanner (NFS). The NFS performs holo-
graphic measurements of the near-field sound pres-
sure to obtain a set of coefficients that precisely char-
acterise the sound pressure at any point within the
three-dimensional field outside the scanning surface.
By leveraging the benefits of near-field measurements
and applying spherical harmonic wave expansion, the
near-field data can be extrapolated into the far field.
This expansion enables high spatial resolution with
fewer measurement points, and the post-processed re-
sults are both faster to obtain and more comprehensive
than those from conventional directivity-measurement

techniques (Login, 2015). The Klippel setup with the
PAL mounted is shown in Fig. 1.

Fig. 1. Klippel GmbH near-field scanner measurement
setup.

Secondly, the directivity of the sound reflected from
different surfaces was measured in an anechoic chamber.
The test surfaces included three plates: a wooden plate
(140 cm× 140 cm), a wooden plate (40 cm× 40 cm), and
an acrylic glass plate (40 cm× 40 cm). To test directiv-
ity, the PAL was placed at a 45○ angle, 2.5m from
the plate placed in the middle of the chamber. The
microphone was positioned on a crane-style arm on
the opposite side of the chamber, oriented to record
sound reflected from the plate at the chosen angle.
The distance between the plate and the microphone
was also equal to 2.5m. In this setup, the crane-style
arm was automatically repositioned after each mea-
surement, maintaining the same distance while simul-
taneously adjusting the angle. Consequently, a direc-
tivity pattern of the reflected sound was achieved, with
a resolution of 2○ over the range of 15○–75○. A wider
range was not necessary as signal levels outside this
interval reached the noise floor values. The complete
setup is shown in Fig. 2. All sounds were recorded us-
ing a GRAS 46AE 1/2′′ CCP free-field standard micro-
phone.

Fig. 2. Directivity of reflected sound, measurement setup
in an anechoic chamber.

3. Results of laboratory measurements

For comprehensiveness, the obtained results are
subdivided into two distinct segments. The initial seg-
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ment shows speaker parameters acquired from the
Klippel measurements, regarding the PAL’s beam-
width and directivity, while the second segment pre-
sents polar plots of the reflected sound, generated from
measurements performed in the anechoic chamber.

3.1. Directivity of a speaker

The Klippel NFS measurement was performed with
a 5○ resolution in a full 360○ sphere around the speaker,
with a frequency resolution of six points per octave.
The frequency range was limited to 300Hz–8000Hz to
shorten measurement time and match the frequency
range of this PAL model, which starts at 300Hz
(Videotel Digital, 2014). Figure 3 shows the acquired
directivity index (DI).

Fig. 3. Directivity index of the PAL (blue line)
and approximated DI (red, dashed line).

The directivity index of the loudspeaker (Fig. 3)
starts at around 5 dB at 300 Hz, then it reaches 10 dB
at 1.5 kHz, and finally goes up to 23 dB at 8 kHz. The
measured values were approximated with the function
12f1/3 − 2.7, where f is the frequency in Hz. This
approximation was based on the value of root mean
square (RMS) difference between the measured and ap-
proximated values, which resulted in the lowest RMS
value of 1.08 for the function given above.
A perfect theoretical cardioid has a directivity in-

dex of 4.8 dB; therefore, a directivity index of around
10 dB or more indicates a significantly directional
loudspeaker (Vuine, 2024). Consequently, the analy-
sed speaker achieves a highly concentrated beam only
above 1.5 kHz. To study the precise beamwidth, a cor-
responding plot showing the PAL’s beamwidth is
presented in Fig. 4.
As illustrated in Fig. 4, for frequencies between

500Hz–1000Hz, the sound beam generated by the
PAL reaches its maximum width of approximately 70○

at a −6 dB sound pressure level (SPL) decrease. This

Fig. 4. Directivity (beamwidth) of the PAL.

threshold is usually taken as the beamwidth limit,
since it is a value at which the signal power is halved
(Keele, 2016). Afterwords, the beam slowly narrows,
from 50○ at 1.5 kHz to almost 20○ at 5 kHz. Addition-
ally, the SPL drop increases to −30 dB at just 40○. Sud-
den changes in beamwidth at lower SPL thresholds,
visible around 1.5 kHz, are most likely caused by Klip-
pel’s internal algorithm switching to a different com-
putation method.

3.2. Directivity of reflected sound

During the measurements in the anechoic cham-
ber, directivity patterns of the reflected sound were
obtained, each one for a different plate. The results
are represented in the form of polar plots in Fig. 5,
with six patterns corresponding to centre frequencies
of octave bands ranging from 500Hz to 16 kHz.
The widths of the reflected sound beam for a given

frequency are summarised in Table 1. The limits for
each beamwidth were assumed to be −6 dB on both
sides, as in the Klippel measurement. In Fig. 5a,
we can observe the directivity characteristic of the
sound reflected from the large wooden plate. The
strongest directivity is obtained at 16 kHz and 8 kHz.
For the smaller wooden plate, the reflection pattern
visible in Fig. 5b is nearly identical to the one obtained
from the acrylic glass plate (Fig. 5c). Although the
strongest directivity is also observed at the highest fre-
quencies, at 500Hz both the acrylic and small wooden
plates have a reflected beamwidth of only 2○. This
is most likely caused by the small size of the plates.
Due to the larger area of the 140 cm× 140 cm wooden
plate, the sound level measured in the 500Hz band-
width is substantially higher in comparison with two
other plates. Additionally, there are no irregularities
caused by an insufficient surface area size. Such irreg-
ularities would likely explain the unreasonably narrow
angle observed for the small plates, since only a small
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a) b)

c)

Fig. 5. Speaker angle −45○, polar plots of the PAL’s directivity patterns reflected from: a) wooden plate (140 cm× 140 cm);
b) wooden plate (40 cm× 40 cm); c) acrylic glass (40 cm× 40 cm).

Table 1. Width of the reflected beam for given frequencies and plate types.

Plate type
Reflected beamwidth angle

500Hz 1 kHz 2 kHz 4 kHz 8 kHz 16 kHz

Wood – 140 cm× 140 cm 14○ 14○ 18○ 18○ 14○ 10○

Wood – 40 cm× 40 cm 2○ 18○ 18○ 10○ 6○ 6○

Acrylic – 40 cm× 40 cm 2○ 18○ 18○ 10○ 6○ 6○

portion of the wave is reflected at the angle of inci-
dence. It is apparent that the size of the sample af-
fects the width of the reflected beam, which explains
the substantial narrowing of the reflected angle com-
pared to the beamwidth of the direct sound acquired
with the Klippel system.
In summary, as long as the area of an analysed sam-

ple has a sufficiently large reflective area, there are no
differences in the shapes of the polar patterns of the
reflected sound. However, if the sample is too small,
some frequencies will not be properly reflected, result-
ing in lower sound pressure levels and more irregular
patterns. Furthermore, the obtained angles are signifi-
cantly narrower than those acquired from the Klippel

analysis. Larger sizes of the reflector result in a wider
reflected sound beam.

4. Measurement of sound reflections
from an angled ceiling

To verify the capabilities of parametric speakers in
room acoustic analysis, a measurement of sound re-
flections from an angled ceiling was conducted. This
measurement was performed in the WA3 classroom,
inside the D1 building of AGH University of Krakow.
The classroom has a part of ceiling angled at 5.25○

to direct reflections from the lecturer to the students.
The aim of the analysis was to determine whether the
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angle of the ceiling is correct and whether the size of
the plate is sufficient to distribute reflections from it
evenly across the room.
To measure the sound reflected from the ceiling

with a PAL, eight microphones were placed at ran-
dom positions throughout the room. To avoid standing
waves and reflections from the walls, all microphones
were positioned off the main axis of the room and at
least 1m away from the walls. The height of each mi-
crophone was set to 1.2m, which is the average height

Fig. 6. Experimental setup for measuring reflections from
the angled ceiling in the classroom.

Fig. 7. Angled ceiling measurements, all microphone positions and speaker angles (side view).

Fig. 8. Angled ceiling measurement, all microphone and speaker positions (top view).

of a seated person (Rakerd, 2018). The parametric
speaker was placed on a stand and angled so that the
PAL aimed at the lower edge of the angled ceiling. The
setup is visible in Fig. 6, while the theoretical model is
shown in Fig. 7 (side view) and Fig. 8 (top view). For
both source positions, five measurements of impulse
responses were taken, each at a different PAL angle.
The fifth measurement for position S1 was ignored due
to obstruction from a projector in the path of the sound
beam. A sine sweep from 300Hz to 18 kHz was used as
the excitation signal to match the bandwidth of this
parametric speaker model (Videotel Digital, 2014).

4.1. Results of measurements

From all recorded impulse responses, heatmaps of
SPLs for each octave band were interpolated in the
MATLAB programming environment. The maps are
shown in Figs. 9–16. The horizontal line in each map
marks the end of the angled ceiling. The interpolation
area starts at the first row of desks. To limit the num-
ber of figures, results for the 8 kHz and 16 kHz bands
were omitted, since these frequency bands are rarely
used in room acoustic analysis.
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Fig. 9. SPL heatmaps for all PAL angles, 500Hz octave band, source position – S1.
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Fig. 10. SPL heatmaps for all PAL angles, 1 kHz octave band, source position – S1.
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Fig. 11. SPL heatmaps for all PAL angles, 2 kHz octave band, source position – S1.
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Fig. 12. SPL heatmaps for all PAL angles, 4 kHz octave band, source position – S1.
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Fig. 13. SPL heatmaps for all PAL angles, 500Hz octave band, source position – S2.
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Fig. 14. SPL heatmaps for all PAL angles, 1 kHz octave band, source position – S2.
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Fig. 15. SPL heatmaps for all PAL angles, 2 kHz octave band, source position – S2.
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All of the presented maps show a strong concen-
tration of sound at measurement points closest to the
reflection path. Lower frequencies are more spread out
than the higher frequencies, which proves that the pre-
sented method allows analysis of both geometric and
wave phenomena, and that the obtained results match
those acquired from laboratory experiments. Since the
angle of 150○ indicated that the PAL was pointed at the
furthest edge of the angled ceiling, the values presented
on the S2 150○ heatmaps in Figs. 13–16 show the effec-
tive range of the said ceiling. High levels of sound pres-
sure visible near the back wall of the room prove that
its length is appropriate for the current room dimen-
sions. As shown in the laboratory measurements, the
area of a reflector needs to be large enough to reflect
sound from lower frequency bands. Since the 500Hz
frequencies are visibly concentrated on the acquired
maps, the size of the angled portion is also sufficient.

4.2. Simulation verification

To verify the results, the measured room was mod-
elled and analysed in EASE Acoustic 4.4 using the
raytracing module. The angled ceiling was included
in the model, along with the measurement points. As
shown in Fig. 17, reflections from the furthest edge
of the angled portion of the ceiling are directed to-
ward the last row of desks in the room. These results
match those obtained from the in-situ measurements
and confirm the effectiveness of parametric speakers in
room acoustic analysis. Simulation outcomes for the S2
source were nearly identical to those acquired for S1;
therefore, only the results for the S1 source are pre-
sented in this paper. It is important to emphasise that
this method of analysis does not account for wave ef-
fects and was therefore used only to verify reflections

Fig. 17. Ray-tracing results of the measured room modelled in EASE Acoustic – S1 source.

at the incident angle. More advanced simulations will
be carried out in future work.

4.3. Leave-one-out cross-validation of interpolation

To statistically verify the accuracy of the inter-
polation, the leave-one-out cross-validation (LOOCV)
method was used, as it has the advantage of being ap-
plicable even with small samples (Geroldinger et al.,
2023). In this approach, a single observation is used for
validation while the rest of the data forms the training
dataset. This process is repeated so that each obser-
vation in the entire dataset is used only once for valida-
tion (Lumumba et al., 2024). In this method, assume
that we have the dataset D, where

D = {(x1, y1) (x2, y2) , ..., (xi, yi)}. (2)

In this approach, xi represents the features, in this
case, the coordinates, and yi represents the correspond-
ing label of the outcome for each observation i (where
i = 1,2, ..., n), which in this case is the SPL for a given
octave at one of the measurement points. Model train-
ing is conducted on n−1 observations and only one ob-
servation is used as the validation set, giving the classi-
fication error that can be expressed with the following
mathematical equation (Lumumba et al., 2024):

LOOCVERROR =
1

n

n

∑
i=1

L(yi, ŷi), (3)

where L is the loss function and ŷi is the expected
value for point i from a model trained without point i.
The common loss function is the root mean squared
error (RMSE), expressed as

L (yi, ŷi) =
√
(yi, ŷi)

2
. (4)
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This loss function is sensitive to large deviations,
which makes it suitable for SPL measurements, as SPL
varies significantly over short distances. The values of
the loss function L calculated for all measurements are
shown in Table 2.

Table 2. Loss function values calculated from LOOCV.

Source angle
Loss function values in each bandwidth [dB]

500Hz 1 kHz 2 kHz 4 kHz

S1 55○ 1.2 1.2 1.5 2.0

S1 90○ 1.1 1.1 1.2 1.5

S1 115○ 2.9 3.1 3.4 3.6

S1 140○ 2.7 2.8 3.0 3.4

S2 55○ 1.0 1.0 1.0 1.1

S2 90○ 1.4 1.5 1.8 2.1

S2 115○ 2.1 2.2 2.8 3.8

S2 140○ 3.5 3.7 3.9 3.9

S2 150○ 2.1 2.2 2.3 2.5

As shown in Table 2, all loss function values are
in the range of 1 dB–3.9 dB. This level of accuracy is
not significant; however, since the differences between
high and low sound pressure can vary drastically over
short distances, even up to 10 dB, it is sufficient for this
experiment. Since the measurements were preliminary,
for further study, the density of the receiver grid should
be increased to minimise the error.

5. Summary

This paper presented research results concerning
the use of PALs in room acoustic analysis, especially
for tracing reflection from highly reflective surfaces. In
summary, it was found that certain models of PALs
possess sufficiently narrow beamwidths to allow first-
reflection analysis without interference from other ele-
ments in the room. The reflected sound exhibited a di-
rectivity pattern dependent on the panel size, with
larger panels producing wider beamwidths and reflect-
ing more energy at lower frequencies, which is consis-
tent with wave phenomena typically observed in room
acoustic measurements. Therefore, PALs can poten-
tially be used interchangeably with omnidirectional
speakers, without losing essential information about
wave behaviour in a given sound field. The charac-
teristics of the reflected sound were also found to be
largely independent of the surface material, provided
the material is sufficiently reflective. Consequently,
panels made from different materials, such as wood
or acrylic glass, should yield comparable results when
measured with a PAL. Finally, it was demonstrated
that PALs can be effectively utilised for assessing re-
flective elements in rooms and can reliably generate
reflected sound distribution maps, allowing for precise
evaluation of an element’s acoustic performance.
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Microphones are sensors common to a variety of the Internet of Things (IoT) and healthcare applications.
Many examples have proved that microphones can be useful in detecting, e.g., abnormal breathing rates. There
are already applications that serve this purpose, e.g., respiratory acoustic monitoring, ResApp, etc. Breath
signal was studied using a range of technologies and sensors, including the most common: radar, accelerometer,
wearables, and so on. The majority of these sensors are attached to the body of a monitored person. However,
the emergence of COVID-19 has drawn particular attention to the importance of using non-contact technologies
for monitoring breath signals and other vital signs. This paper presents a comprehensive review of microphone-
based non-contact vital sign monitoring, including the methodologies and concepts, while identifying new
research gaps and opportunities for the future studies.
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Acronyms

CIR – channel impulse response,
DOA – direction of arrival

DYCTNN – dynamic convolution-transformer neural network,
FFT – fast Fourier transform,

FMCW – frequency-modulated continuous wave,
FPGA – field-programmable gate array,
IDRes – identity-based respiration monitoring system for

digital twins enabled healthcare,
IoT – Internet of Things,

MEMS – microelectromechanical microphone,
NCVS – non-contact vital signs,
RIP – respiratory inductance plethysmography,

RMSE – root-mean-square error,
SNR – signal-to-noise ratio,
STFT – short time Fourier transform,
TDOA – time difference of arrival.

1. Introduction

The vulnerability of today’s healthcare system was
evident during COVID-19 pandemic, a serious global
concern in which the number of patients outweighed
available equipment. It was a common practice that

the respiratory apparatus, known as ventilators, was
shared between two patients (Garzotto et al., 2020).
According to (Branson, Rodriquez, 2023; Tsai
et al., 2022), the use of ventilators increased by 30%
in case of adults and 15% in case of children following
COVID-19. This indicated that persons with normal
breathing problems have been neglected during this
period. This group of people includes both the younger
and older generations.
The application of digital processing to a micro-

phone signal makes it suitable for various research ap-
plications. Microphones, commonly used for record-
ing audio, have now evolved into sophisticated non-
contact monitoring sensors. By using advanced sig-
nal processing techniques, microphones can be used
to sense and analyze vital signs such as heart rate
and respiration rate without making contact with the
body of the target. This new approach offers numer-
ous advantages over traditional methods, resulting in
microphone-based non-contact monitoring systems be-
ing a promising technology for remote health moni-
toring and wellness applications.
A microphone is a transducer that converts sound

waves to electrical signals. It detects slight changes
in air pressure induced by sound and generates an
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electrical signal representing the acoustic sound wave-
form. This electrical signal can subsequently be ampli-
fied, processed, recorded, or transmitted for numerous
purposes such as telecommunications, audio record-
ing, active noise control and speech recognition. Mi-
crophones vary in kind, design, and technology, but
they always work on the principle of converting acous-
tic energy (sound pressure) into electrical energy. Com-
mon types of microphone include dynamic, condenser,
ribbon, piezoelectric microphones and microelectrome-
chanical microphone (MEMS); each comes with differ-
ent properties that make it best suited for different
applications.
Numerous studies have been conducted in the area

of contact and non-contact vital signal monitoring.
Among the research results, a few include thermal
imaging cameras (Savazzi et al., 2020), photoplethys-
mography (PPG) (Ryu et al., 2021; Artemyev et al.,
2020; Boccignone et al., 2023; Hashim et al., 2023;
Khong, Mariappan, 2019), doppler radar (Islam
et al., 2019; Joshi et al., 2023; Edanami et al., 2022;
Zhang et al., 2023a; Wahyu et al., 2022; Mercuri
et al., 2018), microwave sensors (Katoh et al., 2023;
Celik et al., 2011; Dei et al., 2009), and acous-
tic sensors (Okamoto et al., 2023; Xiao, Yu, 2021;
Liu et al., 2022; Jahanshahi et al., 2018; Smithard
et al., 2017). Other popular choices are video cam-
eras (Huang et al., 2021; Sabokrou et al., 2021;
Artemyev et al., 2020; Hsu et al., 2020; Shokouh-
mand et al., 2022) and fiber cable (Xu et al., 2020;
2021; Liang et al., 2023; Zhao et al., 2023; Lyu
et al., 2022). However, using microphones for non-
contact recording offers several advantages, including
robustness, the ability to capture detailed informa-
tion (Kranjec et al., 2014; Fang et al., 2016) and
their sensitivity across a wide range of coverage, mak-
ing them adaptable to different scenarios. Microphones
are also useful for making respiratory sounds acces-
sible via phones, laptops, and other portable devices

Table 1. Applications of microphones from the literature.

Paper Microphone type Placement Contact/Non-contact

(Doyle, 2019) Electret Attached to trachea, lungs Contact

(Valipour, Abbasi-Kesbi, 2017) Capacitor Chest region Contact

(Kavsaouğlu, Sehirli, 2023) Stethoscope Chest region Contact

(Zhang et al., 2023b) MEMS – Non-contact

(Shih et al., 2019) Smartphone Mouth/Chest Contact

(LoMauro et al., 2022) – Chest wall and lungs –

(Dafna et al., 2015) Rode NTG-1 directional – Non-contact

(Islam et al., 2021) Wearable and smartphone Chest region Contact

(Chauhan et al., 2017) Smartphone and wearable Contact

(Khodaie et al., 2021) MEMS Mouth region Contact

(Khatkhate et al., 2022) Pressure sensors Ribcage Contact

(Fang et al., 2023) Circular microphone array – Non-contact

(Xu et al., 2022) Smartphone – Non-contact

(Xie et al., 2020) – Modelling of chest region Contact

(Massaroni et al., 2021), although this approach has
its own drawbacks. This review focuses on microphones
for non-contact vital sign monitoring and it is di-
vided into sections discussing various methods that
have been developed in this field. These methods in-
clude beamforming techniques, smartphone-based so-
lutions, hardware and artificial intelligence (AI) based
approaches.

2. Microphone

The advent of the Internet of Things (IoT) has
made the use of microphones more relevant, increasing
their usefulness by 17% per year (Beckmann, 2017).
This may be a result of microphones changing from just
a device for voice reception to their adaptation to mo-
bile applications. Modern applications of microphones
include mobile phones and tablets, cameras, wearables,
bluetooth speakers, and security cameras. They can
act as a sensor for detecting the respiration or heart
rate of humans. Different microphones are being used
in sound analysis due to their unique capabilities and
features (Balgemann et al., 2023). Moreover, some
of them are equipped with a digital signal processor
that enables them to modify the audio signal based
on the distance and direction to the sound source. The
pulse-density modulated microphone has been recently
gaining attention due to its ability to delivering au-
dio to digital processors, but its high-order decima-
tion filter for pulse code modulation increases the cost
and power consumption when used as a beamformer
(Ipenza, Masiero, 2018). Table 1 shows a summary
of microphone applications found in the literature.

2.1. Types of microphones used in audio signal
analysis

2.1.1. Dynamic microphones

Dynamic microphones have the advantage of pro-
viding balanced sound recording. They are also durable,
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portable, and capable of producing high-quality sound.
These microphones work on the principle of electro-
magnetic induction, the movement of a wire in a mag-
netic field creates an electromotive force (EMF) in the
wire, which forces the current to flow. When sound
waves hit the diaphragm, it moves either the magnet
or the coil, creating a small current that can capture
sounds from up to one meter away.

2.1.2. Condenser microphone

This kind of microphone functions as a capacitor
consisting of two plates near each other, one of which
acts as the diaphragm. When sound reaches the di-
aphragm, it vibrates, generating changes in capaci-
tance, resulting in an electrical representation of the
acoustic signal. Condenser microphones have a stan-
dard diaphragm diameter: large and small; the small
having the advantage of being more compact and sen-
sitive to picking up higher frequency sound (PreSonus,
2022). Its high fidelity, excellent frequency response,
low noise levels, and sensitivity make it appropriate
for acoustic research (Todorović et al., 2015).

2.1.3. Electret microphone

An electret microphone is a type of condenser mi-
crophone that eliminates the need for a high-voltage
power supply by using a permanently charged material
called an electret. Like most microphones, it consists
of a diaphragm placed near a metal backplate, form-
ing a capacitor. When sound waves impinge on the di-
aphragm, it vibrates and changes the capacitance, gen-

Table 2. Comparison of non-contact health monitoring technologies.

Technology Strengths Weaknesses Applications References

Microphone-based Low cost, high accuracy
in detecting physiological
sounds, easy integration
with existing devices,
non-invasive, versatile,
low power consumption

Sensitive to noise,
privacy concerns,
limited range 0.5m–1m
for breath sounds

Respiratory monitoring,
heartbeat detection,
speech recognition

Fukuda et al., 2018;
Aarts, 2019;
Genova, 1997;
Sharma et al., 2019

Radar-based Accurate for motion
detection, capable
of detecting chest
movements for breathing
rate monitoring,
non-contact, works
in the dark

Expensive hardware,
limited in detecting
internal physiological
sounds, consumes more
power than other methods,
long range between
10m and 50m

Breathing rate monitoring,
heart rate monitoring,
motion detection

Sakamoto, Yamashita,
2019; Zakrzewski, 2015;
Lv et al., 2021

Infrared sensors Effective for detecting
body temperature changes,
non-contact, can detect
presence or absence based
on heat signatures, variable
power consumption

Requires line-of-sight,
affected by ambient
temperature variations,
limited to surface-level
observations, calibration
needed, range between
0.1m to 4m

Body temperature
monitoring, motion
detection, sleep studies

Thundat et al., 2000;
Fraden, 2014;
Yang et al., 2022

Ultrasonic Good for distance
measurement and obstacle
detection, non-contact,
safe to use, non-invasive,
low power consumption

Limited resolution for
detecting fine physiological
details, requires direct
path for sound waves,
affected by material
properties, range between
0.3m to over 10m

Fall detection, obstruction
detection, motion
monitoring

Hoctor et al., 2008;
Barany, 1993;
Toa, Whitehead, 2019

erating an electrical signal corresponding to the sound.
They are commonly used in devices such as mobile
phones, hearing aids, and voice recorders because they
are compact, less expensive, and they require a small
power source for their in-built preamplifier (Open Mu-
sic Lab, 2022).

2.1.4. Microelectromechanical microphone

The MEMS microphone operates by using a tiny
mechanical system etched onto a silicon chip to con-
vert sound waves into electrical signals. It is made
of a flexible diaphragm and a fixed backplate which
forms a variable capacitor. The capacitance of the ca-
pacitor changes as sound waves hit the diaphragm, and
this change/variation is then converted into an elec-
trical signal by an integrated circuit. MEMS micro-
phones are gradually replacing electret microphones
due to their smaller size and greater suitability for
smartphones. They have the advantage of picking up
signals equally from all directions, making these micro-
phone omnidirectional. They are also tiny in size and
consume low amount of power. This implies they can
be used to determine the direction of sound in a mi-
crophone array (Wang et al., 2020). However, when
MEMS microphone recordings are converted to elec-
trical signals, some noise is introduced (Rose, 2022).
The audio data used in smartphones is generated dig-
itally as a result of current movement in a very small
mechanical sound diaphragm. MEMS microphones are
employed in mobile devices because of its tiny footprint
and good performance (Picchio et al., 2019).
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2.2. Comparison of non-contact health monitoring
technologies

A microphone-based non-contact monitoring sys-
tem is a better alternative to other non-contact moni-
toring methods such as radar, infrared and ultrasonic
sensor. It is capable of monitoring breath signal, heart-
beat detection and identifying vocal patterns. These
capabilities are possible due to its ability to leverage
on the properties of sound waves to monitor physio-
logical features. Table 2 outlines the advantages and
disadvantages of these methods.

2.3. Microphone array

A microphone array (MA) is an arrangement of
several microphones positioned to gather signal from
different spatial locations. The main goal of MA is
a robust representation of the signal. It works on the
principle of sound propagation that several inputs are
able to either attenuate or enhance by processing sig-
nals from specific directions even in the presence of
noise (Dey, Ashour, 2018; Levy et al., 2010; Doclo
et al., 2015). MAs are essential in non-contact measure-
ment of signals, leveraging on the combined power and
sensitivity of the connected microphones. The spatial
arrangement of MA consists of several configurations
which include linear arrays, circular arrays or spherical
arrays, depending on the purpose an array is intended
(Alexandridis, Mouchtaris, 2017). The configura-
tions also determine the spacing between the connected
microphones (Dey, Ashour, 2018). Exemplary array
arrangements are shown in Fig. 1. In this configura-
tion, the microphone may be replaced with a smart-
phone or a beamforming method. The difference be-
tween a single microphone and an array arrangement is
that a single microphone cannot provide the direction
of a sound source and reduction of reverberation with-
out the need for post-processing. An array arrange-
ment, on the other hand, can improve the speech sig-
nal quality using the received radiation pattern from
the direction of a desired signal, thus improving the
signal-to-noise ratio (SNR) (Dey, Ashour, 2018).
Two important terms associated with array ar-

rangement is beamforming and the direction of arriv-
al (DOA). Beamforming is the procedure of estimat-

a) b) c) d)

Fig. 1. Different array arrangements: a) linear array; b) spiral array; c) circular array; d) planar array.

ing DOA and can be defined as a process of changing
the phase and amplitude of signals received by an ar-
ray of sensors (in this case microphones). The goal of
beamforming is to enhance the signals from one direc-
tion while suppressing the other directions, to make
the received signal specific to a direction. There are
two major types of beamforming: data-dependent and
data-independent. Data dependent methods usually
change parameters based on the received signal ex-
ample are adaptive or optimal, phase-shift frequency
beamforming. Data-independent (or fixed) beamform-
ing have fixed parameters; examples include delay-
and-sum, filter-and-sum, subband, and minimum vari-
ance distortionless response beamforming (Mathworks,
n.d.). The DOA, on the other hand, is a process of de-
termining the direction (for example, in degrees) in
which a received signal was transmitted. The degree
of accuracy of the estimated DOA is affected by the
performance of beamforming, thereby making beam-
forming and DOA interdependent on each other.

3. Principles of microphone-based monitoring

Microphone-based health monitoring systems uti-
lize the body’s natural sounds (signals), such as breath-
ing, heartbeats, and coughing, to obtain vital physio-
logical data. By detecting these acoustic signals, these
systems can constantly and non-invasively monitor an
individual’s health, as a suitable alternative to contact-
based devices. Microphones are sensitive to the vibra-
tions caused by physiological events like airflow during
respiration, heart valve closures, or even vocal cord
vibrations. The vital signals monitored by the micro-
phones include heart rate, respiratory rate, snoring and
coughing.

3.1. Signal processing techniques

The accuracy and effectiveness of a microphone
in monitoring vital signs depend largely on the pa-
rameters of the microphone itself and possibly on
the preamplifier working with it. These factors should
be well supported by the signal processing method
adopted. Recorded information contains noise and
other unnecessary data, necessitating the use of filter-
ing techniques to extract important signals.
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3.1.1. Noise filtering and amplification

A significant challenges in microphone-based mon-
itoring is the capture of background noise (Llorca-
Bofi et al., 2024; Paul et al., 2023). This noise can
degrade the quality of the acquired signal, making it
difficult to the isolate desired signal. Noise can be ad-
dressed using numerous filtering techniques. For exam-
ple, band-pass filter can clearly separate breath signals
from noise, as the frequency of the breath signal is be-
tween 100Hz and 1000Hz while heart sound ranges
between 20Hz to 200Hz (Han et al., 2023). Other fil-
tering methods such as low pass and high pass filters
can also be applied to recover a desired signal. Amplifi-
cation is essential for enhancing low-amplitude signals,
such as shallow breath signal.

3.1.2. Adaptive filtering

Adaptive filtering is a signal processing technique
commonly used in noise cancellation, system identifi-
cation, channel equalization and control systems. The
major difference between an adaptive filter and other
types of filters is its ability to dynamically adjust its
coefficients in response to changes in the signal envi-
ronment (Arenas-Garcia et al., 2021). This dynamic
adjustment makes it suitable for processing a non-
stationary signal, such as the breath signal. One com-
mon example of a adaptive filter is the adaptive line en-
hancement (ALE). ALE uses adaptive filters with dual
roles: predicting the narrowband component of a noisy
signal and enhancing them while eliminating broad-
band noise. ALE assumes that the narrowband signal
is either sinusoidal or periodic, allowing it to exploit
the time correlation in the narrowband signal to dis-
tinguish between the original or desired signal from the
uncorrelation broadband noise. To improve the qual-
ity of the desired signal, ALE uses the previous in-
put to separate the narrowband components from the
broadband noise. The basic components of ALE in-
clude the input signal, the delay lines, the adaptive
filter, and the computed error signal. The use of ALE
in microphone-based, non-contact health monitoring
is important, as one of the challenges associated with
microphones is their tendency to pick up background
noise along with the desired signal. ALE can be applied
to solve this problem (Atkins et al., 2021).

3.1.3. Time-domain and frequency-domain analysis

Signal features can be extracted using either
time-domain or frequency-domain analysis. The time
domain describes changes in a signal amplitude with
respect to time and is useful for detecting breath cy-
cles or heartbeats. On the other hand, frequency do-
main analysis, examines the signal energy’s distribu-
tion across a range of frequencies, which helps iden-
tifying specific physiological signals characterized by
specific frequencies (Rangayyan, 2015). A common

example used in frequency domain analysis is the fast
Fourier transform (FFT), which coverts a time domain
to the frequency domain for more detailed analysis
of its frequency components (Henry, 2023). Further-
more, the time-frequency distribution (TFD) combines
both time and frequency domain information, provid-
ing a more comprehensive analysis when both time and
frequency domain information are needed simultane-
ously.

3.1.4. Machine learning and AI integration

Recent advancements in microphone-based non-
contact health monitoring system focus on integrat-
ing machine learning (ML) and AI. These algorithms
enable the model to identify, classify and interpret
physiological signals. For example, deep learning mod-
els such as convolutional neural network (CNN) and
long short term memory (LSTM) networks are used to
distinguish normal and abnormal breath or heartbeat
patterns (Li, Qian, 2024; Roseline et al., 2024). Ad-
ditionally, these algorithms can handle large datasets
and learn from previously collected physiological sig-
nals, improving accuracy. Numerous ML- and AI-based
methods have been used for the identification and clas-
sification of different types of coughs, wheezes or heart
signals (Ferrante et al., 2020;Orlandic et al., 2021;
Pramono et al., 2019; Renjini et al., 2021). In a case
when microphone records patient’s respiratory signal,
the raw data serves as an input to the AI-powered sys-
tem, which filters out (remove) noises, identifies key
features, and classifies the data based on the trained
model. This facilitates real time diagnosis of diseases
associated with breath and heartbeat signals.

3.1.5. Pattern recognition and feature extraction

Pattern recognition plays a crucial role in identi-
fying acoustic signal. The algorithm detect repetitive
patterns in the signal, such as peaks in the amplitude
or the periodicity of heartbeats and breathing cycles.
The wavelet transform is a commonly used feature ex-
traction method, and it decomposes complex signals
into simpler components, allowing unique characteris-
tics that may indicate the presence or absence of dis-
eases to be clearly identified (Taghavirashidizadeh
et al., 2022).

4. Beamforming based methods

Beamforming can be defined as the process of com-
bining multiple signals from microphones in an array
to amplify sound in a specific direction. Beamforming
can be combined with other approaches, such as radar
systems and cameras, to locate targets (Xiong et al.,
2023; Wang et al., 2023). To detect a signal in a spe-
cific direction, the beamformer controls the phase and
amplitude at the transmission end. In non-contact vital
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sign monitoring, beamformers ensure accuracy mea-
surement of vital sounds and allow monitoring of mul-
tiple subjects at the same time. Frequent body move-
menta and noise are among the main factors hindering
beamforming. This section reviews literature that has
adopted beamforming.
A dynamic convolution-transformer neural network

(DYCTNN) for sound source localization using func-
tional beamforming was proposed by Zhang et al.
(2024). Dynamic convolution and self-attention tech-
niques were used to capture the spatial distribution
of sound sources. The model was trained and tested
using a dataset generated via acoustic simulation on
a 2m× 2m plane with a 60-channel spiral microphone
array and one to five monopole sources producing
sound fields at various frequencies. Xiong et al. (2023)
utilized beamforming by combining a phased array of
an antenna and a double-phase shifter (DPS) to ad-
just the magnitude and phase of the transmitted sig-
nal. Beamforming allowed for simultaneous monitoring
of numerous people with minimal target interference.
Actuators were utilised to simulate human chest move-
ment, while an omni-antenna was employed to generate
and receive signals. This method worked well; however,
adding antennas make this system too complex.
Sun et al. (2022) used a phase-shifting technique

for transmitting beam formation and digital beam-
forming for optimal spatial filtering at the receiving
end. The method utilized a frequency-modulated con-
tinuous wave (FMCW) radar with 9 transmitting and
16 receiving channels. Digital beamforming was de-
signed to obtain optimal spatial filtering at the re-
ceiving end, enhancing the capability of multi-person
detection. The arctangent demodulation method was
used for phase estimation, and phase unwrapping
was thereafter applied to address phase ambiguity. The
proposed method was able to detect targets within the
range of 1.8m to 12m. Hall et al. (2015) developed
the phased array non-contact vital sign (NCVS) sen-
sor system with an autonomous beam steering algo-
rithm, implemented in LabVIEW. The selected phased
array arrangements were tested, and data samples
were gathered to assess the performance of the au-
tonomous beam steering algorithm. The results showed
that heart rate measurement accuracy was approxi-
mately 95% within 5 bpm, and the automatic beam

Signal acquisition stage

Application 
of signal 

processing 
methods

Respiratory 
rate, heart rate 
determination

Fig. 2. Typical diagrammatic representation of vital signs monitoring system setup using microphone.

steering algorithm achieved an accuracy of 94.36%
within 5 bpm with a 2.82 bpm standard deviation.
Wang et al. (2023) introduced the dualforming-

based method that combined both spatial and fre-
quency domain beamforming to improve the signal-
to-noise ratio (SNR) across multiple subject locations.
The multiple subtle signal classification (MUS2IC) ap-
proach was used to separate subjects with subtle move-
ments from static objects. Empirical mode decompo-
sition (EMD) was used to extract heartbeat patterns
by decomposing the cardiac frequency response (CFR)
streams into separate intrinsic mode functions (IMFs).
The method measured heart rate within a 10m range,
allowing the monitoring of heartbeats of six subjects at
the same time. Tashev and Acero (2006) presented
a post-processing a microphone array’s beamformer
output. The algorithm estimated the spatial proba-
bility of sound source presence and applied a spatio-
temporal filter. Experimental results showed that the
directivity index improved up to 8 dB and jammer sup-
pression up to 17 dB at the angle of 40○ from the sound
source.

5. Microphone sensor based method

A microphone can detect vital signals in both con-
tact and non-contact modes. The latter produces less
noise since the sensors are not in direct contact with
the subject’s body. This section explores various stud-
ies conducted in this area. A simple diagram of the
microphone-based method is shown in Fig. 2.
Chen et al. (2015) presented a microphone posi-

tion calibration approach to distribution microphone
arrays, combining an acoustic energy decay model with
the time difference of arrival (TDOA) method. The
method first estimates the coarse distance between
the microphone and the sound source, followed by
TDOA to find the accurate distance within a specific
range near the coarse distance. The microphone’s
position is determined using the least mean square
error estimate approach, which yields high positioning
accuracy, steady calibration performance, and low
processing complexity. Qian et al. (2018) employed
FMCW sonar to send a chirp signal and calculated the
spectrogram of the baseband signal to extract vital
signals such as breath rate, heart rate, and individual
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heartbeat from the acoustic signal phase. The method
downsampled the FMCW signal to baseband and con-
tinually monitored the signal phase in the spatial bin
containing vital motions. The use of dual microphone
enhanced the performance of the system.
Valipour and Abbasi-Kesbi (2017) monitored

heartbeat and respiration rate using a phonocardio-
gram based miniature wireless acoustic sensor with
two capacitor microphones, a microprocessor, and
a transceiver operating at 2.54GHz in the industrial,
scientific, and medical (ISM) band. The sensor was
placed on the volunteer’s chest, and ECG signals were
acquired. The findings showed root-mean-square er-
rors (RMSEs) of less than 2.27 bpm for heartbeat and
0.92 bpm for respiration rate, with standard deviation
of less than 1.26 for heartbeat and 0.63 for respira-
tion rate. Overall, the developed approach is contact-
based. Tran et al. (2014) used a hybrid hardware-
software technique to detect an infant’s vital signs, us-
ing an infrared non-contact temperature sensor and
a microphone-based breathing sensor. The system was
designed in a hardware description language (HDL)
and implemented on an field-programmable gate array
(FPGA) board. The developed device identified the in-
fant’s vital signs when tested on the Altera DE2-115
FPGA board.
Taniguchi et al. (2023) presented a vital sign mon-

itoring system for dogs based on the MEMS micro-
phone and the Raspberry Pi wireless system. To ex-
tract the heart rate, they first removed the DC off-
set from the obtained data, then transformed it us-
ing the short time Fourier transform (STFT), and fi-
nally applied the fifth-order Butterworth bandpass fil-
ter. The filtered data was then normalised, and the
heart rate was calculated by counting amplitude peaks
within a specific time frame. The heart rate extrac-
tion technique includes calculating the number of data
points and amplitude thresholds, as well as comput-
ing the distance between peaks. The heart rates ac-
quired during the surgery were monitorable every sec-
ond, with an average heart rate of 110 bpm.
Dafna et al. (2015) proposed a non-contact

microphone-based polysomnography (PSG) to mea-
sure breathing noises and estimate breath rate dur-
ing sleeping. Adaptive noise reduction techniques was
used to suppress background noise and non-periodic
spectrum components were filtered out by a periodicity
augmentation module. The BR module was the final
stage, and it estimated BR based on the filtered signal.
The system was tested on 204 individuals who partic-
ipated in an in-laboratory in the study. The Pearson
correlation coefficient between the two techniques was
R = 0.97, showing a strong relationship. An epoch-by-
epoch BR comparison revealed a mean relative error of
2.44% and Pearson correlation of 0.68, demonstrating
good agreement between the audio-based BR estima-
tion and the gold-standard respiratory belts.

Wang et al. (2021) presented a low-cost, contact-
less heartbeat monitoring device based on a commod-
ity speaker and a microphone array. Acoustic impulses
are transmitted by a speaker and received by a micro-
phone array to estimate the human heartbeat. Passive
beamforming and frequency domain filtering were used
to improve the quality of the signal accuracy. A wide-
band time-delay approach was also used to predict
the DOA of the target-reflected signal. The prototype
monitors heart rate at a distance of 1.7m, with an esti-
mation error of 0.5 bpm. A wearable microphone sensor
based on the adaptive windowing technique was em-
ployed by Zhang et al. (2024) to estimate heart rate.
The method used a spectrogram to derive an initial es-
timate and calculate the optimal window length based
on frequency resolution and physiological constraints.
A one-step autoregressive model was used to correct
estimates, thereby improving the heart rate measure-
ment accuracy by ±2.8 bpm. The developed method
was tested on a group of 26 healthy subjects. Ashraf
and Moussavi (2024) designed a piezoelectric surface
microphone placed at the suprasternal notch to cap-
ture tracheal breathing sounds. This device produced
clear respiratory waveforms with minimal sensitivity to
ambient noise. A wearable accelerometer microphone
(Gupta et al., 2021) captured lung sounds and chest-
wall motion to derive respiratory patterns in hospital-
ized patients with COPD, pneumonia, etc. These con-
tact sensors can measure both breath sounds and rate
with high fidelity, even amid patient motion or back-
ground noise; for example, the piezo sensor showed
negligible degradation across frequency bands when
noise was present.

6. Smartphone and contact based methods

Smartphone technology started in 1992 (Tocci,
2024), and it has surpassed expectations, particularly
in the development of applications that can run on
smartphones. A significant contributor to this success
is the microphone, which has helped acquisition of
data for various applications, including those focused
on vital sign monitoring. Smartphones are now capa-
ble of monitoring vital signs such as heart rate, res-
piratory rate, blood pressure, and blood oxygen satu-
ration, whether through contact-based or non-contact
methods. The section focuses on the literature that has
used microphones installed in smartphone for vital sign
monitoring.
Kavsaoğlu and Sehirli (2023) captured audio

signals from the heart and trachea, resulting in
a dataset for detecting inhalation and exhalation cir-
cumstances. Two methods were used to obtain these
signals: one involving heart sound and the other in-
volving trachea sounds. The audio signals were clas-
sified into inhalation and exhalation phases using
ML models. The highest accuracy and performance
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were achieved using a majority voting strategy with
k-nearest neighbour, random forest, and support vec-
tor machines.Doyle (2019) used a flat adhesive acous-
tic sensor and the TASCAM DR-40 Digital Recorder
to record bioacoustic data. Recordings were taken from
multiple of locations, including the neck, external ear
canal, oxygen mask, as well as a leak-free microphone
attached to a laryngeal mask airway. Audacity, an
open-source digital audio editor and recording pro-
gramme, was used to analyse breath sounds and apply
digital filters.
Lee et al. (2023) used an array of MEMS mi-

crophones to record lung sound waves, which were
converted into acoustic images. The system’s perfor-
mance was assessed using waterbags to stimulate air-
way blockages, and its accuracy was compared to
that of digital stethoscopes. The proposed method
demonstrated better detection of lung conditions, with
a room square error of 0.28 and SNR of 7 dB. Lo-
Mauro et al. (2022) introduced a semi-automatic, ro-
bust pre-processing for respiratory data analysis us-
ing functional data analysis (FDA) techniques. The
approach involved separating, detecting outliers based
on time-duration, amplitude, and shape, and cluster-
ing breaths using K-medoids for different breathing
patterns. The proposed methodology showed an error
rate of less than 5% for minimum detection and outlier
removal.
Chauhan et al. (2017) developed a framework

that combines smartphone acoustic sensors to iden-
tify breathing phases and estimate biomarkers. Breath-
ing data was collected from pulmonary patients and
healthy individuals using Samsung Galaxy Note 8
smartphones, chest bands, and spirometers. The sys-
tem achieved 77.33% accuracy and over 90% accu-
racy in estimating respiratory rate and other biomark-
ers. Shih et al. (2019) developed a real-time breath-
ing detection algorithm with low latency, running on
a smartphone. To train and evaluate the developed
system over 2.76 million breathing sounds from 43
participants was captured, and the system achieved
75.5% accuracy in detecting breathing phases using
a combination of attention-based LSTM models and
CNN-based extraction modules. Wang et al. (2018)
used a correlation-based frequency-modulated contin-
uous wave (C-FMCW) approach for monitoring hu-
man breathing via audio signals. The common speaker
and microphone components found in most homes were
used. The system accurately identified subjects’ res-
piration in a variety of environments, including dif-
ferent rooms and subject sleep positions. Khodaie
et al. (2021) developed a system that records respira-
tory sounds from the upper airways using microphones
implanted in a breathing mask. The study discovered
a strong correlation (coefficient of 0.9) between acous-
tic features of respiratory sounds and respiratory met-
rics such as the peak flow and average flow.

Fang et al. (2023) proposed the identity-based res-
piration monitoring system for digital twins enabled
healthcare (IDRes). The respiration rate was estimated
by tracing the changes in the phase of the sonar sig-
nal and detecting the doppler frequency shift to cap-
ture chest motion characteristics. Experimental results
showed 93.3% recognition accuracy and the mean de-
tection error of 0.49 bpm.
Xu et al. (2020) proposed the BreathListener,

a system that monitors breathing in driving scenar-
ios using audio devices on smartphones. The method
captured fine-grained breathing waveforms in driv-
ing scenarios. The device used the energy spectrum
density (ESD) of acoustic waves to record breath-
ing processes in driving conditions. BreathListener
used background removal and variational mode de-
composition (VMD) to remove interference from driv-
ing settings while extracting the breathing pattern
from the ESD signals. The retrieved breathing pat-
tern was then translated into the Hilbert spectrum,
and the fine-grained breathing waveform was gener-
ated using a deep learning architecture, based on gen-
erative adversarial networks. Chara et al. (2023) de-
veloped an FMCW-based acoustic system on a smart-
phone by emitting and receiving high-frequency chirps,
the phone tracks tiny chest displacements. In trials this
approach achieved extremely high accuracy – a median
breathing-rate error below 0.15 breaths per minutes
across various conditions. A smartphone-based contact
method. Phokela et al. (2020) used a headset micro-
phone under the nose to record nasal airflow sounds:
it achieved respiration-rate errors less than 10% even
in noisy environments, demonstrating feasibility for
home use.
Nemcova et al. (2020) estimated the heart rate,

blood oxygen saturation (SpO2), and blood pressure
(BP) using smartphone sensors. HR and SpO2 were de-
termined by generating a photoplethysmogram (PPG)
from the camera data, while BP was measured by cal-
culating the pulse transit time value from the PPG
and recording a phonocardiogram (PCG) via the mi-
crophone. The results showed mean absolute errors
(MAE) of 1.1% for SpO2 and 1.4 bpm for heart rate.
Vincent et al. (2023) presented a multi-target blind
source separation technique based on a single sonar.
The use of the freqency hopping (FH) technique within
the ULCW (Ultra-CW) scheme helped to minimize the
effects of frequency-selective fading (FSF) and inter-
symbol interference (ISI) in the baseband, thereby
improving the accuracy of acoustic signal transmis-
sion. The combination of continuous wave (CW) and
FMCW signals in the ULCW scheme enhanced the
transmission of energy from the smartphone, enabling
accurate acoustic signal propagation over long dis-
tances. Doheny et al. (2023) developed a method to
predict respiratory rate and exhale length from smart-
phone captured audio data. The method required cal-
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culation of the audio signal’s basic frequency and de-
tection of individual exhales with adaptive threshold-
ing. Exhale boundary timings were optimised with
adaptive physiological thresholds. The respiratory rate
was determined by identifying peaks and troughs in the
respiratory inductance plethysmography (RIP) signal,
and exhale durations were calculated as the time be-
tween each peak and the next dip in the RIP signal.
The RIP respiratory rate was utilised as the standard
against which the audio respiratory rate was measured.
The fundamental frequency of the respiration envelope
was found as the frequency corresponding to the first
peak in the harmonic product spectrum above 0.09Hz.
Other active acoustic methods use smart speakers to
monitor breathing or heart rate, though these are
mostly prototypes or proof-of-concept. The advantage
of these non-contact methods is comfort and conve-
nience and suitability for home or telehealth. However,
they require a device (smartphone or speaker) close
to the subject and can be sensitive to environmental
noise or interference. Thick clothing, bedding, or a dis-
tance beyond 2m–3m can degrade signal, so practical
use often means limiting the scenario.

7. Hardware based methods

This section examines approaches that incorpo-
rated hardware components, whether handheld or not,
with the capability to determine the respiration rate
of subjects.
Al-Ali and Lee (2012) patented a physiologi-

cal acoustic monitoring system that collects physio-
logical data from an acoustic sensor and generates
respiration-related parameters in both real-time and
non-real time. The system processes data by down-
sampling to provide raw audio of breathing sounds,
and compresses it for futher analysis. Wang et al.
(2023) presented the MultiResp, a multi-user respira-
tion monitoring system that detects chest movement
using acoustic signals. The system captures acous-
tic signals reflected from participants’ chests, allow-
ing for robust respiration monitoring even when sub-
jects are facing away from the transceiver or blocked
by barriers. MultiResp extracted fine-grained breath
rate and phase differences between participants to dif-
ferentiate breath waves with similar rates and adjust
to dynamic variations in the number of monitored sub-
jects. However, MultiResp fails when the sound pres-
sure is less than 55 dB or when there is body movement
which causes significant alterations in the multipath
signals, causing erratic fluctuation of the channel im-
pulse response (CIR).
Abbasi-Kesbi et al. (2018) presented a wireless

acoustic sensor that used a phonocardiogram to de-
tect heartbeat and respiratory rate. The system com-
prises a processor, transceiver, and two capacitor mi-
crophones for capturing heartbeat and respiration rate.

The technology also measures breathing rate with a ca-
pacitor microphone placed near the mouth. The wire-
less acoustic sensor demonstrated high accuracy in
predicting heartbeat and breathing rate, with RMSEs
of less then 2.27 beats/min and 0.92 breaths/min, and
standard deviations of less then 1.26 and 0.63, respec-
tively. The system’s sensitivity and specificity in recog-
nizing PCG sounds ranged for S1 to S4 at 98.1% and
98.3%, respectively, representing a 3% improvement
over earlier work. This method accurately recorded
heart and respiration rate in a variety of circumstances,
including resting and breath-holding, with consistent
results across numerous volunteers.
Wan et al. (2023) introduced a continuous multi-

user respiratory tracking system designed for house-
hold settings using acoustic based commercial off-the-
shelf (COTS) sensors. The system employed multi-
stage algorithm to isolate and recombine respiration
data from different paths to calculate the respira-
tion rate of several moving persons. By utilizing fea-
tures from multiple dimensions to distinguish between
users in the same region, and applying Zadoff–Chu
(ZC) sequences with optimal auto-correlation, it dif-
ferentiates user pathways. The system transmits the
ZC sequence modulated by a sinusoidal carrier as
the transmitted sound signal, with its detection range
and bandwidth determined by the length of the ZC
sequence and frame length. The experimental results
showed that RespTracker’s two-stage algorithm can
differentiate the respiratory pattern of at least four
subjects over a three-meter distance.

8. Artificial intelligence based method

This section reviews studies that have adopted ML
techniques using a microphone as the primary sig-
nal acquisition method. Figure 3 illustrates ML-based
method.
Xie et al. (2023) utilised an autoencoder (AE)

neural network to quantify the residual between the
original and reconstructed signals, which can increase
the end-to-end (e2e) respiration monitoring accuracy
by a factor of 2.75 when compared to the baseline.
Their approach employed deep learning techniques,
combining an autoencoder neural network and a self-
supervised learning to quantify signal quality. The use
of radio frequency quality (RF-Q) further enhanced
respiration monitoring accuracy. However, large vol-
umes of training data are required for deep learning
algorithms and the need for manual labelling, as train-
ing datasets for DL techniques is typically not publicly
available.
Liu et al. (2021) proposed a reverberation aware

network (RAN) algorithm for improving the robust-
ness of DOA estimation. The algorithm used the beam
cross-correlation (BCC) as an input to a deep neu-
ral network (DNN), explicitly characterizing reverber-
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ation in the captured speech signal. The classic beam-
forming algorithm was used to generate beamforming
outputs, the observed signals, which was then used as
a reference for reverberation identification. The filter-
sum (FS) beamforming algorithm was adopted for
beamforming processing. Numerical simulations were
based on virtual room environments generated with
a reverberation model, as well as practical experiments
under physical room environments, to evaluate the
performance of the proposed method. The impact of
different environments on the performance was eval-
uated by conducting experiments with different noise
levels and source distances. In addition to the afore-
mentioned research, some studies have also combined
two methods, such as beamforming with ML (Zhang
et al., 2024) and smartphone with ML (Kavsaoğlu,
Sehirli, 2023; Shih et al., 2019; Xu et al., 2020).
Despite the promising application of ML in different
fields, this area is underexplored especially when us-
ing a microphone as the non-contact health monitoring
method.

9. Challenges and solution

Using microphones for signal acquisition in medi-
cal applications presents several challenges, with noise
and interference being the most significant. To address

these issues, some techniques have been proposed, in-
cluding the use of adaptive noise reduction algorithms
(Abed et al., 2022;Thomsen,Du, 2020;Meyer et al.,
2020; Wu et al., 2020; Wang, Qiu, 2020), directional
microphones (Fischer, Puder, 2012; Kanamori,
Terada, 2016; Nongpiur, 2018; Park et al., 2020),
and the application of ML (Jain, Hera, 2019; Sh-
iozawa et al., 2020; Takenaka, Ozawa, 2022). While
these three methods have been independently used
in the literature, this review suggests an integrated
method that combines these approaches. In this pro-
posed solution, adaptive noise reduction reduces in-
herent noise from recordings, directional microphones
capture signals from a single direction or a patient,
and ML processes the signals to minimize noise inter-
ference more effectively. Another challenge is the ur-
gency with which some respiratory data are required
to make informed decisions. High latency or process-
ing delays can be problematic, this issue can be ad-
dressed by using edge computing, which processes data
locally, or by employing optimized algorithms for real-
time data processing. These suggested methods can
significantly improve the responsiveness and reliability
of microphone-based non-contact monitoring systems
in medical applications. Apart from the above, other
challenges with microphone include privacy, data se-
curity and technical implementation. Although data
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privacy and security were not mentioned by some of
the articles reviewed. However, they remain one of the
challenges associated with the use of microphones and
other audio-based signal acquisition methods. Audio
recordings should be treated with utmost security, as
they reveal sensitive health information. Alqudaihi
et al. (2021) suggested that only numeric features
should be extracted from heart and respiratory sig-
nals and that data transmission should be anonymized
summaries. To further enhance data privacy and secu-
rity. Alqudaihi et al. (2021) also recommended im-
plementing blockchain-based audit logs or federated
learning techniques. Future directions could focus on
the development of specialized contact microphones
and the adoption of AI-based denoising and data en-
cryption algorithms to improve the reliability and se-
curity of microphone-based monitoring systems. More-
over, privacy-preserving hardware innovations, such as
MicPro proposed by Xiao et al. (2023) alongside the
end-to-end encryption protocol used in some social me-
dia messaging applications – can address these issues
adequately. Overall, research into the suggested solu-
tions could enhance the performance of microphones
as vital sign monitoring systems.

10. Conclusion

This review has presented the potential of
microphone-based systems for non-contact sign mon-
itoring. The transition from simple acoustic sensors
to the adoption of intelligent health monitoring was
made possible by technologies such as beamforming,
ML, and smartphone integration. These systems have
evolved from simple signal-capturing devices to sophis-
ticated devices capable of detecting complex physiolog-
ical patterns. Non-contact health monitoring systems
can leverage these innovations, such as the integra-
tion of deep learning algorithms like CNN, RNN, or
LSTM (Acharya, Basu, 2020; Thakur et al., 2022).
Although some research has been done in this area,
the accuracy and real-time application of ML-based
methods can be further improved through enhanced
data collection processes, hybrid deep learning models,
better feature extraction methods, and the use of mi-
crophone arrays instead of single microphones. Future
directions could also focus on leveraging smartphone-
based applications and cloud-based platforms to im-
prove access, accuracy, and reliability while address-
ing other challenges associated with microphone-based
systems.
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