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IMPULSIVENESS OF DISCOTHEQUE EXPOSURES

A. JAROSZEWSKI and A. JAROSZEWSKA

Laboratory of Music Acoustics,
F. Chopin Academy of Music
(00-368 Warszawa, ul. Okélnik 2, Poland)

Long term average spectra, cumulative distribution functions and impulsiveness in terms
of Lpeak — Leq and in terms of kurtosis were determined for 8 Warsaw discotheques. The
results are discussed with reference to hearing damage risk.

1. Introduction

In one of the Medical Research Council reports [17], a number of discotheque at-
tenders in the United Kingdom is estimated at 2 to 6 mln. These persons spend in the
discotheques from 156 to 234 hrs in a year, over a period of 5 to 7 years on the average.
The equivalent sound pressure level Leq (A) for a year amounts in these discotheques
from 80 to 95dB. In the polish society of youngsters attending the discotheques, a num-
ber of visits to the discotheque amounts on the average to 30 in a year. This number
gives from 120 to 220 hrs of the discotheque exposure in a year at an equivalent sound
pressure level Leq (A) for a year amounting from 84 to 97 dB. The number of discotheque
attenders in Poland is unknown but estimated at 3 mln approximately.

The effects of such exposures were investigated by many researchers but the results
of these investigations are in substantial measure controversial. Fearn and Hanson in
numerous investigations carried out over a period of 27 years, FEARN and HANSON [4,
6-9]. FEARN [5, 10, 11], reported substantial hearing loss of 10dB in the whole auditory
range, 15dB or more at 4kHz and 20dB or more at 6kHz in large proportion of the
tested persons (7-30%) in the examined samples in age categories of mainly 11-25
years.

In the samples of musicians working in the discotheques and youth clubs a proportion
of persons with such hearing loss reaches 50.5% according to FEARN [11]. These data are
in agreement with the data from AXELSSON and LINDGREN [2] for example, who found
hearing loss in 13-30% of the exposed subjects, and the data from AXELSSON et al. 1]
who found hearing loss of 20dB or more at various frequencies in 15% of the examined
sample, while WEST and EvANS [21] found poorer frequency resolution in 15% of the
sample of exposed subjects. In the data from JAROSZEWSKI et al. [13] hearing loss of



276 A. JAROSZEWSKI and A. JAROSZEWSKA

18.8dB on average at 6 kHz was found in 60% of the examined sample of 98 musicians,
while JAROSZEWSKI and RAKOWSKI [12] found hearing loss 20 to 50dB deep in the
whole sample of the tested group of pop/rock musicians.

On the other hand CARTER et al. [3] in investigation carried out in Australia and
MEYER-BIscH [16] in France did not observe differences between audiometric data from
exposed and unexposed persons. However, their opinion was based on estimation of the
averages in large samples of the examined population. Here an observation from FEARN
and HANSON [6] should be cited: “What we are concerned with is the top 5-10% of the
affected population. For this purpose the average is too insensitive for judgement.” It
should also be noted that in the results from Carter and Meyer-Bisch, hearing loss of
from 9.4dB at 6kHz to 13dB at 12kHz is present in the data from both exposed and
control group of subjects.

A distinct disproportion appears in comparison of the depth of the measured hearing
loss with the measures of exposures from which this loss resulted. Namely, these losses
arc substantially larger than those predicted on the grounds of the measures of the
exposition and number of years of exposure. In many cases hearing loss of 10-15dB
in the upper part of auditory range, and selective hearing loss of V-dip type (notch) of
15-40dB, are found after only 25 to 70 exposures in the discotheques in a period of only
one to two years. It should be stressed however, that this observation does not pertain
to averages for the tested samples, but only to from 15 to 25% of the affected.

According to the working hypothesis larger damaging effect of the discotheque expo-
sures than this predicted on the grounds of the equal energy hypothesis and equivalent
sound pressure levels may result from partially impulsive character of these exposures.
This possibility was been pointed out in the earlier publication, JAROSZEWSKI et al. [14]
in which “impulsiveness” was determined for ten Warsaw discotheques, a measure never
applied to the discotheque exposures before. The present report is a continuation of
this investigation and contains statistical analysis of the impulsiveness of sound pressure
levels in discotheques in terms of Lyeak — Leq and in terms of kurtosis.

2. Procedure and apparatus

Material used in the analysis was obtained from 8 routine presentations in 8 Warsaw
discotheques. The duration of these presentations typically equalled to from 4 to
9hrs, usually without breaks or with very short breaks of 1 to 2min. All presentations
were recorded full length on magnetic tape using digital magnetic recorder DAT SONY
type TCD-D10 PRO-IT and omnidirectional condenser microphone Bruel & Kjaer type
4155. Sound pressure levels were determined with the use of Bruel & Kjaer Precision
Integrating Sound Level Meter type 2230 with 1/2” condenser microphone type 4155.

The raw data containing 4 hrs of recorded music was next analysed typologically with
the use of computerised procedure. With that procedure 63 selections of the recorded
music, 5min each were selected, characteristic for the whole presentations in all dis-
cotheques examined. For these selections of recorded music, long term average spectra
(LTAS) in 1/3 octave bands, sound pressure levels Lsg, Ly, Leq and the impulsiveness
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distribution functions, defined as a difference I = Lpeax — Leq were determined. Also
were determined distribution functions of the instantaneous sound pressure levels and
the values of kurtosis as an alternative measure of the impulsiveness.

Statistical analysis and spectral analysis were carried out with the use of HP class
PC minicomputer and of the MATLAB program procedures. Kurtosis was determined
with the use of WaveStat program prepared in this laboratory.

3. Results

The results of the analysis in terms of LTAS, and cumulative distribution functions
are presented in Fig.1 to Fig. 3 for the discotheque with the largest equivalent sound
pressure levels and in Fig. 4 to Fig. 6 for the discotheque with the smallest sound pressure
levels. Distribution functions of the instantaneous sound pressure levels and the values of
the kurtosis are given in Fig. 7 and Fig. 8. Statistical characteristics of the presentations
in eight examined discotheques are given in Table 1.
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Table 1. Statistical characteristics of presentations in 8 Warsaw discotheques.

Discotheque Leg Lpeak B2 L, Lo Lso CF* I

(dB) (dB) (dB) (dB) (dB) (dB) (dB)
Akwarium 112.8 133.9 5.5-6.3 122.7 117.2 106.5 9.9 21.1
Colosseum 122.5 138.2 3.5-5.2 132.2 127.1 116.8 9.7 15.7
Hades 113.5 131.6 3.1-5.6 123.0 117.8 108.8 9.5 18.1
Hybrydy 113.7 133.6 3.6-5.5 123.7 118.1 107.8 10.0 19.9
Klub Medyka 109.0 130.1 4.2-6.0 119.9 112.9 102.2 10.9 21.1
Park 108.7 135.3 44-58 119.3 112.9 102.0 10.6 26.6
Remont 117.3 139.0 3.4-8.0 127.4 121.4 111.6 10.1 21.7
Stodota 112.5 129.4 4.0-5.7 122.7 116.6 107.2 10.2 16.9
Mean over all 116.1 139.0 3.1-8.0 127.9 119.5 107.8 11.8 22.9

* CF - crest factor
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4. Discussion and conclusion

In the results obtained the impulsiveness was found to be at a level of 20-26 dB in
terms of Lpeak — Leq determinant, and at a level of 4.7 in terms of kurtosis. These values
correspond to the values of impulsiveness, which in industrial exposures are recognised
as leading to hearing damage larger than those from the stationary continuous noise,
e.g. THIERY and MEYER-BISCH [20]. It should be observed however, that Thiery and
Meyer—Bisch determined damaging effects of the partially impulsive exposures at a level
of 87-90dB (A), whilst in the case of Warsaw discotheques the sound pressure levels
amount to from 100 to 110dB (A). Thus the damaging effect may be larger in spite of
the relatively lower values of impulsiveness.

In estimation of the results presented it should be recognised that the measurements
were carried out with the use of apparatus and tools functioning in the range of fre-
quencies up to only 20kHz. From the recent reports by ROGOWSKI et al. [18, 19] and
JAROSZEWSKI et al. [15] it appears that the examination of the impulsiveness in the
music material should be performed in the frequency range up to 100kHz at least, be-
cause a power spectral density for cymbals for example remains at a level of 90dB up to
approximately 60 kHz. The preliminary experimental data by the present authors indi-
cate that the supersonic components of the spectrum may have substantial contribution
in the damaging effects of the exposure. Therefore, the results presented supply only
preliminary estimation of the effects of impulsive exposure in the discotheques.
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Sounds of selected percussion instruments played in individual training sessions of stu-
dents-percussion players were recorded and analysed. In statistical signal analysis the “im-
pulsiveness” in terms of Lmax — Leq and in terms of kurtosis, as an alternative measure
were determined. Signal recording and spectral analysis were performed in the frequency
range up to 96 kHz.

1. Introduction

The effects of exposure to sounds of percussion instruments were observed already
in early investigations pertaining to the hearing damage risk in musicians, e.g. JAHTO
and HELLMAN [8], GRYCZYNSKA and CzZYZEWSKI [6], AXELSSON and LINDGREN [1].
These observations were next confirmed by the data from KARLSSON et al. [10], OSTRI
et al. [11] and recently by the data from remarkable work by FEARN [5]. However, also
conflicting data were reported, e.g. WESTMORE and EVERSDEN [15], JOHNSON et al. [9],
in which no correspondence was found between the instrument type and hearing loss.

It should be noted, that in all the investigations cited, except for that by JOHNSON et
al. [9], hearing thresholds were determined in the frequency range from 0.25 or 0.5 kHz
to 8 kHz only. Also, hearing losses up to 30 dB (without correction for the loss specific for
the given age) were, as it seems, underestimated, KARLSSON et al. [10], ROYSTER et al.
[13]. Selective hearing loss (V-dip type) of the order of 20 dB at 4 or 6 kHz (KKARLSSON et
al. [10]) or high frequency sloping hearing loss reaching 28 dB (over 10 dB after correction
for age, ROYSTER et al. [13]) should not be neglected either.

In a remarkable work by FEARN [5] percussion players were identified as exposed to
probably the highest peak sound pressure levels in music exposures, reaching 140— 146 dB
or even 148 dB (depending on instrument type, room characteristics etc.) and thus expe-
riencing the highest risk of hearing damage. In the examined sample of musicians aged
16-30, Fearn found hearing loss over 15dB at 4kHz or 20dB at 6kHz in 46% of per-
cussion players, while in musicians playing brass, woodwinds and strings the proportion
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with hearing loss was significantly lower. It should be noted according to FEARN [5],
that extreme sound pressure levels are present in the orchestra in the neighbourhood of
percussion and brass section. In these places, often second violins, violas and violoncel-
los are situated, sometimes also woodwinds. Hence, the effects of exposure to percussion
sounds pertain to a high degree also to other musicians, a fact which very often is dis-
regarded. SCHACKE [14] in turn, found supernormal hearing loss in 60% in a sample of
percussion players examined.

Examination of the hearing thresholds in young percussion players in the frequency
range up to 16 kHz presented in the earlier paper, ROGOWSKI et al. [12] estimated the
specific high frequency sloping hearing loss as 24dB higher on the average than in
musicians who were less exposed to percussion sounds. In that paper a preliminary
analysis of the selected xylophone sounds is given; an instrument that is recognised
as very annoying by percussion players themselves. In some selected xylophone sounds
the determined rise time was lower than 10ps, with the resultant very high frequency
components, HAMERNIK et al. [7].

It may be worthwhile to note that small rise times and high values of the sound
pressure level in acoustic pulses may result in a hearing loss of specific character. Such
loss is often moderate in the range of low and mid frequencies and reaches the largest
values in the frequency range between 8 and 20kHz, i.e. in the range where normal
audiometric examination is executed only occasionally, FAUSTI et al. [4].

Earlier observations (Rocowskl et al. [12]) indicated the need of performing the
analysis of the emission of percussion instruments in the frequency range up to 96 kHz.
Preliminary results of that analysis are given in the present report.

2. Procedure and apparatus

The analysis was performed on the sounds of selected percussion instruments, namely:
xylophone, snare drum, A-Due cymbals, tube bells, orchestral bells, kettledrum and a
set of drums. The measurements were carried out in the practice rooms of the Academy
of Music. Music selections typical for practice sessions isolated sounds and orchestral
music selections played with various different drumsticks were recorded.

Sound signal was picked up from the acoustic field using 1/4" condenser microphone
Briiel & Kjer type 4135 with follower Briiel & Kjeer type 2669. The microphone was
situated on a tripod near the instrument at a distance corresponding to the position
of the head of the musician. This signal, amplified in a Briiel & Kjeer amplifier type
2690 “NEXUS” was sampled at frequency 192 kHz with the use of 12-bit A/D converter
Quatech DAQ1201 and recorded on a hard drive of a class IBM PC. Spectral analysis of
the recorded signals was performed with the use of the MATLAB program procedures.
Statistical analysis and computation of kurtosis was done using WaveStat program pre-
pared by the second author. Kurtosis is a ratio of the fourth moment of the distribution
to the square of the second moment (DWEYER [2]). It is a measure of the “peakedness”
of the distribution and was used as a measure of impulsiveness (ERDREICH [3]).
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3. Results

The results of spectral analysis of short (120s) music selections played on a xy-
lophone, marimba, snare drum and cymbals are presented in Fig.1. The spectra were
calculated using Hanning window 1024 samples long and 50% overlapping. The distribu-
tion of the instantaneous sound pressures for the same music selections are represented
in Fig. 2. The results of statistical analysis of music selection played on eight percussion
instruments are given in Table 1. In case of xylophone the results are for two different
kinds of drumsticks.
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Fig. 1. Power spectral density spectra of the sound samples of four percussion instruments: xylophone,
marimba, snare drum and A-Due cymbals.

Normalised functions of the effective frequency band for the four music instruments
Le. xylophone, marimba, snare drum and cymbals are represented in Fig. 3. Figure 4
presents initial phase of the sound G7 played on a xylophone with the use of plastic and
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Fig. 2. The distribution of instantaneous pressure for sample sounds of four percussion instruments:
xylophone, marimba, snare drum and A-Due cymbals; in parentheses the values of kurtosis.

Table 1. Statistical parameters of selected sample sounds of percussion instruments tested.

No Musical instrument Lpeak Ly Leq I CF B2
(dB) (dB) (dB) (dB) (dB)

1 Orchestral bells 119.5 99.0 87.4 11.6 32.1 81.5
2 | Tubular bells “Premier” 118.2 109.0 99.4 9.6 18.8 4.4
3 | Kettledrum “Ludwig” 125.0 117.2 107.5 9.7 17.5 4.7
4 | Xylophone “Musser Kelon 51"(*) | 126.2 108.4 97.3 11.1 28.9 47.1
5 | Xylophone “Musser Kelon 51"(**) [ 126.0 107.7 96.8 10.9 29.2 37.4
6 | Marimba “One” Ron Samuels 117.8 113.9 105.6 8.3 12.2 3.2
7 | Cymbals A-Due 136.7 119.5 106.3 13.2 30.4 67.1
8 | Snare drum “Yamaha” (snare off) | 130.8 120.8 110.2 10.6 20.6 8.2
9 | Snare drum “Yamaha” (snare on) | 127.5 117.9 106.5 11.4 21.0 9.3

10 | Drums 132.8 124.3 114.8 9.5 18.0 4.4

(*) — plastic sticks; (**) — wooden sticks; CF — crest factor.

(286
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wooden drumsticks. Significant differences in the rise time for so produced sounds with
practically constant peak values are evident.
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Fig. 3. Normalised effective frequency bands for sample sound of: xylophone — dashed line.

marimba — dashed-dotted line, snare drum — dotted line and cymbals — solid line.
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4. Discussion and conclusion

The analysis shows dangerously high sound pressure levels in sounds emitted by
percussion instruments during individual practice sessions in classrooms of the Academy.
Equivalent sound pressure levels for drums, snare drum, kettle-drums, marimba and
cymbals reach 105-115dB while peak sound pressure levels are in excess of 136 dB.
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The characteristic of percussion sounds is significant impulsiveness which in terms
of I(Ly — Leq) and I(Lpeak — Leq) amounts to 8.3-13.2 and 12.2-32.1dB correspond-
ingly. The values of kurtosis of the distribution of instantaneous sound pressure values
differentiate the tested group of percussion instruments. Large kurtosis was found for
xylophone, cymbals, and orchestral bells i.e. instruments without resonators.

The spectral analysis shows the presence of significant values of spectral power density
in the range of supersonic frequencies for xylophone and for cymbals. In the case of
cymbals the amount of energy emitted in the frequency range between 18 and 100kHz
equals the energy emitted in the auditory range.

In cymbals and particularly in xylophone sounds very small rise times were found
amounting in some cases to only few microseconds. As it seems only kurtosis as a measure
of impulsiveness is sensitive to this parameter. As mentioned, the xylophone with its
rapid sound onset, is recognised by musicians as an instrument, which exerts a very
heavy load on the hearing system.

According to the working hypothesis rapid sound onsets and relatively large sound
pressure levels in xylophone may underlay the unpleasant effect of “blocked ears” in
percussion players and may result in specific hearing loss in the frequency range between
8§-16kHz.
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This paper is concerned with the comparison of the critical bandwidth (CB) and the
equivalent rectangular bandwidth (ERB) of the auditory filters at low frequencies. The
method of critical bandwidth determination based on the critical modulation frequency
(CMF) has been questioned, particularly for frequencies less than 500 Hz. The CMF, which
is the modulation frequency at which amplitude modulation (AM) and frequency modula-
tion (FM) detection thresholds become identical, is confounded as a proper measure of the
auditory filter’s width. It refers to the modulation rate for which one of the sidebands is
most detectable. For low carrier frequencies the higher sideband is most detectable whereas
for higher carrier frequencies the lower sideband becomes most detectable. Thus, at least
for low carrier frequencies (i.e. less than 200 Hz), the CMF does not reflect the auditory
system'’s sensitivity for detecting the phase differences of the spectral components of the
signal. These findings can account for the fact that the critical bandwidth flattens off at
low carrier frequencies, whereas the equivalent rectangular bandwidth of the auditory fil-
ters continues to decrease down to very low centre frequencies. Is was also shown that, at
least for very low frequencies, critical bands do not reflect directly the auditory filtering
that takes place in the peripheral auditory system.

1. Concepts of peripheral filtering

Since FLETCHER [4] described his band-widening experiment, the human peripheral
auditory system has often been described as an array of linear bandpass filters with
continuously overlapping centre frequencies. One of the first models of the auditory sys-
tem (based on the Critical Band concept) assumed that the filters were rectangular in
shape with bandwidth equal to the critical bandwidth, [4, 49, 50, 52]. Using this idea
researchers tried to estimate a “breakpoint” in the data relating performance to band-
width — a point at which subjective responses change “abruptly” (see below for details).
PATTERSON and MOORE [26] used a different approach to modelling the auditory sys-
tem’s properties. They assumed a specific shape of the auditory filter described usually
by means of a rounded exponential function (roex(f)) and based on the experimental
data. They attempted to estimate parameters of the filter including its bandwidth.

Critical bandwidth and the equivalent rectangular bandwidth of the auditory filters
are related by a constant factor in the frequency range above 1 kHz. However, for frequen-
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cies lower than 500 Hz the critical bandwidth is constant while the equivalent rectangular
bandwidth of the auditory filter decreases even for the lowest centre frequencies.

1.1. The critical band concept

FLETCHER [4] carried out an experiment, the results of which are the main basis of the
Critical Band (CB) and the Auditory Filter (AF) concepts. He measured the detection
thresholds of a sinusoidal signal as a function of the bandwidth of a bandpass noise
masker (see Fig. 1, the left panel). The band of noise was characterised by a constant
power density and its centre frequency was equal to the signal frequency. At first, the
threshold of the signal increased with increasing masker width from very small values (see
the right panel of Fig.1). When the bandwidth reached a critical value (i.e. the critical
bandwidth) the threshold flattened off and further increase in the noise bandwidth did
not affect the signal threshold significantly.

Amplitude
U
Threshold, dB

—y CB  Af
Frequency Masker Bandwidth

Fig. 1. A schematic illustrations of the signal spectrum and a pattern of results in FLETCHER’s [4]
band-widening experiment.

To account for these results Fletcher suggested that the auditory system behaved as
if it contained an array of bandpass filters with overlapping passbands. The filters were
assumed to be roughly rectangular in shape and their widths were equal to the CB.
Based on physiological data [1] he also assumed that the basilar membrane provided
the basis for these filters. Each point on the basilar membrane responds only to a very
limited range of frequencies. Thus it may be considered as a filter with a specific centre
frequency. Considering the detection of a signal in a background noise, it is assumed
that a subject uses a filter with a centre frequency very close to the signal frequency.
Only noise components passing through the filter affect the detection of the signal. At
the detection threshold the power of the tone divided by the power of the noise inside
the critical band (which is called the critical ratio) is constant.

Since FLETCHER [4] described the CB concept based on the band-widening exper-
iment, results of different types of psychoacoustics experiments have confirmed this
model. They gave very similar estimates of both the absolute widths of the CB and
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of the way that the critical bandwidth varies as a function of frequency. The model was
further developed by ZWICKER [44—48, 52, 53] who showed that the CB concept could
summarise a great variety of psychoacoustical data. The concept also provides a valuable
tool in the planning of experiments and the analysis of the data. ZWICKER [44-46, 48,
52] presented also some types of experiments in which the CB may by be demonstrated
and/or measured.

¢ The loudness of a complex sound was approximately independent of its bandwidth,
if the bandwidth was less than the width of the one critical band. Moreover, the com-
plex sound was judged to be about as loud as pure tone of equal intensity lying at a
centre frequency of the sound. However, if the bandwidth of the complex sound was
increased beyond the critical bandwidth the loudness began to increase. The results of
this experiment show that the loudness of a signal depends not only on its amplitude but
also depends on its spectral structure. The increase in loudness with increasing signal
bandwidth became one of the crucial proofs of the CB’s existence and it was also used
as a critical bandwidth determination/demonstration method.

o Masking. Thresholds for detecting a narrow band of noise in the presence of two
tones symmetrically situated with respect to the centre frequency of the noise (see Fig. 2,
the left panel) are approximately constant for small values of the frequency separation of
the tones (Fig. 2, the right panel). But, when the frequency separation reached a critical
value the threshold dropped very sharply. ZWICKER [46] assumed that the threshold
remained constant as long as the frequency separation between masking tones did not
exceed one critical band associated with the band of noise. However, when the frequency
distance between masking tones became larger than the CB, the threshold decreased.
The largest value of the frequency separation, for which the threshold was still constant,
was used to estimate the critical bandwidth [46]. It was also shown that combination
tones, resulting from a nonlinear process in the cochlea [15, 29], might affect the detection
of the noise band. It is possible that the subject may detect the combination products
even though the signal itself is inaudible. When the distortion products are masked by
noise the threshold does not show an abrupt decrease [7].

Amplitude
U
Threshold, dB

e Af = CB Af
Frequency Masker Bandwidth

Fig. 2. A schematic illustrations of the signal spectrum and a pattern of results in ZWICKER’s [51]
masking experiment.
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e Critical Modulation Frequency (CMF). Considering the detection of amplitude
modulated (AM) and frequency modulated (FM) signals, ZWICKER [45] stated that the
auditory system was capable of detecting the difference in the phase structure of the
modulated signals spectra. Thresholds for detecting AM and FM, if expressed in terms
of amplitude and frequency modulation indices (i.e. m and f3), are markedly different
for low modulation rates fmoq. The difference between these thresholds becomes much
smaller when the modulation rate increases. When the modulation frequency reaches its
critical value (called the Critical Modulation Frequency, CMF), AM and FM detection
thresholds become identical and further increase in modulation rate does not affect the
difference between them. ZWICKER [45] suggested, that the critical modulation frequency
may be used as a CB estimator: CB = 2. CMF, (see Sec. 2 for further details).

Measures of the critical bandwidth obtained from a variety of experiments generally
agree reasonably well for frequencies above 1kHz. But for lower frequencies there are
considerable discrepancies between the different measurements. SCHARF [34] summarised
and averaged early measurements of the CB (based mainly on ZWICKER's [48] data) and
since then his presentation has been widely used. Scharf’s function relating the CB to
the centre frequency, which is plotted in Fig. 3, flattens off for centre frequencies below
500Hz at a value of 100 Hz. However for these centre frequencies this function is a
simplified extrapolation because experimental data for this frequency region were rather
sparse. The estimates were based mainly on the measurements of the critical modulation
frequency and the critical ratio [34].
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Fig. 3. Critical bandwidth as a function of centre frequency (adapted from SCHARF [34]).
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There is no clear experimental evidence that the auditory filter’s width is constant
in the frequency range below 500 Hz. On the other hand, there is much evidence that
the width of the auditory filter decreases with decreasing in frequency even at very
low frequencies. The most important is the ability of the auditory system to resolve
individual components in a multi-component complex sound. The frequency separation
between two sinusoids at which these two sinusoids may be heard out as separate tones
when presented simultaneously, depends on frequency. It gradually decreases even for the
smallest values of frequency. A second piece of evidence is that frequency discrimination
(i.e. the ability to detect changes in frequency over time) measured as the smallest
detectable frequency difference between two successive tones, improves progressively
with a decrease in frequency to very low values [42].

1.2. The auditory filter concept

An alternative approach to the modelling of the auditory filter is that proposed by
PATTERSON and MOORE [26]. They assumed that the activity of the auditory system
in response to acoustic stimuli (i.e. excitation pattern) may be considered as the output
signal from a bank of linear bandpass filters (called the auditory filters AF) with the over-
lapping passbands. The activity of the peripheral auditory system may be understood
as a displacement of the basilar membrane as a function of the distance from the oval
window or as the number of the neural spikes per second as a function of the neurone’s
characteristic frequency. The filters have the general form suggested by PATTERSON et
al. [28]:

W(g) = (1+pgle™™, (1)
where g is the deviation from the centre frequency of the filter divided by the centre
frequency, W(g) is the intensity weighting function describing the shape of the filter, pis
a parameter determining the sharpness of the passband of the filter, with p; for the low-
and p,, for the high-frequency skirts respectively. Assuming the power spectrum model
[4, 26], PATTERSON and MOORE suggested that the activity of the peripheral auditory
system and the auditory filter shape might be derived from masking experiments, (¢.g. a
notched-noise masking experiment). In this case the threshold at a given signal frequency
corresponds to a constant signal-to-noise ratio at the output of an auditory filter centred
close to the signal frequency.

* Psychophysical tuning curves. One of the methods of determining the auditory filter
involves the measurement of psychophysical tuning curves (PTCs). To determine a PTC
the threshold for detecting a sinusoidal signal with a low (fixed) level is measured. The
masker is usually a narrow band of noise (a tonal masker would produce low frequency
beats) with a different centre frequency. The level of the masker that just masks the
signal is determined. It is assumed that the PTCs express the masker level required to
produce a fixed output from the auditory filter as a function of the masker frequency.
Examples of the PTCs are presented in Fig.4. Psychophysical tuning curves are very
similar in a general form to neural tuning curves [29] and they were obtained based on the
same method, i.e. by determining the level of the tone required to produce a fixed output
from a single point of the basilar membrane or single neurone. The similarities in both
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the procedures and the results indicate that the shape of the PTCs reflects the activity
of the auditory system and the auditory filter shape. PTCs reveal an “off frequency”
listening phenomenon ([22, 27]). To detect the signal listeners use a filter whose output
is characterised by the highest signal-to-noise ratio. In general case this means that
subjects use a filter with a centre frequency very close to the signal frequency but not
necessarily the filter with a centre frequency exactly equal to the signal frequency.
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Fig. 4. Psychophysical tuning curves measured in simultaneous masking experiment (adapted from
VOGTEN [41]).

¢ The notched noise method. PATTERSON [25] proposed a method of auditory filter
shape determination based on the masking of a sinusoidal signal by means of two bands
of noise symmetrically situated in the frequency domain (notched noise) with respect
to the signal frequency, (see Fig.5a). The method prevents ofi-frequency listening and
decreases the influence of combination tones on the detection threshold. As the width
of the spectral separation between the bands of noise is increased, less energy of the
noise passes through the auditory filter (shaded areas in Fig. 5a) and the threshold for
the signal drops. Based on the power spectrum model, the power of the signal Ps at the
detection threshold may be expressed by means of the following equation:

P=K / W()N(f) df, @

where W (f) is the intensity weighting function describing the auditory filter shape,
N(f) is the power spectrum of the noise and K is a constant that corresponds to
the signal-to-noise ratio at the output of the auditory filter required for threshold.
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Thus having the threshold values for different notch width (2A4f), and assuming the
specific shape of the filter (Eq. (1)) it is possible to determine all parameters describing
the shape of the auditory filter. An example of the auditory filter determined by means
of this method is plotted in Fig. 5b.
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Fig. 5. PATTERSON’s [25] method of auditory filter shape determination (a) and an example of the
auditory filter shape at centre frequency of 1kHz (b) determined using this method, (adapted from
MooRre [15]).

Another measure of the auditory filter width is the Equivalent Rectangular Band-
width (ERB). This expresses the bandwidth of the perfect rectangular filter whose trans-
mission in its passband is equal to the transmission of the specified filter, and which
transmits the same total power of white noise as the specified filter. The dependence of
the equivalent rectangular bandwidth on its centre frequency is described by means of
the equation [6, 15]:

ERB = 24.7(4.37F 4 1), (3)

where F is a centre frequency of the filter in kHz. The dependence is well established
over a wide frequency range including very low frequencies, [2, 3, 6, 14, 16, 17, 31, 32,
40, 43].

1.8. Comparison of the critical band and the ERB of the auditory filters

The comparison between the critical bandwidths CB suggested by SCHARF [34] and
the equivalent rectangular bandwidth ERB [15] is presented in Fig.6. Critical band-
widths have bigger values than the equivalent rectangular bandwidths of the auditory
filters over the whole audible frequency range. In the frequency range 500 - 5000 Hz the
ratio CB/ERB is approximately constant and equals about 1.22~1.5. The near-linear
relationship between the CB and ERB in this frequency region suggests that any predic-
tions of experimental results based on the critical band and the auditory filter concepts
should be consistent. However, for frequencies less than 500 Hz, the discrepancy between
the CB and the ERB gets much bigger with decreasing frequency; for a frequency of
100Hz the ratio CB/ERB reaches a value close to 3. This discrepancy might indicate
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that neither the ERB nor the CB are a proper measure of the auditory filter bandwidth.
However the dependency of the ERB on centre frequency is well established over whole
range of audible frequencies whereas Scharf’s function relating the CBs to frequency
may be in error for the lowest frequencies, since the data concerning the CB for this
frequency region were very sparse. However the lack of critical bandwidth data for fre-
quencies less than 500 Hz is not a proper argument in accepting the ERB estimates as
the only measure of the auditory filter width. It is necessary to show that the critical
band concept does not describe the auditory filtering in a proper way or to prove that
the methods of the critical bandwidth determination are in error.
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Fig. 6. Comparison between the critical bandwidth (CB) suggested by SCHARF [34] and the equivalent
rectangular bandwidth (ERB) [15].

2. Critical modulation rate as a method of critical bandwidth measurement

2.1. Critical modulation rate concept

An amplitude modulated (AM) sinusoidal signal with modulation index m, and a
frequency modulated (FM) sinusoidal signal with modulation index 8, may each be
considered as composed of three sinusoidal components, corresponding to the carrier
frequency and two sidebands (the FM wave actually contains many sidebands but an
approximation with two sidebands is correct for small modulation indices). A schematic
structure of AM and FM signal spectra is presented over the top panel of Fig. 7. When the



AM FM

§  05mA 0.5mA 0.5BA
E‘
% I fo=fm
fo=fm  fo Fotfm ‘ fo fo+fm
—_—
0.58A Frequency
T T T T T T ]
pe 50 |
:g' L -
2 10 5 E
2 3 k
o - ]
= P ]
IS 3
Q - ]
C B ]
o B -
£
0.5 [ 1 ] ] 1 ] ] L]
E
~
[Sa}
o
RS
[ | 1 I I 1 ] 1

4 8 16 32 64 128 256
Modulation rate, Hz

Fig. 7. The middle shows the thresholds for detecting AM or FM, expressed as the respective modulation

indices, m or 3, plotted as a function of modulation rate. The carrier frequency was 1000 Hz. The lower

panel shows a dependence of log;y(/2/m) on modulation rate which approaches zero at high modulation
rates, indicating that the ratio 3/m approaches unity. Data from Sgx [38].

[299]



300 A.P. SEK

modulation indices are equal (rn = ), and when the carrier frequencies and modulation
frequencies are the same, the spectral components of AM wave and FM wave are identical
in frequency and amplitude. The only difference between them being in the relative
phase of the components, in particular, the lower one. If, then, the two types of wave are
perceived differently, the difference is likely to arise from a sensitivity to the relative phase
of the components (so-called monaural phase effect [12]), which affects the temporal
structure of the sound.

ZWICKER [45, 51], SCHORER [35] and SEK [38] measured the just-detectable amounts
of amplitude or frequency modulation, for various rates of modulation. They found that
for high rates of modulation, where the frequency components were widely spaced, the
detectability of FM and AM was equal when the components in each type of wave
were of equal amplitude (m = 3). However, for low rates of modulation, when all three
components fell within a narrow frequency range, AM could be detected when the relative
levels of the sidebands were lower than for a wave with a just-detectable amount of FM
(myn < Ben). This is illustrated in the middle panel of Fig. 7 (based on data from [38]).
Thus for small frequency separations of the components, subjects appear to be sensitive
to the relative phases of the components (which is also known as a monaural phase effect
[12]), while for wide frequency separations they are not.

If the threshold for detecting of modulation is expressed in terms of the modulation
index, m or 3, the ratio 8/m decreases as the modulation frequency increases, and
approaches value of unity (or zero if the value of log(8/m) is used). This is illustrated
in the lower panel of Fig. 7. The modulation frequency at which the ratio first becomes
unity is the CMF. ZWICKER [45, 51] suggested that the CMF is reached when the spectral
sidebands in the stimulus first become detectable. Once the modulation is detected in
this way, the relative phases of the components do not play a role. ZWICKER [45, 51]
suggested further that the CMF corresponded to half the value of the CB; essentially
the CMF was assumed to be reached when the overall stimulus bandwidth reached the
CB. If this is correct, then the CMF may be regarded as providing an estimate of the
CB at the carrier frequency.

SCHORER [35] and SEK [38] argued that the CMF was one of the best ways of estimat-
ing the CB, especially at low centre frequencies. They gave several reasons supporting
this argument:

1. The whole stimulus falls within a very restricted spectral region. At the CMF only
one critical band is excited.

2. Variations in the absolute threshold with frequency have only a small influence on
the results, due to small stimulus bandwidth.

3. There is no “off-frequency™ listening ([22, 27]).

4. Combination tones do not appear to influence the threshold. Thus the method can
be used over a wide range of sound pressure levels.

2.2. Measurements of the critical modulation frequency

Figure 8 presents data obtained by SEI [38] and SCHORER [35] who measured the crit-
ical modulation rate for the whole frequency range and then converted it into the critical
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bandwidth. This figure shows also the critical bandwidth data collected by SCHARF [34]
and the equivalent rectangular bandwidths [15] to make a comparison between these two
sets of data slightly easier. As can be seen from this picture Sek’s and Schorer’s data
are very similar since they used the same experimental methods. For frequencies above
1kHz the dependence of the critical bandwidth determined based on CMF on frequency
is very similar to that of Scharf. However, the values of the critical bandwidth obtained
for frequencies lower than 1kHz are slightly lower and the difference between them and
those of Sharf appears to be statistically significant [36, 38]. The critical bandwidth de-
termined by Sek and Schorer tends to decrease gradually as frequency decreases even
below 500 Hz. This is a very important result since it shows a qualitative difference be-
tween the most recent measurements and traditionally accepted data that suggest that
below 500 Hz the critical bandwidth is constant and independent of frequency.
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Fig. 8. Critical bandwidth as a function of frequency obtained by SCHORER [35] and SEK [36, 38]
based on measurements of the critical modulation frequency. The critical bandwidth (CB) suggested by
ScHARF [34] and the equivalent rectangular bandwidth (ERB) [15] are also presented in the figure.

The data presented in Fig.8 are not fully compatible with the equivalent rectan-
gular bandwidth of the auditory filter. For frequency above 1kHz, however, the re-
lation between ERB and CB determined by Sek and Schorer is approximately linear
and it may be assumed that differences observed in this frequency area are not impor-
tant and may be ignored. Quite a different situation is observed in the low-frequency
region i.e. below 500 Hz. As frequency decreases, the difference between critical band-
width measured be SEK [36, 38] and SCHORER [35] on one side and ERBs measured
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by Moore on the other becomes statistically significant and gets progressively larger;
for frequency of 125Hz the difference reaches about 25-30Hz. Thus even though the
estimates based on the critical modulation rate showed that the auditory filter band-
width decreases as frequency decreases below 500 Hz there is no agreement between
CB and ERB. The difference observed between them is not just quantitative but also
qualitative.

The above presented comparison rises some questions. For example, is the critical
band model correct or does the critical modulation frequency properly describe the
auditory filtering that takes place in the peripheral auditory system? Does the critical
modulation frequency properly describe a phase sensitivity of the auditory system for
very low frequencies?

To check on this, some predictions based on the excitation pattern model have been
made as well as results of two experiments have been compared. This is described in the
following sections.

3. Further analysis of the critical modulation frequency concept

A more detailed analysis of Schorer and Sek’s arguments that the critical modulation
rate is a proper estimator of the critical bandwidth was elaborated theoretically and
experimentally and is presented below. It suggests that all Schorer and Sek’s arguments
may not be entirely valid. Furthermore, the interpretation of the CMF proposed by
ZWICKER [45] and SCHORER [35] may not be completely correct. HARTMANN and HNATH
[10] suggested that the CMF corresponded to the point where the lower sideband in
the spectrum first becames detectable. The threshold for detecting the lower sideband
depends more on the selectivity of auditory filters centred close to the frequency of the
sideband than on the selectivity of the auditory filter centred on the carrier frequency.
Furthermore, the level of the sideband relative to that of the carrier may be altered by
transmission through the middle ear, especially at low frequencies, where the efficiency
of transmission may change markedly with frequency (33, 54].

Perhaps a more serious problem comes from the possibility that, at the CMF, de-
tection is not always based on the lower sideband. The results of several experiments
support the idea that, at medium to high centre frequencies, the lower sideband is more
detectable than the upper sideband [10, 19, 24]: the lower sideband is entirely responsi-
ble for modulation detection since the upper sideband is totally masked by the carrier.
However, this may not be the case at low centre frequencies i.e. below 500Hz because
the absolute threshold strongly increases as the frequency decreases. For a modulated
signal with carrier frequency less than 500 Hz, the lower sideband (f; — fmod) may by
attenuated by the middle ear much more than the upper one and modulation detection
may be based on the upper sideband (f.+ fmod) of the modulated signal. If the detection
were based on the upper sideband at low carrier frequencies, then the monaural phase
effect would not occur and the CMF would not provide a good estimate of the CB, or
the ERB of the auditory filter, since the sideband on which detection is based would
change as the centre frequency was changed.
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The main purpose of the theoretical consideration, as well as the experimental studies
reported below, was to explore the mechanism of modulation detection for low carrier
frequencies and for modulation frequencies around the CMF. More specifically, the main
aim was to determine whether the detection of AM and FM for modulation frequencies
at and above the CMF depends on detection of the lower sideband, the upper sideband
or both, and whether this changes with carrier frequency. To establish this the results
of theoretical and experimental results were considered.

3.1. Theoretical consideration

In the first part of the theoretical considerations an excitation pattern model was
used to evaluate the differences between the excitation patterns produced by modulated
and unmodulated signals. It was done in order to show a simple subtraction between
those two excitations and to check on which frequency side of the excitation pattern a
bigger difference can be observed.

The excitation pattern that were used in these considerations were calculated using a
program suggested by GLASBERG and MOORE [6]. The excitation is defined there as the
output from each auditory filter as a function of center frequency. Each auditory filter is
assumed to have the form of a rounded exponential, as in Eq. (1). This program enables
to use two independent slopes for low and high frequency sides of the filter using B,, and
B, parameters [6, 13]. It also enables to control a nonlinearity on both sides of the filter
independently by means of NL; and NL, parameters. However in this considerations
the simplest case of the excitation pattern model was used. Thus the values of described
above parameters were set to be equal 1, i.e. B, = By = NL; = NL, = 1. The ERB
spacing was assumed to be equal 0.1. Evaluations of any differences between excitation
patterns produced by modulated and unmodulated signals were calculated based on
those ERBs for which the excitation pattern was bigger than 10dB, as in MOORE and
SEK [20]. They are referred to as the active channels.

GLASBERG and MOORE'’s program [6] also requires a correction file connected with
the intensity weighing function. Thus the threshold correction file describing the ASA
standard absolute threshold was used in all the theoretical considerations.

Evaluations of the differences between the excitations pattern produced by a modu-
lated and unmodulated signal were calculated for carrier frequencies of 125 and 200 Hz.
The modulating frequency was assumed to be equal to 1.1-CMF based on SEK's [38]
results. Thus the unmodulated signal consisted of one component (f.) whereas the
modulated one consisted of three components with frequencies: f. — 1.1-CMF, f. and
fe+1.1-CMF. The sound pressure level of the carrier was assumed to be equal to 70 dB
SPL. Thresholds for detecting amplitude and frequency modulation for low carrier fre-
quencies and for modulating frequency 1.1 CMF, expressed in appropriate modulation
indices are equal to S¢n = myn = 0.06, [38, 45]. The thresholds for detecting both AM and
FM do not depend significantly on carrier frequency below 1kHz. Thus the sidebands
of modulated signals were assumed to be equal to 40 dB SPL each (m = 3 = 0.06).

Results of these calculations were presented in Fig.9 for carrier frequencies of 125
and 200Hz. The upper panels present two excitation patterns. A solid line in each
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panel identifies the excitation pattern of unmodulated (pure sinusoid) signal whereas
dotted line presents the excitation pattern of modulated signals. Those two curves are
almost identical in these panels and it is difficult to see any difference between them.
However, the differences of those two patterns are presented in the lower panels. The
spectral structure of modulated signals was schematically presented in each panel of
Fig. 9. Sidebands were marked as small arrows and the carrier was marked as a slightly
bigger arrow.
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Fig. 9. Excitation patterns produced by unmodulated (solid lines) and modulated (dotted lines) carriers

at frequencies of 125 Hz (left upper panel) and 200 Hz (right upper panel). Modulation rates were equal

t0 frnod = 1.1+ CMF and modulation index (m or 8) was equal to 0.06. Lower row shows differences in
the excitation patterns presented in the upper row.,

The left column of Fig. 9 shows the excitation patterns (the upper panel) and their
difference (the lower panel) for modulated and unmodulated signals with carrier fre-
quency of 125Hz. Similar differences can be observed on the low and high frequency
sides of the excitation pattern. However, the difference observed on the high-frequency
side can be characterized by a local maximum for frequency corresponding to the higher
sideband of a modulated signal. Moreover, an exact value of this difference of excitation
patterns for frequency corresponding to the higher sideband is slightly bigger than the
difference corresponding to the lower sideband. Taking into account a single band model
[11, 51] which assumes that detection of modulation takes place when the difference of
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excitation patterns of modulated and unmodulated sounds exceeds a certain amount in
the single band (in this case in one active channel), it may be stated that the upper
sideband of the modulated signal is decisive for modulation detection in this case.

The right column of Fig. 9 presents the results for f, = 200 Hz. The difference in the
excitation patterns observed on the low-frequency side is bigger than the difference on
the high-frequency side. Thus, based on a single band model, it seems that the lower side-
band of the modulated signal might be decisive for modulation detection in this case.
Similar results were also obtained for frequencies higher than 200Hz. A single-band
model predicts that the lower component of the modulated signal is decisive for modu-
lation detection for frequency range higher than about 200 Hz. This is consistent with
experimental data obtained for carrier frequencies of 1kHz [10, 18].

In the next step of this analysis evaluation of the differences between excitation
patterns produced by modulated and unmodulated signals, based on a non-optimal
multi-band excitation pattern model were carried out. Like Zwicker’s model the model
assumes that the detection of modulation is based in this case on a single form of informa-
tion, namely changes in excitation level. However, this model assumes that information
from different parts of the excitation pattern can be combined in a non-optimal way (see
(20, 37] for details). The model is similar in its general form to the model proposed by
FLORENTINE and Buus [5] and is based on the integration model [8].

This model is based on the assumption that changes in amplitude or frequency of
signal are detected by virtue of the changes in the excitation level that are produced
in the peripheral auditory system. If the changes in excitation level in the i-th critical
band or auditory filter gives rise to a value d; then overall value of d is given by:

d = ,/Z(d;)z . (4)

As the first approximation it might be assumed that d’ is proportional to the difference
in the excitation level observed in this channel [37] thus the overall value of d' was
assumed to be:
n
AL?
P Y —L
d ; /n (5)

where n is the number of active channels and K is a constant. =

. P s AL;
Using the above described excitation pattern program the values of \/ﬁl were

calculated for both the low- and the high-frequency side of the excitation pattern. Sim-
ilarly to earlier considerations only those auditory filters, that gave the excitation level
greater than 10dB, were taken into account.

Results of these calculations are presented in Fig. 10 and 11. Figure 10 presents differ-

L? G
n’ ) of the excitation patterns of modulated and unmodulated

ences (expressed as

signals as a function of a carrier frequency. In this case modulation frequency was equal
t0 fmoa = 1.1-CMF, sound pressure level of the carrier signal 70dB SPL and sound
pressure level of the sidebands was equal to 40dB SPL each. A continuous line in this
figure presents a difference between excitation levels of modulated and unmodulated sig-
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nals on the high-frequency side whereas the dotted line presents this difference observed
on the low-frequency side of the excitation pattern.

251 -
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i
n
ulated signals as a function of carrier frequency. Modulation frequency was equal t0 fmoq = 1.1+ CMF,
sound pressure level of the carrier signal 70dB SPL and sound pressure level of the sidebands 40dB
SPL each. Continuous line in this figure presents difference between excitation levels of modulated and
unmodulated signals on the high-frequency side whereas the dashed line presents this difference on the
low-frequency side of the excitation pattern.

Fig. 10. Differences in the excitation pattern (expressed as Z

) produced by modulated and unmod-

The difference obtained for the high-frequency side of the excitation pattern is bigger
than the difference observed on the low-frequency side only in a very restricted region of
carrier frequencies i.e. up to 140 Hz only. Therefore it may be assumed that for this carrier
frequency range the upper sideband is decisive for modulation detection which is not
consistent with the HARTMANN and HNATH [10] model. However, for carrier frequencies
greater than 140 Hz the difference obtained for the low-frequency side of the excitation
pattern is much bigger than the difference on the high-frequency side. It means that
above 140 Hz and for modulation rates above the critical modulation frequency, the
lower sideband of the modulated signal might be responsible for modulation detection.
So the predictions of the single-band and multi-band models are similar.

2
Figure 11 presents differences in the excitation patterns (expressed as ——n’) ob-

served on the low- and high-frequency sides of the excitation pattern obtained for
modulated and unmodulated signals as a function of modulation rate for carrier fre-
quencies of 125Hz, and 250 Hz. Dashed lines in this figures denote the differences ob-
served on the low-frequency side and continuous lines denote differences observed on the
high-frequency side of the excitation pattern.
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Fig. 11. Differences in the excitation patterns (expressed as 3 ) observed on the low- and

n

high-frequency side of the excitation pattern (for modulated and unmodulated signals) as a function of

modulation rate, for carrier frequencies equal to 125 Hz and 250 Hz. Dashed lines denote the differences

observed on the low-frequency side and continuous lines — on high-frequency side of the excitation
pattern respectively.

As can be seen from the top panel of Fig.11 the difference observed on the high-
frequency side of the excitation pattern is much bigger than the difference on the
low-frequency side when a carrier frequency was equal to 125Hz. It can be stated that
for modulation frequencies greater than the CMF the detection of modulation for this
particular carrier frequency might be based on changes in the high-frequency side of the
excitation pattern. These changes were evoked by the higher sideband of the modulated
signal. So this sideband might be decisive for modulation detection in this case.

A quite oppsite situation can be observed for carrier frequencz 250 Hz (see Fig. 11
the bottom panel). The difference of excitation patterns evoked bz modulated and un-
modulated signals is bigger on the low-frequencz side than on the high-fregencz side of
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the excitation pattern. The lower sideband of the modulated signal might be responsible
for modulation detection in this case.

Based on the above considerations it can be stated that modulation, either AM or
FM, might be detected not only by means of the lower frequency sideband of modulated
signal’s spectrum, as HARTMANN and HNATH’s [10] model predicts. In the case when
carrier frequency is equal to 125Hz and modulation frequency is slightly bigger than
the CMF modulation detection might be based on the higher sideband. It might be
also expected that for carrier frequencies from the range of 125-160 and for modulation
frequencies bigger than the CMF, a contribution of the upper sidebands of the modulated
signal’s spectrum in the detection of modulation might be bigger than a contribution
of the lower one. In this frequency range, modulation might be detected based on the
upper sideband.

3.2. Results of some experimental studies

SEK [36] has presented evidence that the interpretation of the CMF proposed by
ZWICKER [45], and generally accepted in the literature, is not quite correct. For medium
to high frequencies the critical modulation frequency appears to correspond to the point
where the lower sideband in the spectrum of the modulated signal first becomes de-
tectable. This is often referred to as the HARTMANN and HNATH [10] model. However,
Sek and MOORE [39] showed, that for very low carrier frequencies the upper sideband
becomes first detectable before the lower sidebands. So it seems that the lower sideband
is not always decisive for modulation detection.

To determine which sideband is decisive for modulation detection SEK and MOORE
[39] compared the results of two separate experiments. In the first one thresholds were
determined for the detection of amplitude modulation and frequency modulation using
several low carrier frequencies, namely f. = 125, 160, 200 and 250 Hz. The following
modulation rates were used: fmoa = 20, 30, 40, 50, 60 and 70 Hz. They expressed mea-
sured thresholds for detection either AM or FM in terms of the sound pressure levels
of the sidebands i.e. Lay and Lyy for amplitude and frequency modulation. In the
second experiment thresholds were measured for detecting a single sinusoid, correspond-
ing to either the lower (L;) or the upper (L,) sidebands of the modulated signal used
in the first experiment, in the presence of a sinusoidal masker corresponding to the
carrier frequency of the modulated signal. A schematic structure of the signal spectra
they used is presented in Fig.12. If a component corresponding to a given sideband,
say the lower one, has a lower threshold than a component corresponding to the other
sideband, i.e. L; < L, at the threshold, then the given sideband should be more de-
tectable in a situation where both sidebands are present, as for example, in the modu-
lation detection task. Moreover, if modulation detection thresholds are determined by
the threshold for the most detectable sideband, then the thresholds measured for that
sideband in the second experiment should correspond with those determined in the first
experiment.

The results of these experiments are presented in Fig. 13. Each panel shows the data
averaged across three subjects for one carrier frequency. The value of the carrier fre-
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Fig. 12. A schematic illustration of a spectral structure of stimuli used by SEx and MOORE [39] in two
separate experiments.

quency is marked in each panel by an arrow. Dashed lines show absolute thresholds
(standard threshold and the subject’s threshold measured directly in the experiment).
Squares and circles in each panel show the results of the first experiment 1. The level of
each sideband at the modulation detection threshold, i.e. the values of Lap and Lym,
is plotted as a function of its frequency. Since the lower and upper sidebands for both
type of modulation were always equal in level, each measured threshold is presented
twice giving a pattern symmetrical about carrier frequency. For the higher modulation
frequencies used, the AM and FM thresholds coincide (Lay = Lgn), whereas for the
lower values used, i.e. when sideband were closer to the carrier, the thresholds for de-
tecting FM are higher than the thresholds for detecting AM, (Lyym > Lay). This is
consistent with previous findings, see for example ZWICKER [45], SCHORER [35] or SEK
[36] and Fig. 8, showing that the CMF for low carriers is typically is about 40 Hz. This
also reflects the fact that the modulation frequencies were chosen properly to span the
critical modulation frequency.

The stars and diamonds in Fig. 13 show the results of the second experiment (i.e.
the values of L, and Ly, for the lower and the upper sideband respectively) where the
thresholds were measures for a single sinusoid corresponding to the lower or the upper
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Fig. 13. Each panel shows data averaged across three normal hearing subjects for one carrier frequency.
Modulation detection thresholds are expressed in terms of the levels of the sidebands.
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sidebands in the spectrum of the modulated signal. The thresholds obtained for the
signals with frequencies below the frequency of the carrier (diamonds) were generally
higher than those for signals with frequencies above the carrier (L, > L;). This suggests
that when both sidebands were present simultaneously, as in the experiment concerned
with the detection of modulation, detection was based on the upper sideband rather
than on the lower sideband. This is consistent with the above presented consideration
based on the excitation pattern model.

Comparing the results of these two experiments it is clear that, at least for the two
lowest carrier frequencies used (125 and 160 Hz), the thresholds for the lower sideband
alone (diamonds) are markedly higher than the levels of the lower sideband at the mod-
ulation detection threshold (circles and squares). This indicates that, at the modulation
detection threshold, the lower sideband would have been undetectable. Indeed, for the
highest modulation frequency used the lower sideband would have been below absolute
threshold. In contrast, for the modulation frequencies above the critical modulation fre-
quency the levels of the upper sideband at the modulation detection threshold (circles
and squares) are almost identical with the detection thresholds for the upper sideband
when presented alone i.e. Loy/rm = Ly (stars). This is true for all carrier frequencies
used. Taken together, these results indicate, that modulation detection thresholds for
modulation frequencies above the critical modulation frequency and carrier frequencies
of 125 and 160Hz were determined by the threshold for detecting the upper sideband.
This is also consistent with the above presented theoretical predictions based on the
excitation pattern model.

The results of SEK [36] suggest that for carrier frequencies from 200 to 250 Hz there is
a certain transition region. For modulation rates above the critical modulation frequency
and for carrier below that region modulation detection threshold were determined by the
threshold for detecting the upper sideband. This is clearly seen in the two upper panels
of Fig. 13 that present the results for carrier frequencies of 125 and 160Hz. However,
for carriers above that region detection is probably based mainly on the threshold for
detecting the lower sideband. This is consistent with the above presented theoretical
consideration (see Sec.3.1 and Figs.9-11) and with previous data of HARTMANN and
HNaTH [10], OzIMEK and SEK [23] and MOORE and SEK [18]. However, in that region
both sidebands may contribute to detection of the modulation. It may be assumed that
modulation is detected by means of the auditory filter at a centre frequency close to the
frequency of the decisive (the most detectable) sideband.

The fact that the most detectable sideband switches from the lower one to the upper
one as the carrier frequency decreases means clearly that the critical modulation fre-
quency is not a satisfactory measure of the auditory filter bandwidth or the frequency
selectivity of the auditory system, since the auditory filter centred on the upper sideband
has a broader bandwidth than the auditory filter centred on the lower sideband.

4. Conclusions

The auditory system is usually considered an array of bandpass overlapping linear
filters, called auditory filters. This basic point of view has been confirmed in a variety of
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experiments and at present is well established. One of the most important factors describ-
ing the properties of the auditory filter is its bandwidth. So far two measures have been
proposed: the Critical Bandwidth CB and the Equivalent Rectangular Bandwidth ERB.
These two measures are consistent in a high-frequency region, i.e. for frequencies higher
than 1 kHz where the ratio of CB to ERB is approximately constant. However these two
measures are considerably different in a low-frequency region, i.e. for frequencies lower
than 1kHz.

Estimates of the critical bandwidth, as collected by SCHARF [34], were based on
the results of band-widening and two-tone masking experiments while the equivalent
rectangular bandwidth were based on the data collected in notched noise masking or
psychophysical tuning curves experiments. ZWICKER [45] and SCHORER [35] have sug-
gested that the critical band reflects also a sensitivity of the auditory system to phase
differences of spectral components of stimulus, as observed in so-called monaural phase
effect [12]. If a bandwidth of a given stimulus with a centre frequency f is less than
the critical bandwidth for this frequency, then its phase structure is very important and
influences a sensation evoked by the stimulus. However, when a bandwidth of a stimulus
is greater than one critical band then its phase structure is less important: a change in
the relative phase of components in the stimulus may have not influenced the sensation
evoked by the stimuli. Such a situation has been observed in a case of modulation detec-
tion. The phase of the lower component of amplitude and frequency modulated signal
is different. Due to this difference a marked discrepancy in AM and FM thresholds are
observed, particularly for low modulation frequencies. However, when modulation rate
reaches so-called critical modulation frequency (CMF) the threshold for detecting AM
and FM becomes identical. It has been suggested that the CMF determines that point at
which one of the sidebands of the modulated signal’s spectrum first becomes detectable.
As long as the lower sideband (i.e. that one whose phase is different in AM and FM case)
first becomes detectable and responsible for modulation detection the critical modula-
tion frequency may be considered as a measure of the phase sensitivity of the auditory
system or a proper measure of the auditory filter bandwidth.

However, as shown in this paper, for very low carrier frequencies the thresholds for
detecting both AM or FM were not determined by the detection of the lower sideband
in the modulated signal’s spectrum.

The CMF is defined as the modulation frequency at which AM and FM thresholds
first become identical. However, the results considered in this paper show that for very
low values of the carrier frequency the threshold for detection of either AM or FM
was not determined by the detection of the lower sideband in the modulated signal’s
spectrum. Thus the CMF does not reflect the ability of the auditory system to detect
the phase difference between the spectral component of the complex sound, since upper
components have the same phases. The CMF, then, is confounded as a proper estimate
of the critical bandwidth since, at least for low frequencies, it does not say anything
about phase sensitivity of the auditory system.

The above considerations also give an explanation of the discrepancy observed be-
tween the critical bandwidth and the equivalent rectangular bandwidth for very low
carrier frequencies. For carrier frequencies less than 200 Hz modulation detection was
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entirely based on detection of the upper sideband in the modulated signal’s spectrum,
(i.e. at frequency fc + fmoa). Excitation evoked by this frequency component was as-
sociated with the activity of an auditory filter with a centre frequency higher than the
frequency of the carrier signal i.e. with a frequency close to this component. Thus mod-
ulation detection in this carrier frequency region was based exclusively on the auditory
filter with centre frequency higher than the carrier frequency.

For frequencies 200-250Hz both sidebands, the upper one and the lower one, con-
tribute to the detection of modulation. Excitation changes associated with these com-
ponents have approximately the same value. It is difficult to state which auditory filter
(i.e. either with lower or with higher centre frequency than the carrier) is responsible for
modulation detection in this case. This carrier frequency area is probably a transition
area in which the activity of the auditory filters with centre frequencies lower and higher
than the carrier are nearly the same. These filters are equally responsible for modulation
detection.

For the frequency range above 250 Hz modulation detection was entirely based on the
detection of the lower spectral component (f.— fmoa) Of the modulated signal. Excitation
evoked by this sideband was associated with the activity of the auditory filter with a
centre frequency close to the frequency of this component. Thus modulation detection
in this case was exclusively based on an auditory filter with a centre frequency lower
than the carrier frequency.

If the modulation detection had always been based on the auditory filter with centre
frequency lower than the carrier, then the critical bandwidth would have decreased even
for very low carrier frequencies. However, when the carrier frequency decreases, in the
transition area (i.e. 200-250Hz), the auditory filter that is responsible for modulation
detection switches from a filter at a centre frequency lower than the carrier to a filter at
a centre frequency higher than the carrier. The equivalent rectangular bandwidth of the
filter at a centre frequency higher than the carrier is bigger than the ERB of the filter
at a centre frequency lower than the carrier. Thus the change of the filter is the reason
that dependence of the CBs on the frequency flattens off while ERBs decrease even for
very low carrier frequencies.

There are several factors that might cause the lower sideband to be less detectable for
low carrier frequencies. These include the effect of the transfer function of the middle ear
[54], the possibility that the cochlea is characterised by a relatively high level of internal
noise, particularly at low frequencies [21] and the possibility, that the signal-to-masker
ratio required for the threshold increases at low frequencies. Is seems likely that the main
detection cue used for signal detection in the case when a single sideband was presented
were beats produced by the interaction of a signal (imitating one of the sidebands) and
masker. HARRIS [9] showed that a “depth of modulation” produced by beats required
for threshold increased mainly at low frequencies. In addition, the detectability of beats
decreases with an increasing beats rate above 3—4 Hz and with decreasing in level, [30].

These factors provide further justification for a claim that the critical modulation
frequency is confounded as a measure of the auditory filter bandwidth or frequency
selectivity of the auditory system. None of these factors is directly connected with fre-
quency selectivity, yet may influence the value of the critical modulation frequency for
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low carrier frequencies. The above presented results show that, taking these factors into
account, the values of the critical modulation frequencies for low carrier frequencies can
be reconciled, at least to a first approximation, with the estimates of auditory filter
bandwidth and shape summarised by MOORE [15].

The critical bands determined based on the critical modulation rate are confounded
as a measure of auditory filter’s bandwidth for very low frequencies. They do not re-
flect directly the frequency selectivity of the auditory system. The assumption that the
auditory filter has a constant width, as used in the critical band concept presented by
SCHARF [34] and used up to the present for this frequency region, is in error.
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In this work the source simulation technique was used to calculate the scattering of
a plane wave by a cylinder with radial or elliptical transverse section. The basic idea of
the source simulation technique is to replace the scattering (or radiating) body with a
system of simple sources located within the envelope of the scatterer (or radiator). The
extent to which the simulated field reproduces the original one depends on the degree
of correspondence between the simulated and the given boundary conditions. Numerical
simulations have shown that: 1) the shape of the auxiliary surface, 2) the number of sources,
and 3) the way the sources are distributed are the most relevant parameters to ensure an
accurate solution of the problem. In the case of the single-layer method, the sources should
not be positioned close to the surface or to the center of the body, because the problem
becomes ill-conditioned. The auxiliary surface and the scatterer should be as similar as
possible in order to minimize the boundary error. With respect to the number of sources
(), there are two opposite effects: 1) if (V) is too small, the sound field is not reproduced
accurately; 2) if (V) is too large, the computing time increases and the solution accuracy
decreases. The method breaks down when the excitation frequency coincides with the
eigenfrequencies — a narrow range of frequencies — of the space formed by the auxiliary
surface. As the auxiliary surface is frequently represented by simple surfaces (cylinder,
sphere), one can easily calculate the eigenfrequencies and therefore avoid them.

1. Introduction

The mathematical treatment of radiation and acoustic scattering represents a very
old and much studied problem by mathematical physics (see [1] and [2]). Radiation and
scattering are present in all ondulatory phenomena (elastic waves in rigid bodies, elec-
tromagnetic waves, surface waves on the water, etc). The present study, however, deals
only with “pure” acoustical waves, that is, acoustical waves in gases or liquids. Another
important limitation is that all steps of the solution of the problem are considered linear.
Consequently, the Superposition Principle is valid. As radiation and scattering represent
classical problems of mathematical physics, there is a vast literature on the subject. The
solution methods can be classified into three different groups:

a) Analytical methods, which make possible an exact solution for the problem. How-
ever, these methods are limited to a few very simple geometric figures (sphere, cylinder).
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The classical works of LorRD RAYLEIGH [1], P. MORSE [2] and many other authors
present the analytical solution for the radiation and acoustic scattering problems in
bodies with spherical and cylindrical shapes.

b) Semi-analytical and semi-empirical methods for the calculation of radiation and
acoustic scattering. The utilization of the radiation coefficient, for example, belongs to
this category (e.g. GOSELE [3] and CREMER and HECKL [4]).

¢) Numerical methods in which the problem is approached by a set of differential or
integral equations. In this case the equations model a linear system, which is in general
very large. It is meant here the use of the finite elements method (FEM) or the boundary
elements method (BEM). The relatively new method of simulation by elementary sources
also belongs to this group.

The method of simulation by elementary sources leads, similarly to FEM and BEM, to
the solution of large systems of equations. It comes into question what are the differences
between those methods. From the literature [4, 7], one can say:

— In FEM, the number of equations to be solved depends on the volume of the space
considered in the solution of the problem. As this number (for problems of radiation and
acoustic scattering) increases with the third power of the relationship D/A (D is a
dimension typical of the space of the solution of the problem and X is the sound wave
length), one can expect for high frequencies a system of equations with extremely large
matrices.

— In BEM, the number of elements to be calculated depends on the size of the
surface of the body considered. The number of equations to be solved increases with
the second power of the relationship D/), where D is a dimension typical of the body
and not of the total solution space of the problem. One can have, in consequence, with
BEM a significantly smaller number of equations than with FEM. However, the matrix
elements are practically all non-zero numbers, and as a result one has full matrices. The
great problem in the use of BEM is that there are no solutions for the problem close
to the characteristic frequencies, which correspond to the resonance frequencies of the
internal space delimited by the surface of the body. Several methods were developed in
order to solve this problem.

— In the method of simulation by elementary sources there is in principle no minimal
number of elements to be utilized. However, the number of elements has a crucial role
in the accuracy attained by the solution of the problem. BOBROVNITSKII (7] states that
the source method is the only one among those here cited that allows for a quantitative
evaluation of the the precision of the calculations. This statement is however only valid
for the precision with which the velocity of the surface of the body is approached by the
elementary sources. A statement about the accuracy of the calculation of intensity and
potency has not been shown possible until now. Likewise, in BEM the critical frequencies
exist. These frequencies correspond to the resonance frequencies of the internal surface
over which the sources are positioned (e.g., monopoles). Choosing an adequate internal
surface, as will be demonstrated later in this work, this problem can be easily overcome.
Using an open internal surface or a multipole positioned only in one point in the interior
of the body, the resonance frequencies do not appear.
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2. Description of the scattering problem and the source simulation technique

Considering a harmonic wave with sound pressure amplitude p, in an infinite and
homogeneous space £ which encounters in its displacement the body I, internal space
is defined by I, the scattered wave by p, and the surface of the body by S. Over the
surface of the body the unitary vector n is defined:

E
n

P+ <+ —bPs
\\ K
S
Fig. 1. Geometry of the acoustic scattering problem.

Pressure and velocity of the particle can be determined as the result of the sum of
the components p. and ps. Respectively,

Pt = Pe + Ps and v = Ve + Vs (2:1)
The complex sound pressure p; has to satisfy the Helmholtz equation:

Ap; + k*p =0 (2.2)
in E, where £ = w/c is the wave number, w is the circular frequency, ¢ the speed of sound,
and A is the Laplace operator. Since sound scattering into the free three-dimensional
space is considered, the pressure p; has to satisfy the Sommerfeld radiation condition:

r—oo

o [ODD _
lim l:% +.7}~Pt] ri=i{) (2.3)

which can be interpreted as a boundary condition at infinity. Here,

r = llall = /23 + 23 + o3

denotes the distance from x to the origin, where we represent points in space by simple
letters like @ = (%1, 2, z3). Solutions of the Helmholtz equation in E which also satisfy
the radiation equation condition are called radiating wave functions. To get a complete
description of the problem, boundary conditions on the surface are needed. For simplicity,
we only consider the Neumann boundary value problem where the normal velocity and
therefore the gradient of pressure

Op/On = —jwpv (2.4)

is prescribed [8]. Here p is the fluid density and 8/8,, is the derivative in the direction
of the outward normal.

The principle of the method here presented is based on a treatment of the scattering
problem through a system of radiating sources, which should be chosen so that they
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reproduce as well as possible the sound field generated by the body of Fig. 1. The sources
are taken as point sources, and therefore do not represent an obstacle to the sound field.
As a consequence the field generated by each one can be summed without taking into
consideration interference effects. As the sources are known, i.e., their amplitudes, the
sound field can then be easily calculated through the sum of the fields generated by each
source individually. The true problem consists then in finding the sources that can best
replace the original body. As a consequence, two important questions arise:

a) Which is the type of source to be used and how should they be placed inside the
body?

b) Which optimization method should be employed for the results?

Mathematically the problem is based on representing the sound field by summing up
the contributions of the individuals sources

Ng oo
= N AnSio, (2.5)

g=1 m=—00

where p represents the scattered pressure or the radiated pressure in the field; Ag m is
the complex source strength of the g-th source at a point 4 in the field; m is the order of
each source and @, ,, is the sound field generated by the sources. In Eq. (2.5) &, could
also be called the source function [8]. Equation (2.5) intrinsically has the condition that
each field can be represented by a sum of functions of the type ®4,,. This is naturally
the case, only if all functions @, ,, satisfy the wave equation and if they form a complete
function system. The first condition is certainly satisfied if @, ,,, represents for example
the field generated by a monopole, dipole or quadrupole. The second condition, i.e., if it
is possible to represent any acoustic field as a sum in the form of Eq. (2.5), seems to be
as yet unproven with all mathematical rigor [8]. As no difficulty has been noted by other
authors (CREMER [9]; HECKL [10], OCHMANN [11]) when miltipole sources were used for
the reconstruction of the acoustic field, the same procedure will be used in the present
work. In other words, the multipole sources will be used to represent the radiation or
scattering problem of the original body.

We have then two distinct situations:

a) one can use a variable order multipole localized in a single point inside the body,
that is, in Eq.(2.5) N, =1 and M is very large,
or

b) one can use only monopole sources positioned in several points inside the body,
which renders N, very large and M =1 in Eq. (2.5).

One can also have a combination of both extreme cases presented in a) and b), that
is, to use a multipole (for example, monopole + dipole) positioned in several points.
Together with the choice of the type and the positioning of the sources, the choice of
the optimization criterium also imposes a fundamental question for the use of the source
simulation technique. Basically the idea is to try to approximate the field generated by
the sources, determining its source strength (which are ultimately the solution of the
problem), to the real field generated by the original body. The error derived from this
approximation should be minimized. Several methods can be used to that end, such as
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the null field method, the collocation method, the Cremer’s method [8]. In this work we
have used the least squares minimization.

3. Influence parameters

The parameters that influence the performance of the method, that is, the capacity
of the method to reproduce boundary conditions are the following: the type and number
of sources, their positioning in the interior of the body, the shape of the source surface,
and the existence of critical frequencies. For that purpose a surface error will be defined,
which will aid in the evaluation of the performance of the above mentioned parameters:

N >

Zm — Z

E@) =Y '_lz_!zi , (2.6)
i=1 m

where Z, is the measured impedance and Z, is the calculated impedance with the
source simulation technique for each angle ¢ around the geometry of the studied body.

3.1. Type of sources

By definition the sources must be radiating wave functions. It is convenient to work
with available analytical functions. Only solutions of the Helmholtz equation in separable
coordinate systems can be constructed explicitly [8]. In practice, spherical radiators (for
three-dimensional problems) or cylindrical radiators (for two-dimensional problems). In
the usual systems of coordinates, the wave functions or sources will be represented by:

— generalized spherical coordinates

o= PZ2 cos(t?)hgz (kr)ei™2¢,

1

— spherical coordinates independent from ¢
¢ = P cos(9) {2 (kr);

— cylindrical coordinates
¢ = HD (kr)e’™,

where P are the Legendre polynomials; A the spherical Hankel function of the second
order and HS the cylindrical Hankel function of the second order.

3.2. Location of the sources

A general assumption of the source simulation technique is that the sources must be
located in the interior of the closed surface S. It is also possible to put sources on the
boundary itself. But this leads to boundary integral equations and to the corresponding
BEM, which are not topics of this paper. For the choice of the source location, essentially

two alternatives are possible [8]: 1) only a few source locations are chosen, but at these
locations a source with increasing order is used; or 2) a continuous source distribution
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of simple sources on an inner auxiliary surface is employed. The contrast between both
methods is the greatest if a closed auxiliary surface with a layer of monopoles is chosen
as one extreme and a infinite series of multipoles at only one source location as the other
extreme [8]. The first method is called “the single-layer method” and the second one “the
one-point multipole method” [8]. If the geometry of the body is spherical or cylindrical
(or not far from those), the use of the one-point multipole method is recommended with
the multipole located in the center of the body. This procedure facilitates the convergence
of the wave functions and reduces computing time. On the other hand, sources positioned
very close to the center when using the single-layer method tend to cause the matrix
of linear equations to became more ill-conditioned, leading to an increased surface error
(see Fig.2 and Fig.3). If the sources are positioned very close to the boundary, the
accuracy will deteriorate due to the inadequate integration of the source singularity.
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Fig. 2. Error when satisfying the boundary error as a function of the position of the source surface with
radius r(g) and a circular cylinder with radius R, kR = 0.73.
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Fig. 3. Condition number in dB as a function of the position of the source surface with radius r(g) and
a circular cylinder of radius R, kR = 0.73.
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There is again substantial increase in computing time due to the increase in the number
of sources necessary in order to minimize the surface error. Qur findings are not in
agreement with TOMILINA [12] and BOBROVNITSKII and TOMILINA [13], who say that
the source surface should be close to the body surface in order to improve the accuracy
of the problem of reducing the boundary error. This is only correct when kR is very
large.

3.3. Number of sources

The number of sources is influenced by several parameters, but mainly by the ge-
ometry of the body and the type of the source. In the determination of the number
of sources, with respect to the single-layer method considering a circular cylinder, an
expression was intended which would give the smallest number of monopoles necessary
to satisfy the boundary conditions. Additionally, the position r(¢)/R (see Figs.2 and 3)
of the source surface should also comply with the assumption of a minimal number of
monopoles.

The simulation leads us to the following:

N = B8-kR, (2.7)

where § is an unknown factor, and R is the cylinder radius. This expression estab-
lishes a relationship between the wave number, the size of the body, and the number of
monopoles. With the simulation the following values have been found for:

a) for 0.73 < kR < 1.46 and r(q)/R = 0.4 — 3 = 16,

b) for 1.83 < kR < 3.66 and r(q)/R=0.5 - 3 =8,

c) for 4.58 < kR < 7.33 and r(q)/R =06 —» 8 =6,

d) for 9.16 < kR < 23.10and 0.7 < r(q)/R < 0.8 = B = 4.

3.4. Shape of the source surface

One aspect rarely considered in the utilization of the source simulation technique is
the shape of the source, that is, the shape of the auxiliary surface over which the sources
are positioned (see ZANNIN [5] and see Subsec. 3.2). The object of study here is a circular
cylinder, and for the source surface the following shapes have been used: a) cylindrical,
b) elliptical, c) non-elliptical (see Fig. 4). Surface error could be minimized and boundary
condition satisfied in all tested cases. The number of monopole sources needed grew in
direct proportion to the deviation of the source surface from a circular cylindrical shape
(case “a”). This can be observed in Table 1 below:

Table 1. Influence of the shape of the source surface in minimizing boundary error.

Shape Error (%) Sources — N
(a) 0.01 8
(b) 0.0005 40
(c) 0.5 20
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Fig. 4. Shape of the source surface.
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A cylinder with elliptical transverse section was also used as a second object of study.
The results obtained were very consistent as long as the source surface was identical
with the external surface (see Fig. 5). For the case of a cylindrical source surface located
within the elliptical body, the boundary condition could not be satisfied (see Fig.6).
The elliptical body required a significantly larger number of monopole sources in order
to get the boundary error minimized.

3.5. Critical frequencies

There are frequencies, sometimes called fictitious eigenfrequencies, at which, or close
to which, the solution of the Helmohltz integral equation is non-unique. It is well known
that the boundary element method breaks down at these frequencies [14, 15].

JEANS and MATHEWS [16] have demonstrated that in the use of the source simulation
technique the critical frequencies correspond to the eigenfrequencies of the internal space
formed by the closed source surface, when over this surface the boundary condition
of Dirichlet is considered. The eigenfrequencies of a circular space with the Dirichlet
condition over its surface are represented by the roots of the Bessel function (see [17]):

Jnlkr)i=0; mi=10,1,2,3; .-, (2.8)

where r is the radius of the source surface.

Nevertheless, other authors report that they have not observed the presence of inner
eingenfrequencies when utilizing the source simulation technique, in the calculation of
both the acoustic radiation and of the acoustic scattering. Part of the conclusions of
these studies are cited in what follows: “The SUP solution does not appear to be affected
by spurious internal resonances which have plagued the integral formulations in the past
[18]”; “Numerical ezperiments suggest that this nonuniqueness problem does not ezxist
in the MFS ... The reciprocal of the condition number at the eigenfrequencies and ka =
4.4934094 is not worse than at the other frequencies and it does not seem to deteriorate
at any of the frequencies. Our findings agree with those of Koopman et al., who reported
the absence of fictitious eigenfrequency difficulty with this method for acoustic radiation
problems [19]”; “The results for R = 1 and k = 2.40483 which is the smallest zero of
the Dirichlet eigenvalue for the circle, illustrate that there is no unique problem at the
eritical wave number [20]”.

In this work we tried to identify the presence or absence of the eigenfrequencies.
Figure 7 shows the error when satisfying the boundary conditions close to and at the
first frequency of resonance of a circle: kr = 2.4048255577. It is fairly obvious that there
is a huge error at this frequency and that the problem formulation breaks down. In Fig. 8
we have the logarithm of the condition number.

One important conclusion that can be drawn from Figs.7 and 8 is that resonance
belongs to a very narrow range of frequencies. For source surfaces like a cylinder or
a sphere resonance can be easily calculated and therefore avoided. This is one of the
advantages of the source simulation technique with respect to the boundary element
method.
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One question always present with respect to the source simulation technique is
whether the ill-conditioning of the problem (see Figs.2 and 3) is due to the eigen-
frequencies of the inner closed source surface. In Fig. 9 the boundary error can be seen,
calculated for the first resonance of a circle — (kr = 2.4048255577) — as a function of
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the number of sources. It can be observed that the error is extremely large (see Fig. 7),
though remaining constant despite a substantial increase in the number of sources: 20 to
150 monopoles. In ill-conditioned problems the trend is toward an increase in the error
and in the condition number (see Figs.2 and 3 and [21]) when the number of sources
increases [22]. Therefore, one can conclude that the ill-conditioning of the problem is a
characteristic of the source simulation technique and is not caused by the eigenfrequen-
cies of the internal space formed by the source surface.
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Fig. 9. Influence of the number of monopoles on the boundary error for kr = 2.4048255577.

4. Concluding remarks

The quality of the results obtained by the source simulation technique depends on
the relationship between some parameters. The most relevant of them are: the shape
of the inner source surface, the location of the sources at the source surface, and the
number of sources. If one of these parameters is inadequately chosen, this will negatively
influence the development of the whole numerical calculation.

In the case of the single-layer method, sources should not be positioned very close
to the center of the body, as in this case the condition number of the matrix grows
rapidly meaning that it is becoming ill-conditioned. If the wave number is small, one
can position the sources close to the center of the body. The advantage of doing so is in
the use of a small number of sources in order to minimize the boundary error, which is
also translated into less computing time. On the other hand, as the wave number grows,
the sources are located closer to the surface. However, the positioning of the sources
should obey a relationship between the smallest dimension of the source surface and the
largest dimension of the body under study. For the case of a cylinder of radius R and a
source surface of radius 7(g), the relationship is given by r(g)/R = 0.9. Above this value
the method becomes very unstable due to the occurence of singularities.

With respect to the shape of the source surface, numerical results have shown that
the shape of the studied body and the shape of the source surface should be as similar
as possible to each other. Proceeding this way it is possible to minimize the boundary
error and to satisfy the boundary conditions, which was not possible when the body
considered was an elliptical cylinder and the source surface a circular cylinder.
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With respect to the number of sources used there are two opposing effects. If the
number of sources is too small the acoustical field cannot be reproduced with precision. If
the number of sources is too large, both computing time and computational errors end up
increasing. Numerical experiments led us to the conclusion that the ill-conditioning of the
problem is not caused by the eigenfrequencies of the source surface, but is a characteristic
of the method itself. The method breaks down when the excitation frequency coincides
with the eigenfrequencies of the inner space formed by the source surface. The numerical
experiments have shown that the eigenfrequencies belong to a very narrow band. In this
way, for non-complex surfaces such as a sphere or a circle, they can be easily calculated
and avoided. This is one advantage with respect to BEM, as in the last method there is
not the possibility of choosing a source surface. In BEM the sources are positioned over
the surface of the body and as a result the help of other methods is needed in order to
overcome the problem of the eigenfrequencies.

The great disadvantage in the use of the source simulation technique is in the fact
that rules for the positioning of the source surface are not known a priori. The posi-
tioning of the source surface and in consequence of the sources themselves, is based on
the experience of the programmer. Further research is necessary to investigate how the
method performs with complex surfaces. In that case the main question is about the
shape of the source surface.
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In this paper the analysis of the dislocation models and the possibilities of their applica-
tion to the description of the acoustic emission (AE) sources, which are acting during plas-
tic deformation of metallic materials are presented. Especially the one-dimensional atomic
Frenkel-Kontorova model of dislocation (model FK) has been discussed with particular
reference to its nonlinear properties which determine the movement of the dislocation kink
along the dislocation line as a solitary wave process. At the same time the equivalence
of the FK model with the string model of dislocation (S model) has been demonstrated.
In consequence, the FK model has been generalized by the consideration of new terms
of higher order responsible for the anharmonic (nonlinear) interaction between the atoms
(including also the second coordination zone). A new class of nonlinear partial differential
equations (NLPD equations), which may play a role in the theory of lattice vibration of
the crystal with dislocation as well as in the theory of dislocations, has been obtained. The
results are discussed in the context of rich experimental data (obtained at IMIM) which es-
tablish the correlations between the measured AE parameters and the plastic deformation
mechanisms as well as microstructure evolution occurring in fcc single and polycrystals
subjected to channel-die compression, especially at the liquid nitrogen temperature.

1. Introduction

The phenomenon of acoustic emission (AE), occurring particularly at a moderate
degree of plastic strain, is generally explained on the basis of various forms of the dis-
location movements [1-4]. However, there exists no model, which would be commonly
accepted. On the other hand, the experimental data obtained so far at the IMIM, suggest
that there exist strong correlations between the AE behaviour and the dislocation mech-
anisms of plastic deformation [5—-9]. In particular, it was suggested in the quoted papers
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that the AE phenomenon during channel-die compression of both fcc monocrystalline
(Cu, Ag, Cu-2% Al) and polycrystalline (Cu, Cu-30% Zn) metals may be interpreted on
the basis of two main dislocation processes. The first one is the acceleration (or decel-
eration) of the dislocation motion and the other one is the annihilation of dislocations
occurring especially during the escape of dislocations to the free surface of a sample.

For these reasons the main aim of this paper is to search for such a model of
dislocation which could serve simultaneously as a model of the AE source. To attain
this, the existing dislocation models have been briefly reviewed. Especially, the atomic
Frenkel-Kontorova dislocation model (FK model) and its equivalent of the model of dis-
location as a string (S model) has been reconsidered. As a consequence, the FK model
has been generalized by the consideration (including the second coordination zone) of
the anharmonic interaction between the atoms.

2. Survey of dislocation models

Generally, there are two kinds of dislocation models: the discrete models and continu-
ous ones. The more important models among the discrete ones are: the Peierls-Nabarro
model (PN model), the Maradudin static and dynamic models, the Tewary dynamic
model and the FK model. These models are discussed in greater detail in [10]. Here we
want to note that thanks to the PN model, we are familiar with the concepts of both
energetic barriers (PN barriers) and sinusoidal periodic force, f, commonly called the
PN force, which is given by

f = brpsin(2wz/a), (1)

where 7, = Up/ab is called the Peierls stress, and U, defines just the energy of the
PN barriers; a is the lattice parameter and b is the magnitude of the Burgers vector of
dislocation.

Other dislocation models are based on the static and/or dynamic properties of the
crystal lattice. The simplest of them, at least from the point of view of lattice vibrations,
is the atomic FK model of dislocation in a one-dimensional crystal (Fig.1). In the FK
model the PN force is also taken into account, and it is very interesting to note that
the FK model is mathematically equivalent to the continuous model of dislocation as
an infinite string (S model, Fig. 2), vibrating within two adjacent valleys of the Peierls
potential, U(z), defined as follows

U= / f(z) dz = (Up/2)[1 — cos(2nz/a)]. @)

The movement of the dislocation in a real crystal is the consequence of the dislocation
kink motion along the dislocation line. The basic solutions of the governing equation in
the FK model, as presented further in Sec. 3, describe clearly the properties of the moving
dislocation kinks and particularly also their behaviour as the solitary (nonlinear) wave
processes. Moreover, the FK model is, at the same time, a quite good analytical model
of the dislocation core, the elastic properties of which are highly nonlinear, and thus
their description in terms of the linear theory of elasticity is completely insufficient.
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Fig. 1. One-dimensional Frenkel-Kontorova model (FK model) of edge dislocation (a), the corresponding
atom configuration in the Peierls potential (b), and the kink motion as a solitary wave process (c).

This strong nonlinearity of the dislocation core determines the solitary wave behaviour
of the moving dislocation kink. Since the vibrating motion of the dislocation core as
well as the mutual annihilation of the dislocation kinks of opposite signs may be, in our
oppinion, the real causes of the acoustic waves in plastically deformed crystals, both the
FK and the S models will be reconsidered below in greater detail as they now constitute

the basis of the dislocation models of AE sources.
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Fig. 2. String model (S model) of dislocation (a) and the kink motion (b), (c) along an infinite dislocation
line.

2.1. The Frenkel-Kontorova dislocation model (FK model)

In the one-dimensional FK model two series of atoms are considered (Fig. 1, at the
top). The lower series (B) is immobile and contains n atoms which are treated as perfectly
rigid and elastic balls lying in the potential valleys and connected by the springs (Fig. 1,
at the middle). On the other hand, the higher series (A) contains (n + 1) atoms which
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may vibrate along the z-axis. In this way a system of two such series of atoms forms an
object like the nonius of the effective length £ in which to (n + 1) marks (atoms) in the
higher part there correspond only n marks (atoms) in the lower one.

Let assume that uy is the displacement of the k-th atom in the higher row in relation
to the equilibrium position occupied by its counterpart in the lower row of atoms. In fur-
ther considerations it will be assumed that the lower row of atoms constitutes a perfect,
one-dimensional crystal in which the atom at the position z; determines simultaneously
the position of the k-th node of an ideal one-dimensional crystal lattice of the parameter
a. For simplicity it is also assumed that the magnitude of the Burgers vector is b = a.
Then the position of the k-th atom in the higher row can be written as follows

T =ka+u, (3)

and the total potential energy, @, of the atoms in the higher row in relation to those in
the lower one may be written in the following form

o0 o0
P = A Z [1 — cos(2mug/a)] + (a0 /2) Z (up1 — uk)?, (4)
k=-00 k=—o00

where Ag and aq are the interaction constants characteristic of the FK model. The first
term in Eq. (4) describes the part of potential energy related to the changes in positions
of the atoms in the dislocated crystal. On the other hand, the second term describes
the energy of the mutual interactions between the vibrating atoms in the higher row.
Moreover, this term is derived by using the so-called approximation of the first nearest
neighbours (e.g. for the k-th atom there are atoms in the nodes with the numbers (k—1)
and (k + 1) only). With these assumptions, the equation of motion for the k-th atom of
mass m has the following form

md®u, [0t = —08/duy (5)
or, after differentiation of Eq. (4), the form
m*uy /0t® = —(27 - Ag/a) sin(2mug /a) + o (Ugs1 + Uk—1 — 2ux). (6)

Furthermore, in the FK model it is also assumed that the quantities u; are continu-
ous functions of the position z and the time ¢, and that the displacements of any two
neighbouring atoms from the equilibrium position are not drastically different, i.e. the
following relations are satisfied

Up41(T) 2 up(z + a) and Ug—1 () = ur(z — a). (7)
Using Eq. (7) and the second order Taylor expansion the next relation can be obtained
U4l + Up—1 — 2uy = azazuk/ax? (8)

Finally, putting Eq. (8) into Eq.(7) and denoting for simplicity, ux(z,t) = u(z,t) = u,
one can obtain the equation which is a governing one in the FK model. This is the
nonlinear partial differential equation (NLPD equation) which is very well known in the
theory of solitons and is called the sine-Gordon equation (SG equation)

mo*u/dt* — apa’d’u/dz® + (21 Ao /a) sin(2mu/a) = 0. 9)
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In physical contexts the SG equation is often written in the form
*w/ot? — c2*¥/0z* + wEsin¥ =0, (10)

where it is assumed that ¢ = 27u/a and both the velocity co and the frequency wp
constants, characteristic of the FK model, are given by

2 =apa’/m and Wi =4n?Ay/ma’. (11)

In further considerations other notations will be used for the derivatives, e.g. 8?%/9z*
= ¥,,. Then the SG equation (10) may be written in a more simple form

Wyt — oWz +wosin® = 0. (12)

The basic solutions of the SG equation, reflecting the essence of the FK model, and
describing the soliton nature of the movement of dislocations, will be discussed further, in
Sec. 3, where the generalization of the FK model is proposed. Below, the reconsideration
of the string model of dislocation (S model) and its equivalent of the FK model will be
also presented briefly in the new aspect of the dislocation models for AE sources (see
also [10]).

2.2. The string model of dislocation (S model)

The S model is only one of the continuous models which is reconsidered here in the
context of the dislocation models of AE sources. Other types of continuous dislocation
models are based on the Somigliano model which was constructed within the theory of
continuous media and they will not be considered here.

The dislocation segment in a real crystal, lying in a slip plane (Fig.2) between two
point obstacles (e.g. of the type of forest dislocations), and, at the same time, being
potentially the dislocation source of the Frank-Read type (FR source, Fig.3), can be
treated as a string vibrating in a single Peierls potential valley (Figs.2a and 3a, b).
The general equation of the motion of a dislocation as a vibrating string was derived
by Koehler and later this equation was considered also by Granato and Liicke in the
context of the theory of internal friction (see also [10]).

It appears that in the particular case, when the infinite string is considered and
both damping and external forces are neglected, the shape, {(z,t), of a freely vibrating
dislocation string is described by the following NLPD equation

Md?*¢/dt* — T9*¢/02® + brpsin(2n¢/a) =0, (13)

where M is the effective mass of the dislocation unit length, T is the line tension of the
dislocation, and the Peierls stress 7, is defined by Eq. (1). One can see that Eq.(13) is
the same as the SG Eq. (12), and that the characteristic constants are now given by

c3 =T/M, wi = 2mbry/Ma. (14a)

The expressions (14a) mean that the FK and S models are mathematically equivalent.
There are two kinds of the consequences of this equivalence (see also [10, 11]). First,
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Fig. 3. The model of the Frank-Read dislocation source operation (FR model).

the parameters ag and Ap in the FK model can be expressed by the corresponding
parameters M and T in the S model because the characteristic constants ¢y and wo,
appearing in the common SG equation (12), are given by

g =T/M =apa®/m,  w§ =dn*Ag/ma® = 2nbr,/Ma. (14b)
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More detailed considerations [10, 11] show that the effective mass of the dislocation of a
length equal to the lattice parameter a, is, as a good approximation, equal to the mass
of the atom, i.e. Ma = m. Thus, the interaction constants ap and Ap in the FK model
may be expressed as

ag =T/a, Ag = mpab/2m = U, /2, (15)

i.e. the microscopic parameters ag and Ag may be expressed by the macroscopic param-
eters of line tension T and the Peierls stress 7,, which are often estimated as T = ub?
and 7, = 10~%u for fcc and 7, = 10~2u for bee crystals; p is the shear modulus for a
given crystal.

Secondly, the equivalence of the FK and S models means also that their common
Eq. (12), and particularly its solutions, can be, in a sufficiently satisfying way, referred
to a three-dimensional real crystal in which the movement of dislocation is, after all,
a very complex process perturbed by various internal interactions, and in general, it
proceeds also under the perturbations of external forces. In this way, the SG equation
and its solutions, when related to an idealized case, describe the basic unperturbed forms
of the dislocation motion which have been extracted from the real more or less perturbed
and chaotic movement. The simplest cases of such solutions will be further discussed in
detail in Sec. 3.

3. Generalization of the FK model

The generalization of the FK model, proposed in this paper, consists in taking into
account new assumptions. The first one is the interaction between atoms in the second
coordination zone and the second one is the nonlinear (anharmonic) interaction between
the atoms in both the coordination zones.

The starting point is the expression for the potential energy of a simple ideal crystal
of regular structure. This expression contains the terms of the Taylor expansion includ-
ing those of fourth order [12]. Thus, instead of Eq.(4), the following formula will be
considered now

1/2)2{ (1/2)) qu‘”(m n)uq (m)ug(n)

+(1/3) S 88, (m,n, p)ug (m)us(n)u,(p)

mnp
+ (174 S 89 ( Juq (m)ug(n) 16
afuy\ LI P G Uq(m uB(n uu(P)UV(q) , (16)
mnpq
where the vectors
m=1-k, n=1 -k, p=1"-k, q=1" -k, (17)

are lattice vectors related to the corresponding components, u,, of the vectors of relative
displacements of the atoms in the positions defined by the respective vectors k and k+m,
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etc. These components are determined by
Ua(m) = ua(l) - ua(k) = ua(k + m) — uq (k). (18)

Instead, the quantities, digﬁ),m, where i = 2,3,4, are the force constants of the second,

third and fourth order, respectively. They are defined as the values of the respective
second, third and fourth order derivatives calculated with respect to the corresponding
components u,(m). For most crystals, the values of the force constants are known and
are not given here.

In the one-dimensional case, considered here, we have a = = p = v = z, u, (m) =
u(l) = u(k) = Ugym — Uk, ¢f:},m(m, n) = Py, and b, = (Up/2)[1 — cos(2mui/a)]. Then
all the expressions become simpler and one can obtain the following formula for the
potential energy of a one-dimensional crystal with a dislocation

00

& = (Up/2(1 - cos(2mup/a)] + (1/2) { > (1/2) Y Ptk — ) gk — )

k=-o00 mn

+ (1/3!) z émnp(um+k = ug)(Unpk — Uk)(“p«b—k — ug)

mnp
+ (1/4) Y Prnnpg (Umk — k) Unike — ) (Upk — wk) (Ugak — uk)} o (19)
mnpq

where the summation proceeds over m, n, p and ¢, as including the second coordination
zone, and should be taken from —2 up to +2. In this way the final form of the equation
of motion for the k-th atom may be written as follows

mduy /0t = —0B/dux = —b7p sin(27uy /a)
+ Ap (e — uk) = (e — wps1)] + Ao [(upgo — ui) — (ug— ugs2)]
+ By [(ur+1 = uk)? = (ur— wis1)?] + By [(urs2 — u)? — (uk = ups2)?]
+ C1 [(whrr — )’ = (k= urg1)®] + Co [(urso— ur)® = (ur— ur42)®],  (20)

where the constants A;, B; and C;, (i = 1,2) may be expressed by the force constants
Dmn, and by the force constants of higher orders, i.e. the third Pmnp and fourth @,,np,
ones. Consequently, like in the case of the FK model, we use the continuous approxima-
tion and the fourth order Taylor expansion, i.e. it is assumed that

Uk4n(2) = uk(z + an), (21)
and
Uktn —ur = (an)Oux/0z + (1/2!)(an)?0%uy /02>
+ (1/3")(an)*d%ur /02® + (1/4")(an)? @ uy. /D, (22)

where the index n proceeds over +1, +2. In this way a new NLPD equation is obtained
governing in the generalized FK model. Namely, after the replacements, ¥ = 27u/a and
u = uy, and using a simple notation of the derivatives, it has the following form

Wy — gz +wp SIn¥ = 3V, Wy + cAV2W,, + AWsras (23)
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where the constants ¢; (i = 0,1,2,3) and the wp are expressed by the formulae

c% = aaz/ma sz = ﬁas/mv c; = 7“4/m'

24
¢ =édat/m, Wi =2rUp/ma?, (24)

in which the a, 3, v and J constants depend only on the force constants @p,.... Below
the most important cases of the general Eq. (23) will be briefly considered.

3.1. A non-dislocated crystal (wo = 0)

This case is mostly discussed in the theory of crystal lattice vibrations. FLYTZANIS
et al. [13] have shown that it leads to the type of the NLPD equation well known in the
theory of solitons as the Boussinesq equation. Namely, after the substitution © = ¥,
Eq. (23) with wo = 0 becomes the so-called generalized Boussinesq equation in which
both kinds of anharmonicity (cubic and quartic) are taken into account

9“ - c(zlezz = (c:l’/z)(ez)zz + (03/3)(93)::: + Cge::zz.t . (25)

On the other hand, considering only the cubic anharmonicity (in Eq.(25) c; = 0) we
obtain the NLPD equation which is known simply as the Boussinesq equation, whereas
the consideration of the quartic anharmonicity only, i.e. the nonlinearity of the fourth
order (in Eq.(25) ¢; = 0), leads to the NLPD equation which is called the modified
Boussinesq equation. The explicit forms of these NLPD equations are not given here,
though it is worth of notice that all the NLPD equations of Boussinesq type are of very
great importance in the theory of crystal lattice vibrations.

32 A dislbcated crystal with cubic (c; = 0) and quartic (c; = 0) anharmonicities

The consideration of the cubic anharmonicity only in the generalized FK model is
described by Eq. (23) with the constant ¢; = 0, i.e. by a new type of the NLPD equation

Wy — CoWzz + wasin® = 3V, Vez + 3¥zzzz - (26)

Instead, the consideration of the anharmonicity of the fourth order only (Eq.(23)
with the constant ¢; = 0) also leads to a new type of the NLPD equation

Wy — a¥zz + wisin® = +c3¥2Wp; + c§Wsrzzz - (27)

In this way, we have obtained a new class of NLPD equations not discussed so far in
the theory of solitons. It is very probable that they have solitary wave solutions which
also (like in the case of the Boussinesq equations) may play a role not only in the theory
of dislocated lattice crystal vibrations, but also in the very theory of dislocations. To
our knowledge, any solutions of these equations are not known and some efforts to solve
them are undertaken now by using both the analytical and numerical methods. These
attempts are limited rather to literature studies, though the computer simulation of
numerical solutions is sufficiently advanced now.
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Fig. 4. A schematic illustration of the annihilation and creation of dislocation kinks described by the
two-soliton solution of the SG equation in the FK model.

3.3. A harmonic crystal with dislocation (c; = ¢z = c3 = 0)

It appears that the harmonic vibrations of atoms within the first coordination zone
in a one-dimensional crystal with a dislocation is still the case best recognized. It is
described by Eq. (23) with ¢; = ¢ = ¢3 = 0, i.e. just by the well known SG equation (12)

Uy — c?,!l/u + wg sin¥ =0, (28)

which is the fundamental equation in the FK model. The SG equation was discussed
sufficiently in Sec. 2.1, and here we present its simplest solutions which was found for
the first time by SEEGER et al. [14] (see also [10]). These solutions can serve as the basic
dislocation models for the elementary acoustic emission events.
The fundamental one-soliton solution of the SG equation (28) may be written in the
form
¥(z,t) = 4tan™" {exp[x(z — vt)/€]}, (29)

where £ = & (1 — v?/c3)'/? is the width of the dislocation kink and v is its velocity;
&o is the kink rest width. The solution (29) describes the movement of the dislocation
kinks, i.e. both the positive (sign “+” in expression (29)) and the negative (sign “-” in
(29)) kinks as a solitary wave process (or simply as the soliton, s, and the antisoliton,
3, respectively; Fig. 2b, c; £ = ¥).
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The simplest two-soliton solution of SG equation, given by the formula
¥ (z,t) = tan™'[c sinh(vt/z) /v cosh(z/£)], (30)

describes, in turn, the movement of a system of two dislocation kinks of opposite signs
which are approaching each other from infinity, and, at first, they are annihilated and
next created in subsequent Peierls potential valley, and in the further evolution they run
away again in opposite directions to infinity. Thus, this solution describes the elementary
dislocation annihilation process inside the crystal as a solitary wave process. There exists
another two-soliton solution of the SG equation, i.e. the so-called pulson

¥(z,t) = 4tan~! {(wg — w2)!/2 sin(wyt) /wp, cosh [:1:(1 - W2 wR)? /50] } . (31)

which is a stable system of two dislocation kinks of opposite signs vibrating at the
frequency wp. Similarly, the kinks here are also approaching each other, and after anni-

+, =44+ w/ep #_s___- - ....5.%.__

Fig. 5. A schematic illustration of the stable vibrating system of a pair of dislocation kinks (the so-called
pulson) as described also by a two-soliton solution of the SG equation in the FK model.
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hilation and creation they are again running away in opposite directions, but now only
by a finite distance A, (Fig.5). Then the process is repeated in the same way.

4. Dislocation models of the acoustic emission sources (AE models)

A concept is proposed below saying that the basis of the acoustic emission phe-
nomenon, observed during the plastic deformation of regular crystals, are elementary
dislocation processes, the description of which is given in the three above mentioned
simplest soliton solutions of the SG equation as the one governing both the FK and S
dislocation models.

4.1. AE models based on changes in the dislocation velocity

The starting point is here the theory in which ESHELBY [15], considered the vibrations
of a dislocation kink (Fig.6a) and derived, as the first, the formula shows that the rate,
P, of the acoustic energy emitted by the vibrating kink is proportional to the mean value
of the square of the time derivative of its velocity

P = mpye(0?), (32)

Fig. 6. Scheme illustrating the dislocation kink vibrations: (a) the rigid kink vibrating as a whole along
the dislocation line, (b) the kink vibration as related to the changes in its width, and (c) the changes
in the derivative of the kink shape.
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Fig. 7. The mechanism of the Frank-Read dislocation source operation (FR model) as the dislocation model of the source of elementary
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where my is the kink effective mass, v = pa®/10mmic® with ¢ = ¢;3(1 + ¢} /3¢),
where ¢; and ¢; are the transverse and longitudinal velocities of the sound, respectively.
It should be noted, on the other hand, that the expression (29) says also that the changes
in the kink velocity, v, result in corresponding changes of its width £&. Namely, the shape
of the accelerating kink becomes more sharp, whereas the shape of the decelerating one
is more soft, thus the kink vibrations can occur also in a way illustrated schematically
in Fig.6b. In terms of the derivative of the function of the kink shape it means that
the “hump” is more sharp or more broadened, respectively (Fig.6c). In consequence,
the solution (29) and the formula (32) constitute a dislocation model for the source of
elementary acoustic emission events, related generally to the changes in the dislocation
kink velocities (or simply in the dislocation velocities) including also those changes of
various kinds of their vibrating movement.

It should be also stressed here that the result, similar to Eq.(32), but describing
the dislocation mechanism of AE sources in a macroscopic scale, was obtained later by
KosEVICH [16]. In general, he used the methods of the continuous theory of dislocations
in reference to the dynamics of any system of moving dislocation loops, and particularly
to the system of dislocation loops emitted by sources of the Frank-Read type (Figs.3
and 7). In a general way, KOSEVICH [16] stated that the density of the elastic energy
flux, 7, is proportional to the mean value of the square of the second time derivative of
the so-called dislocation moment, D, for the system of moving dislocation loops

I~(@D), (33)

where D is the dislocation moment tensor which, e.g. for a single dislocation loop, is
defined as D = Ab, i.e. as the diadic product of the vector A of the area of the ex-
panding loop by the Burgers vector b of the dislocation. Though in the case of a system
of dislocation loops, the soliton behaviour is not completely recognized as yet (some
suggestions given in Figs. 12 and 13 are discussed also in [17, 18]), the formula (32), and
similarly, the expression (33) describe the same large class of dislocation models of AE
sources related to the dislocation acceleration.

4.2. AE models based on the dislocation annihilation

The starting point is the basic two-soliton solution of the SG equation, given by
(30), which describes the annihilation of dislocations in a completely analytical way.
This solution is referred to the unperturbed case when after an annihilation event there
occurs a creation, and next the dislocation kinks move in opposite directions (Fig.4).
However, in fact, such perturbations as lattice friction and/or various obstacles to the
dislocation motion (e.g. forest dislocations, solute atoms, etc.) do not favour the repeated
creation of kinks and the whole elastic energy revealed in the annihilation process can
be transferred into the energy, E, of the acoustic wave.

The energy, E, was estimated for the first time by NATSIK and CHISHKO [19] by the
methods of the linear theory of elasticity of continuous media. Their result says that the
energy, E, is proportional to the square of the relative velocity V of the annihilating
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dislocations of unit length. For screw dislocations, it is given by the expression
E = (pb?/87)V2In(L/b), (34a)
whereas for edge dislocations by the formula
E = (pb®/87)V23(1 +~2) In(L/b), (34b)

where L is the linear dimension of the crystal, 7. = ¢;/c;, and p is the medium density.
It is often assumed that In(L/b) = 4m, 7. < 1, and pb* = M, i.e. the quantity pb® is
equal in the order of magnitude to the effective mass of a dislocation unit length. From
the above estimations and from the formula (34) it follows that the energy, E, at the
approximation of the linear theory of elasticity, has the form

E = MV?/2, (35)

which implies a simple physical interpretation, saying that during the annihilation, only
the kinetic energy of the relative motion of dislocations is transferred into acoustic energy.
On the other hand, a similar expression, though only in the sense of an additive
term, can be derived on the basis of two-soliton solution (30) of the SG equation: the
energy, Ej, of a single dislocation kink of the effective mass m) may be written as a
“non-relativistic” approximation (when the kink velocity is v < co; see also [10]) in the

following form
Ei = Eo + mypv? /2, (36)

where the kink rest energy, Eo, (energy of the dislocation core) as well as the kink
effective mass, my, can be expressed by the characteristic constants co and wg in the
SG equation, or by the parameters ap and Ay in the FK model, or by the parameters
7p and T in the S model (such an expressions has been derived and analysed in more
details in [10]). In consequence, for the energy, E, revealed during the annihilation of
two dislocation kinks, the following expression was obtained

E = 2E; = 2Eq + mV?/2, (37)

where V = 2v is the relative velocity of the annihilating kinks; for the unit length of
dislocation it was assumed that it is equal to the kink width £. The formulae (35) and
(37) differ only by the term 2E, (the quantities M and m; are of the same order of
magnitude). The explanation for this difference is quite simple. In the linear theory
of elasticity, the very strong nonlinear effects appearing due to the existence of the
dislocation core cannot be taken into acount. On the contrary, in the FK model, which,
at the same time, is a dislocation core model, these effects are considered. They are
reflected in the solitary wave properties of the dislocation kinks. Thus, the quantity Eo,
given by the formula

Eo = 2a(2U,T)"/?/m, (38)
as an additive term in Eq. (37), does not change the quantitative physical interpretation:
the AE caused by the dislocation annihilation is proportional to the square of their
relative velocity. Perhaps, the term Ep can play a role in the qualitative estimations of
the number of AE events.
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As a result of the above considerations, one can say that the formulae (30) and (37)
constitute the basic dislocation model of the source of elementary AE events which, in
general, are related to the dislocation annihilation processes. It should be emphasized
that this model can also serve as a model of AE sources related to the dislocation
annihilation processes occurring at the free surface of the sample due to the escape of
dislocations from the crystal because, from the mathematical point of view, the problem
is in this case equivalent to the annihilation of a dislocation with its virtual image of
opposite sign in respect to this surface. However, it should be strongly emphasized that
the models (29), (30) and (31) describe the soliton behaviour of dislocation kinks in
a conservative, closed system in that the energy and velocity remain unchanged, thus
they cannot be related immediately to a deformed sample which is an open system.
Nevertheless, these models are useful for the qualitative understanding of the operation
of AE sources in deformed metals where the perfect soliton behaviour is perturbed by
external and local stresses.

4.3. Other AE models

First of all, the mixed models based, in an inseparable way, on both the dislocation
velocity changes and the dislocation annihilation processes should be mentioned here.
The two-soliton solution of the SG equation, given by Eq.(31), i.e. the so-called pul-
son illustrated schematically in Fig.5, may serve as an example of such a model on a
microscopic level. According to the formula (29), the stably vibrating pulson generates
acoustic waves due to the continuous changes in the linear velocity of its kinks. On the
other hand, the total destruction of the pulson results also in the generation of acous-
tic waves related, in turn, to the annihilation of its kinks according to formula (37).
Such a situation is very probable because repeated creations of the kinks may be often
impossible, for example due to strong local perturbations.

Another example of the mixed AE models is the Frank-Read mechanism of the
dislocation source operation (FR model, Figs.3 and 7). In this case the annihilation
of many dislocation kinks takes place in each time interval when the closing of the
dislocation loop occurs (along the sections C and D of the dislocation line in Fig. 3c; see
for more details Fig. 7b and c). This leads, according to formula (36), to the generation
of elementary AE events. On the other hand, each of the just closed dislocation loops
which is still expanding, e.g. under external stresses, is undergoing the acceleration and
thus it generates an acoustic wave according to Eq. (29); see also [4, 10, 18].

Also the dislocation pole mechanism of the twin formation (Fig.8, T model) is an-
other example of mixed models of the AE source. The increase of the velocity of twinning
dislocations, which is especially high just in the twinning processes, is the main cause of
the acoustic wave generation according to the formula (29). Similarly, during the escape
of the twins from a crystal to its free surface, i.e. the annihilation of twinning disloca-
tions, elastic energy is released and transformed into the acoustic wave energy according
to Eq. (37).

All the AE models discussed have their more or less immediate origin in the cor-
responding (governing) type of the equation of the dislocation motion. In most of the
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Fig. 8. A schematic illustration of the twinning process: the dislocation pole mechanism (d) leads to

the mirror positions of atoms (c), and the final deformation of the crystal (b) differs from the step

formed only due to the slip (a); both cases, at a one-dimensional approximation, are equivalent to the
dislocation pile-up (e).

cases considered here, it is the SG equation that can be qualified as the equation of
string type. Thus it is worthy of pointing out that also equations of the diffusion (or
heat transfer) type may have solutions of the solitary wave type (see e.g. [18]), and they
can serve too as possible dislocation models of AE sources. Such a suggestion, just in a
new context of AE, is briefly reconsidered below.
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4.4. AE models based on a “diffusion” equation of the dislocation motion

Starting from the equation of continuity for a coplanar array of moving dislocations
(e.g. generated by the FR source and distributed continuously), we consider the dynam-
ics of dislocations in terms of a concept of the dislocation flux which would obey the
equation formally similar to those describing the diffusion or heat transfer processes. In
a one-dimensional space, we may define the dislocation flux in the form

J(z,t) = p(z, t)v(z, t), (39)
which satisfies the equation of continuity
9p(z,t)/0t = -8J(x,t)/0x, (40)

where p(x,t) is the linear density, and v(z,t) is the mean velocity of dislocations (see
e.g. (21, 22]). For simplicity, we restrict our treatment to the one-dimensional case, i.e.
we consider a dislocation flux in only one direction corresponding to the single active
slip system. Using the results of our earlier papers [18, 23] on the thermally activated
motion of dislocations, the following expression, analogous to that for heat conduction
or diffusion processes, may be obtained

J(x,t) = —Dop(x,t) /0, (41)

and finally, using Eq. (40) we get the evolution equation for the density of activated
dislocations which is analogous to the Fourier law of heat transfer or to the second Fick
law of diffusion

dp(z,t)/0t = DO?p(z,t)/0z>. (42)

This equation is the simplest version of that one discussed earlier [24, 25] in the form
dp/dn = DAp+ kip — k2p?, (43)

where, additionally, n is the number of the imposed load cycles in the fatigue process
considered there, and the constants k; and ko are the multiplication and annihilation
coefficients, respectively; A is the laplacian. In this way, Eq. (42) is related to the ideal
extracted case of the dislocation motion, where the terms responsible for both the multi-
plication and annihilation of dislocations are neglected (i.e. in Eq. (43) k;=0 and k, = 0).

In order to determine the flux, J(z,t) = p(z,t)v(z,t), of activated dislocations, it is
necessary to find the evolution equation for the dislocation velocity v(z,t). Assuming
that the mean value of the dislocation flux is, J = pv/2, Eq. (41) may be written in the
following form (see also in [18, 23])

p(z, t)v(z,t)/2 = —Ddp(x,t)/Ox. (44)

It is, perhaps, very interesting to note that this equation has the form of the Cole-Hopf
transformation which is known in the mathematical theory of solitons, and is usually
given by

v(z,t) = —2Dp./p. (45)
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This transformation maps solutions of the diffusion type equation (42) onto solutions of
the NLPD Burgers type equation, the form of which may be written as follows

Ov(z,t)/0t + v(z,t)0v(z,t)/0x — D&*v(z,t)/0z* =0, (46)

or simply in the form
vy + vy — Dvug, = 0. (47)

One of the analytical well-known solutions of the Burgers equation is of the solitary
wave character, the form of which is the Taylor shock profile given by [26] (see also in
(18, 23])

v(z,t) = aD{1 — tanh[(z — aDt)/2]}, (48)

where 2aD = v is the velocity at £ — —00, and ave, /2 = w is the rate of changes in the
dislocation velocity during their propagation. These changes are of the step-like front
character and they are localized within a narrow region of the space [26].

In agreement with the above considerations we can now treat the motion of a group
of dislocations as a nonlinear wave process, i.e. during each local movement of the dis-
location group inside the crystal (related e.g. to the FR mechanism of the dislocation
source operation in the simplest case, or in a more general case to the slip and/or shear
band propagation), the mean velocity of the group changes in space and time like a
solitary wave impulse. Thus, in the sense of changes in the dislocation velocities with
time, the movement of a dislocation group can be considered as the AE source of the
type described by the formula (32) or (33). Finally, it is worthy of pointing out that
there exist also the periodic solutions of the SG equation. Such solutions, for example,
were discussed elsewhere [27] in the context of the behaviour of the moving dislocation
kink as the soliton on the background of a quasi-periodic process.

5. Discussion and conclusions

Firstly, we present some chosen most representative experimental data which illus-
trate the existence of strong correlations between the behaviour of the acoustic emission
(AE) and the mechanisms of plastic deformation in mono- and polycrystalline metals
of a fcc lattice that undergos a channel-die compression at both the ambient and liquid
nitrogen temperatures [5-9].

In Figs.9-11 the behaviours of AE, i.e. the rate of the AE events, AN, /At, as well
as functions of the external compressing force (diagrams at the top) together with the
corresponding microstructure (photos at the bottom) are presented. These figures reflect
the more significant deformation mechanisms during the channel-die compression which
are connected, first of all, with the processes of twinning (Figs.9 and 10) and with the
formation of the primary family of shear bands (Fig.11). For example, in Fig.9 it is
shown that the formation of exactly three thin plates of twins (in the direction marked
on the photo) is accompanied also by exactly three very pronounced peaks of the rate
of the AE events (in this case the compression test has been especially stopped at the
moment in that the twinning process begins). In Fig. 10 the characteristic steps (see also
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Fig. 9. Acoustic emission (AE). external force (at the top) and the corresponding microstructure (at the
bottom) of silver single crystals of {112}(111) orientation during channel-die compression at ambient
temperature (reduction : = 11%, magnification x10).

the scheme in Fig.8) formed due to the escape of the twins to the free surface of the
sample are shown. On the other hand, in Fig. 11 it was demostrated that the formation
of a primary family of shear bands is related to the creation of the steps at the surface
of the sample, the latters being simultaneously strongly correlated to the corresponding
AE peaks as well as to the sudden drops of the external compressing force that are
accompanying them.
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Fig. 10. AE, external force and microstructure of Cu-2% Al single crystals during the channel-die
compression (I" = 77K, z = 60%, orientation {421}(112)).

The high rate of the AE events during the formation of the particular plates of twins
(Fig.9), attaining the values even of the order of magnitude significantly above 104, is in
our opinion caused mainly by the escape of the twins to the crystal surface which results
in the formation of characteristic steps like those shown in Fig.10. If we assume the
pole mechanism of the twin formation (Fig.8), such an interpretation is in a qualitative
agreement with formulae (35) and (37).
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Fig. 11. EA, force and microstructure of Ag single crystals during the channel-die compression (T" = 7T K,
z = 63%, %200, orientation {112}(111)).

A following attempt of the quantitative estimation of the rate of AE events during
the formation of a single twin plate can be made. Let us assume that an elementary AE
event is connected with the escape to the surface of the twinning dislocations moving
within the range of one atomic plane. For simplicity, it is assumed that the lattice
parameter a is of the order of Burgers vector, i.e. @ 2 b 2 104 um (for Cu b = 2.8 A).
The observed width of the twin lamellae oscillates within the limits 10% to 103 pm which,
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Fig. 13. Schematic illustration of a simple model of slip band propagation (a), its solitary wave repre-
sentation (b), and the dislocation dynamics in active slip systems (c).

at the applied magnifications of the order of 10 to 100, places the value of the actual
width of a twin lamella, at a rough approximation, in the interval from 1 to 100 pum.
Hence, the number of engaged atomic planes, and thereby the number of elementary AE
events comprising an AE peak originated from a single lamella, is of the order of 10*
to 10% which is satisfactorily consistent with the magnitude of the observed values. As
known and has been mentioned earlier, the dislocations may develop very high velocities
during the twinning process (of the order of the speed of sound). Thus, it should be
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remembered that great dislocation accelerations are also possible which means that the
AE sources of the type defined by the formulae (32) or (33) may be of vital importance
in the case of the twinning processes.

In consequence, proceeding in a similar way as in the case of the twinning, we can
discuss the formation of shear bands (Fig. 11). The steps on the sample surface (clearly
seen in the photo) are formed as a result of the strain localization in the generated shear
bands. each being accompanied by a rapid drop of the external force and a corresponding
AE peak the value of which falls within the limits 10* to 4 x 10*. Assuming that a single
elementary AE event corresponds to the escape of a single gliding dislocation to the
surface (a step of the order of magnitude of Burgers vector b), it can be estimated that
the real size of such steps as shown in Fig.11 (2 2mm at the magnification x200) is
of the order of 10pm. Next we assume that the number of dislocations generated by a
single FR source, forming a slip line, is of the order of 10> — 10* (in the literature values
closer to about 10% are often assumed [28]; see also [29]). Thus, it can be expected that
the formation of a step of size of ~ 10 um on the sample surface is accompanied by the
escape of dislocations from very many slip planes, that can be of the order of 10%; each
single source of the plane (e.g. of the FR type) has produced so many dislocations that
nearly 10 of them became annihilated on the sample surface. In this way the formation
of a step of the order of 1 to 10um in size would be associated with the generation of
10* to 10° elementary acoustic events forming a single AE peak. Such an estimation of
the order of magnitude is in accordance with the values observed (from 10* to 4 x 10*
in Fig. 11).

It should be also pointed out that the contribution to the values of the AE peaks
observed may originate also from the annihilation processes during the operation of the
FR sources (Figs.3 and 7) when the dislocation loops are closing as well as from the
acceleration of the dislocation loops already generated by these sources. It can be seen
that a more significant role of these effects corresponds rather to the beginning stage
of the plastic deformation when the yield point (the range of dynamic formation of
slip lines) is exceeded. On the other hand, when the shear band formation process is
beginning (the creation of the marked steps at the sample surface), the effects of surface
annihilation of dislocations are rather prevailing.

To sum up the discussion, it should be emphasized that a new model of dislocation,
i.e. the generalized FK model, has been proposed here and that the governing differential
equations for the dislocation motion in this model constitute a new class of NLPD
equations which, to our knowledge, have not been sufficiently recognized so far in the
theory of solitons. Moreover, literature studies of the analytical methods of the solution
of NLPD equations have been started, and, at the same time, good progress has been
made in preparing a computer programme for their numerical solutions. On the other
hand, the FK dislocation model is reconsidered and it has been shown that the basic
soliton solutions of the SG equation, being the governing NLPD equation in the model,
can be used as basic elements for the dislocation models of the acoustic emission sources
since they are very useful for the qualitative understanding of the dislocation annihilation
and acceleration processes in a micro-scale. It has also been shown that the proposed
dislocation models of the AE sources describe qualitatively the behaviour of AE during
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the channel-die compression of fcc metals in a quite satisfactory way. In particular, on the
basis of these models the order of magnitude of the values of the peaks of the rate of AE
events have been estimated in good agreement with the values observed. Consequently,
the most significant results obtained can be formulated in the following final conclusions:

— The differential equations for the dislocation motion, governing in the generalized
FK model, are new NLPD equations which can play a role in the theory of the dislocated
crystal lattice vibration as well as in the theory of dislocations.

— The SG equation, being the governing NLPD equation in the FK dislocation
model, has the analytical solutions which are of the soliton type and which describe the
dislocation annihilation processes as well as the vibrating movement of the dislocation
kinks.

— The basic soliton solutions of the SG equation, given by Egs. (29), (30) and (31),
as well as the expressions (32) and (37), constitute the main elements of the proposed
dislocation models of the acoustic emission (AE) sources related to both the annihilation
and acceleration of dislocations.

— The proposed dislocation models of the AE sources allow to estimate the values of
the peaks of the rate of AE events accompanying the slip line formation, twinning and
shear banding processes during the channel-die compression of fcc metals; the orders of
magnitude of these values, are in a quite good agreement with the observed ones for AE
peaks.
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The paper contains the results of experimental and theoretical research aimed at elab-
orating characteristic features of the acoustic conditions in the Southern Baltic. As there
features are fully dependent on the hydrological conditions, the sound speed distribution is
influenced by many factors and changes during the year. On the basis of hydrological data
recorded from 1979 to 1991 by measurements at stations situated along the deeps of the
Southern Baltic, the sound speed has been calculated using the procedure of Chen&Millero
recommended by UNESCO. The data were averaged in one-months periods and subjected
to a detailed analysis of the speed variations during the year. The patterns of the sound
speed distribution characteristic for every month have been determined. Research was also
conducted to find to what extent the synoptic patterns of the sound speed distribution dif-
fer from the averaged respective data. To solve the problem, several synoptic distributions
established in different seasons are compared with the averaged distribution. Difficulties in
specifying the acoustical conditions of the Southern Baltic are augmented by the appear-
ance of short-term local phenomena changing considerably the sound speed distribution
in certain areas. Examples of such phenomena are presented in the paper. The paper is
based on a large number of in situ measurement data presented in the form of diagrams.

1. Introduction

Conditions of the acoustic wave propagation in shallow water differ considerably from
those prevailing in the ocean. They depend on many factors such as the depth of the
water related to the wave length and the boundary conditions specified by the type of the
bottom [31, 14, 17] and the state of the sea [2]. Changes in the sound speed distribution
in shallow water are the main factor influencing the wave propagation [10, 22]. This fact
is often taken into consideration since the range of the action of the devices used in
underwater investigation is greatly dependend on it [1, 20, 29].

Numerous publications treated that problem in several aspects confirm its impor-
tance. The phenomena having an impact on the wave propagation in the sea are consid-
ered in several fundamental monographs, for instance in [4, 8, 30]; the problems concern-
ing the wave propagation in stratified areas are discussed in [3, 5], and the interaction of
the atmosphere and the sea in [26, 11]. The matter of acoustic conditions of the Baltic
Sea is examined in [15]. Data on the sound speed distribution obtained during cyclical
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investigations are published in the annual reports printed inter alia by the Polish Insti-
tute of Meteorology and Water Management and in the Reports of the German Baltic
Sea Research Institute in Warnemiinde. Measurements of the sound speed distribution
are often carried out together with other oceanographic investigations and are analyzed
jointly [12]. Sometimes they are treated separately and published independently [23,
24.19).

Numerous underwater investigations conducted concurrently with measurements of
the sound speed distribution testify to the recognition of the importance of that problem.
However there are very few publications devoted to the general characteristics of the
acoustic conditions in the Baltic Sea [13, 18].

Nearly all STD or CTD sounders are presently equipped with a sound speed meter
or can offer information on the sound speed distribution calculated on the basis of
hydrological parameters. However, in many cases it is necessary to calculate the sound
speed having at disposal only the results of measurements of the temperature and salinity
as function of depth. It requires an expression that describes adequately the influence
of temperature, salinity and static pressure on the sound speed. This aspect is of great
importance in view of the standardization of the measuring methods. Several expressions
describing the dependence of the sound speed on temperature, salinity and static pressure
are known (7. 21]. UNESCO suggests the expression obtained and verified by Chen and
Millero [9].

The Baltic Sea can be regarded as a shallow sea at least in two aspects. Its depth
is small in comparison with the depth of deep seas. Also assessing its properties from
the point of view of the acoustic wave propagation, the Baltic should be treated as a
shallow water for many waves of different frequencies, especially for the noise of technical
provenance [31].

Because of its low depth, the Baltic is strongly influenced by the wind mechanisms
and the changeable distribution of high- and low pressure areas. The acoustical condi-
tions in the Baltic are fully dependent on hydrological conditions. Generally, two main
layers can be distinguished in the Baltic Sea: the upper layer and the deep water layer.
The acoustical conditions in the upper one are influenced by the inflow of solar energy
into the sea surface and its transportation into the deeper parts of the sea, while the
acoustical conditions in the deep water layer depend on inflows of highly saline water
from the North Sea through the Danish Straits. Though the mechanisms of both of those
phenomena are well known, they are not fully predictable. The meteorological phenom-
ena influencing the processes occurring at the ocean — atmosphere border as well as
the deep water inflows are carefully observed and monitored. The general trend in their
changes during the year is stable, but the randomness factor modulating them plays a
significant role in forming the hydrologic-meteorological situation [25, 27]. Additionally,
the dynamics of dense bottom currents is strongly dependent on numerous physical fac-
tors as well as on the specific bottom topography. Therefore the long-term predictions
as well as the short-term ones of the conditions of the acoustic wave propagation are
burdened with a certain error.

The aim of the paper is to generalize the knowledge on the sound speed conditions
in the southern Baltic Sea. An attempt to characterize the acoustic climate of that
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region has been made. Research was also conducted to find an answer to the question
to what extent the synoptic patterns of the sound speed distribution, usually dependent
on the meteorological conditions prevailing prior to the performed measurements, differ
from the averaged respective data. It has also been pointed out that the underwater
investigation may be affected by local morphological and hydrological conditions.

2. Material and method of investigations

The various patterns of the sound speed distribution presented in this paper are
obtained on the basis of measurements of the temperature and salinity as a function of
the depth according to the UNESCO standard. The formula describing the dependence
of the speed of sound on temperature, salinity and the static pressure given by Chen
and Millero is used in numerical calculation [9].

Results of measurements performed at the stations marked in Fig.1 in the years
19791991 are the base of the investigation. For station P5 — Bornholm Deep and P1
— Gdansk Deep, the accessible data are from 1960-1997. For each station the average
sound speed distribution characteristic for each particular month from March to Decem-
ber was determined. The accessible number of measurements in every month was not
identical. In the summer the measurements were done regularly, while in the winter it
was not always possible to make them. Thus the distribution for January and February
was not determined because of the lack of sufficient data. In Sec.6 measurements per-
formed by the Sea Fisheries Institute in 1994 and in 1996 were used for exemplifying the
impact of local conditions on the patterns of the sound speed.

The averaged distribution of the sound speed ¢ was estimated for each month sepa-
rately for every station. Because of the scant number of samples being at our disposal,
the Student’s distribution was applied [16]. It was taken a priori without verification.
The confidence interval was evaluated at each measurement depth using the following
formula:

PC—taS<T<T+1t,S)=1-aq, (1)
where © denotes the average value of the sound speed at a fixed depth:
1 n
c=— Ci (2)
n 4
i=1

S — the error mean-square of measurements:

1 n .
S= 'n(n——l). Z(C — C)' (3)

i=1

n — the number of measurements. The value of a depends on the number of measure-
ments and the assumed confidence coefficient. The results of the estimation of the sound
speed at every station in each considered month were used as the base for the determi-
nation of the averaged vertical distribution of the sound speed along the cross-section
over the deeps of the southern Baltic.



362 G. GRELOWSKA

Assuming that the distribution obtained in this way is representative for an indi-
vidual month, the problem of the difference between the averaged distribution and the
single synoptic distribution was considered. Apart from that, some phenomena occurring
sporadically, but causing an anomaly in the sound speed distribution, were also taken
into consideration.

3. Averaged sound speed distribution

The acoustical conditions could be characterized by the vertical sound speed distri-
bution in the main points of the considered area. In the southern Baltic such points were
localized at the Gdansk Deep, the Bornholm Deep and the Stupsk Furrow. The sound
speed profiles estimated for the Bornholm Deep and Gdainsk Deep together with the
confidence intervals are shown in Fig. 2. They were obtained on the basis of data from
1960 to 1997. The number of accessible data was various in every month.

The confidence interval was evaluated at each measurement depth from the formula
(1) applying the t-Student distribution and assuming the confidence coefficient to be
equal to 0.9. In the distributions determined for both the stations, seasonal changes
characteristic for the southern Baltic are visible. However, a discerning analysis allows
to denote several individual features of each of the stations. In the winter-months the
distribution in the upper layer is almost uniform. The sound speed increases with the
growth of the depth, reaching at the Bornholm Deep values greater by about 7-8m/s
than those at the Gdansk Deep. This results from the greater salinity in the deep layer
that is about 5-6 PSU. Consequently, the difference between the sound speed at the
bottom and at the sea surface was equal to about 19m/s in January and 26m/s in
March at the Gdansk Deep, while it amounted to about 28 m/s in January and 33 m/s
in February at the Bornholm Deep.

Greater values of the sound speed at the bottom in the Bornholm Deep region influ-
ence the vertical sound speed distribution during the whole year. There the minimum
occurs practically from May to November at depths of about 50 m at the Bornholm Deep
and at about 60—-70m at the Gdansk Deep. The minimal value in both cases increases
during the year and is greater at the Bornholm Deep than at the Gdarnsk Deep from by
about 2m/s in May to 10m/s in September. The difference between sound speed at the
surface and the minimal value of the sound speed is greater at the Gdansk Deep than
in the Bornholm Deep region by about 3-11m/s, whereas the difference between the
sound speed at the bottom and the minimal value is greater at the Bornholm Deep by
about 2-7m/s.

4. Acoustic climate of the southern Baltic

Results of the estimation of the averaged value of the sound speed at each station
marked at Fig.1 are the base for the determination of the averaged sound speed distri-
bution along the cross-section over the southern Baltic deeps. The next figures illustrate
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the estimated distribution in each month from March to December. Because of the lack
of sufficient data, the distribution for January and February were not determined. How-
ever, the characteristics obtained allow to trace the changes in the acoustical conditions
in the southern Baltic throughout the year.

The acoustical conditions in March and April (Fig.3) could be classified as typical
winter conditions in the southern Baltic. A nearly uniform distribution with the smallest
yearly values of the sound speed (1415-1425m/s) in the upper layer, and increasing
sound speed with growing depth in the deep water layer are typical of them. The values
of the sound speed at the Bornholm Deep (> 1450 m/s, at the bottom > 1455m/s) are
greater than in other deeps (1440-1450m/s). The upper border of the area of increased
sound speed caused by greater salinity could be illustrated by the isoline 1425 m/s. Its
depth depends on the region and varies from about 50 m in the western part to about
60-70m in the eastern one of the southern Baltic. In April the beginning of the process
of water warming from the surface is observed, especially in the regions of smaller latitude
laying closer to the land.

In May and June heat delivered from the atmosphere creates distributions typical
for spring (Fig.4) in which the minimum appears at the depth of about 50m in the
Bornholm Deep region and of about 60m in the Gdansk Deep region. The sound speed
at the surface equals from 1445 to 1455m/s in May and from 1455 to 1465m/s in June,
only close to the estuaries of the Vistula and the Odra it reaches values greater by
about 6-10m/s. In spring, in several points of the southern Baltic, the sound speed
at the surface and at the bottom is approximately the same. Characteristic for those
distribution patterns is the presence of a large volume of decreased sound speed lower
than 1430m/s. It occurs in the middle of the sea and its thickness varies from about
20m in the western part to about 45-50m in the eastern part of the area. This volume
decreases with warming up of the upper layer of the sea.

The next three months: July, August and September could be characterised by the
summer sound speed distribution with a well pointed out minimum and a high gradient
of the temperature in the upper layer (Fig.5 and Fig.6). The difference between the
value of the sound speed at the surface and the minimum value reaches 55 -60m/s. The
depth of the minimum in the sound speed distribution changes from about 50m at the
Bornholm Deep to about 60-65m at the Gdansk Deep. The volume in which the sound
speed is smaller than 1430m/s decreases, and in August and September occurs only in
the environment of the Gotland Deep and the Gdansk Deep. The gradient of the sound

.speed in the deep layer is considerably smaller than in the upper one. The lowest value
close to the bottom in main deeps is approximately 5m/s smaller than the spring design.

From October the sound speed distribution changes significantly (Fig. 6 and Fig. 7).
The change in the direction of the heat flow at the atmosphere-sea border is reflected
also in the acoustical conditions. The value of the sound speed at the surface ranges
from 1460 to 1465 m/s and its gradient in the upper layer is smaller than in the summer.
A minimum in the vertical distribution still appears and its value is greater than in the
summer by about 5m/s. The configuration of the isoline in October is similar to the
spring distributions, but the values are greater by about 5-10m/s. In November and
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December, the distributions are not significantly diversified and the value of the sound
speed is relatively considerable. The minimal value is higher than 1445m/s in the region
of the Bornholm Deep, higher than 1440m/s in the environment of the Gdansk Deep,
and only in the surroundings of the Gotland Deep it is lower than 1435 m/s. In December
the sound speed in the deep water layer in the Bornholm Deep increases significantly and
at the depth below 60 m reached values greater than 1450m/s, which comes to about
20m/s more than in March and to about 10m/s more than in September in the upper
part of the area considered. The value at the bottom exceeded the average in March by
about 5m/s and the average in September by about 10m/s.

5. Acoustical anomaly in the southern Baltic

In the previous chapter an attempt was made to characterize the acoustic climate of
the southern Baltic. It was based on the averaged sound speed distributions. The next
step in the search for the specific features of the Baltic treated as a complex environment
of sound propagation was to find out how does the particular synoptic sound speed dis-
tribution differ from the averaged one. To get the answer, several synoptic distributions
established in different seasons are compared with the averaged distribution.

Differences in the winter distribution depend predominantly on two main factors:
the anomaly high or low temperature of air and the volume of the inflow of saline water
from the North Sea. Both of these factors are reflected in the sound speed distribution in
March 1985. During that year the averaged temperature of water in the upper layer at the
depth of 10m was 0.32°C, that is by about 1.16°C lower than the averaged temperature
in March at the same depth. The consequence was reflected by the decrease of the
sound speed from 5 to 10m/s in the whole cross-section, with the exception of the areas
close to the bottom of the deeps. There, as a result of the inflow which increased the
salinity to 16.1 PSU (avg. 15.49 PSU) and the temperature to 7.44°C (avg. 6.42°C)
at the Bornholm Deep, the established values were greater by up to 4.92m/s than the
averaged ones. The distribution for March 1985, as well as the difference between it and
the averaged distribution (Fig.3), are shown in Fig.8.

The situation typical for May (see Fig.4) could be regarded as the distribution rep-
resentative for the spring. The influence of the warm winter of 1991 on the acoustical
conditions in the next season was confirmed by the distribution pattern in May 1991
presented in Fig. 9. In this case, the middle area of the decreased sound speed is bordered
by the isoline 1435m/s. Only in the northern part of the considered area occurred the
residue volumes of water in that the sound speed was below 1430m/s. In contrast to
that, the values at the surface were lower by up to 10m/s than the average ones. It
indicates that the heat delivered from the atmosphere during that spring was smaller
than usually. Also in deeps, especially at the Bornholm Deep, the sound speed in the
deep water layer was below the average values by up to 10m/s. It was an effect of the
lower salinity at the Bornholm Deep caused by the lack of inflow of saline water in the
preceding autumn.
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An example illustrating a summer with the generally positive anomaly of the acous-
tical conditions is the August of 1991 (Fig.10). Only at the depths of about 20-30m
values below the average ones appeared. It could be the consequence of the negative
anomaly near the surface, which was observed in May of that year (Fig.9). In the deep
water in the area of the Bornholm Deep decreased values of the sound speed were ob-
served as a continuation of the situation in the spring.

The above presented examples of the positive and negative anomaly in the whole
volume of the southern Baltic or in a part of it were chosen from among those which
differed most distinctly. It allows to assess the range of changes of the sound speed in
particular seasons.

6. Impact of local morphological and hydrological conditions on the sound speed
distribution

Difficulties in specifying the acoustical conditions of the southern Baltic are increased
by the appearance of short-term local phenomena changing considerably the sound speed
distribution in certain areas [6, 19, 28]. Examples of such phenomena can be seen in the
upwelling near Rozewie; the influence of the Vistula waters on the acoustical conditions
is visible in the Gulf of Gdansk.

The shape of the bottom near Rozewie causes in specific hydrological and meteoro-
logical conditions the occurrence of upwelling of the colder water. Data shown in the
next figures illustrate the influence of upwelling on the acoustical conditions.

The consecutive graphs (Fig. 12) show the sound speed distribution measured on 28th
August 1996 at stations marked in the map (Fig. 11). The distances between the stations
were relatively small (about 1-2km), however the distributions differed considerably.
The value at the surface varied from 1451 m/s to 1474m/s, at the bottom from 1431
to 1439 m/s. The difference between the maximal value at the surface and the minimal
ones at the bottom changes from 16 m/s at the station D14 to 43m/s at the station D17.
The distance between those two stations equals 5 km.

Patterns of the vertical sound speed distribution at stations the D18, D19. D20 and
D21, distant from those mentioned previously by about 3-10km, were similar to each
other. They all had the sound speed of about 1484 m/s at the surface and a high gradient
of it within a layer ranging from 10 to 30 m with a sound speed reduction downward by
about 1430m/s.

The upwelling of the mass of cold water with temperatures of about 12°C, being
lower by about 6°C in comparison to its environment (Fig.13), was the cause of the
anomaly. The vertical sound speed distribution at the cross-section along the stations
marked in Fig.11 is shown in Fig.14. It is a phenomenon occurring sporadically. but
when it happens it changes the local acoustical conditions to a considerable degree.

Another phenomenon changing the acoustical conditions in the southern Baltic to a
certain degree is the inflow of the Vistula waters which influences the acoustic parameters
of the Gulf of Gdansk. This phenomena, described in detail in [19]. is the subject of
seasonal changes during the year. In propitious circumstances, its impact on the situation



366 G. GRELOWSKA

in the Gulf of Gdansk is clearly visible, as for example in April and November 1994
(Fig. 15, Fig. 16). The situation appeared after a few windless days. The range of the
impact of the Vistula waters is up to 20km from the mouth of the river in a layer of
about 15m thickness from the surface.

7. Conclusions

The acoustical climate of the southern Baltic is difficult to describe because of the
many factors influencing it. In the paper, an attempt is made to characterize the acous-
tical conditions in this region. The characteristics obtained offer much valuable infor-
mation on the conditions of the sound propagation in the Baltic Sea, on their changes
during the year and on the impact of particular physical phenomena on them. However,
it must be taken into account that this picture has been created with a limited number
of available data.

The averaged distributions allow to assess the general trends and to find specific
features for particular seasons. The acoustical conditions in the upper layer, where the
salinity is almost invariable, depend on the seasonal changes in the temperature of the
water. In the winter temperature, it is nearly stable in the upper layer down to the depth
of about 50 - 60 meters. Therefore the spatial distribution of the sound speed is nearly
uniform at that season.

In other seasons, the temperature of the water at the surface is higher than in the
deeper layers. It involves the vertical gradient of the sound speed and the appearance
of the minimum sound speed in its vertical distribution approximately at the border
between the upper and the deep water layer. The value of the gradient is the highest
in the summer. During the year, the gradient changes seasonally in accordance with the
heat exchange between the atmosphere and the seawater. The thermal conditions in the
winter exert an influence on the minimal value in the vertical sound speed distribution
during successive seasons, whereas the maximal value of the speed at the surface depends
on current conditions in each particular season.

The impact of the inflows of highly saline water from the North Sea, causing the
increase of the sound speed in the deep water layer, is usually visible in the western part
of the Baltic Sea in the autumn, and in the Gdansk Deep region in the early spring. The
inflow appears as a rule in the autumn and the subsequent course of the phenomena
depends mainly on when it occurs and on the volume of the inflowing water.

The differences between synoptic and average distributions demonstrate the strength
of the impact that physical factors have on them and confirm the necessity of investigat-
ing acoustical conditions by hydroacoustic equipment is used in underwater research.
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The results of ultrasonic and volumetric measurements were used to obtain the excess
molar enthalpies for binary liquid mixtures containing cyclohexane, as the common compo-
nent, and primary aliphatic alcohols (n-propanol, n-butanol and n-pentanol) at 293.15 K.
The excess molar enthalpies of those systems are positive in the whole concentration range
and show evidently different concentration dependences. The excess internal pressures of
the liquid mixtures, determined in a few different ways, are negative for all the systems.
The behaviour of those excesses are discussed in terms of intermolecular interactions in
the binaries and the self-association potential of the alcohols.

1. Introduction

The molecules of aliphatic alcohols are highly associated by hydrogen bondings [1, 2];
the self-association in non-polar solvents results in the formation of multimeric ring or
chain structures, i.e. the oligomers appearing in the solution are either “open” or “closed”
entities [3 7). Dielectric studies indicate that those various multimeric structures exist
in the solution in different proportions depending on the alcohol concentration, its abil-
ity to hydrogen-bond formation and the van der Waals type molecular interactions of
the non-polar solvent with the alcohol contained in oligomers that are constantly reor-
ganizing [8 - 12].

The most reliable values of the enthalpies of hydrogen bond formation constants were
found by calorimetric measurements in infinitely dilute solutions [13]. The enthalpy of
the hydrogen bond formation in solutions of n-alcohols in n-heptane (23.5+0.5kJ/mol),
determined calorimetrycally, is almost independent of the lengths of the hydrocarbon
chain of the aliphatic alcohol [14, 15].

Thermochemical data for aliphatic alcohol solutions (excess molar enthalpy and iso-
baric heat capacity) determined by calorimetric methods (that are sensitive to changes
in the hydrogen bond energy) do not show even a qualitative agreement with those ob-
tained by other thermodynamic methods [16]; the latters seem to reflect variationsin the
number of hydrogen bonds. Also, the temperature dependences of the thermochemical
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quantities of pure aliphatic alcohols and their solutions are considerably more complex
than for other organic liquids [17].

The thermochemical data differentiate evidently the homologous series of aliphatic
alcohols since they depend on the branching of the alkyl chains [18]; the enthalpy of
evaporation of primary alcohols, including those with non-branched hydrocarbon chains
(n-alcohols), increase with increasing length of the alkyl chain, while for other alcohols
the dependence on the chain length is opposite.

In this paper, we report the concentration dependences of the excess molar en-
thalpy, HE = HE(z), at 293.15K for binary solutions of n-propanol, n-butanol and
n-pentanol in cyclohexane determined from internal pressure values, the latters being
obtained in three different ways from ultrasonic and volumetric measurements [19] and
the well-known thermodynamic relationships.

2. Experimental

The components, all of analytical grade, were obtained from POCh Gliwice (Poland)
and purified by fractional distillation and dried as described previously [19, 20]. The
binary mixtures were prepared by weighing immediately before the measurements (the
accuracy of the mole fraction was better than 0.25 x 10~4 and the residual water content
was less than 0.025%).

The ultrasonic group velocity was measured at a frequency of about 4 MHz by the
sing-around method with an accuracy better than 0.5m/s (the precision of the ultrasonic
velocity measurements varied from 0.05 to 0.30m/s); the measurement device (SA-V/Z)
was designed and constructed in our laboratory [21-23].

The densities of the systems under test were determined by the Kohlrausch method
with an accuracy better than 0.1kg/m?. The methods of measurements and calibrations
have been already published [19, 20, 24].

The thermal stability of the sample at 293.15 + 0.01 K was ensured during the ul-
trasonic velocity and density measurements by a water bath that was heated by a
proportional-integrating temperature controller (Unipan 660, Poland) and cooled by
water from another thermostat.

3. Measurement results

The molar volumes, V, and excess molar volumes, V£, of the binary liquid systems
were calculated from the measured density, p, using the following equations:

V = (xyM; +x2M2)/p, (1)
VE = V- (X1V1 + X2V2), (2)
where x — mole fraction of the alcohol, M; — molar masse of the components, the

indices “1” and “2” refer to the alcohol (associating component) and to cyclohexane
(non-polar component), respectively.
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The internal pressure, §, was calculated from the following relationship [25-27]:
§ = 2Y/8RT/(2"/°V — 2rN'/3V2/3), ®3)

where R, T', N and r are the gass constant, temperature in K, Avogadro’s number and
mean molecular radius, respectively.

The mean molecular radii, r, were obtained, according to SCHAAFFS [28], from the
density, p, and ultrasound velocity, c:

1/3
b}

r= {3M/(161rpN)[1 — yRT/(Mc*)((1 + Mc*/(3yRT))"/? - 1)]} (4)

where v = Cp/C, is the ratio of the isobaric heat capacity to the isochoric one; this
ratio can be determined from the isentropic and isothermal compressibility coefficients,
fBs and fr, using the well known thermodynamic relation B7/8s = Cp/Cl.

The isentropic and isothermal compressibility coefficients were calculated from the
following equations:

Bs = 1/(pc®), (5)
Br = ﬁu+02VT/Cp‘ (6)

using the isobaric thermal expansion coefficient, a, estimated from the temperature
dependence of the densities (measured at 293.15K in this work and available in the
literature for neighbouring temperatures [30-32]) and the isobaric heat capacities, Cp,
taken from the literature [30-33].

The molar volumes, molecular radii, coefficients of isothermal compressibility and
the cubic thermal expansion coefficients together with the ratio of isobaric and isochoric
heat capacities, -, for the pure components at 293.15K are collected in Table 1.

Table 1. Molar volumes, molecular radii, isothermal compressibility coefficients, cubic thermal
expansion coefficients and the ratios of isobaric to isochoric heat capacities for the pure
components at 293.15 K.

V [m3 mol=!]x10% | r [m]x10!° |Ar [Pa~!] x10}? | a [KK™}] 7= Cp/Cy
n-propanol 7.472 1.89(8) 1087.5 0.99 1.18
n-butanol 9.145 2.03(6) 891.3 0.94 1.14
n-pentanol 10.821 2.15(7) 867.5 0.92 1.18
cyclohexane 10.815 2.15(2) 1091.1 1.216 1.39

The internal pressures for the pure components and binaries were obtained from the
estimated coefficients of thermal expansion and the isothermal compressibility by the
following equation [27, 34]:

9=Te/Br. (7)

Because of the lack of af data of sufficient accuracy for the binary mixtures, the

widely accepted assumption af = 0 was made. Thus

axdd = (1/V9(x Viay +x2Vaas), (8)
where Vid = x;, 1] + x, V5.
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Fig. 1. Excess molar volume isotherms for the binary mixtures of alcohols with cyclohexane at 293.15 K.
Points — experimental values.

However, for the binary mixtures under test, the volume effects of mixing are different
from zero, VE # 0, (the VE = VE(x,) isotherms are shown in Fig. 1) and the excess o
is most often not small enough to be neglected. The reliable expansion coefficient,

a=a'+af, (9)

can be calculated from the definition [33]:

o = (1/V)[(8V®/0T), - VEa'] (10)
using the (9VE/3T), values calculated as follows [33]:
(8VE/aT), = —(8V/aT)}(VE Vid) = —VEQ!, (11)

Thus, the internal pressure can be obtained either from Eq. (3), or from Eqgs. (7) and
(8) (assuming o = 0) or (7) and (9) (using Eqs. (10) and (11)).

The excess molar enthalpies of the solutions under test were determined using the
internal pressures calculated in those three different ways and assuming that the mixing
is not accompanied by a significant entropy effect [34]:

HE = x,,Vi +x29,Va — V. (12)

The isotherms of the excess molar enthalpy (calculated in the three ways described
above) vs. mole fraction of alcohol (HE = HE(x;)) are shown in Figs.2-4, where the
points represent values calculated from Eq. (12) using either Eq. (3) (Fig.2) or Egs. (7)
and (8) (Fig.3), or (7) and (9) (Fig.4).
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Fig. 2. Excess molar enthalpy isotherms for the binary mixtures of alcohols with cyclohexane at 293.15 K.
Points — values calculated from Eq. (3).
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Fig. 3. Excess molar enthalpy isotherms for the binary mixtures of alcohols with cyclohexane at 293.15 K.
Points — values calculated from Eq. (12) in connection with Eqgs.(7) and (8).
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Fig. 4. Excess molar enthalpy isotherms for the binary mixtures of alcohols with cyclohexane at 293.15 K.
Points — values calculated from Eq. (12) in connection with Eqgs. (7) and (9).

4. Discussion and conclusions

The excess molar volumes for all the systems studied are positive over the whole
concentration range and show a similar concentration dependence with a characteristic
asymmetry; However, their maximum values are slightly different (Fig.1). Dilution of
the alcohols with cyclohexane results in a gradual decrease of the number of associated
species. A more loosely packing of the molecules in solution than in the pure liquids
seems to be likely; the solution should be therefore more compressible.

The excess molar enthalpies of the binary mixtures under test, irrespective of how
they were determined, are also positive over the entire composition range and show con-
centration dependences that differ evidently in magnitude and asymmetry (Figs.2-4).

The minima of the excess internal pressures correlate clearly with the magnitude of
the internal pressures of the pure alcohols and their capability of association by hydrogen
bonds (19, 20].

The isotherms of HE = HE(x,), calculated from the internal pressures obtained
from Eq. (3), increase with increasing length of the hydrocarbon chain of the associating
component (alcohol) of the mixture (Fig. 2).

The isotherms of HZ = HE(x,) calculated from Egs.(12) and (7) (Figs.3 and 4)
show a sequence inconsistent with the hydrocarbon chain length of the alcohols. For
the n-butanol solutions, the excess enthalpies are lower and their maximum appears at
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higher cyclohexane concentrations suggesting a higher capability of self-association of
this alcohol in comparison with those of primary propanol and pentanol (Figs.3 and 4).

From inspection of the isotherms HZ = HE(x,) in Figs. 3 and 4, one learns that for
all the systems investigated the values calculated by assuming a® = 0 (Fig.3) are by
about 15-20% lower than those calculated from Eq. (9), i.e. by taking into account the
excess thermal expansion coefficients (Fig. 4).

Furthermore, it is worthy of notice that the excess molar enthalpies estimated from
Egs. (12) and (7), by either assuming a = o' or applying approximate a = a9 + of
values, are in good accordance with data determined by other thermochemical meth-
ods [35].
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In this paper the results of ultrasonic longitudinal and shear measurements in vegetable
oils are presented and discussed. The run of the ultrasonic attenuation suggests a relaxation
process at frequencies below 0.5 MHz. Another one is suggested at low temperature in the
vicinity of 1 Hz.

1. Introduction

Vegetable oils play an important role in the diet because of their non-cholesterol nu-
trition properties. The chemical constituents of oils are triglycerides, i.e. esters of glycerol
and three fatty acid molecules. The physico-chemical properties of oils are determined
principally by the type and amount of triglycerides which they contain and by their
thermal and shear histories.

A general chemical model of triglycerides is shown below:

~ 0

Fig. 1. General chemical model of triglycerides. Ry, Ra, R3 are the carbon-hydrogen chains.

A variety of techniques have been used to characterise oils, including nuclear magnetic
resonance (NMR), refraction measurements (RI), microscopy, X-ray diffraction, density
measurements, neutron scattering and differential scanning calorimetry (DSC) [1, 5].
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The ultrasonic method was used also to determine the rheological properties of vege-
table oils [4, 6]. Ultrasonic spectroscopy has already proved to be a valuable tool for
monitoring the dynamic rheology of oils [6] and may have many interesting applications
in future in the oil industry. However, the latter is not much interested in the results
until now.

The ultrasonic velocity, attenuation of sound and the dynamic viscosity or rheolog-
ical properties as functions of temperature and frequency are usually measured in oils.
The ultrasonic velocities in liquid oils can be related to the concentration of the con-
stituent triglycerides [1]. By measuring the attenuation of longitudinal and shear waves
over a wide range of frequencies, it is possible to determine the dynamic bulk and shear
moduli as well the viscosities of the oils [6].

It has been proposed that the relaxation of the shear viscosity is due to molecular
reorientational changes in the ultrasonic field, whereas the relaxation in the bulk viscos-
ity is due to structural changes [1]. In general, there are two types of motion: viscous
movements in which energy is dissipated and elastic deformations without dissipation
of energy. In the simplest version of the viscoelastic theory, it is assumed that the vis-
cous and elastic effects may be treated independently and that terms corresponding to
the two effects may be added linearly in the equation of motion. Then each relaxation
process occurs with a single relaxation time.

In highly viscous oils, such as castor oil, where the interaction between the triglyceride
molecules is strong, the bulk and shear viscosities have similar relaxation frequencies,
whereas in low viscosity oils, they have different relaxation frequencies [1]. This is prob-
ably due to the fact that a strong interaction occurs between the triglycerides in highly
viscous oils.

The methods of ultrasonic measurements are typical [2, 4]. The results of ultrasonic
measurements of some oils are given below.

2. Theory

The ultrasonic longitudinal waves can be considered as a superposition of pure com-
pression and pure shear. If the period of the sound waves is much longer than the
relaxation time of the liquid, the absorption coefficient is [2]

a =w?n/2pC3, (1)

where C is the velocity of sound, w is the frequency, 7 is the viscosity and p is the density.

When the period of the applied stress becomes comparable to the structural relax-
ation time of the liquid, the attenuation increases rapidly. For a very high alternating
stress, the molecules of the liquid do not have time enough to adjust their positions by
inelastic (or viscous) movements in the period during which the force is applied, and the
molecular motion is that of an elastic deformation. In this region, the viscosity consists
of the shear viscosity, 75, and the bulk one, 7,, and the absorption coefficient is:

a =w?(ns +4/31,)/2pC°. 2)
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The velocity of ultrasonic waves C is connected with the physical properties of the
liquid to be measured according to the following equation:

C? = E/p, (3)

where E is the elastic modulus and p is the density of the liquid. For the longitudinal
ultrasonic waves E = K, where K is the bulk modulus connected with the adiabatic
compressibility. At low temperatures the liquid may have viscoelastic properties; then
E = K + 4G/3, where G is the shear modulus. Usually all the moduli are complex, i.e.
E*=FE'+jE", K* = K' + jK" and G* = G' + jG". Shear waves propagate through
most solids but they are highly attenuated in liquids and usually do not travel far enough
to be detected and measured directly. The shear mechanical impedance is then measured
in order to determine the shear modulus.

The shear mechanical impedance (Z* = R+ jX) is measured by applying transverse
waves. The relation between the mechanical impedance Z, and the complex modulus
of shear elasticity of a liquid G?_, for the frequency w is expressed by the equation

jw?
(Z:.,)* = G, (4)
where p is the density of the liquid
Z;,=R+iX, G}, =G +iG". (5)

The mechanical shear impedance is determined by measurements of the amplitude
reflection coefficient, k, and phase, 8, of the ultrasonic wave on the boundary of two
media, i.e. on the boundary between the solid body and the liquid. The mechanical
shear impedance of a liquid in the case of a plane wave falling perpendicularly on the
boundary surface is
_ g7 1=K +i2ksind
T 99T+ K2 + 2ksinf
where Zq is the impedance of the solid body.

For most of the liquids, the wave phase shift related to the reflection is small, as the
impedance of the liquid is |Z]| < 0.1 < |Zg]|; therefore, it can be accepted that cosd = 1.
Then Eq. (6) has the following form:

1—k? 2k sin
e i (2ksinf \ _ :
Z“"_ZQ((1+I:)2)+1((1+I¢)2> R+iX. (7)

The error caused by the assumption cosé = 1 does not exceed 1%. Using Eq.(8), the
real part of the impedance can be calculated if only the amplitude reflection coefficient
is known:

2% (6)

R=2Zq (H) (8)

Having R and X, the components of the shear modulus of a liquid, G}, can be deter-

mined: ) )
- X
c=%, =X ©
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while the dynamic viscosity is expressed by the equation
, 2RX
T =—r0 -
wp
The variations of the real and imaginary components of G*, n* and Z* as functions of
the normalised frequency are shown in Fig. 2.
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Fig. 2. Variation with frequency of the normalised components of a) the rigidity modulus, b) the dynamic
viscosity, and c¢) the shear mechanical impedance for a single relaxation process [2].

3. Results

Vegetable oils are an interesting object for the investigation of the dynamic viscosity
properties because the absorption of longitudinal ultrasonic waves in them has been
studied over a wide frequency range, so that with the available data on the shear viscosity
it is possible to separate the pure bulk viscosity from the attenuation coefficient.

Our measurement results are reported below and compared with the results of other
authors. The chemical components of the rapeseed oil produced by Polish refinery [3]
are:
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contents in

amd. foxmula rapeseed oil, %

raw refined
Palmitic CHj; (CH2)14COOH 5.1 49
Oleic CHj3(CH2);CH=CH(CH,);COOH 61.8 61.4
Linoleic CH3(CH2)4CH=CH-CH,—CH=CH(CH,);COOH  19.9 20.6
Linolenic CH3(CH,—CH=CH,)3CH,(CH;)s COOH 9.2 9.0

The chemical components and specific gravities for edible oils are shown in Table 1 [4].

Table 1. Chemical components (%) and specific gravity (g/cm?3) of edible oils.

0il

Acid Safflower Soybean Peanut Rapeseed
Myristic trace trace trace trace
Palmitic 8.8 12.1 13.2 11.3
Palmitoleic trace trace trace trace
Stearic 3.1 3.7 4.1 4.0
Oleic 14.0 21.0 30.1 21.8
Linoleic 73.6 53.2 44.9 53.4
Linolenic 0.3 7.7 3.8 8.0
Arachidic — — 0.7 —
Others 0.2 2.2 3:2 1.5
Specific gravity 0.914 0.913 0.912 0.915

The viscosity of the rapeseed oil measured with an Ubbelohde viscometer as a func-
tion of temperature is shown in the Fig.3. The changes in the ultrasonic velocity for
rapeseed oil as a function of frequency are shown in Fig. 4.
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Fig. 3. Viscosity of rapeseed oil vs temperature.
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Fig. 4. Velocity of rapeseed oil vs. frequency.
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Fig. 5. Ultrasonic attenuation of rapeseed oil vs. temperature.
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Many measurements of the ultrasonic velocity in liquids and their temperature de-
pendencies have been reported [7]. In a wide range of liquids, the ultrasonic velocity
decreases linearly with increasing temperature over a considerable range of tempera-
ture. Deviations from this linear relation occur near the boiling points and the melting
points of the liquids, so that an extrapolation of the measured ultrasonic velocities from
higher temperatures to the melting point can lead to errors of the order of —2 to —6%.
In most of the edible oils, the coefficient dC/dT is close to —3 to —3.4 [ 1]. The same
linear dependence was found for the rapeseed oil.

Considerable changes in ultrasonic attenuation with frequency between 0.5 and
18 MHz are observed in rapeseed oils (Figs. 5 and 6).
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Fig. 6. Ultrasonic attenuation of rapeseed oil vs. frequency. Temperature 30° C.

The run of the attenuation of ultrasonic waves in the rapeseed oil (Fig. 6) measured as
a function of frequency suggests a relaxation process at frequencies lower than 0.5 MHz,
for which our measurement method can not be applied. The measurements of rapeseed
oil performed with DMTA technique [5, 8] using a torsional rheometer signal suggest
the possibility of a relaxation process at frequencies around 1 Hz within the temperature
limit — 30°C and 0°C.

The shear modulus measured in those temperatures is rather low (circa 30 MPa)
and in this range the scale of the equipment was not very accurate. The change of the
shear modulus as a function of frequency is shown in Fig. 7a. The curve in Fig. 7b shows
the change of the loss angle (tand = G"/G') and supports the suggestions of a second
relaxation process in this range.

The frequency dependence of the dynamic shear viscosity, shear elasticity and effec-
tive viscosity in castor oil is shown in Fig. 8.

The shear elasticity measurements of castor oil as a function of frequency show also
rather low values and have not been determined within the low frequency range [6].
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Fig. 7. Changes of the shear modulus (a) and the tan of loss angle (b) vs. temperature for rapeseed oil.
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Fig. 8. Frequency dependence of the dynamic shear viscosity (1), shear elasticity (2) and effective
viscosity (3) in castor oil [6].
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4. Conclusions

The ultrasonic measurements increase the information on vegetable oils because they
allow to determine the shear modulus and its changes as a function of temperature, while
the attenuation measurements allow to determine the dynamic shear and bulk viscosities
and the relaxation processes in oils, and to measure its frequency. Thus the ultrasonic
measurements allow to determine the physico-chemical and dynamic properties of veg-
etable oils.
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From the viewpoint of acoustics, the window is a rather complicated structure and its
sound insulation depends upon numerous designing modifications, some of which are of
decisive importance. They include glazing, infiltration, the window frame with fixed glass
and the window structure itself.

1. Analysis of window desing

From the viewpoint of acoustics, the window is a rather complicated structure and
its sound insulation depends upon numerous designing modifications, some of which are
of decisive importance. They include glazing, infiltration, the window frame with fixed
glass and the window structure itself.

The window structure consists of elements with different acoustic properties and
places of contact among the window structural elements. The transition of noise through
a window can be classified as follows:

— sound transmission through the glazed area,

— sound transmission through the window frames and wings,

— sound transmission through joints and gaps.

The desing of a window structure corresponding with the basic acoustic evaluation
criteria results from the following relation:

Rwo = Rwoz + ARwoz = ARwos + ARwor ) (1)

where Ry, is the sound insulation index of the glass (dB), ARy is the increase resulting
from the window desing modifications (dB), ARy is the decrease resulting from the

joints and gaps (dB), ARy is the increase and decrease resulting from the frames and
wings (dB).

1.1. Sound transmission through the glazed area

Glass makes 70 -80% of a window area (depending upon its surface, frame and wing
design) and in general is the decisive element of the window acoustics properties.
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Due to its low basis weight, the glazed surface is a thin plate whose sound insulation
has numerous negative properties such as resonance and coincidence, depending on fre-
quency. The resonance effect is obvious at low frequencies and at a glass thickness less
than 4 mm sound insulation decreases often in the sound insulation area. With glass of
thickness below 4 mm, the effect of coincidence is outside the sound insulation sphere.

In the frequency course R (dB) of glass of a thickness above 4mm the effect of
resonance is suppressed at low frequencies. The lowest resonance frequencies are outside
of the sound insulation sphere. At higher frequencies, the sound insulation decreases due
to the coincidence.

1.2. Single or double glass

Based upon experimental measurements (Measurements were performed by STU SvF
Bratislava — acoustic laboratories and the Centre for Civil Engineering, Prague and Zlin
[1-5, 9, 10], in accordance with ISO 140-1 and ISO 140-3, the sample glass thickness
was 480 mm, weigt 1800 kg - m~2 with R,, = 52dB, the window was placed asymetrically
with the distance more than 500 mm from the floor, ceiling and walls, the window jamb
was lined by material with absorptance less than 0.1, the rough jamb dimensions usually
used in Slovakia is 1200/1200mm) of sound insulation of sample windows with single
or double glass of various thickness (weight) and distance between the glass layers, the
following relationship for Rye, (dB) has been derived:

Ry, = 26.4 + 14logd/dy + 24log h/ho (dB), (2)

where d is the distance between the glass layers in mm (d = 10 — 200mm), h = h; + h
is the thickness of the first and second glass layers (from the interior) in mm (h =
6 — 14mm), dg, ho = 10 mm.

Basing upon experimental measurements, the following glass thicknesses has been
chosen:

h1 > 1.5 to 2h, for the insulation double glass,

hi > 1.5 to 2h, for the double and coupled windows.

Different glass thicknesses result in the suppression of the resonance and coincidence
effects. Thicker glass shows higher sound insulation from the exterior side and makes up
a barrier for noise from outside, the inner glass, due to lower weight, emits less sound
energy.

For a glass system in that the air gap between the glass layers is joined with the
outside environment and makes a de-compression cavity, from the viewpoint of sound
insulation it is better to have an inner glass of higher thickness (weight).

It can be stated that

— for a larger gap between the glass layers d (mm), R, increases,

— for a higher glass thickness, Rwo, increases.

Beside acoustic requirements, a glazed system must also meet thermal engineering
requirements. They have therefore to be considered when designing the distance between
the glass layers.
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1) PVC window with double glass 4/16/4 Planitherm Ry = 33dB
2) Wooden window with doubles glass 9/12/6 Ry, =37dB
3) Wooden window with triple glass 4/8/4/8/4 w = 32dB
50
R |
(48] ] \ 2
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1 1
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B
100 200 400 800 1600 3150
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Fig. 1. Results of meassuring.

1.3. Multiple glass

The energy requirements related to the window quality require multiple glazing. The

adding of another glass layer results in increased glazing weight and sound insulation,
correspondingly. The sound insulation improvement will not be very high — adding
another glass divides the air gap into two narrower spaces whose resonance frequency
causes reduction at low and medium frequencies. The effect of the higher glazing weight
will be obvious at high frequencies.

Experimental measurements of glazed systems indicate that from the viewpoint of

The use of multiple glass is reasonable

— if the gaps between the glass layers are different d; > 3d; (mm),
— if the gap is wider d; > 50 mm,

acoustics it is better to use two glass layers of different thickness than a triple glazing of
equal weight (factory produced triple glazing).

— if glass thicknesses are highly different, the following glass thicknesses are suitable:

hy > hz and hy > 1.5 — 2hg,



Department of Building Structures, Faculty of Civil Engineering,
Slovak University of Technology, Radlinského 11, SK-81368 Bratislava

Composition of tested specimen:

Protocol No.: A30-2/98

Plastic window with thermal insulated double glazing Specimen: No.2

composition of double glazing: 9 + 16 +6 (mm)

KONTRANITTERM+AR.KW31/44/1,3

Customer: Lignotesting a.s.
Lamacska cesta ¢.1
841 05 Bratislava

Date of adoption: 9.12.1998
Date of testing: 21.12.1998
Testing method: STN 730516

Acoustic chambers:

Receiving chamber: Volume V=57 m’

Sending chamber: Volume V=153 m’

Testing sound: noise generator
Filters: 1/3 of octave
Testing area: S=14m?

Tested specimen:

Name: Plastic window
Dimensions: 1180x1180 mm
Weight related to the area: 43.6 kgm™

Measurement conditions:

Temperature: 20 °C
Pressure: 997 mB
Relative humidity: 33 %

Date: 7.1.1999
Measured by: Mgr.Daniel Szab6

Air sound insulation
STN 730513
Air sound insulation index:
Ru]_ = 37 dB
Ry = 38 dB
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Approved by: Prof.Ing.Jozef Zajac,DrSc.

Fig. 2. Measure protocol.
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Building Acoustics Analyzer B&K 4418

RECORD NO.
OPTION NO.

NRM. LEVEL DIFF.
1.4

v= 57 S=
HZ CODES
100
125
160
200
250
315
400
500
630
800
1000
1250
1600
2000
2500
3150
4000
5000
6300
8000

— for insulation double glass design,

325
93

DB

1535
28.
25.
29:.
30.
32.
33
36.
37.
3
38.
38.
39.
38.
38.
40.
41.
44.
44.
46.
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Fig. 3.

RECORD NO. 326
OPTION NO. 93
NRM. LEVEL DIFF.
v= 57 S= 1.4
HZ CODES DB
100 14.3
125 28.5
160 2549
200 29.3
250 29.8
315 32.8
400 34.0
500 35.9
630 38.0
800 3.3
1000 38.6
1250 39.2
1600 39:5
2000 38.9
2500 38.8
3150 40.0
4000 41.4
5000 45.1
6300 44.7
8000 46.4

— for glazing with a pre-set glass and with a insulation double glass, whereas d; =

gap width and h; = glass highness.

Insulation double glass is used from the interior side, as the space between the pre-set
glass and insulation double glass makes a de-compression cavity.

1.4. Desing modifications of glazing

a) It is good to use a noise absorbent along the air gap circumference:
— At a larger distance between the glass layers.
— The noise absorbent use is governed by functional possibilities valid for the

desing of the absorbing lining.
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— The Ryo: (dB) increase along the air gap circumference resulting from the of
noise absorbent is +2 to +3dB, [11, 12].
b) Desing of separate window frames:
— The decrease of the noise insulation is influenced by the glazing and mounting.
— Depends upon the shape and number of window wings, and the way of joining
the wings and frames of coupled and doubled windows.
¢) Gas filled insulation double glass:
— In heavy gases, sound propagates at a lower rate.
— In the gas filling, forced oscillation does not occur so easily, and thereby, its
level is lower.
d) Thermo-insulating double glass
— The glazed system weight increases, and thus the resonance at low frequencies
will be suppressed.
e) Glass mounting
— Elastic mounting increases the transfer of sound waves of high wavelength,
therefore the sound insulation decreases at low frequencies.
— With fixed glazing, the sound insulation decreases at medium and high frequen-
cies.
— The glazing materials used at present do not affect the acoustic parameters
significantly.
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