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The investigations focused on the binaural perception of amplitude modulated (AM)
and frequency modulated (FM) signals. They are comprised of two experiments. In the
first experiment binaurally perceived (matched) modulation depth for AM signals was
determined under diotic conditions (i.e. for the same values of modulation depth coeffi-
cient, m, presented to the left (ml) and right (mr) ears) and under dichotic conditions
(i.e. for different values of these coefficients ml 6= mr). The measurements were made for
the interaural differences in modulation depth coefficient ∆m, changing from 0 to 100%
and a few selected modulating frequencies (4, 64 and 128 Hz) and carrier frequencies (250
and 1000 Hz). In the second experiment binaurally perceived (matched) frequency devi-
ation of FM signals was determined under diotic conditions (i.e. for the same values of
frequency deviation, ∆f , presented to the left (∆fl) and right (∆fr) ear (∆fl = ∆fr)
and under dichotic conditions (i.e. for different values of this deviation (∆fl 6= ∆fr)). The
measurements were made for the interaural differences of frequency deviation changing
from 0 to 20 Hz; a few selected modulating frequencies (32, 64 and 128 Hz) and carrier
frequencies (500 and 1000 Hz). It was found in Experiment I that for small interaural
differences in modulation depth, ∆m, the binaurally perceived modulation depth, m, is
equal to the arithmetic mean of the depths presented to the left and right ears, whereas
for large values of ∆m, the value of m is smaller than the mean. The results of Experi-
ment II revealed that the binaurally perceived frequency deviation is a linear function of
interaural differences of this deviation and is equal to the arithmetic mean of deviations
presented to the left and right ears.

1. Introduction

Binaural hearing is a complex process of sound perception during which an interaction
of signals received by each ear takes place. Binaural perception is related to such effects
as: directivity and sound localization, lateralization and fusion of sound images, binaural
masking level differences, etc. The results of binaural perception are often compared to
the results of monaural perception. For example, comparison of binaural and monaural
detection thresholds for tones revealed that the binaural detection thresholds are on av-
erage 3 dB lower than monaural detection thresholds (Keys [12]; Shaw et al. [27]). This
result suggests a summation of signals from both ears in the binaural perception process.
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However, results of investigations conducted by others (Pollack [23]) did not univocally
confirm this summation mechanism. Comparison of results of investigations of loudness
evaluated binaurally and monaurally also indicates the mechanism of nearly perfect bin-
aural summation of loudness (Hellman and Zwislocki [7]; Marks [14]). However, the
mechanism of such summation was questioned by the results of experiments conducted
by others (Reynolds and Stevens [24]; Scharf and Fishken [26]) indicating that it
is not fully univocal.

Investigations of difference thresholds of intensity and frequency also revealed that
the thresholds are lower for binaural perception compared with monaural perception
(Rowland and Tobias [25]; Jesteadt et al. [11]). According to Jesteadt [11], in
frequency range of 250 – 4000 Hz, the ratio of the monaural to the binaural intensity
difference thresholds is of the order of 1.65, whereas for the frequency difference thresholds
it is equal to about 1.44.

Binaural perception is exceptionally complex in the case of signals with parameters
varying in time, e.g. amplitude modulated (AM) signals and frequency modulated (FM)
signals. Binaural investigations into AM signals conducted so far focused on the prob-
lems of localization, lateralization, binaural masking level differences and modulation
detection interference (Nuetzel and Hafter [17, 18]; McFadden and Pasanen [15];
Henning [8]; Henning and Ashton [9]; Bernstein and Trahiotis [1, 2]; Mendoza
et al. [16]; Heller and Trahiotis [6]). On the other hand, binaural perception of FM
signals is usually connected with different beat effects. The binaural beats occur when
a certain frequency tone is heard by one ear whereas the other ear hears another tone
with slightly different frequency. The perceived sound fluctuates with a frequency equal
to the difference of the frequencies of the two tones (Licklider et al. [13]; Perrott and
Nelson [21]). The binaural beat effect is most clearly heard in a narrow frequency range,
i.e. about 250 – 500 Hz; the range depends on the acoustic pressure level of the tones. The
specific character of binaural beats is fairly complex in perception because in addition
to beats the so-called rotating tones are sometimes distinguished or the beats are con-
nected with the shifting of the sound image (Perrott and Musicant [22]). Tobias [30]
found out binaural beats in case of large interaural differences in acoustic pressure level
occurring between tones. According to Groen [4], binaural beats can also occur when
the acoustic pressure level of one tone is below the hearing threshold. However, results
of the latter investigations indicate that binaural beats are perceived when the pressure
level of tone corresponds to the value higher than 0 dB SL (Gu et al. [5]). Binaural beats
are a proof that in the auditory system there is an interaction between neural discharges
from the left and right ears. Furthermore, the structure of these discharges must con-
tain information about instantaneous signal phase as this conditions the generation of
subjective loudness fluctuations.

It is interesting from the cognitive point of view to investigate the sensation of mod-
ulation in the case of binaural perception of amplitude or frequency modulated signals.
The investigations are connected with a number of different problems, which have not
been solved to date. One of them is determination of the value of binaurally perceived
depth of amplitude modulation when the depths, expressed by ml and mr, are different
in the left and right ears. It is also interesting to determine the relation of the per-
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ceived modulation depth to the modulating and carrier frequency of AM signal. Similar
problems are encountered in the case of binaural perception of FM signals. In the lat-
ter case it is also important to investigate the value of binaurally perceived frequency
deviation depending on interaural deviation differences and the modulating and carrier
frequency.

The above problem has so far been discussed in literature to a limited extent only.
Preliminary results of investigations into the binaural perception of AM and FM sig-
nals are reported in Ozimek et al. [19]; Wicher and Ozimek [31]. The investigations
reported in this paper are a continuation of the investigations mentioned above. They
comprise two experiments. The aim of the first experiment was to determine the resultant
depth of amplitude modulation perceived by the subject for AM signals presented bin-
aurally, depending on the interaural differences of this depth, for a few modulating and
carrier frequencies. The second experiment comprised binaural perception of frequency
modulated signals to determine the resultant value of frequency deviation for FM signals
depending on the interaural differences of this deviation, for a few selected modulating
and carrier frequencies. It should be pointed out that in addition to the cognitive char-
acter of the investigations, their results could have some practical significance, mainly
as regards binaural perception of real sounds (speech and music), in different hearing
conditions, particularly binaural perception of these sounds in different rooms in which
large changes in the amplitude and frequency structure are often observed (Ozimek and
Sęk [20]); the latter have a significant effect on the intelligibility of speech and perception
of music, which are related to the acoustic quality of rooms.

2. Experimental set up, signals and methodology

Sinusoidal signals were used in the investigations. In Experiment I they were ampli-
tude modulated and in Experiment II — frequency modulated by a periodic modulating
signal. The signals were digitally generated at the sampling rate of 50 kHz and then
low-pass filtered at 10 kHz (Tucker-Davis Technology, TDK). The equipment and exper-
iments were computer controlled. Each signal lasted 1000 ms, including the growth and
decay times of 20 ms each. The signals were presented to the subjects in pairs (trials),
both in Experiment I and Experiment II. Each pair included a standard signal (stan-
dard) characterized by equal values of modulation depth in Experiment I or frequency
deviation in Experiment II at both ears and the test signal (test) with equal (in the case
of diotic conditions) or different (in the case of dichotic conditions) modulation depth or
frequency deviations. The set up of Experiments I and II is illustrated in Fig. 1.

The standard and test in the trial were separated by a 500 ms interval and presented
in random order. A set of 40 trials constituted one run. The stimuli were presented to the
subjects binaurally through HDA200 phones. Measurements for AM signals were made
for carrier frequencies of fc = 250 and 1000 Hz and modulating frequencies of fm = 4, 64
and 128 Hz and for changes in the interaural difference of modulation depth ranging from
0 to 100%. Measurements for FM signals were made for carrier frequencies of fc = 500
and 1000 Hz and modulating frequencies of fm = 4, 32, 64 and 128 Hz and changes in
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Fig. 1. The set up of Experiments I and II under diotic (1 and 3) and dichotic (2 and 4) conditions.
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the interaural difference of frequency deviation ranging from 0 to 20 Hz. The upper limit
of the deviation changes was selected so as to achieve the fusion effect of the FM sound
image. The acoustic pressure level for all the signals was equal to 70 dB SPL.

Stimuli were presented according to the two alternative forced choice paradigm (2AFC)
with the one-up, two-down adaptive procedure. Trials started with the modulation depth
(in Experiment I) or frequency deviation (in Experiment II) of the standard well above
the anticipated binaurally perceived modulation of the test signal. The subject’s task
was to match the modulation depth of the standard to that of the test in Experiment I,
or the frequency deviation of the standard to that of the test in Experiment II. The
modulation depth, or frequency deviation of the standard was tracked during the run by
1 dB until four turnpoints were reached and then by 0.5 dB for the rest of the run. In
this way the difference in modulation depth or frequency deviation between the standard
and the test was gradually decreased. In this way it was possible to obtain the point
of subjective equality between sensations of the modulation depth or frequency devia-
tion for the standard and test signals. Besides the perception of modulation depth or
changes in the frequency deviation some lateralization effects also occurred in the ex-
periments. The subjects were instructed to disregard these disturbing effects and focus
their attention only on the evaluation of changes in the modulation depth or frequency
deviation.

It should be stressed that Experiments I and II could only be conducted for those
parameters for which the so-called binaural fusion of the sound images takes place. Lack
of this fusion that occurred, for instance, for large frequency deviations of FM signals
was manifested by the separation of the sound image in the head, which made binaural
perception impossible.

Binaurally perceived modulation depths or frequency deviations were calculated as
an arithmetic mean of the last 8 turnpoints. Their final values were counted as an average
of at least five single estimates (taken from 5 runs). Three subjects with normal hearing,
for whom interaural differences of audibility thresholds did not exceed 6 dB, participated
in Experiments I and II.

3. Experiment I. Binaural perception of AM signals

At the initial stage of Experiment I we defined the binaural modulation depth of AM
sounds under conditions of diotic presentation (cf. Fig. 1.1), i.e. when the modulation
depth at the left and right ears were the same. This initial stage aimed at defining the
subjects’ ability to evaluate the binaurally perceived modulation depth within the range
of parameters measured. Figure 2 shows the dependence of the binaurally perceived
(matched) modulation depth (m), averaged for 3 subjects and expressed in percentages,
on the presented modulation depth, at ml = mr. The frequency of carrier signals equalled
250 and 1000 Hz. The modulating frequency was the parameter of the data.

As can be seen in Fig. 2, the experimental data are distributed along a nearly straight
line (y = x), presenting the ideal matching of the perceived and presented modulation
depths. The straight line expresses an arithmetic mean of the values of modulation depths
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presented to both ears, i.e. m = (ml + mr)/2 [19]. As for diotic presentation ml = mr,
hence m = ml = mr. It also follows from Fig. 2 that the perceived modulation depth is
neither the function of carrier frequency nor modulating frequency.

Fig. 2. Dependence of the binaurally matched modulation depth (m) on the modulation depth pre-
sented to the left (ml) and right (mr) ears, under diotic conditions of perception (ml = mr). The
frequency of carrier signals equalled 250 and 1000 Hz. The modulating frequency was the parameter of
the data. Data averaged across three subjects. Vertical lines in all diagrams show the value of standard

deviation.

In the case of dichotic presentation (ml 6= mr), the subject’s task was more difficult as
the resultant AM sound image was not perfectly fussed. The task was particularly difficult
for large interaural differences in the modulation depth, ∆m = ml −mr, and especially
when mr = 0, with ml → 100%. Figure 3 shows binaurally matched modulation depth,
m, averaged for three subjects, as a function of the interaural difference in modulation
depth ∆m, for the carrier frequency of 1000 Hz, for mr equal to: 0, 10, 20 and 60%
respectively. The value of the modulating frequency is the parameter of the curves.

It follows from Fig. 3 that the binaurally matched modulation depth m grows along
with the growth of the interaural difference in modulation depth ∆m. For small ∆m,
the binaurally perceived m is almost linearly related to ∆m. For large ∆m, f(∆m) is no
longer linear and, additionally, depends on fm, particularly for small values of mr. The
standard deviations of measured m values grow along with the growth of ∆m.

It was interesting to refer the binaurally determined values of m to the values which
would be obtained on assumption that AM modulated signals, presented to the left and
right ears, undergo, some linear summation [19]. Let us assume that input AM signals
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presented to the right and left ears have the following form:

xr(t) = Xr [1 + mr sin(2πfmt)] sin(2πfct), (1)

xl(t) = Xl [1 + ml sin(2πfmt)] sin(2πfct), (2)

where Xr and Xl are amplitudes of carrier signals, mr and ml are coefficients of modu-
lation depth presented to the right and left ears, fm and fc are modulating and carrier
frequencies of AM signals. Adding (1) and (2) and grouping terms we get

xr(t) + xl(t) = (Xr + Xl)
[
1 +

Xrmr + Xlml

Xr + Xm
sin(2πfmt)

]
sin(2πfct). (3)

Expression (3) has the form of an equation describing AM modulated signal, for which
modulation depth m equals

m =
Xrmr + Xlml

Xr + Xl
. (4)

For small interaural differences in modulation depth, amplitudes of carrier signals Xr

and Xl are nearly equal. In this case expression (4) is simplified to the form

m =
mr + ml

2
. (5)

Hence, for small values of ∆m, binaurally perceived modulation depth m is equal to
the arithmetic mean of the value of depth coefficients presented to both ears. For large
values of ∆m, amplitudes of carrier signals are not equal (Xr 6= Xl). Assuming a constant
value of modulation depth in one ear (e.g. mr) and changing the modulation depth in
the other ear one can find a set of curves defining m = f(∆m). The curves, obtained in
accordance with expression (4), are shown in Fig. 4 as continuous lines.

As can be seen in this figure, for small and medium values of ∆m, experimental
and theoretical data match quite well. The perceived modulation depth is approximately
proportional to ∆m. However, for large ∆m values, particularly when ∆m → 100%,
certain differences between the experimental and theoretical data begin to appear. The
differences are clearly seen for fm = 128 Hz, i.e. when the evaluation of the modulation
depth between the standard and the test does not result from the difference in the
intensity (loudness) fluctuation but from the difference in the spectrum of the stimuli i.e.
when spectral perception mechanism of the modulation is involved. This fact suggests
that for a high rate of modulation and large interaural differences in modulation depth
apart from the linear summation of AM signals from both ears an additional process of
the binaural mechanism is triggered.

4. Experiment II. Binaural perception of FM signals

At the initial stage of Experiment II the perception of the binaurally perceived fre-
quency deviation was tested under diotic conditions, i.e. when set frequency deviations
in successive pairs of stimuli were the same (cf. Fig. 1.3). The aim of this initial stage of
the experiment was to determine the subjects’ ability to evaluate the binaurally perceived
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frequency deviation for selected modulating and carrier frequencies. Figure 5 shows the
dependence of the perceived frequency deviation, averaged for three subjects, on the
deviation presented for case ∆fl = ∆fr. The frequency of the carrier signals was fc = 500
and 1000 Hz. Modulating frequencies fm = 4, 32, 64, and 128 Hz were the parameters of
the curves.

Fig. 5. Dependence of the binaurally perceived frequency deviation (∆f) on the frequency deviation
presented to the left (∆fl) and right (∆fr) ear, under conditions of diotic presentation (∆fl = ∆fr).
The frequency of carrier signals equal 500 and 1000 Hz. The modulating frequency is the parameter of

the data. Data averaged across three subjects.

The diagonal broken lines represent the linear (ideal) dependence of the perceived
value of deviation on that presented. As can be seen in Fig. 5 the results of the measure-
ments well match the broken line, which indicates high ability of subjects to evaluate
frequency deviation of FM signals. On this basis we can state that in the case of di-
otic presentation, the perceived frequency deviation is equal (within the measurement
error) to the value of the presented deviation, both for small deviation changes, i.e.
within the range of loudness changes (fm = 4 Hz), roughness changes (fm = 32 and
64 Hz), and within the range in which deviation changes are perceived as changes in
the stimulus timbre (fm = 128 Hz). One can also say that under conditions of diotic
presentation the frequency deviation perceived by the subject, ∆f , is equal to the arith-
metic mean of the deviation presented to the right, ∆fr and left, ∆fl, ears, i.e. that
∆f = (∆fl + ∆fr)/2 = ∆fl = ∆fr for (∆fr = ∆fl). It also follows from Fig. 5 that the
diotically presented frequency deviation does not depend on the carrier and modulating
frequencies.

The basic stage of the experiment focused on the determination of the binaurally
perceived frequency deviation for dichotic presentation, (∆fr 6= ∆fl) depending on the
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interaural difference in frequency deviation δ(∆f) = ∆fr − ∆fl. It should be stressed
that the deviation difference in this experiment had to be selected so that the resultant
sound was binaurally fused (integrated). The experiments were conducted for carrier
signals with frequencies of fc = 500 and 1000 Hz and modulating signals with frequencies
of fm = 32, 64 and 128 Hz.

Figure 6 shows the dependence of the matched frequency deviation, ∆f , averaged for
three subjects, on the interaural frequency deviation δ(∆f) for two carrier frequencies
500 and 1000 Hz. Consecutive panels show results for modulating frequencies applied in
the experiment. The set value of frequency deviation presented to the left ear, (∆fl),
is the parameter of the curves. The solid line indicates experimental data of perceived
matched frequency deviation for ∆fl = 5 Hz, broken line for ∆fl = 10 Hz and dotted
line for ∆fl = 20 Hz. The results obtained for the dichotic conditions indicate that
the dependence of the perceived frequency deviation on the interaural difference of this
deviation may be described by a linear function. This function does not depend on the
deviation presented to the left ear and has a similar trace for carrier frequencies of 500
and 1000 Hz.

The thin lines in these figures show arithmetically averaged values of deviation pre-
sented to the left and right ears, in accordance with ∆f = (∆fl + ∆fr)/2. As can be
seen, both for carrier frequency of 500 Hz and 1000 Hz and for the modulating frequen-
cies used, the values of the matched frequency deviation for ∆fl = 5, 10 and 20 Hz, are
in agreement with the arithmetic means. This means that within the parameter range
tested, frequency deviation is an arithmetic mean of the deviation presented to the left
and right ears.

5. Discussion

The data obtained in the first part of Experiment I, related to the diotic presentation
of AM signals, revealed that the subjects’ ability to evaluate modulation depth was very
high for all parameters of AM stimuli measured. This was the starting point of the basic
part of Experiment I, i.e. the dichotic presentation of modulation depth for AM signals.
Results of the experiments showed that for small interaural differences in modulation
depth, ∆m, matched m is equal to the arithmetic mean of ml and mr. However, for
large values of ∆m and high modulation frequencies, the binaurally perceived modula-
tion depth becomes smaller than the arithmetic mean ml and mr, and m is decreasing
when ∆m approaches 100%. The characteristic features of AM signals are considerable
fluctuations of their intensity, which can be expressed as follows:

∆L = 10 lg
Imax

Imin
= 20 lg

(
1 + m

1−m

)
, at m 6= 1.

For large values of modulation depth, these fluctuations can be quite significant. It
should be noted that the binaural hearing system is rather sensitive to changes of the
interaural intensity difference because the interaural discrimination threshold is about
0.5 dB. On the other hand, an interaural intensity difference of the order 15 – 20 dB
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determines the limit of the perceived binaural effects such as: lateralization or localization
of the sound source. Physiological studies have revealed that single fibres of the auditory
nerve are characterized by the growing discharge rate when the sound level increases but
only in a limited dynamic range (Suga [29]). This dynamic range is even smaller for the
fibres of the central auditory nerve system, and their neural activity reveals considerable
nonlinearity. Therefore, for large differences in the interaural modulation depth, temporal
changes in intensity of AM signals may not be linearly projected into the fibre discharge
rate. This fact accounts to some extent for nonlinear trends in m = f(∆m) functions for
large ∆m seen in Fig. 4.

The calculations presented in this paper, based on the concept of linear summation of
AM signals resulting from data on the binaural detection threshold and binaural loudness,
do not pretend to be the modelling of the binaural perception of the modulation depth.
They do not take into account a number of important functions of the binaural system
such as transformation and filtering imposed on the signals by the external and middle
ears, coincidence-correlation mechanism of the neural interaction between the left and
right ears at higher level of the auditory tract, mechanism of central masking etc., which
are taken into account in most binaural models. These calculations have shown that the
mechanism of binaural neural interaction based on the linear summation of AM signals
produces calculation results, which correspond fairly well to the measurement data. On
this basis one can think that this mechanism plays a significant role in the binaural
perception of modulation depth of AM signals.

With respect to the binaural perception of FM signals, on the basis of the first part
of Experiment II on the diotic presentation of FM signals it was found that the subjects’
ability to evaluate the frequency deviation of these signals was very high. The basic
part of the experiment on the dichotic presentation of frequency deviation (∆fl 6= ∆fr)
revealed that this deviation is equal to the arithmetic mean of deviations presented to
the right and left ears. Consequently, one can say that within the parameter range of
AM and FM signals the mechanisms of binaural interaction of these signals are similar.
The models of binaural perception (Stern and Trahiotis [28]) generally assume that
the discharges occurring in the neurons coming from both ears are compared within
the auditory filters having similar characteristic frequencies. Each filter is additionally
connected to a delay system and then to the coincidence detector which counts the beats
coming synchronically from each ear. Interaural time differences and interaural intensity
differences are coded so as to obtain the strongest response of the coincidence detectors.
This coincidence, however, occurs in a limited range of frequency deviation changes, up to
about 20 Hz. An increase of this range most probably leads to the drop of the coincidence
of neuron discharges coming from the left and right ears. The lack of binaural fusion for
the presented signals could be the consequence of this.

In conclusion it is worth stressing that the binaural perception of modulated signals
whose amplitude and frequency varying in time largely correspond to the perception of
real signals with parameters varying in time (speech and music). Binaural perception of
this variability and the results obtained could be significant for investigations into the
intelligibility of speech and perception of music in a room (Blauert [3]; Houtgast and
Steeneken [10]; Ozimek and Sęk [20]).
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6. Conclusions

1. Binaurally perceived modulation depth for AM signals, determined under diotic
conditions (ml = mr), is equal to monaurally perceived modulation depth, irrespective
of the carrier and modulating frequencies.

2. Binaurally perceived modulation depth for AM signals, determined under dichotic
conditions (ml 6= mr) is equal to the arithmetic mean of modulation depth presented
to both ears only in the range of small interaural differences ∆m. For large interaural
differences ∆m perceived modulation depth is smaller than the arithmetic mean of ml

and mr, and function m = f(∆m) is nonlinear.
3. Binaurally perceived frequency deviation for FM signals, determined under di-

otic conditions (∆fl = ∆fr), is equal to the monaurally perceived frequency deviation,
irrespective of the carrier and modulating frequencies.

4. Binaurally perceived frequency deviation for FM signals, determined under dichotic
conditions (∆fl 6= ∆fr), is a linear function of interaural difference of frequency deviation.
Under these conditions perceived deviation is equal to the arithmetic mean of deviations
presented to both ears. It does not depend on the carrier and modulating frequencies
used.
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St. Catherine’s carillon, the largest instrument of its kind in Poland, deserves special
attention due to its particular acoustic properties. They were investigated in detail and
relevant results reported earlier. Recently, the acoustic possibilities of the carillon and its
sound repertory has been significantly augmented thanks to twelve new bells added to the
37 existing so far, and the newly installed keyboard, enabling the carillonist direct excit-
ing of bell sounds. Thanks to the enlarged carillon sound scale and the direct mechanical
coupling of keyboard keys to bells, the carillonist gains an enriched possibility of creating
new chords and complex timbres resulting in several bells being struck either together or
subsequently. These timbres were actually investigated with the same method and equip-
ment as applied during the former investigations, mentioned above. The selected carillon
sounds were recorded and the recorded samples analyzed digitally by means of dedicated
computer software programs. The results confirm the high quality of the enlarged part of
the carillon, comparable to the very high quality of the instrument existing so far. Con-
clusions concerning particular properties of the St. Catherine carillon are presented at the
end of the paper.

1. Introduction

St. Catherine’s church, with its monumental belfry-tower, is of important historic
value. The tower the construction of which began in 1450 was, for political reasons,
not completed until the years 1484 – 1486. In 1634 the gothic roof of the tower was
transformed into a beautiful baroque copula, designed by Jacob van den Block [7]. Its
exact reconstruction can once more be admired to-day (see Fig. 1).

Much more is to be admired inside the tower. The most spectacular, or rather “auric-
ular”, are St. Catherine’s bells. Their ringing sounds are well audible over the whole area
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Fig. 1. St. Catherine’s belfry tower dominating the Old City roofs.

of the Old City of Gdańsk. Not only do they strike hours and sound peals, but also play
melodies, thanks to an ingenious facility called the “carillon”. The St. Catherine’s caril-
lons had a long and interesting history. The one, existing at present, was reconstructed
thanks to an initiative of Mr. Hans Eggebrecht, who in 1989 offered the instrument as
replacement of the previous one destroyed during the war. The instrument which then
consisted of 37 bells was equipped only with an automatic play facility. This instrument,
being almost a unique carillon in Poland, underwent extended acoustical investigations.
In the meantime, their results were published extensively [1, 4 – 6].

The need to return again to the subject of St. Catherine’s carillon arose, however,
due to the fundamental improvement of the acoustic qualities of the instrument. In 1998,
thanks to financial support of the Gdańsk municipality and individual donators, a further
12 bells were added. A complete mechanical action system was also installed, enabling
manual playing on the instrument from a traditional keyboard (Fig. 2). Thus, now, the
instrument, with its 49 bells, has become the greatest concert-carillon in Central and
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Eastern Europe [7]. Acoustic properties of such carillon deserve to be well known among
sound engineers interested in musical instruments. It is the purpose of this paper to
supply relevant data and add notices concerning instrument quality.

Fig. 2. St. Catherine’s carillon keyboard (the chromatic scale of 49 keys and the transmission rods are
well visible, the pedal keys are suspended below).

One more item to be admired inside St. Catherine’s tower should be mentioned: the
Museum of Tower Clocks [7]. They also enter into the scope of interest of sound engineers,
due to their ringing facilities for hour striking, which use clock bells particularly shaped,
to produce the sound of a particular clock-timbre. This subject, however, needs separate
treatment.

2. Results of earlier studies

As mentioned above, the acoustic properties of St. Catherine’s carillon sounds were
investigated by the present writers, a few years ago, in order to become acquainted with
this special type of musical instruments, and, among others, to check the quality of
the internal and external tuning of carillon bells. The results presented in part one of
Table 1, prove a very good quality of the 37 bells investigated, made by the renowned
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Table 1. Tuning deviations of the St. Catherine’s carillon (in cents).

Hum Prime Third Fifth Octave Tenth Twelfth Upper Oct.

Part one:

1. c′ 7 1 3 −2 1 −10 9 68

2. cis′ −2 2 4 23 4 −21 11 73

3. d′ 14 0 3 50 3 21 12 75

4. dis′ 6 29 4 −28 9 75

5. e′ 1 5 5 4 −9 −19 16 80

6. f′ 5 0 7 8 −60 16 82

7. fis′ 9 1 4 −42 3 6 10 73

8. g′ −1 3 5 −63 3 −41 18 86

9. gis′ −3 −1 4 17 3 43 14 72

10. a′ 4 26 3 43 14 78

11. ais′ 5 6 17 5 49 18 86

12. h′ 7 4 12 3 18 86

13. c′′ 4 3 5 13 4 47 12 55

14. cis′′ 3 3 3 19 4 62 9 67

15. d′′ 3 4 4 62 14 77

16. dis′′ 2 4 2 5 5 −31 13 75

17. e′′ 5 4 5 −2 6 −58 13 74

18. f′′ 3 5 13 4 −14 10 70

19. fis′′ 4 4 3 −26 7 64

20. g′′ 4 7 6 0 6 11 67

21. gis′′ 3 3 4 5 −27 14 77

22. a′′ 2 4 5 16 5 −36 12 72

23. ais′′ 4 6 6 −29 13 82

24. h′′

25. c′′′ 2 3 3 4 −1 11

26. cis′′′ 3 4 9 27 5 15 1 52

27. d′′′ 4 3 4 6 27 2 79

28. dis′′′ 3 4 4 6 −35 −6 40

29. e′′′ 3 6 5 6 42 −3

30. f′′′ 3 4 6 4 −10 −10 32

31. fis′′′ 3 4 −7 2 −66 −26

32. g′′′ 5 4 6 6 −14 21

33. gis′′′ 6 3 11 4 44 −23 3

34. a′′′ 5 5 6 −4 −22 3

35. ais′′′ 5 6 8 4

36. h′′′ 5 4 15 4 6 −36 76

37. c′′′′ 3 3 −7 −2 −36 −22
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Table 1. [cont.]

Hum Prime Third Fifth Octave Tenth Twelfth Upper Oct.

Part two:

38. cis′′′′ −4 7 −5 −42

39. d′′′′ −4 −3 6 −5 −47

40. dis′′′′ −4 −4 −3

41. e′′′′ 1 13 −2 30 −60

42. f′′′′ −4 −7 6

43. fis′′′′ −2 −5 15 −4

44. g′′′′ −2 −4 10

45. gis′′′′ 21 −2 7 −3

46. a′′′′ −2 8 −3

47. ais′′′′ −2 12 −1

48. h′′′′ 0 2 11

49. c′′′′′ −4 −2 7

Blank spaces denote lack of a measurement result.

Dutch foundry Koninklijke Klokkengieterij Eijsbouts in Asten, and of their successful
installation by this factory, in St. Catherine’s belfry.

Recordings of the carillon sounds were then done electroacoustically in situ within the
belfry. Single sounds were excited using a MIDI keyboard, switched into the instrument
control panel, from whence, electromagnetically driven hammers were actuated at every
bell. The recording microphone was situated on a gallery, on a level with the bells, and
sounds were recorded with a digital recorder MZ 1; only one channel being used for further
processing and analysis. Recorded sounds were analyzed in the laboratory using either
professional software (Sound Designer II) or specially designed own program. More details
on the then used equipment and method applied are contained in the above mentioned
own publications. Special questions were also studied on the example of St. Catherine’s
carillon, in particular those concerning peculiar properties of the sounds of large, swinging
bells [6].

3. Recent investigation

Basically, the same method was used as before, i.e., sounds of 12 newly installed
bells (Fig. 3) were recorded and analyzed, yet, a different sound excitation manner was
applied. Instead of the MIDI keyboard the new installed manual keyboard was used.
Consequently, the sound intensity obtained may differ slightly for particular notes.

The results obtained are presented in part two of Table 1.
It should be pointed out, however, that the enlarged carillon became an almost new

instrument, with new timbres available. Thanks to the installed facilities for manual
playing it now exhibits many new acoustic properties.
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Fig. 3. The twelve, new installed carillon bells (control levers of mechanical action are visible).

First of all, they are due to newly installed clappers and hammers. When previously,
all 37 bells were struck from outside by electromagnetically driven hammers, now, they
are struck by mechanically pulled clappers (Fig. 4), or hammers for the four largest
swinging bells. These clappers are hung excentrically within the bell mouth in order to
reduce the idle motion of action wires and manual keys. Every fixed bell is equipped
with an inner rod enabling installation of a spring, which prevents unintended manifold
strokes (oscillations) of the clapper against the bell body. This facility was necessary for
a few bells only, as for others the clapper masses were sufficient to prevent any unwanted
oscillation.

Fig. 4. Carillon bells equipped with a new mechanical system of clappers and pull wires (electromagnetic
outer hammers are also visible).

Each of the four largest bells, equipped primarily with clappers (for swinging peals)
and electromagnetic hammers (for automatic play, steered from the digital memory)
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now received an additional hammer, driven by a mechanical action wire (Fig. 5). Thus,
hammers are controlled directly from the keyboard levers, using hand or foot strokes of
appropriate energy.

Fig. 5. The largest bell (swinging) with a traditional clapper and two outer hammers: mechanic and
electromagnetic one.

The system of mechanical action allows the player to employ variable dynamics of
notes played, in contrast to the case of automatic play. Variable dynamics cause variations
of timbre, i.e. of spectral content of particular notes. This makes the investigation of
the timbre of carillon sounds, which depends on the sound excitation level, much more
difficult.

A totally different excitation tool (clapper from inside, vs. hammer from outside)
implies a further need for a comparative study of bell sounds excited in both manners
mentioned. Although such comparative studies were reported in the literature [3], they
were restricted to experiments in laboratory conditions. Thus it seemed reasonable to
check and compare results obtained from the existing instrument.

Mechanical action gives the player total freedom in creating time sequences of notes
or chords, unattainable e.g. with the electromagnetic action steered from a MIDI system
keyboard. Every execution of a piece of music is a genuine one, in contrast to sounds
produced by the automatic play system. Thus, music played by a well trained carillonist
becomes a true concert activity [2].

4. Subjective assessment

Objective analyses in the domain of Musical Acoustics are inseparably bound with
subjective assessments, in particular when applied to quality ranking of musical instru-
ments. Listening to recorded melodies played using the carillon investigated, done before,
and after its enlarging, might serve as an example for a comparative assessment method.



154 G. BUDZYŃSKI, M. SANKIEWICZ, G. SZYCHLIŃSKI

Preservation of strictly maintained constant values of all recording conditions in both
cases would be necessary. This is, however, impossible, because of the mere fact of the
existence of all newly installed elements and facilities within the tower, having changed
its acoustic properties significantly. Despite the impossibility of exact realization of such
comparison, the two monophonically recorded melodies are presented as illustrations,
enabling attempts of subjective judgements to be made.

5. Critical remarks

It should be emphasized that the properties of the instrument investigated were com-
pared to those reported on other great carillons existing in Western Europe [2, 3]. Such
comparisons fully justify the very high ranking of St. Catherine’s carillon, and its role as
a great concert instrument.

It is obvious from the reported results and observations that the presented investi-
gation should be treated as a preliminary one. St. Catherine’s great carillon reveals an
extended, rich field of interesting acoustical problems, requiring a systematic effort on the
part of investigators to be solved successfully. Thus, further studies and investigations
are highly desirable.

In contrast to many scientific projects carried out in laboratory conditions, many
difficulties arise in practical realization of the reported investigations.

Recordings should be done rather outdoors, at half the distance from the tower,
typical for passers-by willing to listen to carillon sounds. This condition is hard to fulfill
due to the intense traffic noise from the neighbourhood of the tower. Using night-time for
recordings might be a remedy, yet the necessary, intense ringing at night would disturb
the quietness of the night for the neighbourhood residents.

The situating of the measuring microphone inside the tower, well insulated from
external noise, thanks to very thick tower walls (about 4 m), ensured the required quality
of recording. Disadvantageous were, however, possible resonances in the tower interior.
These may affect the results of spectral analyses. Thus, frequential characteristics of
the reverberation within the tower interior should be measured, and their shape used
for possible interpreting of the reported results. The moreso that the measured sound
spectra were highly non-uniform.

The precision of the data obtained from analyses is slightly reduced due to the pres-
ence of low frequency beats, being below the threshold of frequential sensitivity of the
applied method of analysis. Beats in bell sounds are, of course, inevitable, yet the reduc-
tion of precision is so small that it may be disregarded. It should be pointed out here
that beats in bell sounds are, to some extent, subjectively desirable [2].

6. Conclusion

The St. Catherine’s carillon built in 1989 and enlarged over the next ten years is a
great instrument of important musical value and of the highest technological quality.
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The investigated properties of St. Catherine’s carillon, first of all the high accuracy
of internal and external tuning of all the 49 carillon bells, proves its highest quality
and ensures its beautiful sound. The bells are tuned according to the chromatic, equally
tempered scale, ranging from c′ to cV (i.e. from C4 to C8), covering the complete four
octaves.

The console containing manual and pedal keyboards situated inside a sound insulating
cabin offer the carillonist good conditions even during prolongued concerting.
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Some results of the analysis of the R–L type resonator with directional converter using
the finite elements method (FEM) are presented in the paper. Three types of resonator
tuning result from the analysis and they can be used for converters of other type. The
modal patterns in anti-phase and in-phase vibration modes for all types of tuning are
presented. The choice of particular tuning depends on the way of using the converter. The
modulus of the relation between the surface displacement amplitude for a longitudinal
vibrating resonator and the side displacement amplitude for a radial vibrating resonator
can be interpreted as the gain coefficient of converter’s vibration amplitude. Moreover the
influence of rode and disk resonator dimensions on proper frequencies of the converter
vibration is described.

Keywords: resonator, directional converter, ultrasonic vibration.

1. Introduction

In ultrasonic technology piezomagnetic and piezoelectric transducers are generally
applied to obtain high amplitude vibrations. The maximum value of vibration amplitude
are limited by the magnetostrictic effect of nonlinearity for a piezomagnetic transducer
and by the low mechanical strength of piezoceramic material for a piezoelectric trans-
ducer. One method of increasing the vibration amplitude upper limit consists in the use
of a radiating source of special design, proposed by K. Itoh and E. Mori [3 – 6, 8, 9].
Four resonator types with a directional converter have been proposed by those authors:
L – L type, L – L – L type, R – L type and L – R type (L — longitudinal, R — radial vi-
bration). In these resonators the ultrasonic energy can be transmitted from the direction
of driver to the other and can be concentrated or divided into plural loads from one
vibration source.

The goal of this work was an investigation of the manner of the resonator with a
directional converter of the R – L type. The finite elements method (FEM) was applied
to analyse vibrations. This method enables the application of any dividing density for
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elements in the real elastic continuum, which allows us to observe local disturbance effects
in any chosen fragments of the area; it is not easy to obtain by using the classical method.
The latest literature concerning the usage of this type of resonators (including [12 – 15])
points to the fact that despite the time that has passed since their invention, they are
still technologically attractive.

The goal of this work was also to verify the usefulness of the FEM for the design and
optimization of this type of resonators.

2. Structure of the R–L type converter

The resonator with directional R – L conversion consists of a radial vibration disk
and a longitudinal vibrating rod. The rod and the disk are coupled together at the ve-
locity node of radial vibration for the disk and that of longitudinal vibration for the
rod as shown in Fig. 1. With the suitable choice of dimensions, such a system permits
comparatively large amplitudes of rod surface vibrations to be obtained. An energy trans-
mission from the disk to the rod occurs due to the Poisson effect in the mechanically
coupled common part of the converter. When the free vibration frequencies of individual
resonators are different from each other, each of them vibrates as a free system, whereas
when these frequencies are close to one another, there is an interaction between the two
resonators.

Fig. 1. Resonator with directional converter of the R – L type.
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This system has two resonance frequencies depending on the vibration phase of the
rod and the disk. In-phase vibrations occur when the ends of the rod and the side surface
of the disk vibrate in the phase, whereas for anti-phase vibrations end surfaces of the rod
vibrate in the opposite phase in relation to the side surface of the disk.

The resonators with directional converters can be constructed as homogeneous and
heterogeneous systems. The homogeneous converters may be excited to vibration by
external ultrasonic transducers [11 – 15], in heterogeneous converters the resonator of
longitudinal or radial vibration can be a properly vibrating piezoelectric [1, 2] or piezo-
magnetic [7] ultrasonic transducer.

3. Geometry of the system

The resonator with directional conversion of vibration of the R – L type is a system
with an axial symmetric stresses distribution. From the mathematical point of view the
problem is similar to the two-dimensional problem. Because of the symmetry of the
system in each point of the cross-section led along the symmetry axis the displacement
is defined by two components. If we mark the radial co-ordinate of the point with R and
the axial coordinate of the point with Z, u and v will be displacements related to these
coordinates then we obtain the two-dimensional case. A chosen element, turning around
the axis determines the volume with reference to which all calculations should be done.

Fig. 2. Triangular ring shaped element.

For a triangular element, as shown in Fig. 2, the nodes are defined as i, j, k. The
displacement δ of the i-node is defined by its two components:

{δi} =
{

ui

vi

}
, (1)
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so the displacement of an element is defined by the vector

{δ}e =





δi

δj

δk



. (2)

Taking into account the relations characteristic of the FEM and solving the move
equation for an elastic system [16] we can calculate free vibration frequencies of the
system and node displacements of triangular elements the investigated resonator was
divided into.

4. R–L type homogeneous converter

The R – L type homogeneous converter made of steel presented in Fig. 3 was subject to
an analysis. Dimensions of this converter were such so as to be matched with experimental
results obtained by other authors [3, 6].

Fig. 3. Dimensions of homogeneous resonator with the R – L type conversion which are the grounds for
analysis.

For calculations it has been assumed that the converter is made of steel whose material
constants are:

E = 0.206 · 1012 [Pa],

ν = 0.283,

ρ = 7700 [kg/m3],

where E — Young modulus, ν — Poisson’s ratio, ρ — density.
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The division of the converter into elements is represented in Fig. 4. In consideration
of the symmetry of the system, one fourth of the cross-sectional area was divided into
28 elements. The dependence of the converter’s free vibration frequency on the length
of a rod vibrating in the longitudinal mode is presented in Fig. 5. This dependence is
illustrated by two curves corresponding to the frequencies of two modes of vibration: fs

— frequency for the in-phase (synphase) mode, fa — frequency for the anti-phase mode.

Fig. 4. Division of the R – L type converter into elements. Number of the elements – 28; Number of the
nodes – 26; Number of movable degrees of freedom for direction R – 5; Number of movable degrees of
freedom for direction Z – 6; Number of movable degrees of freedom for direction R and Z – 14; Number

of immovable degrees of freedom – 1.

The distance between the curves for particular lengths of the rod resonator is related
to the frequency difference ∆f = fs − fa. The characteristic curve for ∆f = f(lrod) is
presented in Fig. 6.

Numbers on particular points on the curve in Fig. 5 are the calculated modules of
the relation between the surface displacement amplitude for a longitudinal vibration
resonator and the side horizontal displacement amplitude for a radial vibration resonator.
This relation can be interpreted as the gain coefficient of converter’s vibration amplitude.
This is of a great practical value since it allows the application of this type of resonator
to increase the amplitude of vibrations. For the minimum value of (fs − fa) the value of
this relation stays the same for both in-phase mode and anti-phase mode vibrations.

For min(fs − fa) we get ∣∣∣∣
δZ7

δR24

∣∣∣∣
∣∣∣∣
fa

=
∣∣∣∣
δZ7

δR24

∣∣∣∣
∣∣∣∣
fs

, (3)

where δZ7 — displacement of the node No 7 towards Z, δR24 — displacement of the node
No 24 towards R.
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Fig. 5. The dependence of the R – L type converter’s free vibration frequency on the length of the
longitudinal resonator.

Fig. 6. The dependence of ∆f = fs− fa for the R – L type converter on the length of the rod resonator.
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This is explained in a more detailed way in Fig. 7. where the relation |δZ7/δR24 | =
f(lrod) is presented for both modes of vibrations. For the same value of this relation
(the point of intersection of both curves) the length of the rod resonator was determined
with the assumption that this is one of the possible criteria of “tuning” the R – L type
converter. This criterion can be written in a generalised form:

∣∣∣∣
δZrod

δRd

∣∣∣∣
∣∣∣∣
fa

=
∣∣∣∣
δZrod

δRd

∣∣∣∣
∣∣∣∣
fs

, (4)

where δrod — the rod surface displacement towards Z, δRd
— the disk side horizontal

displacement towards R.

Fig. 7. Characteristic curve for the in-phase and the anti-phase vibration modes.

For such a “tuned” converter the displacements of particular nodes were determined
which allowed us to obtain the form of vibrations both for anti-phase and in-phase vi-
bration modes (Fig. 8).

In both figures the direction of vibrations of particular converter surfaces is marked
by arrows. The calculated results obtained by means of FEM allow us to follow the way
in which particular fragments of the resonator behave during vibrations. For the in-phase
and the anti-phase vibration mode there exists a certain optimum length of the rod res-
onator at which the vibration amplitude gain coefficient δZrod/δRd

reaches its maximum.
This is of great importance when designing such resonators since it allows us to define the
optimum dimensions of the resonator at the preset frequency and the preset vibration
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Fig. 8. Vibrations modes of homogeneous the R – L type converter: a) for the anti-phase mode of
vibration, b) for the in-phase mode of vibration presented for the aligned converter in accordance with

Eq. (3).
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mode. Besides the criterion of tuning the R – L type converter (shown as (4)) another
criterion can also be considered, i.e., the same value of the modulus representing the re-
lation of surface displacement amplitude in a given direction to maximum displacement
amplitude for particular vibration modes which can be written as

∣∣∣∣
δZrod

δRmax

∣∣∣∣
∣∣∣∣
fa

=
∣∣∣∣

δZd

δRmax

∣∣∣∣
∣∣∣∣
fa

, (5)

and ∣∣∣∣
δZrod

δRmax

∣∣∣∣
∣∣∣∣
fs

=
∣∣∣∣

δZd

δRmax

∣∣∣∣
∣∣∣∣
fs

. (6)

Figure 9 and 10 show vibration modes of the R – L type converter for such criteria of
tuning. When comparing vibration modes in Figs. 9a, b and 10a, b one can easily notice

Fig. 9. Vibrations modes of the R – L type converter: a) for the anti-phase mode of vibration, b) for the
in-phase mode of vibration presented for the aligned converter in accordance with Eq. (5).
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Fig. 10. Vibrations modes of the R – L type converter: a) for the anti-phase mode of vibration, b) for
the in-phase mode of vibration presented for the aligned converter in accordance with Eq. (6).
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that there is a considerable difference between the magnitude of displacement amplitudes
of particular surfaces for both vibration modes at the pre-determined tuning criterion.
Whereas the comparison of the obtained free vibration frequencies and the length of
the rod resonator for vibration modes determined on the basis of all “tuning” criteria
(Eqs. (4), (5), (6)) points to considerable discrepancies between these parameters (which
is important in cascade-coupling of several converters).

Fig. 11. Displacements distribution along the radius of the disk resonator presented for the aligned
converter in accordance with Eq. (3).

Fig. 12. Displacements distribution along the axis of the rod resonator presented for the aligned converter
in accordance with Eq. (3).
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Figures 11 and 12 present displacement distributions along the radius of the disk
resonator and along the axis of the rod resonator for both vibration modes. For the anti-
phase vibration mode the displacements are in each case bigger than for the in-phase
mode.

Figures 13 and 14 show the distribution of displacements over the surface of res-
onators. What follows from both figures is that the displacements along the axis are
bigger than those on the surface of particular resonators (for both vibration modes).

Fig. 13. Displacements distribution along the radius of the disk resonator over its surface and along its
symmetry axis presented for the aligned converter in accordance with Eq. (3).

Fig. 14. Displacements distribution along the axis and over the surface of the rod resonator presented
for an aligned converter in accordance Eq. (3).
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5. R – L type heterogeneous converter

Finite elements methods also makes the analysis of resonators made from different
materials possible. Figure 15 shows such an R – L type heterogeneous converter which
was subject to analysis. The resonator of radial vibrations is a piezoelectric disk made
of piezoceramic PXE-4 (PHILIPS). The resonator of longitudinal vibration is a titanium
rod fixed in piezoceramic. The piezoelectric disk and the metal rod have been divided
here into elements in the same way as the homogeneous converter. The following material
constants were assumed for the calculation:

Titanium:

E = 0.1157 · 1012[Pa],

ν = 0.21,

ρ = 4580 [kg/m3].

Piezoceramic:

E = 0.85 · 1011 [Pa],

ν = 0.3

δ = 7500 [kg/m3].

Fig. 15. The R – L type heterogeneous converter.

The analysis of this type of converter with the help of FEM yields characteristic
curves and vibration modes similar those in a homogeneous converter. In view of similar
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character of the curves and vibration modes only some of the analysis results are presented
here in Figs. 16, 17 and 18.

Fig. 16. The dependence of the R – L type heterogeneous converter’s free vibration frequency on the
length of the longitudinal resonator.

This resonator was experimentally tested by the author and described in [1, 2]. One
characteristic of such a converter is its electrical input admittance. An example of a graph
of the admittance modulus is presented in Fig. 19. The maxima of this graph correspond
to free vibration frequencies of the converter presented in Fig. 17. The frequency spacing
depends on the dimensions of the part common for both resonators and is longer the
bigger the dimensions are [10]. The maximal values of the modulus of the electrical
admittance of the converter depend on the resonator length and are equal for an aligned
converter. Other results of investigations of this converter are described in [1, 2]. This
construction has already been put into practice.
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Fig. 17. Vibrations modes of the R–L type heteerogeneous converter: a) for the anti-phase mode of
vibration, b) for the in-phase mode of vibration.
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Fig. 18. Displacements distribution along the radius of the disk resonator, over its surface and along its
symmetry axis for the aligned converter in accordance with Eq. (3).

Fig. 19. The modulus of electrical admittance for the heterogeneous converter presented in Fig. 15.

6. Conclusions

The obtained results are, in part, compatible with those cited in works of K. Itoh
and E. Mori [3, 6]. The authors, when experimenting on a homogeneous converter made
of steel S45c (Japanese designation) with dimensions:

• Ø of the rod = 15 mm,
• length of the rod = 52.4 mm,
• Ø of the disk = 68 mm,
• thickness of the disk = 20 mm.
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Obtained high free vibration frequencies corresponding to the anti-phase vibration
mode fa = 50.235 Hz and to the in-phase vibration mode fs = 60.4873 Hz, result in
∆f = fs − fa = 10.252 Hz.

The results obtained with the help of FEM point to the fact that the length of the
rod was not optimum and did not allow us to obtain a converter which would be “tuned”
according to any of the criteria suggested here. The most approximate result corresponds
to the type of tuning in accordance with Eq. (4), for which:

• Ø of the rod = 15 mm,
• length of the rod = 62.8 mm,
• Ø of the disk = 68 mm,
• thickness of the disk = 20 mm,
• fa = 47.441 Hz,
• fs = 56.944 Hz,
• ∆ = 9.505 Hz.
Unconformity material constants may have a certain effect on the discrepancy between

results presented in [3] and those obtained by means of FEM.
The three types of tuning (Eqs. (4) – (6)) postulated in this paper allow us to apply

this type of resonators on large scale. Special attention should be paid to the possibility
of using the converters for increasing the vibration amplitude. With the help of FEM it
is possible to find the magnitude of this gain with preset input parameters as well as to
determine the converter free vibration frequency at which the maximum gain for given
resonator dimensions occurs.

The results obtained with the help of the FEM for the R – L type heterogeneous
converter correspond to the results obtained from an experimental investigation of this
converter.
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An experimental study of an effect of the acoustic nonlinearity on absorption prop-
erties of Helmholtz resonators is presented in this work. By use of the classical standing
wave method the changes in the absorption coefficient and the resonators impedance were
investigated at moderate and high amplitudes of incident wave. As a result of nonlin-
earity a high absorption at resonance frequencies was observed and then a decrease in
this absorption with increasing amplitude. Measurements of the total loss resistance of
resonators have indicated that a change in the resistance at high amplitudes depends
strongly on resonator orifice area, the smaller area — the higher increase in the resis-
tance. The experimental results have also shown a growth in resonators reactance which
causes an increase in resonance frequency. Quite a good agreement between experimental
data and the theory presented in Part I was found.

1. Introduction

Helmholtz resonators have been studied extensively, primarily due to their use in a
large number of practical applications. They are effective in a narrow frequency range
centered by a resonance frequency and are therefore used to absorb sound at selected
frequencies, e.g. in enclosed spaces [1], aircraft cabins [2] and panel systems [3, 4]. In order
to develop a rational design procedure for the resonators it is important to investigate
their acoustic properties in a wide range of sound intensities.

The case of high intensity sound is of special interest, when a resonator absorp-
tion depends on the amplitude of driving pressure due to nonlinear behaviour of orifice
impedance. The change in absorption properties of Helmholtz resonators has the follow-
ing physical explanation. At high amplitudes of excitation, there is a strong acoustic
motion through the resonator orifice. It results in a separation of boundary layer and a
formation of vortex on the outflow side of the orifice. The vortex moves away from the
orifice and due to the viscous action its kinetic energy is ultimately dissipated as heat.
The part of acoustic energy, which was transferred to the vortical field, represents an
additional energy loss to the resonant system.
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In the past a number of workers have studied the acoustic properties of Helmholtz
resonators at a high intensity sound. Ingard [5] and Bies and Wilson [6] reported
measurements of real and imaginary part of the orifice impedance, while Wu and Rud-
nick [7] presented experimental data showing a variation in a resonance frequency with
increasing sound intensity. Czarnecki [8, 9] investigated an influence of the nonlinear
properties of Helmholtz resonators on acoustic conditions in enclosures. He found an
increase or a decrease in the absorption coefficients depending on the conditions of the
resonator surroundings.

A purpose of the second of two companion papers is a comparison between results
of measurements of acoustic properties of Helmholtz resonators at moderate and high
amplitudes, and theory presented in Part I [10]. The experiments were performed by using
the standing wave apparatus with cylindrical tube which had a diameter 2a (Fig. 1). The
resonators placed at the end of this tube were terminated at one end, by a rigid plate
with a centrally located circular orifice with a diameter of 2b and thickness d, while at
the other end by a rigid wall. The resonators dimensions were much less compared with
a length of the incident wave.

Fig. 1. Helmholtz resonator placed on one end of a tube.

2. Theoretical background

The theory pertaining to the nonlinear absorption properties of Helmholtz resonators
has been presented with full particulars in Part I [10]. It has shown that changes in
absorption coefficient at high amplitudes are associated with losses resulting from the
conversion of the acoustic energy into the vortical energy. In the impedance model of
resonator these losses were described by the nonlinear orifice resistance Rn given by the
expression

Rn =
ρV0

2.46 πb2

(
1
Cc

− b2

a2

)2

, (1)

where V0 is the amplitude of a fundamental component of orifice velocity and Cc is the
contraction coefficient which is approximately equal to 0.61 in the case of sharp-edged
orifice. Due to the fact that resistance Rn is proportional to the velocity amplitude,
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the losses associated with the transfer of the acoustic energy to the vortical field are
dominant at very high amplitudes of a driving pressure. If, however, the amplitudes of
the pressure are moderate, we must also include in the impedance model of resonator a
resistance connected with a viscous damping inside the resonator orifice. According to
Ingard [5], this resistance can be described by the following empirical formula

Rµ =
√

2ρµω

πb2

(
2 +

d

b

)
, (2)

where µ is the coefficient of viscosity, ω is the angular frequency of an incident wave and
d is the orifice thickness. Thus, the relation between the velocity amplitude V0 and the
amplitude |P̂i| of the driving pressure can be written as

V0 =
2|P̂i|

πb2
√

(Rr + Rt)2 + X2
, (3)

where Rr = ρc/(πa2) is the radiation resistance, Rt = Rn +Rµ is the total loss resistance
and X is the reactance of the resonator.

The theoretical considerations in Part I have indicated that the reactance X may vary
as the amplitude of the driving pressure increases. This is a result of a jet contraction
and a change in a co-vibrating mass on the outflow side of the resonator orifice. The
variation in X has not any influence on the absorption coefficient of resonators and only
causes a shift in the resonance frequency, then, due to the lack of an accurate formula
for the reactance X at high amplitudes, we decide to use in calculations the expression
for X derived from the linear theory

X =
ρc

πa2
cot(kl)− k

ρc

πb2
(d + ∆d), ∆d =

∞∑
n=1

8aJ2
1 (γ0nb/a)

γ3
0nJ2

0 (γ0n)
. (4)

where ∆d is the total end correction for a typical resonator geometry, in which the ratio
l/a is not too small (l/a ≥ 1/2), and γ0n is the n-th root of the equation dJ0(γ)/dγ = 0.

2.1. Measurement and calculation of absorption coefficient and impedance of resonator

The modulus of the pressure inside the tube in a far field area, according to Part I,
is given by

|P̂t| = |P̂i|
√

1 + β2 + 2β cos(2kz − χ) , z ≤ 0, (5)

where β and χ represent a modulus and a phase of complex reflection coefficient

β̂ = βejχ = 1− 2Rr

Rr + Rt + jX
. (6)

The expression for the absorption coefficient α, derived from Eqs. (5) and (6), has a form

α =
4|P̂t|min|P̂t|max[
|P̂t|min + |P̂t|max

]2 =
4RrRt

(Rr + Rt)2 + X2
. (7)
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The first part of Eq. (7) enables to determine α by measurements of minimum and max-
imum values of standing wave pressure inside the tube, while the second part of it with
Eqs. (1) – (4) makes possible a numerical calculation of absorption coefficient (Eq. (3)
represents an implicit function of V0).

An expression for the experimental determination of an impedance of resonator may
be easily obtained from Eq. (6). After rearrangement, one can write this equation as

Rt + jX = Rr(1 + β̂)/(1− β̂). (8)

If L denotes a distance along z-axis from the first nodal point inside the tube to the
orifice plate, then it results from Eq. (5) that

χ = −2kL− π . (9)

Putting Eq. (9) into Eq. (8) gives finally

Rt/Rr =
1− β2

1 + β2 + 2β cos(2kL)
, (10)

X/Rr =
2β sin(2kL)

1 + β2 + 2β cos(2kL)
. (11)

2.2. Experimental prediction of velocity amplitude in resonator orifice

It has been shown in Part I that a pressure in the resonator cavity is uniform in a
small distance from the orifice plane, because it represents a superposition of multiple
plane wave reflections. The formula for the pressure P̂l on the rigid plate closing the
resonator cavity is thus given by

P̂l(t) = ρ
∂

∂t

2π∫

0

b∫

0

V0e
−jωtgc(z0 = 0, z = l) r0dr0dφ0 , (12)

where (r0, φ0, z0) is a position of the source point in the cylindrical coordinates and
gc(z, z0) represents Green’s function for the plane wave motion inside the resonator cavity

gc(z, z0) = −cos(kz0)[sin(kz) + cos(kz) cot(kl)]
kπa2

. (13)

After substituting Eq. (13) into Eq. (12) and using the approach sin(kl) ≈ kl, which is
valid at low frequencies, one can obtain

V0 =
2πa2fl

ρc2b2
|P̂l|, (14)

where f = ω/2π is the frequency of an incident wave. As can be seen, the use of Eq. (14)
enables to predict the velocity amplitude V0 by a measurement of the pressure amplitude
|P̂l| at the closed end of the resonator.



THE INFLUENCE OF ACOUSTIC NONLINEARITY. PART II 179

3. Experimental arrangement and apparatus

The tests were carried out by use of the measuring system consisting of a 4002 B&K
tube 1 m long and a radius a = 4.95 cm, the PW-12 ZOPAN decade generator, the 2712
B&K power amplifier and the 2033 B&K narrowband spectrum analyser (Fig. 2). The
4002 standing wave apparatus permitted a plane wave shape, radiated by the loudspeaker
over the frequency range 90 – 1800 Hz, to be obtained. The resonators located at the end
of the tube had the form of a cylindrical chamber with the same radius a as the tube
and the length l = 2.5 cm. A sharp-edged circular orifice of resonators had the thickness
d = 2 mm and the radius b from 1 to 3.5 mm.

Fig. 2. Setup for measuring the absorption coefficient and impedance of resonator.

The first part of the tests contained measurements of the absorption coefficient α of
resonators, in a range of frequencies comprising the fundamental resonance frequency
fres, at a constant amplitude |P̂i| of driving pressure. This condition may be realized
experimentally by putting |P̂t|min + |P̂t|max = const., because as follows from Eq. (5)

|P̂i| = (|P̂t|min + |P̂t|max)/2 . (15)
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The aim of the tests was to investigate the changes of α in the range of moderate and
high amplitudes of driving pressure (|P̂i| = 0.11 – 20 Pa) for resonators with the orifice
radius b = 1.5, 2.5 and 3.5 mm, and a comparison between experimental and calculation
results (Eqs. (1) – (4), (7)). In the second part of the tests, measurements of the total
loss resistance Rt and reactance X of the resonator were made for a constant pressure
amplitude |P̂l|. In order to measure |P̂l| an additional slotted line was used with 1/8′′

B&K microphone mounted at the closed end of the resonator (Fig. 2). The purpose of the
tests, carried out for resonators with the orifice radius b = 1, 1.5, 2, 2.5 and 3.5 mm, was
to make a comparison between results of resistance Rt calculations based on the pressure
|P̂i| of incident wave (Eqs. (1) – (4)) and pressure |P̂l| at the closed end of resonator
(Eqs. (1), (2), (14)).

4. Comparison between experimental and calculation results

4.1. Dependence of absorption coefficient α on pressure amplitude
of incident wave

The results of measurements are collected in Figs. 3–5, showing the influence of the
pressure amplitude |P̂i| on the absorption coefficient α in the frequency ranges comprising
fres. It results from the experimental data that an effect of nonlinearity on coefficient α

is the strongest one for the resonator with the orifice radius b = 1.5 mm. For the smallest
amplitude of driving pressure, |P̂i| = 0.11 Pa, the coefficient α equals 0.85 at the resonance
frequency fres ≈ 160 Hz (Fig. 3a). It follows from the theoretical part that in this case
the total loss resistance, being a sum of the velocity dependent nonlinear resistance
Rn and the viscous loss resistance Rµ, is approximately twice as large as the radiation
resistance Rr (see Eq. (7)). At the amplitude |P̂i| much bigger than 0.11 Pa the values
of α fast decrease around the resonance frequency (Fig. 3b). It results from a growth in
the velocity amplitude V0 at the resonator orifice which involves an increase of losses
due to nonlinearity. Finally, at the highest amplitude of driving pressure, |P̂i| = 20 Pa,
the diminution of α takes place below the value of 0.3 in the whole frequency range
(Fig. 3c).

A similar character of changes in the absorption coefficient α in the function of the
pressure amplitude |P̂i| has been obtained for the resonators with higher orifice radius.
However, in these cases the effect of the driving pressure on the coefficient α is weaker
than in the case b = 1.5 mm, because for the orifice radius b = 2.5, 3.5 mm and |P̂i| from
the range 0.11 – 20 Pa the maximal values of α change from 0.99 to 0.58 (Fig. 4) and from
0.93 to 0.66 (Fig. 5). The weaker influence of |P̂i| on the absorption coefficient at higher
values of b has a theoretical explanation. As can be seen from Eq. (1), it is a result of
the inversely proportional dependence of the nonlinear resistance Rn on the area of the
orifice.

The best convergence between experimental and theoretical data can be observed in
the case of small values of |P̂i| when a dependence of α on the frequency f is almost sym-
metrical around the resonance frequency. There is less agreement between measurements
and calculations at the highest amplitude of driving pressure because of an irregularity of
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a)

b)

c)

Fig. 3. Frequency dependence of the absorption coefficient α for resonator with orifice radius b = 1.5 mm
at different pressure amplitudes |P̂i| of incident plane wave; (- - - -) experiment, (—) calculation.
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a)

b)

c)

Fig. 4. Frequency dependence of the absorption coefficient α for resonator with orifice radius b = 2.5 mm
at different pressure amplitudes |P̂i| of incident plane wave; (- - - -) experiment, (—) calculation.
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a)

b)

c)

Fig. 5. Frequency dependence of the absorption coefficient α for resonator with orifice radius b = 3.5 mm
at different pressure amplitudes |P̂i| of incident plane wave; (- - - -) experiment, (—) calculation.
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experimental data changes (Figs. 4b, 4c, 5c). This special dependence of α in the function
of f can be explained considering the measuring tube as an additional resonance system
closed at one end by the resonator and at the other one by the loudspeakers. As a result
of mutual interaction between a sound source and a resonator the changes in mechani-
cal parameters of loudspeaker and acoustic properties of resonator take place [11]. This
interaction is the most effective in the case of a high sound intensity and resonance in
the tube. It can be clearly observed comparing curves in Figs. 4b, 4c, 5c and the plot
in Fig. 6, which exhibits an acoustic response of the measuring tube closed by a rigid
surface to the white noise. As may be seen, the local maxima of α occur near resonance
frequencies of the tube.

Fig. 6. Frequency dependence of sound pressure level Lt inside the measuring tube closed by a rigid
wall in the case of white noise excitation.

4.2. Dependence of resistance Rt on pressure amplitude at closed end
of resonator

Equation (14) indicates that a relation between the ratio V0/f and the pressure |P̂l|
is directly proportional. From this formula and a definition of the total loss resistance
the following relationship can be derived

Rtfres

Rrf
=

Rµfres

Rrf
+

πlfres|P̂l|
1.23ρc3

(
a2

b2Cc
− 1

)2

, (16)
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a) b)

c) d)

Fig. 7. Changes in Rtfres/Rrf ratio versus nondimensional frequency f/fres at different pressure
amplitudes |P̂l| for resonators with orifice radius b: a) 1 mm, b) 1.5 mm, c) 2 mm, d) 2.5 mm; cir-
cles, triangles and squares denote experimental data, (—) calculation results based on amplitude |P̂i|,

(- - - -) calculation results based on amplitude |P̂l|.
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therefore, in the high nonlinear regime (Rn À Rµ) the quantity Rtfres/Rrf , for the
given dimensions of resonator, approximately assumes the same values at the constant
pressure amplitude |P̂l|. Figure 7 shows the experimentally and theoretically determined
values of Rtfres/Rrf in a function of nondimensional frequency f/fres for the pressure
|P̂l| from the range 2.8 – 50.3 Pa. The fundamental frequency fres of the resonators was
evaluated from experimental data or calculated from the condition X = 0. In this way,
differences between the values of fres obtained from measurements and theory were taken
into account in the results presented in Fig. 7.

Fig. 8. Dependence of Rt/Rr ratio at resonance frequency on pressure amplitude |P̂l| for resonators
with different orifice radius; (—) calculation results based on amplitude |P̂i|, (- - - -) calculation results

based on amplitude |P̂l|.
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As it was well predicted by theory, the nondimensional parameter Rtfres/Rrf in-
creases with the pressure amplitude and depends strongly on the orifice radius b. The
relation between the quantity Rtfres/Rrf and the orifice radius b, which results from
experimental data, can be simply defined: a smaller value of b — a higher value of
Rtfres/Rrf at the same amplitude |P̂l|. A more precise description of this dependence is
possible in the case of resonance (f/fres = 1), when the agreement between measurements
and data computed from Eq. (15) is satisfactory (in Fig. 7 indicated by dashed lines). For
other values of f/fres, results of calculations based on the pressure amplitude |P̂i| of
incident wave (in Fig. 7 indicated by solid lines) approximate better the experimental
data.

In order to illustrate a more general dependence between total resistance and pressure
amplitude |P̂l|, the changes in Rtfres/Rrf values for resonance frequencies (f/fres = 1)
in a function of |P̂l| are shown in Fig. 8. It is evident from Fig. 8 that for each resonator
the calculation results and the experimental data are in close agreement in a range
of |P̂l| where the energy loss is dominated by the nonlinear absorption. In the case of
resonator with the smallest orifice radius this range covers almost all values of |P̂l| used
in the experiment. Larger differences are observed for the resonators with higher orifice
dimensions. In the ranges of |P̂l|, where the theory is less accurate, the energy loss is due
to the nonlinearity and the viscous damping. In a theoretical model this damping was
described by resistance Rµ (Eq. (2)) and, as may be seen in Fig. 8, a calculated value of
Rµ is somewhat smaller than an experimental one.

4.3. Dependence of reactance X on pressure amplitude at closed end
of resonator

An increase in the total loss resistance of Helmholtz resonators is not only unique
result of acoustic nonlinearity. The second effect of this phenomenon is a change in the
resonator reactance with growing sound intensity. A precise theoretical description of this
effect is difficult, therefore in the impedance model of a resonator (presented in Sec. 2)
the reactance X was determined by Eq. (4) as in the case of linear theory.

The experimental data shown in Fig. 9 illustrate the changes in nondimensional reac-
tance X/Rr as a function of frequency f for different values of pressure amplitude |P̂l|.
The values of X/Rr calculated from Eq. (4) are indicated by solid lines. As may be seen
from Fig. 9, there is a good agreement between theory and experiment at the moderate
pressure amplitudes |P̂l| = 1.6, 5 Pa. At much higher values of |P̂l| an increase of the
reactance X is observed but it is different for various resonators. The least modification
of the reactance can be noted for the resonator with the highest orifice radius (Fig. 9d).
For other resonators the changes in X versus frequency at high values of |P̂l| may appear
without any regularity (Fig. 9a) or have almost regular shape (Figs. 9b, 9c). As a result
of the increase in the reactance it appears a shift in resonance frequency to higher fre-
quencies which is clearly observed for resonators with the orifice radius b = 2 and 2.5 mm
at the highest pressure amplitude |P̂l| (Figs. 9b, 9c).
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a) b)

c) d)

Fig. 9. Changes of nondimensional reactance X/Rr versus frequency f at different pressure amplitudes
|P̂l| for resonators with orifice radius b: a) 1.5 mm, b) 2 mm, c) 2.5 mm, d) 3.5 mm; (—) calculation

results.
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5. Conclusions

The experimental results presented in this paper have demonstrated the effect of non-
linearity on acoustic properties of Helmholtz resonators. The most important aspect of
this phenomenon is a change in the absorption coefficient α at the high sound intensi-
ties. The measurements performed under condition of constant amplitudes |P̂i| of driving
pressure have shown that for a small diameter of the resonator orifice an influence of non-
linearity may be very strong because it results in an increase in α to value near unity at
a resonance frequency even at moderate pressure amplitudes (Figs. 4a, 5a). In the case
of much higher pressures, as it was predicted by the theory, the observed decrease in α

was evidently larger for a smaller orifice diameters (Figs. 3c, 4c, 5c).
According to the theory developed in Part I, a change in α with the sound intensity

is connected with an increase of nonlinear resistance. It was confirmed by results of resis-
tance Rt measurements which were performed under condition of constant amplitude |P̂l|
of pressure at the closed end of resonator. A comparison between experimental data and
calculation results has proved that at high values of |P̂l| a relation between the resistance
Rt and the pressure amplitude |P̂l| at the resonance frequency may be approximated by
Eq. (15). The agreement between measurements and theory was worse in the range of
low values of |P̂l| when energy absorption is dominated by viscous damping (Fig. 8).

In the presented theory a reactance of Helmholtz resonators has been described as
a part of the impedance which is independent of the amplitude of incident wave. A
change in the reactance has no influence on absorption properties of resonators but
it may cause an increase in the resonance frequency. It appears that the reactance is
much less sensitive than the resistance to changes in sound intensity because a shift in
the resonance frequency to higher frequencies was clearly observed only at the highest
pressure amplitude |P̂l| (Fig. 9).
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The aim of the study was the examination of the forward and reflected blood pressure
waves in the common carotid artery on the basis of non-invasive ultrasonic examina-
tions. The study concerned the effect of stenosis of the internal carotid artery caused by
atherosclerosis on the mean reflection coefficient modulus and the time delay between the
reflected blood pressure wave and the forward blood pressure wave. The investigations
were carried out on a group of healthy persons (30 cases) and on a group of sick persons
(17 cases) with stenosis or occlusion of the internal carotid artery.

Keywords: forward and reflected blood pressure waves, vascular input impedance, com-
mon carotid artery, ultrasound.

1. Introduction

The blood pressure wave propagating along the vascular tree is reflected, the main
points of reflection being the places of stenosis, or bifurcations of arteries [5]. In the
case when behind the point of measurements there is a series of blood pressure wave
reflections at various points spaced from one another, we cannot practically separate
from one another the individual reflected waves reaching the measurement point. Under
such circumstances, the wave propagating in the direction opposite to the forward wave
and being superposition of the reflected waves is considered reflected wave. The shape
of the blood pressure wave observed in particular points along the vascular tree can be
reconstructed by a sum of the cosine waves which amplitudes and phases are determined
in frequency domain as the results from the Discrete Fourier Transform of the blood
pressure wave. The relationship between the spectrum components of the total P , forward
Pf and reflected Pr blood pressure waves for the successive harmonics n of the heartbeat
frequency in frequency domain is as follows:

Pn = Pfn + Prn = Pfn(1 + Γn), (1)

where

Pn = |Pn|ejθn , Pfn = |Pfn|ejθfn , Prn = |Prn|ejθrn , Γn = |Γn|ejγn .
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The reflection coefficient Γn present in formula (1) is calculated on the basis of the
vascular input impedance Zn and characteristic impedance Zon measured in the chosen
cross-section of the artery:

Γn =
Prn

Pfn
=

Zn − Zon

Zn + Zon
= |Γn|ejγn . (2)

The input and characteristic impedances are defined in the frequency as:

Zn =
Pn

Qn
= |Zn|ejϕn , Zon =

Pfn

Qfn
= |Zon|ejφn , (3)

where Pn, Pfn, are spectrum components of the total and forward blood pressure waves,
Qn, Qfn are spectrum components of the total and forward blood flow waves.

According to formula (1) the spectrum components Pfn and Prn of the forward and
reflected blood pressure waves are calculated for the succesive harmonics n of the heart-
beat frequency as follows:

Pfn =
Pn

(1 + Γn)
= |Pfn|ejθfn , Prn = Pn − Pfn = |Prn|ejθrn . (4)

The components Pfn and Prn are the basis for detrmination of the course of the forward
and reflected blood pressure waves in time domain.

The phenomenon of blood pressure wave reflection has been considered up to now
only on the basis of the invasive measurements performed mainly on animals [17, 20]. In
this study the forward and reflected blood pressure waves in the human common carotid
artery was determined on the basis of ultrasonic non-invasive measurements of the blood
pressure and volumetric blood flow. The aim of the study was to estimate the effect
of the internal carotid artery stenosis caused by atherosclerosis on the mean reflection
coefficient modulus and delay of the reflected wave relative to the forward wave. The
time delay ∆t was determined by the zero-crossing method between the rising slopes
of the forward and reflected blood pressure waves at the mean blood pressure level Pa

(Fig. 5 and 7). Moreover the time delay was also determined by the correlation method.
The values of the mean reflection coefficient modulus |Γ |a was calculated on the basis
of the values of the moduli |Pfn| and |Prn| of the spectrum components of the forward
and reflected blood pressure waves for the first ten harmonics of the heartbeat frequency
according to the formula:

|Γ |a =

1
10

10∑
n=1

|Prn|

1
10

10∑
n=1

|Pfn|
. (5)

The mean reflection coefficient modulus thus determined is mainly dependent upon those
harmonic components, which have major influence on the shape of the forward and
reflected blood pressure waves.
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2. Method and equipment

In the developed method the instantaneous values of blood pressure P (t) in the com-
mon carotid artery was determined on the basis of ultrasonic measurements of the in-
stantaneous artery diameter D(t). The function D(P ) presented by Powałowski and
Peńsko [10] having the following form is assumed as the basis of calculations:

D(P ) = Dmin

√
1 +

1
α

ln
(

P

Pd

)
for P ≥ Pd

exp(α)
> 0, (6)

where α has been defined as a logarithmic artery wall rigidity coefficient and has the
form expressed by the following formula:

α =
D2

min

(D2
max −D2

min)
ln

(
Ps

Pd

)
, (7)

where Dmin and Dmax are minimum and maximum artery diameters corresponding to
the diastolic blood pressure Pd and systolic blood pressure Ps, respectively. Upon trans-
formation of formula (6) the instantaneous blood pressure P (t) is given as:

P (t) = Pd exp
[
D2(t)−D2

min

D2
max −D2

min

ln
(

Ps

Pd

)]
. (8)

In the non-invasive examinations the blood pressure P (t) thus determined was calibrated
by means of the systolic blood pressure and diastolic blood pressures, measured by means
of a sphigmomanometer. In the case of the blood pressure P (t) determination in the
carotid arteries, the blood pressure Ps and Pd measurements were performed on the
brachial artery, when the patient was lying down. A right to use the function described
by formula (6) has been confirmed for a group consisting of 20 persons by Powałowski et
al. [13, 14] for the common carotid artery for different values of the systolic and diastolic
blood pressures. The results of the investigations of the relationship between the diam-
eter of the common carotid artery and the variations of the systolic and diastolic blood
pressure in the brachial artery obtained by the above mentioned authors are presented
for the three chosen persons in Fig. 1.

The relationship between the common carotid artery diameter and the blood pressure
was also investigated in the conditions of the dynamic blood pressure variations. Investi-
gations were carried out in the common carotid artery of a dog((1) ). The instantaneous
blood pressure and the instantaneous artery diameter were measured simultaneously in
the same artery cross-section. The blood pressure was measured invasively by means of
1 mm pressure catheter developed by Sentron. The artery diameter was examined non-
invasively using VED ultrasonic equipment described in the further part of this paper.
The results of the examinations in the common carotid artery of a dog (Fig. 2) have shown
that relationship (8) describes perfectly well the blood pressure variations. The coefficient

(1) Investigations were performed at the University in Maastricht (the Netherlands) within research
project PL 92.0907 financed by the European Commission.
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Fig. 1. Results of the measurements [13] of the relationship between diameter D (minimum Dmin and
maximum Dmax diameter) of the common carotid artery and the blood pressure P (diastolic Pd and
systolic Ps pressure) on the brachial artery for three patients aged 36, 38, and 42 years, for whom
the mean value of α coefficient as calculated from formula (7), was 3.33, 2.56 and 4.31, respectively.
Solid line presents the function D(P ) determined from formula (6). The function D(P ) was plotted by
means of the least squares method. Conformity of description of the experimental points by the assumed

function D(P ) has been expressed by the coefficient of determination R2.

Fig. 2. Blood pressure P averaged from the consecutive ten cardiac cycles in the common carotid artery
of a dog: (A) — measured, (B) — calculated on the basis of artery diameter variations, according to

relationship (8).
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of determination R2 between the blood pressure measured in the invasive way and that
calculated from formula (8) was 0.9933. Moreover, the obtained results of investigations
have shown that the effect connected with the viscous properties of the artery wall in the
relationship between the artery diameter variations and blood pressure variations may
be neglected. The phase shift in the relationship D(P ) did not exceed 9◦ for the first five
harmonic components of the instantaneous blood pressure P (t). This has confirmed the
earlier works done by Bergel [1, 2], Learoyd et al. [8], Gow et al. [6, 7] and West-
erhof et al. [19]. The above mentioned authors agree that the phase shift between the
artery diameter variations and blood pressure variations does not exceed 100.

Non-invasive blood pressure measurements, together with non-invasive ultrasonic
measurements of the volumetric blood flow were basis for determination of the vascular
input impedance [12].

Besides the input impedance, subsequent magnitude necessary for determination of
the blood pressure wave reflection coefficient is the characteristic impedance. In this
study the characteristic impedance was determined on the basis of the formula given by
Womersley [21]. Womersley has presented a relationship, which describes characteristic
impedance of the artery, based on the assumptions that artery with ideally elastic wall is
contracted and does not move in the longitudinal direction and that blood can be treated
as viscous Newtonian liquid:

Zon =
ρc

πR2
√

(1− σ2)M ′
10n

e−j
ε10n

2 , (9)

where ρ is the blood density, R is the artery radius, σ is the Poisson constant, M ′
10n, and

ε10n are values, which are functions of the artery radius, blood viscosity and harmonics
n of the heartbeat frequency, c is the pulse wave velocity.

Values M ′
10n and ε10n are given in tables [9]. Pulse wave velocity c given in formula

(9) has been defined on the basis of the Moens–Korteweg equation:

c =

√
Eh

2Rρ
, (10)

where E is the Young’s modulus of the artery wall, h is the artery wall thickness, ρ is
the blood density, R is the mean artery radius.

Moens–Korteweg formula has been derived for an extremely thin-walled tube for
which the condition h/R ¿ 1 is satisfied. In order to eliminate difficulties connected
with the measurement of the artery wall thickness and Young’s modulus, Bramwell
and Hill [3] in 1922 proposed the following relationship describing the value of the pulse
wave velocity c:

c =

√
V dP

ρ dV
, (11)

where ρ is the blood density, dP is the blood pressure variation producing relative vari-
ation of the artery volume dV/V .



196 T. POWAŁOWSKI

Having assumed that the length of the artery has not changed due to blood pressure
variations, we can obtain formula (11) in the following form:

c =

√
S dP

ρ dS
, (12)

where dP is the blood pressure variation, which causes relative variation of the cross-
section area of the artery dS/S.

The formula given above has been confirmed theoretically in the paper published by
Tedgui et al. [18] for an incompressible Newtonian liquid flowing in an elastic tube.
In the paper cited above it has been proved that the pulse wave velocity described
by formula (12) corresponds to the pulse wave velocity as calculated on the basis of
the Moens–Korteweg formula. According to formula (12), in the non-invasive ultrasonic
investigations, the pulse wave velocity has been calculated from the following relationship:

c =

√
S ∆P

ρ∆S
=

√
(Ps − Pd)D2

min

ρ (D2
max −D2

min)
, (13)

where Dmax and Dmin are maximum and minimum internal artery diameter with the
systolic Ps and diastolic Pd blood pressures being subordinated to these values, respec-
tively.

Fig. 3. Flow chart of determination and analysis of the forward Pf and reflected Pr blood pressure
waves according to the formulae: (8), (4), (2), (3), (9), (13) and (5); FFT — Fast Fourier Transform,
FFT — inverse Fast Fourier Transform, |Γ |a — mean reflection coefficient modulus, ∆t — time delay

of the reflected blood pressure wave relative to the forward blood pressure wave.
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The forward and reflected blood pressure waves were determined in conformity with
formulae: (8), (4), (2), (3), (9) and (13) on the basis of the simultaneous measurements
of the instantaneous values of the volumetric blood flow Q(t) and artery diameter D(t)
in the same cross-section area of the common carotid artery and on the basis of the
measurement of the systolic blood pressure Ps and diastolic blood pressure Pd on the
brachial artery by means of sphigmomanometer. The flow chart of determination and
analysis of the forward and reflected preesure waves is given in Fig. 3. The investiga-
tions were carried out by means of VED ultrasonic equipment developed at the Institute
of Fundamental Technological Research of the Polish Academy of Sciences. This equip-
ment consists of a continuous wave Doppler flowmeter with a two-channel 128 point FFT
Doppler signal analyser and a pulse wall tracking system [11]. The frequency of the ul-
trasonic wave transmitted in the Doppler flowmeter was 4.5 MHz, and in the tracking
system — 6.75 MHz. The longitudinal resolution at the artery diameter measurements as
determined on the basis of the model investigations was < 0.33 mm. Measuring accuracy
of artery wall displacements was 7 �m. Measuring data were presented during the inves-
tigations on the screen of an IBM PC connected on line with an ultrasonic equipment
and were stored in the computer memory (Fig. 4). Apart from the data obtained from
ultrasonic measurements, also the values of the systolic and the diastolic blood pressures
were transmitted to the computer memory. The forward and reflected blood pressure
waves were determined using 128 point Fast Fourier Transform (FFT).

Fig. 4. Data presented in the course of the measurements in the human common carotid artery: a) echoes
from artery wall surface, b) gate presenting internal artery diameter, c) relative artery diameter variation,
d) power density spectrum of the Doppler signal; t0 is a moment of taking of the picture of the recorded

echoes.
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3. Results

The examinations performed in the common carotid artery were preceded by an
estimate of influence of stenosis of the brachial artery caused by compression on the
values of the mean reflection coefficient modulus and the time delay of the reflected blood
pressure wave with respect to the forward blood pressure wave. (Powałowski et al. [15]).
The measurements were performed on a male 22 years old. The results of examinations are
presented in Fig. 5. The measuring point was located 56 cm from fingertips. An apparent
blood pressure wave reflection point as determined on the basis of the pulse wave velocity
(formula (13)) and the time delay ∆t between the reflected and forward waves was spaced
by 60 cm from the measuring point. After compressing the artery at a distance of 12 cm
from the measuring point, the time delay ∆t has been reduced from 132 ms to 35 ms and
the value of the mean reflection coefficient modulus |Γ |a has increased from 0.4398 to
0.7983. Compressing of the brachial artery brought a 60% reduction in the volumetric
blood flow.

Fig. 5. Blood pressure waves: total P , forward Pf and reflected Pr determined on the basis of the
brachial artery measurements: a) without artery compression, b) with artery compression at a point

lying 12 cm distal the measurement point; Pa is the mean blood pressure.

The clinical examinations (Powałowski et al. [16] were performed at the Depart-
ment of the General and Thoracic Surgery of the Medical Academy in Warsaw on a
control group of healthy persons without any atherosclerotic lesions in the carotid arter-
ies and on a group of sick persons with atherosclerotic lesions in the initial segment of
the internal carotid artery (Fig. 6). The examinations were carried out in the common
carotid artery at a distance of 3 – 4 cm proximal to the bifurcation of the artery. The
ultrasonic examinations (B-mode+Doppler) did not show any atherosclerotic plaque in
the common carotid artery where the measurements were taken. The measurements were
done while the subjects were lying down, following 15 minute rest periods. The stenosis
range of the internal carotid artery was classified on the basis of the combined ultrasono-
graphic and Doppler measurements. Generally accepted criteria were used (de Bray and
Glatt [4]). The results of the blood flow and blood pressure measurements have been
averaged for four cardiac cycles. In Fig. 7 are presented the results of the chosen blood
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atherosclerotic plaque

Fig. 6. Ultrasonic B-mode image of the common carotid artery (CCA) bifurcation in the case of a person
with atherosclerosis of the internal carotid artery (ICA).

pressure P and blood flow Q measurements, the input and characteristic impedance, as
well as the forward and reflected blood pressure wave for the healthy person and for the
patients with 50% and 70% stenosis of the internal carotid artery. It may be seen that in
the case of persons with stenosis of the internal carotid artery there is a visible increase
in the input impedance modulus |Zn| of with respect to the characteristic impedance
modulus |Zon|, coupled with an increase of the reflected wave amplitude and shortening
of the time delay ∆t of the reflected blood pressure wave Pr with respect to the forward
blood pressure wave Pf .

The total results of examinations have been given in Table 1. Amplitude and time
delay of the reflected blood pressure wave measured in the common carotid artery were
obtained as a sum of the waves reflected from various points of vascular system fed by the
common carotid artery. The results of the examinations have shown that an increase of
the degree of stenosis of the internal carotid artery is also accompanied by an increase in
the value of the mean reflection coefficient modulus and decrease in the time delay of the
reflected blood pressure wave relative to the forward blood pressure wave. In the case of
the persons with a critical stenosis, or occlusion of the internal carotid artery, the mean
reflection coefficient modulus was greater by about 48% and the apparent reflection point
as determined on the basis of the time delay and the pulse wave velocity (formula (13))
was situated at distance ∆L relative to the measuring point about 4.4 times shorter than
in the case of the healthy persons.

The time delay ∆t of the reflected blood pressure wave relative to the forward blood
pressure wave obtained by the zero crossing method was compared with the time delay
obtained by the correlation method. In order to enhance resolution of the correlation
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Fig. 7. Results of examination in the common carotid artery in the case of the healthy person (a), the
person with 50% stenosis of the internal carotid artery (b) and the person with 70% stenosis of the

internal carotid artery (c).

method, the time course of the forward and reflected blood pressure waves for the given
cardiac cycle was divided into 212 samples having assumed linear approximation between
the primary samples (27 samples) of both waves. Average difference of the values of the
time delay ∆t following from the above methods of ∆t determination was 2%, for A, C
and D groups of the persons being examined given in Table 1, and 10% — for group B.

In this paper the propagation of the forward wave and the wave reflected between two
measuring points situated at a known distance from each other was also considered. The
distance between the measuring points was determined on the basis of the time delay
difference at both measuring points and on the basis of pulse wave velocity, according to
the following relationship:

∆L∗ =
c(∆t1 −∆t2)

2
, (14)
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where ∆t1 and ∆t2 are time delays between the reflected wave and the forward wave at a
measuring point situated at a greater and smaller distance from the wave reflection point
respectively, c is the pulse wave velocity in the distance between the measuring points.

Table 1. Results of measurements in the common carotid artery for a control group of healthy persons
(A) and the persons with stenosis (B – D) of the internal carotid artery (ICA). Ps, Pd are systolic
and diastolic blood pressures on the brachial artery, Dmin is minimum internal diameter, Qmed is the
mean volumetric blood flow, c is the pulse wave velocity, |Γ |a is the mean reflection coefficient modulus,
∆t is the time delay of the reflected blood pressure wave relative to the forward blood pressure wave
determined by zero-crossing method, ∆L is the distance between the measuring point and the apparent
blood pressure wave reflection point, ∆t∗ is the time delay of the reflected blood pressure wave relative

to the forward blood pressure wave determined by the correlation method.

Examined group (A) (B) (C) (D)
Control ICA stenosis ICA stenosis ICA stenosis > 90%

50% 50− 70% or occlusion

Number of cases 30 5 6 6

Age [years] 48.3± 14.2 59.0± 12.5 62.3± 10.0 64.8± 7.4
Ps [mmHg] 119.7± 11.2 138.4± 7.4 158.7± 24.9 142.5± 19.4
Pd [mmHg] 74.1± 8.6 79.6± 9.5 83.5± 11.1 75.8± 9.4
Dmin [mm] 7.182± 1.015 8.294± 0.733 8.728± 0.750 9.528± 0.780
Qmed [l/min] 0.605± 0.113 0.589± 0.082 0.595± 0.153 0.416± 0.094
c [m/s] 6.80± 1.54 8.70± 1.96 8.65± 2.43 8.94± 1.58
|Γ |a 0.448± 0.048 0.527± 0.024 0.603± 0.083 0.661± 0.060
∆t [ms] 52.7± 13.4 27.0± 6.1 22.1± 10.6 9.1± 4.8
∆L [cm] 17.6± 5.5 11.4± 1.2 9.0± 3.9 4.0± 2.0
∆t∗ [ms] 53.8± 13.9 24.6± 5.7 21.7± 9.3 9.0± 4.6

The examinations were carried out in the human common carotid artery and on a
model((2) ) in elastic tube (σ = 0.5) of inside diameter 19.8 mm, through which liquid of
viscosity η and density ρ similar to those of blood (η = 3.3 · 10−2 P, ρ = 1100 kg/m3)
flowed. The obtained results are shown in Table 2. It may be seen that the distance
between the measuring points as determined from the time delay difference and the
pulse wave velocity differs only slightly from the existing distance between the measuring
points. This difference was equal to 5% for a segment of the common carotid artery 3 cm
long and 1% for a segment of elastic tube 25 cm long.

Table 2. Distance between the measuring points: measured (∆L) and determined on the basis of
the pulse wave velocity and on the basis of the time delay difference at two measuring points (∆L∗)
(formula (14)).

∆L ∆L∗

Elastic tube 25.0 cm 24.75 cm
Common carotid artery 3.0 cm 2.86 cm

The influence of atherosclerosis in the internal carotid artery upon the phenomenon
of blood pressure wave reflection has also been considered theoretically, by calculation

(2) The model investigations were carried out at the Department of Mechanical Engineering, Technical
University of Eindhoven [15].
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of the value of the reflection coefficient in the common carotid artery for the case of the
normal internal and external carotid arteries, as well as for the case of an occlusion of
the internal carotid artery. In the calculations the results of non-invasive blood pressure
and volumetric blood flow measurements in the internal and external carotid arteries for
a healthy male aged 38 were applied. The measurements were carried out close to the
bifurcation of the carotid artery. Neglecting the distance of the measuring points from
the bifurcation of the common carotid artery, the time course of the blood flow velocity
in the common carotid artery at the point of bifurcation was calculated as a sum of the
time courses of the blood flows in the external and the internal carotid arteries. Moreover,
blood pressure has been determined as an arithmetic mean of the blood pressures in the
external and the internal carotid arteries. The obtained results of measurements were
basis for the determination of the reflection coefficients in the three above mentioned
carotid arteries at the point of bifurcation of the common carotid artery. Reflection
coefficient in the common carotid artery was determined from the successive harmonic n

of the heartbeat frequency from the following relationship:

a) for the case of the normal (without atherosclerotic plaques) internal and external
carotid arteries:

Γcn =
Zcn − Zcon

Zcn + Zcon
=

ZenZin

Zen + Zin
− Zcon

ZenZin

Zen + Zin
+ Zcon

=

1
Zcon

−
[

1
Zeon

(
1− Γen

1 + Γen

)
+

1
Zion

(
1− Γin

1 + Γin

)]

1
Zcon

+
[

1
Zeon

(
1− Γen

1 + Γen

)
+

1
Zion

(
1− Γin

1 + Γin

)] . (15)

b) for the case of the internal carotid artery occlusion:

Γcn =
Zcn − Zcon

Zcn + Zcon
=

Zen − Zcon

Zen + Zcon
=

1
Zcon

− 1
Zeon

(
1− Γen

1 + Γen

)

1
Zcon

+
1

Zeon

(
1− Γen

1 + Γen

) , (16)

where Zcn, Zen, Zin are the input impedances, Zcon, Zeon, Zion are the characteristic
impedances, Γcn, Γen, Γin are the reflection coefficients in carotid arteries: common,
external and internal respectively.

In the case of the normal carotid arteries it has been assumed at the determination of
the reflection coefficient Γcn in the common carotid artery that the characteristic admit-
tance in the common carotid artery at the point of bifurcation is equal to the sum of the
characteristic admittances in the external and internal carotid arteries. The reflection
coefficient Γcn calculated from formulae (15) and (16) was basis for determination of
the forward and reflected blood pressure waves in the common carotid artery. The mean
modulus |Γ |a of the reflection coefficient was calculated on the basis of forward wave
modulus and reflected wave modulus according to the formula (5). The results of calcu-
lations of the mean modulus |Γ |a of the reflection coefficient were presented in Table 3.
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The performed calculations have confirmed the phenomenon of an increase of the value
of mean modulus |Γ |a for the case of the occluded internal carotid artery (Table 1).

Table 3. Mean modulus |Γ |a of the reflection coefficient calculated on the basis of the non-invasive
blood pressure and blood flow velocity measurements in the common carotid artery (CCA), external
carotid artery (ECA) and internal carotid artery (ICA) and on the basis of a model of bifurcation of the

common carotid artery (∗) described by the formulae (15) and (16).

Artery |Γ |a
ECA 0.444
ICA 0.540
CCA (for normal ECA and ICA) 0.471, (0.490∗)
CCA (for occluded ICA+ normal ECA) 0.663∗

4. Conclusions

The results of examinations obtained in the human common carotid artery indicate
that the stenosis of the internal carotid artery caused by atherosclerosis was the source of
the reflected blood pressure wave. This is expressed by an increase in value of the mean
reflection coefficient and a decrease in the time delay between the reflected and forward
blood pressure wave accompanying the degree of stenosis of the common carotid artery.
These observations indicate that the proposed method of investigation of the forward
and reflected blood pressure waves may be in the future a new diagnostic tool useful for
the detection of atherosclerotic lesions in the arteries.
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The aim of this study was to examine the relation between the intima-media thickness
and the wall elasticity measured simultaneously in the same cross-section of the com-
mon carotid artery. A group of 40 persons (19 healthy and 21 with hypertension and/or
atherosclerosis) aged 22 to 81 were diagnosed by means of ultrasound. A high correlation
occurred between the wall stiffness coefficient α and the intima-media thickness (r = 0.950,
p < 0.00001).

Keywords: arterial wall elasticity, intina-media thickness, carotid artery, ultrasound.

1. Introduction

Non-invasive examinations of arteries walls are essential in modern medical diagnosis.
Changes in the wall structure resulting from age and vascular diseases, including hyper-
tension and atherosclerosis contribute to the increase of its stiffness and thickness [1, 2, 5,
9 – 11, 15, 17, 19, 22, 23, 25, 26]. Ultrasonic measurements of vascular wall dimensions and
its elasticity are carried out independently, owing to the different measuring techniques
and applied apparatus. The wall thickness is assessed through analysis of two-dimensional
ultrasonic image (B-mode) of artery [1, 5, 9, 10, 26]. Wall elasticity is examined by means
of ultrasonic wall tracking systems detecting changes in vascular diameter influenced by
blood pressure changes [2, 11, 15, 19].

The paper presents the results of simultaneous ultrasonic measurements of wall elas-
ticity and intima-media thickness in the common carotid artery which were carried out
on a group of 40 persons (19 healthy and 21 with hypertension and/or atherosclerosis)
aged 22 to 81.
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2. Method and equipment

Wall elasticity in the common carotid artery was determined on the basis of ultrasonic
measurement of the maximum and minimum diameters of the common carotid artery
and the systolic and diastolic blood pressures taken by cuff on the brachial artery. The
subjects were examined in a lying position. The vascular wall elastic properties were
evaluated through the following parameters: compliance coefficient CC, distensibility
coefficient DC and stiffness coefficient α [19]. They are formulated as follows:

CC =
π

(
D2

max −D2
min

)

4(Ps − Pd)
, (1)

DC =
D2

max −D2
min

D2
min(Ps − Pd)

, (2)

α =
D2

min

(D2
max −D2

min)
ln

(
Ps

Pd

)
, (3)

where Dmax, Dmin being the maximum and minimum arterial diameter values for the
systolic Ps and diastolic Pd blood pressure respectively.

The intima-media thickness (IMT) was measured simultaneously with the elasticity
parameters in the same vessel cross-section. The examinations were performed using the
VED system designed by the authors from the Institute of Fundamental Technological
Research, Polish Academy of Sciences. The apparatus comprised of a pulse system track-
ing displacement of vascular wall with measurement precision of up to 7 �m. The inner
diameter was determined through digital time measurement between chosen echoes (RF
signal) received from the inner vascular wall layer. The frequency of transmitted ultra-
sound was 6.75 MHz. The wave was focused at 1 to 3 cm below the skin surface. The
longitudinal resolution of the apparatus obtained by model examination was 0.33 mm

Fig. 1. The longitudinal ultrasound image of the common carotid artery (a) and the data presented
in the course of the measurements in the common carotid artery by means VED ultrasonic system:
b) echoes from the wall of the artery, c) artery diameter variations. To — the time of registering the

echoes.
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in water. The measured data were displayed on the screen of an IBM PC (Fig. 1) con-
nected on-line with the ultrasonic equipment and stored in the computer memory. The
intima-media thickness (IMT) was determined on the basis of the ultrasonic echo image
(A-mode) of the arterial wall (Fig. 2).

Fig. 2. The method of intima-media thickness (IMT) examination by means of ultrasound.

The common carotid artery wall is composed of three layers: the adventita, media
and intima. The basic difficulty in examination of wall thickness is limited longitudinal
resolution of ultrasonic systems used for this purpose. For the applied transmission fre-
quency between 5 – 10 MHz the longitudinal resolution is from 0.4 to 0.2 mm. Generally
it is not enough to measure the intima thickness which value is less than 0.2 mm [8,
27]. In this situation, the intima-media thickness (IMT) was calculated on the basis of
the distance between two successive echoes which correspond to reflection from intima
and adventitia layers respectively (Fig. 2). Moreover, the wall thickness changed under
the blood pressure change during the cardiac cycle [6, 12, 14]. In VED system for each
cardiac cycle 8 echo pictures were recorded synchronously with instantaneous value of
artery diameter. The mean value of IMT over cardiac cycle was used for analysis.

The reproducibility of the measurements was tested on a control group of 10 healthy
persons: 5 women and 5 men aged 23 to 30. Each person was tested independently by
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two examiners experienced in such measurements. Coefficient of variation CV was taken
as a criterion of reproducibility. It was calculated for every parameter investigated as a
ratio of a standard deviation between two compared groups of results to mean value of
one of the groups chosen as a reference for a comparative evaluation.

The coefficient of variation CV in examining the intima-media thickness and vascular
wall elastic properties was as follows: 11.84 ± 0.18% for IMT (mean IMT = 0.45 mm),
10.01 ± 0.13% for stiffness coefficient α, 12.85 ± 0.73% for distensibility coefficient DC
and 14.73± 0.14% for compliance coefficient CC measurements.

3. Results

The measurements were carried out in the common carotid arteries of 40 persons
(19 female, 21 male) aged 22 to 81 (mean age 49.9) of whom 19 were healthy, 3 were
suffering from hypertension, 9 were suffering from atherosclerosis and a further 9 from
both. The measurements were done while the subjects were lying down, following 15
minute rest periods. Ultrasonic B-mode examinations did not show any stenotic plaque
in the common carotid artery where the measurements were taken.

The results, depicted in Fig. 3, show the increase of stiffness coefficient α to be cou-
pled with the increase of intima-media thickness. The distensibility coefficient DC and
the compliance coefficient CC decreased as a function of IMT increase. The correlation
coefficient r between α and IMT was very high: 0.950 (p < 0.00001). It was slightly lower
for IMT and DC (r = −0.839, p < 0.00001). The lowest correlation was for IMT and CC
(r = −0.554, p < 0.0002). Table 1 shows the mean values of measurements in healthy
and sick persons respectively.

Table 1. The values of parameters measured in the groups of healthy and sick persons.

Examined Age Ps Pd Dmin IMT α CC DC
group [years] [mmHg] [mmHg] [mm] [mm] [10−7 m2/kPa] [10−3/kPa]

healthy 44.0 119.7 74.2 6.78 0.57 3.31 9.75 27.64
persons ±17.9 ±14.3 ±8.0 ±0.80 ±0.08 ±1.19 ±3.52 ±11.20

sick 55.4 137.0 77.1 8.48 0.73 5.39 8.42 15.19
persons ±14.3 ±20.7 ±13.3 ±1.31 ±0.12 ±1.55 ±3.37 ±5.74

The results show a significant dependence between the increase of vascular wall stiff-
ness in the common carotid artery and the intima-media thickness. This may be due
to the vascular wall structural changes bringing about an increase in both its thickness
and stiffness. The increase of vascular wall stiffness is mostly explained in terms of an
increase of collagen fibres in the wall and an increase in the ratio of collagen fibres to
elastin fibres [7].

The authors wanted to find out how the stiffness coefficient α and intima-media
thickness are related to the age of examined persons. The analysis was carried out for the
groups of healthy and sick persons described above. The results are shown in Fig. 3. In the
healthy group the increase of α and IMT values as a function of age was very significant
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Fig. 3. The intima-media thickness IMT, compliance coefficient CC, distensibility coefficient DC and
stiffness coefficient α determined in common carotid artery for healthy (◦) and sick (•) persons.
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(the correlation coefficients were r = 0.972 and 0.876 respectively, p < 0.00001). In the
sick persons the dependence was very weak with the respective values of the correlation
coefficient being r = 0.539 and r = 0.519 (p < 0.02). This means that the structural
changes that occur in the vascular wall as a result of disease overshadow the symptoms
of ageing. Nevertheless, the very high correlation between the value of α and the IMT
for both groups is worth emphasising (the correlation coefficients were r = 0.913 and
r = 0.924 for the healthy and sick group respectively, p < 0.00001).

Finally, it should be pointed out that the IMT correlates with the stiffness coefficient
α to a much greater degree than with the distensibility and compliance coefficients DC
and CC. This may be due to DC and CC being linked to the blood pressure value.
Experimental studies performed on large arterial vessels (the aorta, the common carotid
artery and the femoral artery) by Bergel [3, 4], Loon et al. [18], Simon et al. [24],
Langewouters et al. [16] and Hayashi et al. [13] indicate that the reaction of the
artery wall to a change in blood pressure is nonlinear. This means that the coefficients
CC and DC described by formulae (1) and (2) depend on the blood pressure, making it
difficult to comparatively evaluate the arterial wall elasticity studies performed on their
basis. It is necessary to note that the values of coefficients CC and DC are most commonly
used in the literature for evaluation of elasticity of arterial wall. The stiffness coefficient α

was developed by Powałowski and Peńsko [19] on the basis of the nonlinear function
between cross-sectional area of the artery and the blood pressure. Powałowski et al.
show that the coefficient α is independent of the systolic blood pressure changes [20, 21].

4. Conclusions

The measurements carried out in the common carotid arteries of healthy and sick
persons point to a statistically evident correlation between the increase of the wall stiff-
ness and the increase of the intima-media thickness. The highest correlation with the wall
thickness increase was observed for the stiffness coefficient α (r = 0.950, p < 0.00001)
and the lowest for the compliance coefficient CC (r = −0.554, p < 0.0002). In persons
suffering from hypertension and/or atherosclerosis an observed increase of stiffness co-
efficient α and intima-media thickness (IMT) was significant in comparison to healthy
persons (p < 0.001).
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A model for a comb transducer is proposed and analyzed. It is shown that inter-
face waves are generated in the comb-sample contact area. The interface waves are leaky
waves that transport acoustic energy along the interface towards the comb edges, where
it is eventually converted into surface acoustic waves propagating outside the comb. By
including piezoelectric effects in the comb and the sample materials, it is possible to an-
alyze the incident bulk wave generated by embedded metal strips on both sides of the
interface. Approximations for the scattered wavefield and the relationship describing the
energy transfer along the interface are derived. Numerical examples are presented.

1. Introduction

Comb transducers may be used for the generation of finite-amplitude surface acoustic
waves in solids [1]. For this purpose, where transducer efficiency is a crucial parameter,
an optimization of the structure is badly needed; this requires transducer modelling.

There is not satisfactory theoretical model of combs in literature for this purpose.
An existing model [10] exploits weak-coupling assumption between a comb and a sam-
ple. Even if this could be somehow realized experimentally allowing Rayleigh wave to
propagate unperturbed under the comb, the efficiency of bulk to surface wave transfor-
mation would be weak because of strong incident wave reflection at almost stress-free
comb-sample interface.

Here, a model is proposed that will help to determine the comb’s main parameters
as well as the main phenomena that transform an incident bulk wave into surface waves
under the comb. It will be shown that this transformation is a by-product [2] of the wave
scattering by periodic voids that form between the comb teeth and the sample surface,
as shown in Fig. 1(a).

2. Description of the model

In the model illustrated in Fig. 1(b), the typically thin voids of the comb are replaced
by cracks. To simplify analysis, periodic cracks are assumed with period Λ and width
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Λ−w. Because the system is infinite, surface waves cannot propagate along a free surface.
Instead, an interface wave [3] (a “crack wave”) can exist at the cracked interface between
the two solid halfspaces of the comb and the sample. These crack interface waves would
be transformed into surface waves at the edges of a real finite comb. This phenomenon is
not analyzed here, since we are interested primarily in the transformation phenomenon
of the incident wavebeam into an interface wave during its scattering by periodic cracks.
The system under consideration is two-dimensional, with infinite cracks in the z-direction
and a wavefield independent of z.

The incident wavebeam is assumed to be finite. This makes it possible to evaluate
the crack wave amplitude excited by the incident wavebeam at a position just outside
the area of incidence. In a typical comb transducer, the incident wave is generated by
a piezoelectric plate transducer placed on the top of comb; the generated wavebeam of
roughly uniform amplitude propagates towards the comb-sample interface, as shown in
Fig. 1(a). (Naturally, the wavebeam undergoes diffraction as it propagates, so that its
exact shape at the comb-substrate interface may deviate from uniformity.)

In this model, the incident wave is generated using the piezoelectric effect. To do this,
we include weak piezoelectricity in both of the elastic halfspaces (comb and sample),
and embed periodic metal strips on either side of the interface (without disturbing the
material mechanical integrity). These strips can be either grounded or connected to an
external voltage source in the manner of an ordinary piezoelectric transducer electrode.
The other electrode is grounded to the fully metallized interface at y = 0, as shown in
Fig. 1(b). The strips excite bulk waves in the same way that an ordinary piezoelectric
transducer does. Current is also induced in the grounded strips by the local wavefield
in the same way as in piezoelectric transducers. This effect will be later exploited to
detect the amplitude of the scattered wavefield at a given strip position in either of two
halfspaces.

The strips are periodic with the same period Λ as the cracks, but have a fairly
wide width we. Therefore, applying a voltage to a series of strips mimics a single wider
transducer electrode and thus generates a wider wavebeam. The polarization of the wave-
beam can be either longitudinal or shear, depending on the piezoelectricity of the solid
halfspaces. Assuming that the y-axis is perpendicular to the interface and the strips,
and that the x-axis lies along the periodic system of cracks and strips, the piezoelec-
tric modulus e22 results in the generation of longitudinal normal propagating incident
wavebeam, while e26 will generate a shear incident wavebeam. The wavenumbers of the
longitudinal and shear waves are denoted by kl and kt, respectively. The grounded strip
current will be correspondingly sensitive to either one or the other component of the local
wavefield.

In summary, by including piezoelectricity in the comb and sample materials and by
embedding periodic strips on either side of the the interface, we are able to 1) generate a
normal incident wavebeam of the required width and polarization, and 2) detect the local
wavefield on either side of the interface. We are most interested in the detection of the
scattered wavefield amplitude at different positions along the periodic system of strips,
that is, at different lateral distances from the incident wavebeam. Figure 1(c) presents
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Fig. 1. a) Schematic diagram of a comb transducer with a plate piezoelectric transducer on top, attached
to the sample surface. The period of the comb teeth is chosen equal to the wavelength of the generated
surface wave. It is assumed that the voids formed between the comb teeth and the sample are thin. b) In
the model, voids are modelled by periodic cracks at the interface of two elastic halfspaces (comb and
sample). A side effect of this model is that the generated surface wave can propagate in both halfspaces
as an entire interfacial wave. Moreover, the system is considered infinite. Mechanical contact between
the cracks that model the tooth-sample contact can be either solid or sliding. Weak piezoelectricity of
the halfspaces is included. The embedded wide (∆e = −0.9) ideal conducting strips on both sides of the
interface help to model the generation of a normal incident wavebeam of finite aperture width, and to
detect the scattered wavefield in any lateral position with respect to the incident wave. c) Illustration of
how the inclusion of piezoelectricity works. One or 64 strips in the lower strip system are supplied with
voltage V − and generate the normal incident wavebeam onto the interface. The currents I+

n induced in
strips on the other side (which is grounded to the interface plane) depend on the strips’ lateral position
with respect to the incident beam (horizontal axis is the strip number). The current amplitude is shown
in a logarithmic scale for two cases: with perfectly contacting halfspaces without cracks (left), and with
relatively narrow cracks that do not allow interface waves to exist (right). In both cases, the plots repre-
sent typical transmission patterns with limited diffraction effects due to the small distance 2d between
the embedded strips. The small values of I+/V − result from the weak piezoelectric effect assumed:
e26 =1 Cm−2 for generation of a shear incident wave. In all of the figures, both the comb and sample
are assumed to be made of steel with the following parameters: kt = 0.3097/mm, kl = 0.1695/mm, and

ρ = 7700kg m−3 (at ω = 106 s−1).

examples of how the system works for solid contact between the halfspaces (without
cracks), and for certain system of narrow cracks between the halfspaces that does not
allow interface waves to propagate. Under these conditions, the figure presents typical
diffraction patterns plotted on a log scale; it will be later compared to Fig. 2.
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Fig. 2. a) Diffraction pattern for cracks of width 3/4Λ wide enough for interface waves to exist, for crack
period Λ = 2π/K, for comparison with (b) plotted for another crack period. The strong dependence on
K suggests a resonant phenomenon of the wave scattering. Three features are worth mentioning with
respect to Fig. 1(c): 1) almost the same maximum signal level as for direct, unperturbed transmission
by cracks; 2) much wider range of the scattered pattern; and 3) linear slope of the pattern when plot-
ted logarithmically, which shows the exponential decaying phenomenon involved. These all confirm the
following interpretation. The incident wavebeam is scattered by cracks and simultaneously an interface
leaky wave is generated. This wave propagates along the interface delivering acoustic power to large
distances from the area of incidence, and reradiates bulk waves due to a leakage phenomenon. The rera-
diated bulk waves are detected by strips much farther away from the incident wavebeam than would be
possible with pure diffraction phenomenon only. The linear slope confirms that we are indeed dealing
with a leaky interface wave, as opposed to scattering of a longitudinal wavebeam (e22 =1 Cm−2 applied
instead of e26) drawn in figure (c), that does not excite interface waves in this system. There is no long
range of the scattered wavefield, and no linear slope of the pattern outside the area of incidence. (A small

interface wave may still exist, however, which is excited by nonuniformities in the incident wave.)

3. Characterization of a layered halfspace

Introducing a potential φ of the electric field Ei = −φ,i, i = 1, 2, the wave-motion of
a piezoelectric body is governed by the following system of equations:

Tij = cijkluk,l + elijφ,l ,

Di = eijkuj,k − εijφi,j ,
(1)

ρui,tt = Tij,j ,

Di,i = 0,

where T is the stress, D is the electric induction, u is the displacement, c is the stiffness
tensor of an assumed isotropic body with Lamé constants λ and µ, and ρ is the mass
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density. e and ε are the piezoelectric and dielectric constants. Here, only e222 = e22 in
matrix notation or e212 = e26 may be assumed different from zero and equal 1 Cm−2,
and εii/ε0 is set to 10.

In this paper, a time-harmonic field exp(jωt) is considered, so that ρui,tt = −ρω2ui.
Later, if a spatial-harmonic field exp(−jpx − jsy) is considered, Eqs. (1) can be trans-
formed into Stroh equation [4]

HF = q F, (2)

where an eigenvalue q = s/p characterizes the mode dispersion property, in which the
polarization is described by an eigenvector F = [jpui, jpφ, T2l, D2]T , i, l = 1, 2. The
matrix H depends on the material constants and on ρω2/p2. H is a 6×6 matrix, because
we neglect the wave-field dependence on z, as well as z-polarized transverse waves. The
matrix is real for real p.

Solving Eq. (2) for a given spectral variable p, one obtains the eigenvalues qn and
wavevector components (p, sn) of six possible modes F(n), n = 1, ..., 6. Three of the
modes (n = 1, 2, 3) satisfy the radiation conditions at y →∞ (the modes either carrying
energy into infinity or decaying at y →∞), and the other three satisfy the corresponding
radiation conditions at y → −∞. These two families of solutions to Eq. (2) will be
exploited in constructing the solutions to the wavefields in the elastic halfspaces y > 0
and y < 0.

In the layered halfspace y > 0, the stress T+
2i at y = +0 and the surface electric

charge is D+ at y = d are both assumed to be known in the form of a harmonic distribu-
tion exp(−jpx) (neglecting harmonic dependence on time) with corresponding complex
amplitudes (with notation held unchanged). The superscript “+” denotes the field in
the halfspace y > 0. Thus the boundary conditions which must be satisfied by the y-
dependent wavefields are

T2i(y = 0) = T+
2i ,

φ(y = 0) = 0,

T2i(y = d− 0) = T2i(y = d + 0),
(3)

ui(y = d + 0) = ui(y = d− 0),

D2(y = d + 0) − D2(y = d− 0) = D+,

φ(y = d− 0) = φ(y = d + 0) = φ+.

(The second equation makes the interface plane electrically grounded, and the third and
fourth equations ensure mechanical integrity across the strips.)

We seek the solution for ui(y = +0) = u+
i and φ(y = d) = φ+ which also satisfies the

radiation conditions at y →∞ (sn = pqn):

y ∈ (0, d) :
6∑

n=1

An F(n)e−jsny,

(4)

y > d :
3∑

n=1

Bn F(n)e−jsny.
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Substituting the above expansion into Eqs. (3) and eliminating expansion constants,
one obtains [

jpu+
i

jpφ+

]
= G+(p)

[
T+

2j

D+

]
, i, j = 1, 2, (5)

where the 3 × 3 matrix G+ can be evaluated numerically for any given value of the
spectral variable p.

Note [4] that for p much larger than the bulk cut-off wavenumber kt, all qn are
complex. Furthermore, the wavefield generated by the applied T+ at y = 0, or by D+

at y = d, is highly localized at these two planes and thus contributes nothing to the
wavefield on the other plane. In conclusion, the value of G33(p → ∞) is the same as in
an infinite body without a boundary at y = 0, while Gij(p →∞), i, j = 1, 2 is the same
as for an elastic halfspace without the plane of charge at y = d. Moreover, the influence
between these two planes vanishes at large p,

G+(p →∞) =

[
Gij(∞) 0

0 G33(∞)

]
, i, j = 1, 2. (6)

In fact, G+(p) ≈ G+(∞) for p > p∞, with p∞ several times larger than kt. This will
help to solve the boundary-value problem formulated in the following section. Also note
that G+(−∞) = −G+(∞).

The matrix G−(p) which describes the relation between [jpu−i , jpφ−]T and [T−2j , D
−]

of the halfspace y < 0 (with electric charge at y = −d) has similar properties. These
two matrices, G±, are the planar harmonic Green’s functions of the spectral variable
p. They sufficiently characterize the comb (y > 0) and the sample (y < 0) halfspaces,
with weak piezoelectricity. This relationship will be exploited below in the solution of the
boundary-value problem for periodic cracks at the interface between these two halfspaces,
and strips embedded at distance d on both sides of the interface y = 0.

4. Periodic boundary-value problem

We now formulate the above boundary-value problem for arbitrary p. Let us first
note that jpφ is a Fourier transform of E1 = −∂φ/∂x. Similarly, jpui corresponds to the
spatial function Ui = −∂ui/∂x. For convenience, the boundary problem is formulated
using the above x-derivatives instead of the functions themself, in the equations governing
the body (Eq. (5)) as well as in the boundary conditions at the plane of strips (y = ±d)
and the plane of cracks (y = 0):

E±
1 = 0 on strips, x ∈ (−we, we)

D± = 0 between strips, x ∈ (we, Λ− we)

}
y = ±d,

T−2i = T+
2i = 0 on cracks, x ∈ (w, Λ− w)

T−2i = T+
2i = T2i between cracks, x ∈ (−w, w)

U+
i = U−

i between cracks, x ∈ (−w, w)





y = 0,

(7)
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for x in one periodic domain. The above equations concern the solid contact between the
two halfspaces at the interface y = 0. Other simple boundary conditions exist for sliding
contact, where T21 = 0, x ∈ (−Λ/2, Λ/2), and the displacement continuity is U+

2 = U−
2

instead of U+
i = U−

i , i = 1, 2 above. (Another simple, albeit nonphysical, case would be
T22 = 0 at the interface and U+

1 − U−
1 between cracks.)

The first and the last equations in Eqs. (7), stated for the x-derivatives of the corre-
sponding wavefields, do not sufficiently describe the boundary conditions at the strips and
cracks. (A possible constant difference between u+

i and u−i makes it underdetermined.)
The boundary conditions must be appended by conditions for the wavefield evaluated at
a single point anywhere in the corresponding domain. These are called the “single-point”
conditions, and here the point of x = 0 at the center of a strip or a comb tooth is used:∫

(U+
i − U−

i ) dx = U i,
(8)

−
∫

E±
1 dx = V ±.

U i and V ±
i are assumed to be known. V ± are the strip potentials, and U i = 0 ensures

the perfect contact of both halfspaces between cracks. Otherwise, the comb teeth would
be separated by a constant distance U i.

We now introduce a relationship between Ui = U+
i − U−

i , T2i, D± and jpφ± in the
spectral domain that results from Eq. (5), accounting for T = T+ = T− for any x at the
interface y = 0 (i, j = 1, 2): [

U

E

]
= g

[
T

D

]
,

g =




G+
ij −G−ij G+

i3 −G−i3
G+

3i G+
33 0

G−3i 0 G−33


, g∞ =

[
g∞ O

O g̃∞

]
,

(9)

where i, j = 1, 2. In our notation, E = [E+
1 , E−

1 ]T , D = [D+, D−]T , U = [Ui], T = [Ti2],
and O is a zero matrix. The matrix g, which depends on p, assumes the limit g∞ at
p →∞. Under certain approximations and for properly chosen, sufficiently large p∞, we
may use g(p > p∞) = g∞. Note that g(−p∞) = −g(p∞).

For completeness, an average measure of the wavefield on the strips and between the
cracks (that is, on the comb teeth), can be defined as follows:

T =

Λ/2∫

−Λ/2

T dx, where T = [T+
i2 ],

(10)

I = [I+, I−]T = jω

Λ/2∫

−Λ/2

D dx.

The integrations are originally taken over a comb tooth between neighboring cracks or
over a strip and then extended into the full period Λ accounting for Eqs. (7).
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5. A method of solution

We now apply the method used in an earlier paper [3] with an extension concerning
the electric field [5]. This method is presented here only briefly. First, the wavefield is ex-
panded into a Bloch series (summation over n) with its expansion coefficients represented
in the so-called BIS expansion [5]

T =
∞∑

n=−∞

∑
m

T(m)Pn−m(∆)e−j(r+nK)x,

U =
∞∑

n=−∞

∑
m

U(m)Sn−mPn−m(∆)e−j(r+nK)x,

(11)

D =
∞∑

n=−∞

∑
m

D(m)Pn−m(∆e)e−j(r+nK)x,

E =
∞∑

n=−∞

∑
m

E(m)Sn−mPn−m(∆e)e−j(r+nK)x,

where ∆ = cos Kw, ∆e = cos Kwe, Sν = 1 for ν ≥ 0 or −1 otherwise, and Pν is
the Legendre function. These expansions satisfy the boundary conditions (7) for any
expansion coefficients marked by the superscript “(m)”.

The summation over m has finite limits [−M, M + 1] depending on K, kt, and d.
These limits are set following the general rule that, for certain large |n| > M , the system
of equations (13) that results should be satisfied automatically for arbitrary T(0) and
D(0) (within an accepted accuracy [3, 6]). In computations with K ≈ kt and d ≈ Λ/2,
we have found that M = 3 is satisfactory. In the above expansions, r is limited to
one Brillouin zone r ∈ (0,K); note that all wavefield amplitudes involved in the above
equations depend on this reduced spectral variable.

Accounting for the property of g∞, we notice that [6]

U(m) = g∞T(m),
(12)

E(m) = g̃∞D(m).

Substitution of expansions (11) into Eq. (9) yields for any n

∑
m

[g∞Sn−m − g(r + nK)]

[
T(m)Pn−m(∆)

D(m)Pn−m(∆e)

]
= 0. (13)

This is satisfied automatically for |n| > M provided that M is chosen properly (M >

kt/K).
Let us now discuss the first equation of the system (13) concerning the mechanical

field T and U at the interface. If the systems of strips are embedded deeply inside the
halfspace (large d), then G±i3 have significant nonzero values only for such p = r + nK

for which the eigenvalues q are real. (Otherwise, the exponential functions in Eq. (4)
vanish, preventing any significant influence of the electric charge on the wavefield at the
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interface.) A real eigenvalue ql corresponds to a propagating mode F(l) excited by the
strips which is an incident bulk wave onto the crack system. We are interested primarily
in normal incidence for which p ≈ 0 and (if K is not too small) r ≈ 0. Accounting for
the zeros O in the matrix g∞ of Eq. (9), the incident wave is represented by the right
hand side of ∑

m

[g∞Sn−m − g(r + nK)]T(m)Pn−m(∆) = δn0Ũ, (14)

where δij is a Kroenecker delta. Ũ = [G+
i3(r+nK),−G−i3(r+nK)]Dn where Dn is the n-

th harmonic component of Bloch series (11) and depends indirectly on the voltage applied
to the metal strips. It follows from Eq. (5) that Ũ = jr[ũ+

i (r+nK)− ũ−i (r+nK)] can be
considered known, because for weak piezoelectricity Dn can be evaluated directly from
the known strip potentials [5, 6], neglecting the mechanical field. Thus ũ±i (r + nK) are
particle displacements associated with the incident waves generated by either the upper
or lower system of strips.

The nontrivial equations in Eq. (13) are those for −M ≤ n ≤ M . To close the system
of equations, we need to account for Eqs. (8), which are

∑
m

(−1)mU(m)P−m−r/K(−∆) =
K

π
U sin πr/K,

(15)∑
m

(−1)mE(m)P−m−r/K(−∆e) =
K

π
V sin πr/K,

where V = [V +, V −]T ,U = [U i]. Equations (13) and (15), accounting for (12), allow
us to evaluate all of the expansion coefficients in Eqs. (11) and their dependence on U
and V.

Finally, substitution of the expansion (11) into Eqs. (10) results in

T = Λ
∑
m

T(m)P−m−r/K(∆),

(16)
I = jωΛ

∑
m

D(m)P−m−r/K(∆e).

Accounting for Eqs. (15), we obtain

[
T, I

]T
= Y(r)

[
U̇,V

]T

sin πr/K. (17)

For further convenience, we have introduced the notation U̇ = jω[U
+

i − U
−
i ] which has

the physical meaning of the comb tooth velocity relative to the sample, Eq. (8) (Fig. 3).
Note that the above solution depends on r, a reduced spectral variable whose value is
in the domain of one Brillouin zone (0,K): Y(K − r) = Y(r). This results from the
symmetry concerning the mode propagation direction. U̇ and V may also be functions
of r in this domain without any change in the above considerations.
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Fig. 3. An interpretation of the transfer relationship, Eq. (19), and the quantities involved. I±m is the
current in strip number m excited by the local wavefield at the strip position x = mΛ, above or below
the interface (marked by superscript ±). This wavefield results from the incident wavebeam generated
by strip number n to which a voltage V ±n is applied relative to the grounded interface y = 0; the other
strips are grounded. The local wavefield can be also characterized by a force Tm that the comb tooth
of number m exerts on the sample surface. An artificial comb tooth displacement un with respect to
the sample surface may be used to represent the incident wavebeam local amplitude. (This is a quantity
that can be evaluated from the known amplitude of incident wavebeam at a given comb tooth.) Note
that we may apply only the difference u+

i − u−i which is constant over an entire comb tooth (contact
area between cracks). The position and the inclination of this area with respect of the interface plane
y = 0 results from the solution. It is marked in the figure by two parallel bounds of lower and upper

halfspaces between cracks, which are somewhat shifted and inclined with respect to y = 0 plane.

6. Discrete functions

In fact, V and U are the Fourier transforms of discrete functions which depend on
the strip or crack number l along their periodic positions in the systems. In particular,
for known strip potentials v(l) = [V +(l), V −(l)]T and comb tooth displacements with
respect to the sample surface u(l) = [u+

i −u−i ] with velocity u̇ = jωu, the inverse discrete
Fourier transforms [7] are defined by

v(k) = K−1

K∫

0

V(r)e−jrkΛ dr,

(18)

u̇(k) = K−1

K∫

0

U̇(r)e−jrkΛ dr.

It is evident that V(r) must be equal to the sum over all strips,
∑

l v(l) exp(jrlΛ), and
similarly U̇(r) =

∑
k u̇(l) exp(jrlΛ).

Substitution of the above into Eqs. (17) yields the discrete spatial dependence
[

T(k)
I(k)

]
= Y(k − l)

[
u̇(l)
v(l)

]
,

(19)

Y(m) = K−1

K∫

0

Y(r)e−jrmΛ sin πr/K dr.
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The integrand Y(r) is a regular function, so the evaluation of the above integral can be
easily performed using the convenient FFT algorithm.

This relationship has the following interpretation for the natural case of u̇(l) = 0 for all
l (Fig. 3). Assume that only one, zeroth strip in the lower system of strips has an applied
voltage v−(l = 0) = v−l=0 (using alternative subscript numbering). It results from Eq. (19)
that the currents of this and neighboring strips in this lower, I−(k) = I−k , and upper,
I+
k systems of strips are excited in spite of the metallized grounded screening interface

y = 0. This can only be caused by means of a bulk wavebeam transmitted through the
interface, that was excited by the strip. Currents are excited in strips positioned a lateral
distance |l − k|Λ from the wavebeam.

Figure 1(c) presents the excited currents I+
k in an example where there are no cracks

at the interface (perfect contact between halfspaces), or weakly scattering cracks. It rep-
resents simple wavebeam transmission through a small distance 2d so that the diffraction
effect is small, resulting in almost uniform detected wavebeam. The range |k− l|Λ of the
detected field is confined to the excited wavebeam width (1 or 64 strip periods in the
figure).

In the case of strongly scattering cracks, for instance for wider cracks at the interface
as in Fig. 2, the scattered field propagates in all directions and can be detected over a
much wider range (that is, by strips of numbers k much different from those with number
l to which voltage has been applied). Another phenomenon that causes an excessively
wide range of the scattered field will be discussed below.

Equations (19) yields yet another wavefield characteristic, the force T(k) at the inter-
face. Following its definition (10), this is a vector of the full force between two neighboring
cracks. Within the model framework of a comb transducer, it corresponds to the total
force exerted by a single comb tooth of number k on the sample surface. This force rep-
resents the local wavefield at the interface and, when evaluated for different k, similar
figures can be obtained as discussed above for strip currents. Finally, we note that the
assumption of weak piezoelectricity makes the wave scattering by strips negligible.

7. The scattered field approximation

It was shown in an earlier paper [3] that there can be leaky interfacial waves guided
along the system of cracks. They are attenuated and have complex wavenumber kc =
K−rc close to kt for cracks embedded in otherwise homogeneous media. It has also been
shown that such waves can be excited by a bulk wave at close to normal incidence, for
certain crack wavenumbers K within a narrow range just above kt. Above, we developed
a suitable tool for analysis these phenomena, and indeed, they appear in the scattering
pattern presented in Figs. 2(a) and (b).

The first striking feature of these plots on a log scale is a linear slope of the wavefield
amplitude outside the domain of incidence. This means that the scattered field decays
exponentially in the area where there are no propagating incident or reflected wavebeams.
Such exponential decay is characteristic of interfacial waves exp(−jrcx). The discussed
figures must thus present leaky interface waves existing outside the area of incidence.
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In the context of this theory, a guided mode in the system is represented by a pole of the
integrand of Eq. (19) at r = rc, and the excited amplitude of the mode can be evaluated
as a residuum of this integral evaluated on the complex plane r.

Here we propose the following approximation to Y(r) at r ≈ rc ≈ 0 in the case of
close to normal incidence:

Y(r) = const +
{

1
r − rc

+
1

(K − r)− rc

}
a−

{
1

r + rc
+

1
(K − r) + rc

}
a. (20)

The particular form of the above approximation results from the system periodicity, the
symmetry with respect to the propagation direction, and the fact that r is the reduced
spectral variable with values in one Brillouin zone only, (0,K). The approximation coef-
ficients can be easily found numerically. For instance, rc is a zero of 1/Y nn (the matrix
diagonal element).

The integration path (19) of the approximated terms is first extended to infinity, then
closed in the lower or upper complex halfspaces where the integrands satisfy the Jordan
lemma [6]. The residua yield the interfacial components of the scattered wavefield, while
the regular parts of integrands contribute only to the localized wavefield within or near
the domain of incidence. Example results are plotted in Fig. 4. Here, directly evaluated
wavefields from Eq. (19) are presented on the left half of the figure for comparison with
the approximated wavefields from Eq. (20) plotted in the right half, for two different

Fig. 4. Comparison of an approximated diffraction pattern form Eq. (20) (right) to that evaluated
directly from Eq. (19) (left), for various values of K. The transverse incident wave (e26 6= 0) and crack
width are like those in Fig. 2. The area of incidence is denoted by the shadowed region. The most
important wavefield amplitude is that at the edge of incidence, which corresponds to the edge of comb.
The field of this amplitude is eventually converted into the surface wave outside the comb. A large
range of incident wavebeam aperture widths is presented to show that this edge amplitude value can
be obtained with a relatively small incident beamwidth. The fact that the amplitude cannot be made
larger by applying a wider wavebeam is reasonable: the excited interface wave displacement amplitude
cannot exceed the corresponding amplitude of the incident wave. The most important result presented
in this figure is an excellent agreement between the approximated and numerically-evaluated scattering
patterns, confirming 1) the validity of the approximation, which makes calculations much easier, and
2) the resonant phenomenon of the analyzed scattering. Indeed, the approximation is based on a singular
function in spatial frequency like the singular function of time frequency that describes a typical resonant

circuits.
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crack wavenumbers K and different aperture widths of the incident wavebeams. Note
the quality of the approximation outside the incidence domain. The approximation does
not include any directly transmitted or reflected bulk waves and thus is inappropriate
for the domain of incidence.

This allows us to make a final interpretation of the examples presented in Figs. 2
and 4. Interface crack waves are excited in the incidence area of a finite wavebeam onto
the cracks and propagate at the interface along the crack systems, leaking energy into bulk
waves. This wave is detected by strips much farther away from the incident wavebeam.
The leakage is caused by the 0-th order Bloch component that is a propagating mode of
wavenumber −rc = kc −K, close to zero. It represents an almost normal outgoing bulk
wave that takes away energy from the crack wave, making it leaky and weakly decaying
on its propagation path. The further away, the weaker the reradiated bulk wave and the
current induced in strips. This exponential decaying yields a linear slope of the scattering
pattern plotted in a log scale in the figures.

Two features of Fig. 4 are worth mentioning here. First, the amplitude of the excited
interface waves is never greater than a certain limit, even for wider incident wavebeams
(corresponding to larger number of teeth in a comb). Second, this maximum amplitude
takes place at the edge of the domain of incidence (that is, at the comb edge). In a real,
finite comb, the excited interfacial waves will transform into surface waves at the edge
of comb (at the boundary between the edge of the transducer and the free undisturbed
surface of a sample). Thus from an application point of view, a comb with only the
minimum number of teeth to yield the maximum crack wave amplitude at the edge of
incident wavebeam is needed.

8. The interface wave-field

Equations (19) also suggests the possibility of analyzing interface waves in the system
by applying u̇l instead of vl. It follows from Eq. (14) that this may be an indirect way
of accounting for the incident wavebeam generated by the strips. Here, we discuss its
physical significance.

In the analysis that follows, a close to normal incidence is assumed: r ≈ 0 and
K > kt, which in particular means that only the 0-th order Bloch component represents
propagating modes in the system. There are no other propagating modes, nor is there
longitudinal-transverse mode conversion during scattering.

Let us start with Eq. (14) taken at n = 0 that involves the 0-th order Bloch com-
ponents of incident, transmitted and reflected waves. Note that both g(r) and Ũ are
proportional to r, Eqs. (5) and (9). Thus for small r and accounting for the physically
correct condition that U = 0, we may rewrite Eqs. (14) for n = 0 and the first of Eqs. (15)
in form

∑
m

S−mU(m)P−m(∆) =
∑
m

g(r)T(m)P−m(∆) + Ũ,

(21)1
r

∑
m

[
S−mU(m)P−m(∆)− r

K
(−1)mp−m(−∆)g∞T(m)

]
= U = 0,
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where pk(·) = ∂νPk+ν(·)|ν=0 and Pn(−∆) = Sn(−1)nPn(∆). Accounting for the finite
terms only at r → 0, we obtain

∑
m

S−mU(m)P−m(∆) = 0,

(22)∑
m

[
{g(r)/r}r→0P−m(∆)− (−1)m p−m(−∆)

K
g∞

]
T(m) = −{Ũ/r}r→0.

It results from the last equation that U = −{Ũ/r}r→0 is an equivalent quantity that
can be applied in Eq. (15) to describe the incident wave at the interface.

In summary, for close to normal shear (t) or longitudinal (l) incident waves, we can
evaluate U̇ = jωU which appears in Eq. (17) to describe the incident wavebeam in
equivalent manner. For example, for a uniform incident wavebeam, u̇l involved in Eq. (19)
is constant within a limited range of l depending on the wavebeam aperture width. This
greatly simplifies the model of comb transducers, because we no longer need to include
in the model the piezoelectric plate transducer on the top of comb. We need use only a
quarter of Eqs. (19), only that for Tk and u̇l in which u̇l describes the incident wave at
a given comb tooth of number l (assumed uniform over an entire tooth, Fig. 3). Tk is
the resulting force exerted by the comb tooth of number k on the sample surface. In the
applied notation, −Re{∑l Tlu̇∗l }/2 is the delivered power by the incident wavebeam.

9. Conclusions

In this paper, we have analyzed a somewhat elaborate system to show that resonant
generation of interface waves takes place when a bulk wave at close to normal incidence
is scattered by periodic cracks with certain parameters. The phenomenon was shown to
be governed by a transfer function Y whose spectral form has a pole in a wavenumber
domain (also called the spatial frequency domain). This is analogous to a pole in the
frequency domain of an ordinary resonant electric circuit. The phenomenon it describes
is the resonance in the spatial domain, with a periodic force caused by periodic contact
between the comb and the sample halfspaces.

The spatial transfer function Y(m), Eq. (19), yields a powerful tool for analysis of
variety of comb transducers. It can be directly applied, for instance, in analysis of a
“special comb” proposed recently [11], where each comb teeth are excited with different
phases, like in the case of obligue incidence of bulk wave onto the comb-sample interface.
This encourages us to develop the introduced and presented here approach into a full
comb transducer model.

Numerical examples have been presented for cracks embedded in otherwise homo-
geneous media. However, similar results can be obtained within the presented general
theory for cracks at the interface of two different solid halfspaces, with solid or sliding
contact between cracks. These results fully confirm the main thesis of this and a previous
paper [3] about the resonant scattering of close to normal incident waves by cracks. Yet
another generalization of the presented theory can be made by applying it to a multi-
periodic system of cracks: they will look like periodic combs separated by some distance,
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each one with several teeth [8]. Another generalization is for oblique incidence, which is
a 3-dimensional problem [9].

Future plans include applying this theory to the detailed investigation of comb trans-
ducers, for instance the frequency and time responses of the comb, the optimization of
comb material for a given sample material, the number of teeth, and so forth.
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An analysis is given of acousto-optic coupling associated with piezoelectric interfacial
waves for a great number of crystal cuts. Results of numerical calculations are presented
of appropriate coupling coefficients in relation to wave parameters for lithium niobate and
quartz. It is found that, for some cuts, the coefficients are quite large (over 4% for lithium
niobate). It is also found that high acousto-optic coupling is usually accompanied by high
piezoelectric coupling.

1. Introduction

The acousto-optic effect is used in many electronic devices with surface acoustic wave,
e.g. in deflectors or travelling diffraction gratings. Replacing the surface acoustic wave
(SAW) by the piezoelectric interfacial wave (PIW) in such devices is attractive for two
reasons. First, piezoelectric coupling of PIW is roughly two times greater than that of
SAW. So, generation of PIW is easier and strain of the medium is higher, which should
translate into higer acousto-optic coupling. Second, since PIW propagates inside the
medium, it is less affected by the environment.

In the paper, we investigate the acousto-optic coupling of PIW for two piezoelec-
tric media which differ much in acousto-optic properties: lithium niobate and quartz. A
numerical survey of the two media is made for a great number of crystal cuts. PIW pa-
rameters and acousto-optic coupling coefficients are calculated for each cut. Then crystal
cuts of high coupling (piezoelectic and/or acousto-optic) are selected.

2. Wave properties

PIW is a surface wave which propagates along a perfectly conducting plane embedded
in a homogeneous piezoelectric medium. In the system of coordinates (x, y, z), let the
plane be given by the equation z = 0. We assume that the electro-mechanical field
depends on time as exp(jωt), that it is independent of y (the wave propagates in the
x direction), and that the dependence on x is given by the factor exp(−jωrx) where r
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is the slowness of the wave. In this case, the electro-mechanical field equations can be
reduced to a system of eight first-order ordinary differential equations, as described in
Ref. [1].

Let i, j = 1, 2, 3 and (xi) = (x, y, z). The following field variables will be used: particle
displacement ui, electric potential φ, surface force Ti = T3i (where Tij is the stress tensor),
and normal (to the conducting plane) component D3 of the electric displacement Di. We
have

d

dz
FK = −jωrHKL(r)FL, (1)

where K,L = 1, . . . , 8 and (FK) = (jωrui, jωrφ, Ti, D3). We adopt notations and con-
ventions of Ref. [1], in particular, the convention of summing over repeated indices. For
real r, which we assume, the matrix HKL is real and non-symmetric. It depends on ma-
terial constants: elastic tensor cijkl, piezoelectric tensor ekij , dielectric tensor εki, and
mass density ρ.

The solution to Eq. (1), which satisfies appropriate boundary conditions at the con-
ducting plane, can be obtained by assuming that it depends on z as exp(−jωsz) where
s is the slowness of the wave in the z direction. This leads to the system of eight linear
algebraic equations

HKL(r)FL = qFK , (2)

where q = s/r. After solving the eigenvalue problem defined by Eq. (2) we find the
solution, separately in the upper and lower half-space, as a linear combination of four
eigenwaves with coefficients determined by the boundary conditions [1]. At the conducting
plane, the amplitude of the solution FK is a linear combination of four eigenvectors.

3. Acousto-optic coupling

Let us introduce the tensor ηij = ε0ε
−1
ij , where ε−1

ij denotes the inverse of the matrix
εij and ε0 is the dielectric permittivity of the vacuum. The relation between the electric
field and the electric displacement is

Ei = ε−1
0 ηijDj . (3)

The acousto-optic effect consists in changing the tensor ηij due to strain of the medium.
This is usually denoted by

∆ηij = ηij(1)− ηij(0). (4)

The argument 0 or 1 means that the strain is equal to zero or is different from zero. The
tensor ζij = ∆ηij is proportional to the strain tensor [2, 3], i.e.

ζij = pijklSkl , (5)

for k, l = 1, 2, 3, where Skl is the strain tensor and pijkl is the acousto-optic tensor.
Mutiplying Eq. (4) by ε−1

0 Dj we get

Ei(1)− Ei(0) = ε−1
0 ζijDj . (6)
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Denote by |Ei| the length of the vector Ei. The ratio

|Ei(1)− Ei(0)|
|Ei(0)| =

|ζijDj |
|ηij(0)Dj | (7)

is the relative change of the length of Ei due to strain for a particular electric displacement
Dj . It is obvious that this ratio is independent of the the length of Dj . If the vector Dj

is parallel to the x axis then we may put (Dj) = (1, 0, 0) in Eq. (7). This gives

α1 = |ζi1|/|ηi1(0)|, (8)

which will be called acousto-optic coupling coefficient in the x direction. In general,

αj = |ζi(j)|/|ηi(j)(0)| (9)

will be called acousto-optic coupling coeficients in the x, y, and z direction (for j = 1, 2, 3).
The coefficient α = α1 + α2 + α3 is an overall measure of acousto-optic coupling.

We assume that the acousto-optic coupling does not affect essentially the propagation
of the surface wave. So, in the above formulae, by Ei and Di we mean the fields other
than those of the surface wave.

In order to calculate the tensor ζij and then the acousto-optic coupling coefficients,

we need the value of the strain tensor Sij =
1
2
(ui,j + uj,i) at the conducting plane. It is

seen that
ui,1 = −jωrpũi , (10)

and that ui,2 = 0. The remaining derivative can be found from Eq. (1). We have

ui,3 = HiL(rp)F̃L . (11)

In Eqs. (10), (11), ũi and F̃L are the complex amplitudes of ui and FL at the conducting
plane, rp is the slowness of PIW.

4. Numerical calculations

The complex amplitudes and other parameters of PIW are calculated for various
orientations of the conducting plane with respect to the crystallographic axes of the
medium and for different directions of propagation. This is done by solving the eigenvalue
problem related to Eq. (2) with the use of EISPACK routines [4] for different crystal cuts
or triplets of Euler angles. The three-dimensional space of Euler angles is scanned in steps
of 2◦ in each of the three Euler angles (for details see Ref. [1]). Next, for each scanned
crystal cut, acousto-optic coupling coefficients of PIW (if it exists) are calculated using
Eq. (9).

Two piezoelectrics are investigated in this way: lithium niobate (trigonal 3m symme-
try class) and quartz (trigonal 32 symmetry class). They differ considerably in acousto-
optic properties. For both piezoelectrics, the scanning is performed in the ranges of
0◦ − 30◦, 0◦ − 180◦, and 0◦ − 180◦ (first, second, and third Euler angle). In the calcula-
tions, ω = 106s−1. The material constants are taken from Ref. [5], and the acousto-optic
tensors are taken from Ref. [3].
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The results are presented in Tables 1 and 2. The tables give PIW parameters and
acousto-optic coupling coefficients for several crystal cuts selected from tens of thousands
of cuts where PIW exists. Each cut is representative of a group of cuts (see the notes to
the tables).

The following parameters are given: phase velocity vp = 1/rp, beam steering angle ψ,
piezoelectric coupling coefficient κ, normalized complex amplitudes of ui and Ti at the
conducting plane, acousto-optic coupling coefficients.

5. Conclusion

In the angle space, domains of high acousto-optic coupling are different from domains
of high piezoelectric coupling, as can be seen from Table 2. Nevertheless, the two kinds
of domains overlap partially so that there are domains where both the couplings are
relatively high. (Domains of high piezoelectric coupling for quartz can be seen in Refs. [6]
and [7] in the form of maps.)

Acousto-optic coupling coefficients for lithium niobate, which can be as large as 5%,
are greater that those for quartz by two orders of magnitude. It is interesting to note
that, for lithium niobate, cuts of high piezoelectric coupling (rows 1 and 6 of Table 1) are
characteristic of large α2 which is the greatest of the three coefficients αi. This is even
more conspicuous in the case of quartz: α1 and α3 are less than 0.01% for every crystal
cut (Table 2 gives just four examples).

In the case of lithium niobate, there is a great freedom of choosing such a crystal cut
that one of the coefficients αi is greater than the other two (Table 1: row 2 for α1, rows 1
and 6 for α2, rows 4 and 7 for α3). It is seen no correlation between the coefficients αi

and the amplitudes ũi and T̃i.
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In the paper the method of the mechanical and electrical loss measurements using a
piezoelectric transformer has been applied to determine the relations between the losses
and the magnitude of the vibration velocity, strain and stress. The measurements and
calculations have been realized for the soft and hard PZT-type ceramics. Good accordance
of the obtained results with the results obtained by the other authors, applying different
measurement methods, proves the usability of the method of loss measurements proposed
by the author.

1. Introduction

Modified with various additives piezoelectric ceramic with the basic composition
Pb(ZrxTi1−x)O3 is widely used in the piezoelectronics [5]. Recently the quantity of its
applications in high power devices (ultrasonic transducers, piezoelectric transformers,
piezoelectric motors, translators, actuators) has increased considerably. The ceramic in
these devices is excited by high electric fields to mechanical vibrations with high am-
plitude. As yet there is no complete and exact description of the domain phenomena
that cause the large increase of losses and changes of material constants of ceramics in
high fields. The kinetics and the physical mechanism of processes that occur in polycrys-
talline ferroelectrics in high external fields are very complicated and they have not been
completely investigated [9, 13, 16, 23]. Recently good results have been obtained by the
authors applying the Rayleigh law (originally discovered for ferromagnetic materials) to
the description of the domain phenomena in a piezoelectric ceramic [4, 6, 17, 29]. In the
high fields range the nonlinear effects [8, 26, 28] make impossible to apply standard meth-
ods of loss measurements. The threshold electric field for the occurence of nonlinearity
depends on the conditions of the operation of the piezoelectric ceramic. Stresses induced
in the piezoceramic resonator under resonant mode conditions cause that the threshold
electric field is much lower than under off resonant conditions [26].
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In the previous paper [24] we have proposed the method of the determination of
electrical and mechanical losses applying the measurements of voltage ratios in a piezo-
electric transformer instead of the measurements of resonator quality factors. The results
of the measurements of losses as a function of input electric field have been presented.
The magnitude of the output mechanical signal is very important for designers and users
of piezoelectric elements. Therefore results of investigations of ceramic properties and
measurements of losses are presented most often as a function of vibration velocity [22,
25, 30, 31] or induced stresses [26]. The method of loss measurements applied by the au-
thor is shortly recalled in Sec. 2. In Sec. 3 the results of the measurements of the changes
of ceramic material constants with the increasing electric field are presented. They are
necessary for subsequent calculations. Ceramic material constants were measured using
standard methods [1, 3, 7]. The results of the calculations of the magnitude of the vi-
bration velocity, mechanical stress and strain induced in the transformer are presented
in Sec. 4 as a function of driving electric field. The relations between the magnitude of
electrical and mechanical losses in the piezoelectric ceramic and above mentioned me-
chanical quantities are presented in Sec. 5. The losses have been measured and calculated
using the method described in [24] and recalled in Sec. 2.

2. Application of a piezoelectric transformer to loss measurements

Various designs of piezoelectric transformers are known, with various polarizations
of individual parts and with various shapes, e.g. [12, 21, 32]. For the loss measurements
we applied a ring-shaped piezoceramic transformer with the electrodes divided with the
ratio 1:1 [24]. The thickness and width of a ring were small in comparison with its radius.
Such a shape has an important advantage — the stress and strain distribution is uniform
in the whole ring. The piezoelectric ceramic was poled along the thickness direction. One
pair of vacuum evaporated silver electrodes constituted the input of the transformer, the
second pair — its output. Piezoelectric transformers have been already applied for the
measurements of various properties of piezoelectrics, e.g. [11, 19, 20].

Analytical description of the physical processes (direct and converse piezoelectric ef-
fect, secondary effects, higher order effects) and their interactions in piezoelectric trans-
formers is very difficult. Therefore equivalent circuits are applied to analyse transformer
operation. However a large number of simplificating assumptions is necessary [12, 24].

We have used KLM equivalent circuit to obtain the following equations describing
mechanical and electrical losses [24]:

tan δm =
φ2RL(1−A0)

πZ0A0
, (2.1)

tan δe = (1− k2
31)

φ2Xe(tan δm)−1 − πA∞Z0

φ2XeA∞(tan δm)−1
, (2.2)

φ =
πwd31

sE
11

, (2.3)
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Z0 = πwt

√
ρ

sE
11

, (2.4)

Xe =
1

ωC0
, (2.5)

C0 =
πawεT

33

t

(
1− k2

31

)
, (2.6)

where RL — transformer load resistance, A0 = UOUT/UIN for RL → 0 (in this case
UOUT < UIN), A∞ = UOUT/UIN for RL → ∞, UIN — input voltage, UOUT — out-
put voltage, k31 — electromechanical coupling coefficient, w = (DEXT − DINT)/2, a =
(DEXT + DINT)/4, DINT — internal diameter of the ceramic ring, DEXT — external
diameter of the ceramic ring, t — thickness of the ceramic ring, d31 — piezoelectric
constant, sE

11 — elastic compliance, ρ — density, εT
33 — permittivity.

For the determination of loss it is not sufficient to measure only the voltage ratios
for two limits of the loading of the piezoelectric transformer. In the high fields range the
material constants of the piezoelectric ceramic change with the increase of the driving
electric field [2, 27]. This is due to the domain structure of the ceramics [4, 6, 17, 33].
Very high electric fields and mechanical stresses can cause durable changes in the do-
main structure and ceramic parameters [10, 13]. In most cases the degradation of the
polarization state occurs in high electric fields especially when the frequencies are near
the resonance frequency of the piezoelectric element [23]. The changes of the resonance
frequency of the piezoceramic element due to the changes of its material constants should
be considered in the design of piezoelectric devices, e.g. piezoelectric motors [14].

3. Changes of the material coefficients of the piezoelectric ceramic
due to the increase of the driving electric field

As we have mentioned in Sec. 2, the knowledge of the magnitude of ceramic ma-
terial constants for the definite magnitude of the driving electric field is necessary to
the calculations of losses using Eqs. (2.1) – (2.6). It is also necessary to the calculations
of the magnitude of the mechanical signal (Sec. 4). In [26] the authors have published
the following empirical formula describing the changes of the material coefficients of the
piezoelectric ceramic as a function of the driving electric field:

∆x

x0
=

x− x0

x0
= αEIN, (3.1)

where x = d31, Y E , ..., x0 — x measured at the low field level, α — proportionality
coefficient.

In Figs. 1 – 4 the results of the measurements of
∆εT

33

(εT
33)0

,
∆sE

11

(sE
11)0

,
∆k31

(k31)0
,

∆d31

(d31)0
are

presented for two kinds of ceramic used to make the piezoelectric ring transformers [24]:
a — soft PZT-type ceramic, b — hard PZT-type ceramic. The continuous lines correspond
to the formula (3.1). The experimentally obtained values of α for the material constants
of the used ceramics are tabulated in Table 1. The values of α for the soft ceramic
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Fig. 1. Dependence of the changes of the permittivity on the input electric field, a — soft PZT-type
ceramic, b — hard PZT-type ceramic, × — measured values, continuous line — calculated using (3.1).

Table 1. Values of α coefficient.

Material Soft PZT-type Hard PZT-type
constant ceramic ceramic

d31 4 · 10−5 1.9 · 10−5

sE
11 9 · 10−6 2.1 · 10−6

k31 2.8 · 10−5 1.6 · 10−5

εT
33 9 · 10−6 4.3 · 10−7
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Fig. 2. Dependence of the changes of the elastic compliance on the input electric field, a — soft ceramic,
b — hard ceramic, × — measured values, continuous line — calculated using (3.1).

Fig. 3. Dependence of the changes of the electromechanical coupling coefficient on the input electric field,
a — soft ceramic, b — hard ceramic, × — measured values, continuous line — calculated using (3.1).
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Fig. 4. Dependence of the changes of the piezoelectric constant on the input electric field, a — soft
ceramic, b — hard ceramic, × — measured values, continuous line — calculated using (3.1).

Fig. 5. Dependence of the resonance frequency on the input electric field for the ring made of the soft
PZT-type ceramic.
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are higher than for the hard one because the mobility of 90◦ domain walls is higher in
the soft ceramic [33]. The manner of changes of the material constants and the range
of electric fields are in accordance with earlier published results, e.g. [10, 17, 26]. For
the electromechanical coupling coefficient k31 (Fig. 3) and the piezoelectric constant d31

(Fig. 4) one can see the distinct deflection of the measured values from the relation (3.1)
in the range EIN ≥ 104 V/m.

The changes of the material constants of the ceramic as a function of EIN cause that
the resonance frequency fr of the piezoelectric element changes also. Figure 5 presents
an example of the dependence of fr on the magnitude of the driving electric field for a
ring with full electrodes, the soft PZT-type ceramic.

4. Vibration velocity, strain and stress in a ring transformer

One can measure the displacement amplitude or vibration velocity of piezoelectric
elements using a laser interferometer or a fibre optic vibrometer. In the case of a piezo-
ceramic element the measurement circuit must have high sensitivity because ceramic
surfaces have poor reflecting properties, especially for the ceramics with coarse grains
and high porosity. The measurement circuit with very high sensitivity and very narrow
light beam would be necessary for the measurement of the radial displacement of thin ce-
ramic ring. Strains can be measured using a tensometer bridge. Unfortunately the ceramic
driven by the high electric field warms up. This effect causes important measurements
errors and impedes to apply tensometers.

One can calculate the strain amplitude S1 max applying the theory of ring vibrations
[1, 18] and taking into the consideration the used configuration of electrodes [3]:

S1 max = 1/2 d31EINQm , (4.1)

similarly for the amplitude of radial displacement umax:

umax = S1 maxa, (4.2)

the amplitude of vibration velocity vmax:

vmax =
1
2
d31EINQm

1√
ρsE

11

. (4.3)

the root-mean-square value of vibration velocity v:

v =
1√
2
vmax =

√
2 πfrumax =

1
2
√

2
d31EINQm

1√
ρsE

11

, (4.4)

and the amplitude of induced stress T1 max:

T1 max =
S1 max

sE
11

= ω2a2ρS1 max =
√

ρ

sE
11

vmax =

√
2ρ

sE
11

v =
1
2

d31

sE
11

EINQm . (4.5)

In the calculations one should use the measured values of the ceramic material con-
stants as a function of input electric field, presented in Sec. 3.
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The quality factor measured using standard methods should be inserted as Qm into
equations (4.1) – (4.5) when the ceramic is driven by low electric field and the electric
losses can be neglected. In the range of high electric fields the electric losses cannot be
neglected and one should insert into the above equations [25]:

Qm =
1− k2

31

tan δm + k2
31 tan δe

. (4.6)

The magnitude of Qm (EIN) can be calculated using the results of the measurements of
tan δe(EIN) and tan δm(EIN) obtained by means of the method described in Sec. 2 and
the results of the measurements of k31 (EIN) (Sec. 3).

Figures 6 – 8 present the strain S1 max, the vibration velocity v and the stress T1 max as
a function of the input electric field for the ring piezoelectric transformers for a soft PZT-
type piezoelectric ceramic with low quality factor and for a hard PZT-type piezoelectric
ceramic with high quality factor. One can see that the vibration velocity, strain and stress
do not increase proportionally to the increase of EIN, even in the range of relatively low
electric fields. The dependence of the output voltage of the piezoelectric transformer on
the magnitude of its input voltage is similar [24]. Similar results have been also obtained
in [27]. The authors of that paper measured the vibration velocity of rectangular plates
(L – E mode) made of various ceramics. They used an optical sensor. The curves v (EIN)

Fig. 6. Maximal strain as a function of the input electric field for the ring piezoelectric transformer, a) soft
ceramic, DEXT = 30 mm, DINT = 16 mm, t = 5 mm; b) hard ceramic, DEXT = 38 mm, DINT = 28 mm,

t = 5 mm.
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Fig. 7. Vibration velocity (rms) as a function of the input electric field. a, b — as in Fig. 6.

Fig. 8. Maximal stress as a function of the input electric field. a, b — as in Fig. 6.
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obtained in this way tended to the saturation value for EIN ≥ 103 V/m, similarly as in
Fig. 7.

The authors of the theoretical analysis given in [15] have proved that the vibrational
amplitude of a piezoelectric plate in the range of high fields is proportional to the cube
root of the amplitude of the driving voltage. Therefore the vibrational amplitude (or
vibrational velocity) has the tendency to saturate as the driving voltage increases. The
authors of [15] confirmed this cubic relationship experimentally for plates of LiNbO3

monocrystal (Z-cut, thickness-longitudinal vibration) using an interferometric hetero-
dyne laser probe. Figure 9 presents the dependence v (EIN) for a soft and for a hard
PZT-type ceramic. The continuous line presents the relation v = A 3

√
EIN and x denotes

the values calculated using Eqs. (4.4) and (4.6). The proportionality coefficient for pre-
sented curves is equal: A = 1.2 · 10−3 for the soft ceramic and A = 6.3 · 10−3 for the
hard ceramic. The proportionality coefficient depends on magnitudes of the second, third
and fourth order elastic constants and the second and third order piezoelectric constants
[15]. The obtained results indicate that the cubic relationship between the vibrational
amplitude (velocity) and the driving voltage (electric field), foreseen by the theory given
in [15], is also valid for polycrystalline piezoceramics.

a)

b)

Fig. 9. Dependence of the vibration velocity on the input electric field, a) soft ceramic (as in Fig. 6a),
b) hard ceramic (as in Fig. 6b). Continuous line — calculated according to the cubic relationship between

the vibration velocity and the driving electric field, × — calculated using Eqs. (4.4) and (4.6).
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5. Relations between losses in the piezoelectric ceramic and the magnitude
of its vibration level

The dependence of the electrical and mechanical losses on the vibration veloc-
ity of the piezoelectric ceramic has been obtained using the formula given in Sec. 2,

Fig. 10. Electrical and mechanical losses in the hard PZT-type ceramic as a function of the vibration
velocity. Ring transformer with the dimensions as in Fig. 6b.

Fig. 11. Electrical and mechanical losses in the soft PZT-type ceramic as a function of the vibration
velocity. Ring transformer with the dimensions as in Fig. 6a.
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Fig. 12. Electrical and mechanical losses as a function of the maximal strain of the ring transformer,
a — soft ceramic, b — hard ceramic. The dimensions of the transformers as in Fig. 6.

Fig. 13. Electrical and mechanical losses as a function of the maximal stress induced in the ring trans-
former, a — soft ceramic, b — hard ceramic. The dimensions of the transformers as in Fig. 6.
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the measurements of UOUT (UIN) for the piezoelectric transformers, the results of the
measurements of the material constants presented in Sec. 3 and the calculation results
given in Sec. 4. Figure 10 presents such a relationship for the transformer made of the hard
ceramic, Fig. 11 — for the transformer made of the soft ceramic with higher losses. The
dependences of the losses on S1 max (Fig. 12) and T1 max (Fig. 13) have been calculated
in similar way.

In Figs. 10 and 11 one can see that the large increase of the mechanical as well as
electrical losses occurs for the vibration velocity v > 10−1 m/s for the hard ceramic and
v > 10−2 m/s for the soft one. This is in accordance with the results obtained by the
other authors applying different methods of loss measurements, e.g. [22, 25, 30, 31].

6. Conclusion

The realized measurements and calculations prove that the proposed earlier [24]
method of the loss measurements can be also applied to determine the relations be-
tween the vibration velocity, stress, strain and the electrical and mechanical losses in the
piezoelectric ceramic. The obtained results are in accordance with the results obtained
by the other authors applying different measurement methods.

The analysis of the generation of harmonics of an output voltage will be necessary to
apply the presented method in the range of still higher electric fields. The occurence of
the second and third harmonics causes the distortion of the output voltage [8]. Output
voltages of the transformers made of the ceramic with low quality factor were not dis-
torted in the whole range of input voltages applied in the measurements described in the
paper. Output voltages of the transformers made of the ceramic with high quality factor
were distorted in the upper range of applied input voltages but only at the frequencies
of the jump phenomenon [24] and only for RL →∞. Similar effect has been observed in
piezoceramic resonators (length extensional vibration mode) [28].
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The result of investigations of the influence of lead vacancies on the crystalline structure
of PZT-type ceramic piezoelectric materials is presented. The solid solution of PbTiO3 –

PbZrO3 –
3P

n=1
Pb(B′1−αB′′α)O3, characterized by the perovskite-type structure (ABO3), is

the basis of those materials. The lead vacancies (V Pb) was originated by a thermal treat-
ment. Investigations of the influence of the lead deficiency on the crystalline structure of
PZT-type ceramics have been performed for solid solutions characterized by compositions
corresponding to the tetragonal or rhombohedral boundary of the morphotropic region
(PCR-1, PCR-8: Piezoelectric Ceramics of Rostov) and to tetragonal phase region com-
positions (ceramics of Pb1−x (Zr0.39Ti0.59W0.01Cd0.01)O3). It has been found that the
deficiency in lead causes a reconstruction of the perovskite phase crystalline structure or
a change of the elementary cell parameters of that phase. The solid solutions on the basis
of Pb(Zr,Ti)O3 resolve themselves into PbTiO3, ZrO2 and PbO when the lead deficiency
caused by thermal treatment increases.

Keywords: piezoelectrics ceramic, PZT-type solid solution, lead vacancies, structure,
electroācoustic properties, transducers.

1. Introduction

The PZT-type ceramic material is a solid solution of PbTiO3 and PbZrO3, the general
molecular formula of which is Pb(Zr1−xTix )O3. The phase diagram of the non-modified
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PZT ceramic material (Fig. 1) indicates that when Ti4+ ions are substituted by the Zr4+

ions the tetragonal deformation of PbTiO3 decreases. Next (for Zr : Ti = 55 : 45), the
so-called morphotropic boundary (MB) appears at room temperature. A further increase
in the Zr4+ concentration involves the creation of a new rhombohedral ferroelectric phase
(R3m). The boundary between the tetragonal and rhombohedral phase (morphotropic
boundary) depends on the temperature. If the concentration of Zr4+ is greater than
95 mol.%, there is an antiferroelectric orthorhombic phase (typical for PbZrO3) in the
PZT solid solution. A narrow region of the stable antiferroelectric tetragonal phase occurs
close to the Curie point in this case.

Fig. 1. The phase diagram of the Pb(Zr1−xTix )O3 solid solution [1 – 2]. Fβ — ferroelectric tetragonal
phase; Fα — ferroelectric rhombohedral phase; Aα, Aβ — antiferroelectric phases; Pc — cubic phase;

Fα/Fβ — morphotropic boundary.

PZT materials characterized by constitutions, which are close to the morphotropic
phase boundary show distinct piezoelectric properties. One can optimize these properties
according to the requirements of the applications by modifying the basic constitution or
by doping, e.g. in accordance to the following molecular formula:

PbTiO3 − PbZrO3 −
∑
n

Pb(B′1−αB′′α)O3 , (1)

where α = 1/2; 1/3; 1/4 (depending on valence number of the B′ and B′′ cations);
B′ = Nb5+, Sb5+, Ta5+, W6+; B′′ = Li1+, Mg2+, Ni2+, Zn2+, Co2+, Mn2+, Cd2+, Fe2+,
Bi3+, Sb3+.

The addition of some modifiers amounting to (1 – 3) mol.%, causes, among other
things, a broadening of the range of coexistence of the rhombohedral and tetragonal
phases. In this case, the morphotropic region (MR) appears in the phase diagram in
the range of (40 – 43.5) mol.% of Ti4+ (Fig. 2) instead of the morphotropic boundary
MB (line). Materials prepared on the basis of the Pb(Zr,Ti)O3 solid solution are called
PZT-type materials for short. Depending on the chemical constitution, different patent
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symbols have been given to them (e.g. Polish: PP-4, PP6-CM, PP-N; Russian: CTS-836,
PCR-1, PCR-8; Brush-Clevite firm: PZT-4; Mullard firm: PXE5).

Fig. 2. Changes of the parameters (aR, aT, cT, a), the spontaneous deformation (δR, δT) of the
elementary cell, orientational polarization (Pr) and residual polarization (PR) during the transition
from the rhombohedral (R) phase through the morphotropic region (R+T) to the tetragonal (T) phase

for PZT-type ceramics at 293 K.

PZT-type materials are commonly used in engineering (among other things as electro-
mechanical transducers). The increasing application possibilities of these materials are
connected with both the selection of the chemical constitution and the improvement
of the structure and microstructure (decreasing porosity, increasing density, decreasing
grain dimensions) by means of a choice of suitable technological conditions. The PZT-
type ceramic materials are obtained by both the classical method, which is worldwide
used on an industrial scale [3, 4], and the sintering under pressure one (so-called hot-
pressing method) (e.g. [5]). So far, the latter becomes more widespread in the technology
of special purpose ceramics, however only in a laboratory or semiindustrial scale. By
means of sintering under pressure as well as the fine-grained ((1 – 4) µm in diameter),
the medium sized ((5 – 9) µm in diameter) and coarse-grained ((9 – 12) µm in diameter)
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ceramic materials are obtained. After a mechanical treatment (cutting, grinding, polish-
ing) one can obtain thin ceramic plates of df > 8 µm thickness and a perfectly smooth
surface (∇14). This is impossible in the case of the same PZT materials obtained by the
classical method (small density, large porosity and small mechanical strength).

A very important question in the technology of ceramic ferroelectric materials is to
provide consistence in the stoichiometry between the product obtained and the chemical
constitution described by a molecular formula of the compound or the solid solution. It
is of great importance in the case of ceramic ferroelectrics containing lead. The temper-
ature of sintering (synthesis) of those compounds is higher than the lead sublimation
temperature. This is why the real ceramic ferroelectrics of that type are characterized
by a disturbance in the stoichiometry. This disturbance is connected with the creation of
lead vacancies (V Pb) in the PZT crystalline structure. It influences strongly the electrical
properties (first of all the electrical transport phenomena) and the structure parameters
of those materials in the ferroelectric state.

Three methods of controlled creation of lead vacancies in the PZT-type solid solutions
are generally applied, namely:

1) the roasting at Ts = (1073− 1323) K within ts = (1− 3) hours under oxygen [1];
2) the obtaining of the PZT-type solid solution from a mixture of suitable powdered

oxides deficient in PbO [6];
3) modification of the PZT-type ceramics by soft doping [7].
One can sometimes use a combination of those three methods to form lead vacancies

V Pb [8].
There are few published works on the influence of the vacancies on the crystalline

structure of the solid solutions of the PZT basis. However, there are experimental data
about the influence of V Pb on the physical properties (mechanical, dielectric, semicon-
ductive, piezoelectric) of such solid solutions [7, 8]. It is relevant to PZT modified by soft
admixtures [9].

In the present paper, the results of investigations on the influence of lead vacancies
(V Pb) on the crystalline structure of the PZT-type piezoceramics are described.

2. Results and discussion

2.1. Basic dielectric, piezoelectric and mechanical properties of the electro-acoustic
transducers obtained

On the phase diagram of every of the PZT-type solid solutions, there are some regions
of the chemical constitutions which provide an optimal set of values of the electrome-
chanical parameters of the materials obtained on the basis of these solutions. This is
shown in Fig. 3 and Table 1. High effective piezoceramic materials have been obtained
by choosing a proper chemical constitution and technological conditions. The materials
are characterized by parameters, which are optimal for the application, e.g. in acousto-
electronics. All the new piezoelectric materials obtained can be divided into the seven
following groups:
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Fig. 3. Influence of the concentration of PbTiO3 on the values of the electrophysical parameters of the
multicomponent solid solutions on the basis of PZT in the vicinity of the morphotropic region.

Group I: piezoceramics characterized by small values of the permittivity (εσ
33/ε0).

Possible applications:
1. High frequency electroacoustic transducers:
a) volume waves: — large k15 = 0.75,

— small εσ
33/ε0 < 500,

— not required large Qm = 200− 1000;
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Table 1. Chemical constitution-structure-physical properties-application of the multicomponent solid
solutions: PbTiO3 − PbZrO3 −

P
n

Pb(B′1−αB′′α)O3.

Region, Ferroelectric M External External Application
phase (HF, MHF, [mol% parameters- parameters- (examples)

SF) PbTiO3] large small

I(R) MHF, SF −(3− 25) γ
εT
33/ε0

Qm, kij

High frequency piezoelec-
tric transducers. Pyroelec-
tric detectors.

II(R) HF, MHF −(1− 3)
gij ,

k2
ij ·Qσ

m

Qm

Defectoscopes, accelerome-
ters, high voltage piezoelec-
tric transformers.

III (MR, T) SF +(0.5− 2)

kij , dij

Qm

Low frequency transducers,
microphones, hydrophones.εσ

33/ε0 ,

dij/(εσ
33/ε0)

IV (T)

HF +(1− 4) k2
ij ·Qσ

m · (εT
33/ε0)

(dijY E
ij )2

tan δ

Low voltage piezoelectric
transformers; piezoelectric
engines. Ultrasonic piezo-
electric transducers.MHF, SF +(2− 4) k2

ij/ tan δ

V (T) HF, MHF +(4− 10) Qm δfΘ/fr Filters.

VI (T) HF, MHF, SF +(5− 25) Tc − High temperature transdu-
cers.

b) surface waves: — very small εσ
33/ε0 < 290,

— large Qm = 4000,
— large kp > 0.50;

2. High stability ultrasonic delay lines:
— very small εσ

33/ε0 < 290,
— large kp > 0.50,
— large Qm = 2000− 4000;

3. Pyroelectric sensors:
— large γ > 5× 10−4 C ·m−2 ·K−1,
— small εσ

33/ε0 < 500.

Group II: piezosensitive ceramics characterized by large gij , kp, kt, k15, k2
ijQ

σ
m and

small Qm (high piezoelectric sensitivity to mechanical influences).

Possible applications:
1) accelerometers,
2) defectoscopes,
3) devices for medical diagnostic,
4) ferroelectric memory elements,
5) high voltage step-up piezoelectric transformers.
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Group III: piezoceramics characterized by large kij , dij , εσ
33/ε0 and small Qm (low

frequency transducers).

Possible applications:
1. Direct piezoelectric effect: microphones, hydrophones, sound reproducers.
2. Converse piezoelectric effect: devices for robotics, deflectors in optical system.

Group IV (a): ferroelectrically hard (HF) piezoceramics characterized by large val-
ues of k2

ij · Qσ
m · εσ

33/ε0, (dijYij)2, k2
ij/ tan δ and a small tan δ (piezoelectric materials

which are slightly tractable to external influences).

Possible applications:
1. Piezoelectric step-down transformers (large k2

ij ·Qσ
m · εσ

33/ε0).
2. Piezoelectric servo-motors (large d2

31 ·Qm · Y E
11).

Group IV (b): ferroelectrically soft (SF) piezoceramics highly tractable to external
influence.

Possible applications:
1. High power ultrasonic generators (large k2

33/ tan δ and (d31Y
E
11)2).

Group V: piezoceramics with high temperature and time stability of the resonance
frequency (small ∆fr/fr; large kp provides a wide pass band of the filters; sharpness
of the amplitude-frequency characteristics within the pass band of the filters depend
on Qm).

Possible applications:
1. Filters with high temperature and time stability.

Group VI: high temperature piezoelectric ceramics (materials with large Tc > 700 K,
small εσ

33/ε0 and relatively good piezoelectric parameters).

Possible application:
1. Electroacoustic devices operating at high temperatures and high frequencies (nu-

clear engineering, space technology, metallurgy).

In this work the following piezoceramic materials were investigated: PCR-1 (Group
II), PCR-8 (Group IV) and Pb1−x (Zr0.39Ti0.59W0.01Cd0.01)O3 (Group V).

The basic physical parameters of this piezoceramics are shown in Table 2, where:
εσ
33/ε0 free dielectric constant (σ = 0 or σ = const.);

εσ
33 permittivity (σ = 0 or σ = const.);

ε0 permittivity of free space (ε0 = 8.85 · 10−12 F/m);
kp, k31, k33 electromechanical coupling factors;

d31, g33 piezoelectric constants (gnj =
∑
−1

βσ
nmdmj , gnj =

∑ dnj

εσ
nm

);

βσ
nm dielectric impermeabilities (ε−1

nm);
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Table 2. Basic physical parameters of the piezoceramics obtained.

Materials PCR-1 PCR-8 Pb(Zr0.39Ti0.59W0.01Cd0.01)O3Parameters

rhombohedral tetragonal tetragonalPhase (near the MR) (near the MR) (far the MR)

εσ
33/ε0 650 1400 1300

kp 0.62 0.58 0.47

k31 0.70 0.34 0.32

k33 0.73 0.66 0.42

d31 · 1012 [C/N] 95 130 105

g33 · 103 [V·m/N] 38 23.5 16

tan δ · 102

E0′̃ = 5 kV/m 2 0.35 0.35

E0′̃ = 100 kV/m 3.5 0.70 0.90

Qm 90 2000 1750

Qσ
m (σ = 12 MPa) 70 700 750

k2
31 ·Qσ

m 34 81 74.5

εσ
33

ε0
k2
31Qσ

m · 10−3 22 114 96

k2
33/ tan δ; 26.65 62 19.6(E0′̃ = 100 kV/m)

σdyn [MPa] 90 40 70

Tc [K] 628 598 513

Y E
11 · 10−11 [N/m2] 0.85 0.80 0.73

(d31 · Y E
11) [C/m2]2 65 109 59

tan δ dielectric loss angle tangent;
Qm mechanical quality factor;
Qσ

m mechanical quality factor (in this work σ = 12 MPa);
σ mechanical stress;
σdyn dynamic strength;
Y E

11 Young’s modulus (E = 0);
E electric field intensity;
Tc Curie-temperature (Curie point);
k2
31Q

σ
m piezoelectric quality factor which determines of the piezotransformer voltage

ratio:

KU0 =
4k2

31Q
σ
m

π2(1− k2
31)

, (2)

and the efficiency of the piezotransformer:

ηpt =
1

1 +
π2

2Qσ
m · k2

33

; (3)
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εσ
33

ε0
k2
31Q

σ
m product which determines the unit power of the piezotransformer:

N =
2b

πa
U2vs · εσ

33

ε0
k2
31Q

σ
m , (4)

where U — supply voltage; vs — speed of sound in the piezoelectric transducers; a, b —
thickness and width of the piezoelectric ceramics;

(d31 · Y E
11)2 product which determines of the unit shaft power of the piezoelectric

engine:

N =
2b

πa
U2vs ·Qσ

m(d31Y
E
11)2; (5)

∆fr/fr relative change of the resonance frequency fr;
γ pyroelectric coefficient;
HF hard ferroelectrics;
MHF moderately hard ferroelectrics;
SF soft ferroelectrics.

2.2. The PZT-type ceramics with chemical constitutions corresponding to the R- or
T-boundary of the morphotropic region

As been mentioned, there are only few data on the influence of the lead vacancies on
the structure of the solid solutions prepared on the basis of PZT. PZT-type solid solutions
with chemical constitutions within the morphotropic region (MR) was most often chosen
as objects for the investigation. It is known (e.g. [2, 6]) that solid solutions with chemical
constitutions which correspond to the diphase system: (rhombohedral phase (RP) +
tetragonal phase (TP)) are characterized by a high sensitivity to external effects and
internal changes. Therefore, one could expected considerable changes of the structure
with changing stoichiometry.

Investigations of the influence of V Pb vacancies on the structure of PZT-type solid
solutions have been performed either on the PCR-1 ceramics [10], the chemical consti-
tution of which corresponded to the rhombohedral boundary of the morphotropic region
(R-boundary of MR) or on the PCR-8 ceramics [11, 12] the chemical constitution of
which corresponded to the tetragonal boundary of the morphotropic region (T-boundary
of MR). The samples for the investigations have been prepared first by the classical
ceramic technology and then they were roasted under oxygen (to avoid the creation of
oxygen vacancies V 0). X-ray investigations were performed by the X-ray diffractometer
DRON-3M (CuKα). To separate the partially overlapped X-ray reflections, the method
of approximation of the diffraction maxima was applied [13, 14]. Results of the investi-
gations are shown in Figs. 4, 5 and 6.

It results from the analysis of Fig. 4 that a thermal treatment of the PCR-1 samples at
temperatures T < 1123 K does not involve any considerable change of the X-ray reflection
profiles registered at room temperature. After treatment at Ts = 1123 K, beside the 200
reflection of the R-phase, there appear in the X-ray patterns weak reflections typical of
the tetragonal cell of the perovskite-type structure. After roasting at that temperature
the weak reflections relevant to ZrO2 and PbO also appear.
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Fig. 4. Profiles of the X-ray reflections of the 200-type obtained at room temperature for the PCR-1
ceramics after roasting at different temperatures: 1 — 873 K; 2 — 1073 K; 3 — 1123 K; 4 — 1173 K;

5 — 1223 K; 6 — 1273 K.

With increasing temperature of the thermal treatment the intensity of reflections
typical of the T-phase increases, whereas the R-phase reflections are gradually broadened
and weakened. After roasting at Ts = 1273 K one can observe strong reflections which
are typical of the T-phase and weak reflections due to ZrO2 and PbO. The presence of
those free oxides in the samples makes one suppose that the main reason of observed
reconstruction of the crystalline structure in the ferroelectric phases of the PZT-type
ceramics is a partial decay of the solid solution caused by the thermal treatment.

As a result of the decay of the solid solution, the T-phase is characterized by smaller,
volume of the elementary cell in comparison with the R-phase and a greater spontaneous

deformation δT in comparison with δR (where: δT =
2
3

(
cT

ca
− 1

)
; δR ≈ cosαR, [15]).

The transition of the R-phase into the T-phase is accompanied by a decrease of the aR

parameter (R-phase) and increase of the spontaneous deformation δT (see Fig. 5).
Similar results were obtained from the investigations of the influence of a high temper-

ature thermal treatment on the structural characteristics of PCR-8 ceramic ferroelectrics
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Fig. 5. Dependence of the elementary cell parameters of the rhombohedral (R) and tetragonal (T) phases
determined for the PCR-1 ceramics after roasting at different temperatures (873 – 1273 K): 1 — αR;

2 — δR; 3 — δT; 4 — aR; 5 — cT; 6 — aT; 7 — aT =
q

a2
TcT .

(Fig. 6). With a roasting temperature increasing from Ts = 1123 K one can observe addi-
tional diffraction reflections on the X-ray patterns recorded at room temperature. Some
of those reflections came from the oxides: ZrO2 and PbO. Moreover, a change of the
diffraction profiles of the perovskite-type multiplets took place. The character of that
change proves that the second T-phase appears and that the concentration of the new
phase increases as well as the primary T-phase. That additional T-phase is characterized
by a smaller aT parameter, a smaller volume of the elementary cell (a2

TcT) and a greater
spontaneous deformation (δT) in comparison to the primary T-phase.

The most probable reason of the observed changes of the crystalline structure of
the piezoceramics during the thermal treatment is the evaporation of lead from some
crystallites. The results of the structure investigations, carried out on PCR-8 samples
obtained by a synthesis of the parent substance with a 15% deficiency in lead, seem to
prove that. In the case of stoichiometric samples, which were roasted as well as in the case
mentioned above a decrease in aT parameter and increase in δT at the room temperature
have been ascertained.

The appearance of the reflections connected with ZrO2 and PbO on the X-ray pattern
and the lack of reflections related to TiO2 show that the disturbance of stoichiometry
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Fig. 6. Profiles of the X-ray reflections of the 200-type obtained at room temperature for the PCR-8
ceramics after roasting at different temperatures: 1 — 873 K; 2 — 1073 K; 3 — 1123 K; 4 — 1173 K;

5 — 1223 K; 6 — 1323 K.

by Pb evaporation takes place first of all as the result of breaking the Zr – Pb bonds in
the crystalline lattice. Therefore, the concentration of Ti increases in the sublattice B
of the ABO3 perovskite structure (where: A – Pb; B – Zr,Ti) of the crystallites with Pb
vacancies. This leads to a gradual decay of the solid solution into the new perovskite
phase and the oxides ZrO2, PbO. At a temperature T < Tc, the new perovskite phase
is characterized by smaller aT and greater δT values in comparison with the primary
T-phase because its chemical constitution becomes closer to PbTiO3 for which aT =
0.3904 nm, cT = 0.4150 nm and δT = 0.0420 [16].
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2.3. PZT-type piezoceramics with chemical constitution of the T-phase region

The solid solution of PbTiO3 − PbZrO3 − Pb(W1/2Cd1/2)O3 with a little amount
of the third component was chosen to find how the lead deficiency influences the PZT-
type piezoceramic materials with the constitutions from the T-phase region. The sam-
ples Pb1−x (Zr0.39Ti0.59W0.01Cd0.01)O3 have been synthesized with x varying stepwise
by 0.025 in the from 0 to 0.1 and next by 0.1 from 0.1 to 0.5. The synthesis took place
by a solid state reaction in the mixture of lead oxide, titanium oxide, zirconium oxide,
cadmium oxide and tungsten oxide (all the oxides were analytically pure). Cadmium and
tungsten oxides were introduced into the PbTiO3 − PbZrO3 system to accelerate the
synthesis during the sintering process.

The ceramic material was obtained by the classical technology [3, 4]. The mixture of
the oxides was obtained in the water medium by a vibration mixer. The disk compacts
of 20 mm in diameter and 1 mm thickness (pressing pressure 5 MPa) were prepared from
that mixture.

To determine each stage of the phase formation, the compacts were sintered four
times in the temperature range 1173 – 1473 K. Each time the temperature was increased
by 100 K. After the particular sintering, the samples were powdered and the compacts
made again. The time of sintering was 10 hours (excluding the time of heating and
cooling).

The investigations of the crystalline structure have been performed by the X-ray
diffraction method (DRON-3; CuKα, β-filtr).

There are fragments of the X-ray patterns of the samples characterized by x = 0,
x = 0.075 and x = 0.400 in Figs. 7 – 9, respectively.

From analysis of those X-ray patterns it result that after roasting at 1173 K the
perovskite-type structure was formed in all the cases. The reflections 001, 100, 011, 110
etc. confirm it. The reflections from ZrO2 were also registered in the case of x = 0 (Fig. 7).

In the case of low x values (x < 0.2) the perovskite type structure was not a “monote-
tragonal” one. This is indicated by the profiles of the 011 and 110 reflections and their
location in relation to 2θ seen in Figs. 7 and 8, when the roasting temperature increases
both the profiles of the above mentioned reflections and their location versus 2θ changed.

For samples which are characterized by large x values (x > 0.3), the “monotetragonal”
structure appears just after the first sintering at Ts = 1173 K and the elementary cell
parameters are: aT = 0.3920 nm and cT = 0.4145 nm. These parameters are close to those
of pure PbTiO3 (aT = 0.3904 nm; cT = 0.4150 nm [16]). The similarity of the structure
of pure PbTiO3 to that of the PZT-type piezoceramic having x = 0.4, is shown most
clearly by a comparison of the suitable X-ray patterns (see Figs. 9 and 10). One can see
that not only the locations of the suitable reflections are close to each other but also the
ratios of their total intersites are nearly the same.

When the roasting temperature increases, the degree of the structural perfection of
the obtained piezoceramics increases (see Figs. 7, 8 and 9).

The parameters of the perovskite-type structure tetragonal cells of piezoceramics
with different x, determined after sintering at 1473 K for 10 hours, are shown in Ta-
ble 3. It results from the analysis of the data given in that table and after a comparison
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Fig. 7. Fragments of the X-ray patterns obtained at room temperature for the
Pb1−x (Zr0.39Ti0.59W0.01Cd0.01)O3 piezoceramics in the case of x = 0 after
sintering at the following temperatures: I — 1173 K; II — 1273 K; III — 1373 K;

IV — 1473 K (sintering time ts = 10 h).

with the PbTiO3 elementary cell parameters (aT = 0.3904 nm; cT = 0.4150 nm) and
with those of the PbZrO3 elementary cell (aT = 0.4159 nm; cT = 0.4109 nm; pseu-
dotetragonal system) and with the PbTiO3 – PbZrO3 solid solution elementary cell
parameters [1], that when the lead deficiency increases, the perovskite-type phase of
Pb1−x (Zr0.39Ti0.59W0.01Cd0.01)O3 becomes similar to PbTiO3 as regards the chemical
constitution and the parameters of the elementary cell. That result is consistent with the
kinetic data of the synthesis in the PbO − TiO2 − ZrO2 system. According to ref. [1],
the synthesis at low temperatures (Ts < 973 K) begins from the creation of PbTiO3. The
latter reacts with ZrO2 only at higher temperatures (Ts > 973 K) and forms Pb(Zr,Ti)O3

with the oxides PbO and TiO2 remaining free.
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Fig. 8. Fragments of the X-ray patterns obtained at room temperature for the
Pb1−x (Zr0.39Ti0.59W0.01Cd0.01)O3 piezoceramics in the case of x = 0.075 after
sintering at the following temperatures: I — 1173 K; II — 1273 K; III — 1373 K;

IV — 1473 K (sintering time ts = 10 h).

The chemical constitution of the perovskite-type phase is shown in the column 5
of Table 3. The constitution has been calculated with the assumption that the valency
balance can be satisfied even if there is no excess of ZrO2 in the reaction.
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Fig. 9. Fragments of the X-ray patterns obtained at room temperature for the
Pb1−x (Zr0.39Ti0.59W0.01Cd0.01)O3 piezoceramics in the case of x = 0.4 after
sintering at the following temperatures: I — 1173 K; II — 1273 K; III — 1373 K;

IV — 1473 K (sintering time ts = 10 h).

Fig. 10. X-ray pattern of the PbTiO3 powder obtained under the same conditions as the X-ray patterns
presented in Figs. 7, 8, and 9.
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Table 3. Parameters of the elementary cells of the PZT-type solid solution of the chemical constitution
Pb1−x (Zr0.39Ti0.59W0.01Cd0.01)O3.

aT cT Chemical constitution taking intoNo x [nm] [nm] account deficiency in lead

1 2 3 4 5

1 0.000 0.3978 0.4131 Pb(Zr0.39Ti0.59W0.01Cd0.01)O3

2 0.025 0.3989 0.4143 Pb(Zr0.3744Ti0.6050W0.0103Cd0.0103)O3

3 0.050 0.3985 0.4139 Pb(Zr0.3579Ti0.6211W0.0105Cd0.0105)O3

4 0.075 0.3992 0.4149 Pb(Zr0.3406Ti0.6378W0.0108Cd0.0108)O3

5 0.100 0.3965 0.4132 Pb(Zr0.3222Ti0.6556W0.0111Cd0.0111)O3

6 0.200 0.3955 0.4141 Pb(Zr0.2375Ti0.7375W0.0125Cd0.0125)O3

7 0.300 0.3951 0.4131 Pb(Zr0.1285Ti0.8429W0.0143Cd0.0143)O3

8 0.400 0.3920 0.4145 Pb(Ti0.9666W0.0167Cd0.0167)O3

9 0.500 0.3921 0.4146 Pb(Ti0.9600W0.0200Cd0.0200)O3

3. Conclusions

1. Creation of the lead vacancies (V Pb) in the solid solutions prepared on the basis
of Pb(Zr,Ti)O3 causes the following changes in the physical properties:

• increase in the permittivity (ε);
• large dielectric loss (tan δ);
• increase of the elastic compliance (Sijkl);
• decrease in mechanical quality factor (Qm);
• increase of the electromechanical coupling coefficient (kp);
• decrease of the coercive field (Ec);
• increase of the squareness ratio of the dielectric hysteresis loop;
• strong increase of the specific resistance (ρv);
• typical weak aging process;
• non-elastic mechanical deformation compliance (deformability);
• yellow colour;
• translucency of the sample;
• darkening of the sample under the influence of light.

2. The obtaining of PZT-type piezoceramics under the conditions, which are conducive
to the creation of the lead vacancies leads to the formation of structures that differ from
the stoichiometric solid solution structure. The sort of those structural changes depends
on the chemical constitution of the PZT-type ceramics, strictly speaking on the place
the compound occupies on the solid solution phase diagram and on the concentration of
the lead vacancies. Namely:

a) if the chemical constitution of the material corresponds to the rhombohedral bound-
ary of the morphotropic region so, as the roasting temperature increases (as the deficiency
in lead increases), the strong diffraction maxima corresponding to the R-phase gradually
decay but the T-phase diffraction maxima increase in the X-ray patterns. Diffraction
maxima corresponding to ZrO2 and PbO appear and become distinct. Therefore the par-
tial decay of the solid solution takes place as the result of the disturbance stoichiometry
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caused by the thermal treatment. It causes the reconstruction of the perovskite-type
crystalline structure from the (R+T)-phase to the T-phase;

b) if the chemical constitution of the material corresponds to the tetragonal boundary
of the morphotropic region therefore, the weak diffraction maxima corresponding to the
R-phase and strong maxima corresponding to the primary T-phase gradually decay,
as the roasting temperature increases (i.e. as the deficiency in lead increases), whereas
new T-phase maxima appear and become more distinct in the X-ray patterns. The new
T-phase of the perovskite structure is characterized by a smaller aT parameter and a
larger deformation δT in comparison with those of the primary T-phase. The reflections
corresponding to ZrO2 and PbO also appear. Thus, in that case the partial decay of the
solid solution into the perovskite-type structure phase and of the free ZrO2 and PbO
takes place as a result of the disturbance of the stioichiometry caused by the thermal
treatment. The primary phase of the perovskite structure (R+T (I)) converts into the
new T (II)-phase;

c) if the chemical constitution of the material corresponds to the tetragonal phase, the
roasting temperature of the samples with a small deficiency in lead increases the new T-
phase appearing beside the primary tetragonal phase. The new T-phase is characterized
by a smaller aT parameter and greater δT deformation. In case of a large deficiency in
lead, only the new perovskite-type T-phase appears after roasting at 1173 K as well as
free PbO and ZrO2. The chemical constitution and the elementary cell parameters of the
perovskite-type T (II)-phase become closer to PbTiO3.

3. The possibility of a disturbance in the stoichiometry resulting from the creation of
lead vacancies is a serious problem of the PZT-type piezoceramic materials technology.
The loss in lead takes place both during the synthesis and during the thermal treatment of
this material. The knowledge of the crystalline structure changes caused by the increasing
in lead deficiency makes it possible to develop methods of checking the loss of Pb atoms
from the A sublattice of the perovskite-type structure (ABO3).

4. The creation of lead vacancies in the PZT-type piezoceramic materials by introduc-
ing soft doping ions into the A sublattice makes it possible to obtain a soft ferroelectric
material which is likely to be widely applied in engineering. However, the deficiency in
lead in the PZT caused by the thermal treatment leads to a partial decay of the solid so-
lution and a stepwise conversion of Pb(Zr,Ti)O3 into PbTiO3 +ZrO2 +PbO. In that case
the deficiency in lead is unfavorable from the point of view of the application possibilities
of the obtained materials.
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C H R O N I C L E

108th AES Convention, Paris

19 – 22 February, 2000

Polish participation in the AES Conventions has already become a well founded tra-
dition. So it was this year also, at an exceptional place and date — Paris 2000. The 108th
Convention was the first in the French capital for five years. It was held at the newly
refurbished Palais des Congrès (see photo of a group of Polish participants before the
Palais front), which played host to over three hundred exhibitors’ booths from all over
the world; among them all leading enterprises in the field of sound and vision techniques.

Opening ceremonies held on Saturday, noon, February 17, were devoted in particular
to stressing the role of AES Conventions on the brink of a new century. “For over 50
years the AES and its Conventions have been the link within the international audio
community: a forum for exchange of new ideas. At the dawn of the new millenium and
the age of globalization, the role of the AES is more important than ever before” — said
the Convention Chairman, Daniel Zalay rightly in his Welcoming Address.

The most interesting for the Polish representatives was the second part of the cere-
monies devoted to the announcement of Awards to distinguished members of the Soci-
ety. First of all, the significant accomplishments were honoured by AES citation awards,
namely: Irina Aldoshina — for her significant contribution to the Russian AES Sections,
Vytautas Stauskis — for his contribution to architectural acoustics and foundation of the
Lithuanian AES Section, Marina Bosi and Karlheinz Brandenburg — for cochairmanship
of the 17th AES International Conference. Next, the highest AES award announced in
Paris, the Fellowship, was presented to Andrzej Czy§ewski — for his pioneering achieve-
ments in applications of computing (see the enclosed copy).

Polish attendees warmly applauded Prof. Czyżewski, as he received the Fellowship
testimony on the auditorium stage, being duly proud of his outstanding achievement.

Although no Polish enterprise participated in the huge exhibition, a number of Pol-
ish authors contributed to scientific sessions, running parallel to the exhibition and to
other Convention events. Among 100 papers read during 19 thematical sessions, 5 were
presented by Polish authors and coauthors, coming mainly from the Technical Univer-
sities of Gdańsk and Wrocław (see Appendix). It may be added here that Prof. George
Papanikolaou from the Aristotle University of Thessaloniki, Greece, the member of the
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Polish Acoustical Society, cooperating for many years with the Sound Engineering De-
partment of Gdańsk Technical University, presented 3 papers in Paris, together with a
group of his coauthors.

A characteristic feature of the Paris Convention was the growing participation of
students, organized within the AES Student Sections all over the world. Several special
events were organized in Paris for students, such as Student Delegate Assembly, Stu-
dent Section Report, Education Fair, Poster Session, Job Forum, Recording Awards etc.
Polish AES Student Section was represented by 44 participants. They organized their
own information desk (see photograph), disseminating information concerning studies on
sound engineering in Poland.

The most valuable, hovever, for the Polish students was their participation in the Con-
vention workshops. During the 15 workshop sessions leading scientists and professionals
demonstrated practical solutions of selected problems, connected with the techniques of
sound and vision. This was a true laboratory for students, familiarizing them with the
most modern equipment and systems recently developed by world-renowned producers.

The 108th Convention was as successful as the previous one in Munich as regards to
the general number of attendees, number of exhibitors and visitors in particular. Let us
hope that the next two Conventions scheduled to be held in Amsterdam in 2001, and
Munich in 2002, will also be successful, and that the Polish participation and contribution
remains, at least, on the level characterized in brief in this report.

Marianna Sankiewicz

Appendix

Papers presented by Polish authors during the 108th AES Convention in Paris
1. Grzegorz Szwoch, Bożena Kostek, Andrzej Czyżewski, TU Gdańsk, Simulating

Acoustics of Hearing Aids Employing Nonlinear Signal Filtering and Waveguide
Modelling — Session C4, Preprint 5087.

2. Andrzej Czyżewski, Bożena Kostek, Piotr Suchomski, TU Gdańsk, Expert Sys-
tem for Hearing Aids Fitting — Session D5, Preprint 5094.

3. Andrzej Dobrucki, Grzegorz Matusiak, TU Wrocław, Symmetrical Loudspeaker
Band-Pass Systems of Eighth Order with Passive Filter — Session G2, Preprint
5107.

4. Piotr Pruchnicki, TU Wrocław, The Influence of Measuring Accuracy on the
NARMAX Model of Dynamic Loudspeaker — Session G6, Preprint 5111.

5. Bożena Kostek, Andrzej Czyżewski, TU Gdańsk, Automatic Classification of
Musical Sounds — Session H2, Preprint 5115.



Fig. 1. Fellowship Award certificate presented in Paris to Prof. Andrzej Czyżewski.



Fig. 1. Modernized front of the Palais des Congrès; a group of Polish participants before entrance.

Fig. 2. Polish Student Section information desk — (l. to r.) K. Kąkol, J. Czerniawski — Board members,
and P. Odya — Chairman of the Section.


