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Gap detection thresholds in 1/3-octave white noise centred at 4 kHz were determined
in young musicians with normal hearing preserved and with very high frequency sloping
hearing loss. The thresholds were determined in the control group of 20 with normal
hearing, i.e. �at audiogram up to 16 kHz, and in the experimental group of 15 with high
frequency sloping hearing loss exceeding 30 dB at 12 kHz or at 16 kHz, the so called peculiar
hearing loss. A group of 7 older subjects exhibiting also peculiar hearing loss was included
for comparison. The results show gap detection thresholds in the normal hearing subjects
ranging from 1ms to 6ms, which are in good agreement with the earlier data from the
present authors. However, few examples of higher gap detection thresholds (11, 26ms)
in normal hearing were also observed. For the experimental group with high frequency
sloping hearing loss at 12 kHz or at 16 kHz, the gap detection thresholds found were on
the average signi�cantly higher ranging from 6ms to 26ms. In the group of older subjects
gap detection thresholds were on the average still signi�cantly higher.

1. Introduction

Temporal acuity or temporal resolution of the hearing system provides ability to
follow rapid changes of the signal with time. Simple and quite often used measure of
temporal resolution is the gap detection threshold in continuous stimulus or between
two bounding stimuli. This measure was introduced by Penner, see Penner [13], for the
determination of the decay time of auditory sensation.

Numerous investigations show that the gap detection threshold is larger in the sub-
jects with sensorineural hearing loss i.e. these subjects can detect only larger gaps, e.g.
Tyler et al. [17], Buus and Florentine [1], Glasberg et al. [2], Irwin andMcAulay
[4], Jaroszewski et al. [5]. However, it was also reported that the gap detection thresh-
olds are almost identical in normal hearing and hearing-impaired, at least for the gaps
in the sinusoidal stimulus, e.g. Moore and Glasberg [9], Moore et al. [10].

Gap detection threshold is larger in elderly subjects as reported by for example
Schneider et al. [15], Schneider and Hamstra [14], Ning-Ji He et al. [12] and
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Snell [16]. However, also in that respect controversial data were reported, e.g. Moore
et al. [11]. Typical gap detection thresholds in noise in normal hearing subjects and for
presentation level above 30 dB SL amount from 2 to 3ms up to approximately 10ms,
e.g. Moore [8], Green [3], Glasberg et al. [2]. In cases of hearing loss of 30 � 70 dB
the gap detection thresholds are usually but not always larger and fall in the range from
approximately 10 to 30ms, e.g. Glasberg et al. [2], Jaroszewski et al. [7].

In the present report gap detection thresholds in noise, found in the subjects with
normal hearing and with very high frequency rapidly sloping hearing loss (the so called
peculiar hearing loss) are presented. This work was undertaken to �nd out if the peculiar
hearing loss present in some young musicians (largely playing percussion and brass wind
instruments, e.g. Jaroszewski [5], Rogowski et al. [6], Jaroszewski et al. [7]), a�ects
temporal acuity of the hearing system. No data referring to this particular question could
be found in the literature.

2. Procedure and equipment

Hearing thresholds were determined with the use of the clinical audiometer Inter-
acoustics AC 40 in the mode of tonal audiometry. The intermittent signal 250/250ms
was used at 11 standard audiometric frequencies i.e. 0.125, 0.250, 0.5, 0.75, 1.0, 1.5, 2.0,
3.0, 4.0, 6.0, and 8.0Hz and at two frequencies above this band i.e. 12.0 and 16.0 kHz.
Signal level was adjusted manually with the use of an electronic attenuator set at 1 dB
step. In the range of low (standard) frequencies Telephonics TDH 39P headphones with
MX41/AR cushions were used, while in the range of high frequencies (12 and 16 kHz)
Koss HV PRO with circumaural cushions were used. Data acquisition, its preliminary
processing and storage were executed by IBM PC and IABASE 95 program.

Simple closed block two alternative forced choice (2AFC) procedure was used to
determine gap detection thresholds. The paradigm consisted of two observation intervals
lasting 2 s each, separated by 500ms interstimulus interval. After presentation of one
pair of stimuli an answer interval of the duration of 2 s followed. Such sequence of the
stimuli was repeated endlessly until listener indicated the interval containing the gap.
The closed block of stimuli consisted of 20 repetitions of 5 pairs containing di�erent gap
durations i.e. of 100 pairs. Each of the �ve pairs containing the gap was presented 10
times in the �rst and 10 times in the second observation interval. The succession of the
pairs containing di�erent gaps and the occurrence of gaps in the successive test trials
was random. Gap detection threshold was determined for each subject from individual
psychometric function as the gap duration corresponding to 75 percent correct.

The �ltered 1/3-octave band noise centered at 4 kHz was used to determine gap
detection thresholds. A sample of noise was transferred into digital form and linear on-
set and decay functions were introduced at the beginning and at the end. The onset
and the decay duration were 20ms and 1ms correspondingly. By reversing time suc-
cession and phase a second signal was obtained with onset time 1ms and decay time
20ms. Each trial consisted thus of two samples of noise separated by a gap of the du-
ration of 2, 4, 8, 16 or 32ms. The samples of noise were so organised that the onset
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time of the �rst and the decay of the second were 20ms each while �anks of the gap
measured 1ms.

The stimuli were presented to subjects binaurally through the Beyer Dynamic DT 911
headphones at a level of 15 dB SL. The hearing threshold of each subject was determined
with the use of signal of analogical construction as the test signals. The generation of
the stimuli, their time organisation, data acquisition and its preliminary processing were
performed by an IBM PC running under control of the GAPDET program. A 16-bit
MultiSound Fiji TurtleBeach transducer was used for digital to analog signal conversion.

Since the level of signal presentation was low, the spectral components resulting from
the presence of the gap in the test signal were below the threshold of hearing of the
subjects, did not a�ect their timbre and had no in�uence on the results.

3. Subjects

A group of 42 subjects participated in the experiment. 35 of them were young active
musicians playing various instruments and these were aged 18 to 29, while the remaining
7 subjects were either musicians or not musicians and were aged from 28 to 69. In the
group of 35 young musicians 15 were playing percussion or brass wind instruments and
were so selected purposely on the grounds of the data from the earlier experiments, e.g.
Jaroszewski [5], Jaroszewski et al. [7], Rogowski et al. [6]. The remaining twenty
musicians were less exposed.

Twenty young musicians of the test group were quali�ed as normal hearing and �f-
teen young musicians as hearing-impaired, on the grounds of the data from audiometric
examination. As a criterion the value of hearing loss at frequencies of 12 kHz and 16 kHz
only was used in selection (�at audiogram up to 16 kHz and hearing loss exceeding 30 dB
at 12 kHz or at 16 kHz correspondingly). Hearing loss at these frequencies, called peculiar
hearing loss earlier, is characterised by large values and very steep sloping between the
range where normal hearing was preserved and the range of loss. The group of elder
hearing-impaired subjects with the peculiar hearing loss was included to enable compar-
ison of gap detection thresholds between subjects with the same hearing loss but of the
di�erent age.

4. Results and discussion

The examples of gap detection threshold psychometric functions for some subjects,
selected from the three groups of subjects i.e. young normal hearing, young hearing-
impaired and elder hearing-impaired are presented in Fig. 1. The results of the gap de-
tection thresholds in 1/3-octave noise centered at 4 kHz are presented in Fig. 2 and in
Fig. 3 as scatter diagrams. The gap detection thresholds related to the value of hearing
loss at 16 kHz are given in Fig. 2, while the same data related to the hearing loss at 12 kHz
are shown in Fig. 3. The value of hearing loss in the �gures pertains always to the ear
with larger loss.
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Fig. 1. The examples of gap detection threshold psychometric functions for some subjects selected
from the three groups of subjects: young normal hearing (•), young hearing-impaired (◦) and elder

hearing-impaired (∆).

Fig. 2. The gap detection thresholds related to the value of hearing loss at 16 kHz in the better ear for
the control group (•), experimental group (◦) and the group of elder hearing-impaired subjects (∆).
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Fig. 3. The gap detection thresholds related to the value of hearing loss at 12 kHz in the better ear for
the control group (•), experimental group (◦) and the group of elder hearing-impaired subjects (∆).

In both groups of young musicians tested a rather strong relation is observed between
the values of the peculiar hearing loss at 12 and at 16 kHz and the gap detection thresh-
olds. While the gap detection thresholds in normal hearing young musicians fall in the
range from 1.3 to 6.2ms, in hearing-impaired with peculiar hearing loss the gap detection
thresholds amount from 5.6 to 26.3ms. Large gap detection thresholds, but comparable
to those observed in hearing-impaired young musicians was observed in the group of elder
subjects with peculiar hearing loss (5.0 � 31.5ms).

The results of the present investigation indicate, that the peculiar hearing loss which
pertains to frequencies outside of the range of the standard routine audiometric testing
(from 125Hz to 8 kHz), signi�cantly a�ects operation of the hearing system in time
domain, decreasing its ability to follow rapid changes of the signal with time. It should
be noted that the earlier published data on the relation between gap detection thresholds
and hearing loss pertained exclusively to the wide band hearing loss, mostly in excess of
1 1/2 octave and in the range below 8 kHz.
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The application of the NARMAX method to the modelling of the nonlinearity of dy-
namic loudspeakers is described. The principle of creating a polynomial representation of
a model, the problems stemming from a too large number of model coe�cients and the
method of optimizing the model are presented. The method was tested on data from ac-
tual loudspeaker measurements. Di�erent models are compared as regards their accuracy
depending on the modelling parameters. Finally, the model characteristics are compared
with the results of loudspeaker measurements performed by classical methods.

1. Introduction

Loudspeaker nonlinearity can be modelled by various methods such as Volterra se-
ries [7, 12], nonlinear analogous equivalent circuits [9], nonlinear di�erential equations
[6] and so on. One of the methods is NARMAX (Non-linear AutoRegressive Moving
Average with eXogenous input). The NARMAX model was proposed by Leontaritis
and Billings in 1985 [11, 12]. In this model, the output signal values are computed using
both the input signal values and the previous output signal values. This greatly reduces
the number of coe�cients.

The NARMAX model is then analogous to IIR (In�nite Impulse Response) digital
�lters similarly as the Volterra series model is analogous to FIR (Finite Impulse Response)
digital �lters. FIR-�lters use only input signal samples and require a large number of
coe�cients. IIR-�lters use both input and output signal samples and require a much
smaller number of coe�cients. The above terminology is used in this paper.

The polynomial NARMAX model for the dynamic loudspeaker is described in the
paper. It has been proved that the direct model can be unstable. In order to stabilize the
model, the optimization procedure is necessary. The optimization causes also signi�cant
reduction of the number of coe�cients. The modeling of an actual loudspeaker has been
done, and the results of the modeling and measurements are compared.
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2. Polynomial representation of the NARMAX model

The most general NARMAX model of a system with one input and one output can
be expressed by the following equation:
y(t) = F [y(t− 1), ..., y(t−ny), x(t−d), ..., x(t−d−nx), e(t−1), ..., e(t−ne)] + e(t), (1)

where F [·] � an unknown nonlinear function, t � the discrete time, x(t) � the exci-
tation, y(t) � the system response, e(t) � the prediction error, nx � the order of the
input signal, ny � the order of the output signal, ne � the order of the noise, d � the
delay of the system.

If it is assumed that the system does not produce any noise, a simpli�ed form of the
NARMAX model can be developed. The latter can be described by the following general
equation [1, 4]:

y(t) = F [y(t− 1), . . . , y(t− ny), x(t− d), . . . , x(t− d− nx)] + e(t). (2)

Polynomial functions are most commonly applied as the F functions, although other func-
tions, e.g. rational or radial ones, can also be used [2, 4]. The polynomial representation
of the NARMAX model is as follows:

y(t) =
n∑

i1=0

θi1ui1(t) +
n∑

i1=0

n∑

i2=i1

θi1i2ui1(t)ui2(t)

+
n∑

i1=0

n∑

i2=i1

n∑

i3=i2

θi1i2i3ui1(t)ui2(t)ui3(t) + . . . + e(t), (3)

where n = ny + nx, u1(t) = y(t− 1), u2(t) = y(t− 2), ..., uny(t) = y(t− ny), uny+1(t) =
x(t− d), ..., un(t) = x(t− d− nx), θ � model coe�cients.

Equation (3) can be written as:

y(t) =
M∑

m=1

θmpm(t) + e(t), (4)

where M � the number of polynomial coe�cients, pm(t) � the monomials of elements
ui(t) of degree l at the most.

For example, for ny = nx = l = 2 there are M = 20 polynomials and they are as
follows:

p1(t) = y(t− 1), p2(t) = y(t− 2),
p3(t) = x(t− d), p4(t) = x(t− d− 1),
p5(t) = x(t− d− 2), p6(t) = y2(t− 1),
p7(t) = y2(t− 2), p8(t) = x2(t− d),
p9(t) = x2(t− d− 1), p10(t) = x2(t− d− 2),

p11(t) = y(t− 1) · y(t− 2), p12(t) = y(t− 1) · x(t− d),
p13(t) = y(t− 1) · x(t− d− 1), p14(t) = y(t− 1) · x(t− d− 2),
p15(t) = y(t− 2) · x(t− d), p16(t) = y(t− 2) · x(t− d− 1),
p17(t) = y(t− 2) · x(t− d− 2), p18(t) = x(t− d) · x(t− d− 1),
p19(t) = x(t− d) · x(t− d− 2), p20(t) = x(t− d− 1) · x(t− d− 2).
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If we have N input and output signal samples obtained from measurements, from
Eq. (4) we can develop a system of equations which can be expressed in following matrix
form [4, 5]:




y(1)
y(2)
...

y(N)




=




p1(1) p2(1) . . . pM (1)
p1(2) p2(2) . . . pM (2)
· · · · · · · · · · · ·

p1(N) p2(N) . . . pM (N)


 ·




θ1

θ2

...
θM




+




e(1)
e(2)
...

e(N)




(5)

and in this simpler form:
Y = Pθ + e. (6)

System (6) is a linear equation system since the terms of regression matrix P are
numbers calculated from the measured data. The model is identi�ed by the solution of
system (6), where coe�cients θ1 ... θm are unknown. Prediction error vector e is assumed
to be equal to 0.

There are various methods of solving a linear equation system, e.g. Gauss elimination
or iterative methods [8]. System (6) is often ill-conditioned and therefore matrix P should
be orthogonalized [1, 5] using, for example, the Gram-Schmidt method, the Givens ro-
tations or the Householder transformation [8]. In this paper the classical Gram-Schmidt
(CGS) orthogonalization is applied since it can be easily implemented in numerical com-
putations.

The orthogonalization algorithm is based on the decomposition of the prediction
matrix into two matrices [1, 5].

P = WA, (7)
whereW is columnwise orthonormal, i.e. WT W = I, I is a unit matrix, A is a triangular
upper matrix.

After orthogonalization, vector g is determined.
g = WT Y. (8)

Then taking advantage of the fact that matrix A is triangular, reverse substitution is
applied to determine coe�cients θ:

Aθ = g. (9)
The main drawback of polynomial representation is that a very large number of

parameters must be determined. The number of coe�cients (M) in the polynomial which
describes the model depends on the lag of the input and output signals and that of the
noise and on the particular order of the polynomial (order of nonlinearity � l). The
number can be determined from this recurrence formula [2, 14]:

M =
l∑

i=1

ni , ni = [ni−1(ny + nx + ne + i)]/i, n0 = 1. (10)

For example for ny = nx = ne = 10 and l = 3 the number of coe�cients is as high as
M = 5983 and the number of terms in matrix P is equal to M ·N where N ≥ M (most
often N > M).
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In order to compare various models, the following measure of accuracy is assumed:

ε =
‖e‖2
‖Yr‖2 =

∑
(yr − ym)2∑

y2
r

· 100%, (11)

where Yr � the vector of the response of an actual loudspeaker � Yr = Pθ + e, Ym

� the vector of the response of the model � Ym = Pθ, ‖a‖ =
√∑

i

a2
i � Euclid's norm

of the vector, ε is a ratio of the prediction error energy to the energy of the response.

3. Optimization of the model

Since the number of coe�cients to be calculated is very large (due to the fact that the
structure of the nonlinearity of the modelled actual system is unknown), the usefulness
of such a model is rather small. There are also di�culties in the correct interpretation of
the model. In addition, the unoptimized model is unstable in most cases.

In order to optimize the model, it is necessary to reject the insigni�cant coe�cients,
i.e. to identify the structure of the system.

The optimizing procedure has been built into the orthogonalization algorithm (CGS)
for regression matrix P. It is based on the choice of subset Ms (Ms < M) of columns from
all possible columns M of matrix P (Fig. 1). This yields new regression matrix Ps with
a lower number of coe�cients. The columns of Ps are selected using this error reduction
ratio [1, 5]:

[err]i =
g2

i

〈y, y〉 , (12)

where 〈·, ·〉 denotes the inner product, that is:

〈y, y〉 =
N∑

k=1

y2
k(t) (13)

and gi is i-th term of vector g.

Fig. 1. Selection of most signi�cant columns of regression matrix.
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The value of [err]i represents a decrease in the prediction error energy for coe�cient
θi expressed by column pi.

The optimizing procedure performs the following functions in every step of orthogo-
nalization:

� the computation of error reduction ratio [err]i for every coe�cient,
� the choice of a coe�cient with the maximum value of [err]i.
Now the size of matrix Ps, i.e. the number of coe�cients θi, remains to be determined.

The accuracy of the model: ρ (0 < ρ ≤ 1) is often assumed as the optimization-end
criterion [14]. The coe�cients are selected as long as Eq. (14) is not ful�lled.

1−
Ms∑

i=1

[err]i < ρ. (14)

This criterion has a disadvantage. When a high model accuracy (a low value of ρ) is
assumed, too many coe�cients (often all of them (Ms = M)) may be taken into account.
Akaike's information criterion (15) gives better results [1, 5, 14].

AIC(φ) = N log σ2
e + Msφ, (15)

where σ2
e =

1
N

N∑
i=1

e2
i � prediction error variance.

This criterion represents a compromise between the accuracy of the model (σ2
e) and

its compliance (Ms). The NARMAX model structure is usually de�ned by means of
φ = 4 (AIC(4)) [13]. The formation of Ps is stopped when AIC(4) reaches the minimal
value.

4. High-order model

Because of the long loudspeaker impulse response, a satisfactory accuracy can be
obtained only if the order of the model is su�ciently high but this entails a large number
of coe�cients. For example, to obtain a NARMAX model of the 30th order, a matrix
consisting of about 50 000 columns must be orthogonalized. It is practically impossible
to handle this amount of data � prediction matrix P would use about 20GB of memory.
Therefore a way had to be found to overcome this problem.

The fact that the number of coe�cients can be reduced many times through the
optimization procedure was exploited. The model is built in steps which are graphi-
cally represented in Fig. 2. First a low-order model with Mi: (300 � 500) coe�cients is
created and optimized. As a result, a model with maximally a few dozen coe�cients
is obtained. Then the model is supplemented with the next Mi coe�cients due to its
increased order. After the next optimization, again a few dozen coe�cients (not nec-
essarily the same as in the �rst step) are obtained. This procedure is repeated many
times until all the coe�cients associated with the assumed order of the model have been
analyzed.
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Fig. 2. Steps in creation of high-order NARMAX model.

5. Comparison of the results of measurements and modelling

5.1. Measurements

In order to obtain data (excitation x(t) and response y(t) values) for the creation of
the model, measurements of a low-frequency loudspeaker were performed in the anechoic
chamber of the Institute of Telecommunications and Acoustics. The loudspeaker (Ton-
sil GDN 20/35/1) was set in a closed box and digitally generated noise with uniform
probability distribution and an amplitude of 15 V RMS (28W) (2/3 of the loudspeaker's
nominal power) was used as the input signal [3]. The loudspeaker response was recorded
via a microphone and converted to a digital domain. In order to eliminate random noise,
the response was averaged 100 times. The measurement setup is shown in Fig. 3.

Fig. 3. Measurement setup.
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5.2. Unoptimized NARMAX model

A linear FIR-type model of the 50-th order was investigated �rst. The impulse re-
sponse of the model was compared with that of the loudspeaker � see Fig. 4. The accu-
racy was quite good, particularly in the initial part of the response.

Fig. 4. Loudspeaker impulse response obtained from measurement (dashed line) and from model
(solid line).

Then two IIR-type linear models of the 20-th and 50-th order were identi�ed. Finally,
FIR-type nonlinear models of the 8-th and 12-th order and IIR-type (i.e. NARMAX)
models of the 4-th and 6-th order were studied. In all the nonlinear models, the order of
nonlinearity was limited to l = 3.

The IIR-type models (which use also delayed system response samples) proved to be
unstable. The number of coe�cients and error ε for all the considered models are given
in Table 1.

Table 1. Comparison of di�erent loudspeaker models.

Model (structure) ε [%] No of coe�.
l = 1, nx = 50, ny = 0, (FIR) 8.65 51
l = 1, nx = 200, ny = 0, (FIR) 5.18 201
l = 1, nx = 20, ny = 20, (IIR) � 41
l = 1, nx = 50, ny = 50, (IIR) � 101
l = 3, nx = 8, ny = 0, (nonlinear FIR) 53.7 165
l = 3, nx = 12, ny = 0, (nonlinear FIR) 111.6 560
l = 3, nx = 4, ny = 4, (nonlinear IIR) � 165
l = 3, nx = 6, ny = 6, (nonlinear IIR) � 680
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5.3. Optimized model

The results of the loudspeaker measurements described in Subsec. 5.1 were used to
check the optimization procedure. Models with di�erent structure (identical as in Sub-
sec. 5.2) were considered. The optimization results are presented in Table 2.

Table 2. Comparison of various loudspeaker models (after optimization).

Model (structure) ε [%] No of coe�.
l = 1, nx = 50, ny = 0, (FIR) 8.43 30
l = 1, nx = 200, ny = 0, (FIR) 6.44 52
l = 1, nx = 20, ny = 20, (IIR) 10.57 26
l = 1, nx = 50, ny = 50, (IIR) 6.12 43
l = 3, nx = 8, ny = 0, (nonlinear FIR) 34.03 6
l = 3, nx = 12, ny = 0, (nonlinear FIR) 35.19 8
l = 3, nx = 4, ny = 4, (nonlinear IIR) 37.61 9
l = 3, nx = 6, ny = 6, (nonlinear IIR) 36.54 10

The characteristic feature of all the optimized models is their stability. For a similar or
higher accuracy than that of the unoptimized models they require a much lower number
of coe�cients.

An illustrative impulse response of the 4-th order NARMAX model is shown in Fig. 5.
The response is very short, which means that the order of the model is too low.

A comparison of the plots for the loudspeaker and the model excited by the same
signal (Fig. 6) shows that the model has a tendency to reduce the maximum amplitude
values.

Fig. 5. Loudspeaker impulse response obtained from measurement (dashed line) and from 4-th order,
10-coe�cient NARMAX model (solid line).
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Fig. 6. Signal at loudspeaker output (dashed line) and from 4-th order, 10-coe�cient NARMAX
model (solid line).

The four coe�cients which if included in the model ensure the highest error reduction
values [err] are given in Table 3. They have the most decisive e�ect on the accuracy of the
model and are selected as the �rst ones by the optimization procedure. The coe�cients
are linear since the loudspeaker nonlinearities were slight.

Table 3. Coe�cients ensuring highest [err] values.

Model structure 1 2 3 4
term [err] term [err] term [err] term [err]

FIR and NFIR x(t− 2) 0.20 x(t− 3) 0.22 x(t− 1) 0.14 x(t− 4) 0.05
IIR and NIIR y(t− 1) 0.82 y(t− 2) 0.10 y(t− 3) 0.04 x(t− 1) 0.01

To gain a picture of the relationship between model accuracy and the number of
coe�cients, a group of models was built. All the models were developed for the same
signal and parameters:

� the order of nonlinearity � l = 3,
� the order of the model � nx = ny = 16,
� the criterion for the choice of coe�cients � error reduction ratio [err],
� the criterion for ending model development � ρ.
Only the value of ρ was changed to obtain models with di�erent numbers of coe�-

cients. Also modelling for the termination criterion based on AIC(4) was performed to
�nd out when the selection of coe�cients will end.
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The relationship between the modelling error and the number of coe�cients is illus-
trated in Table 4 and Fig. 7.

Table 4. Relationship between modelling error and number of coe�cients.

Ms (No of coe�.) ε [%] ρ [%]
7 44.56 2.00
9 24.14 1.00
11 15.22 0.70
13 13.41 0.60
15 14.53 0.50
16 17.26 0.45
18 17.39 0.40
20 14.33 0.37
21 17.63 0.35
24 15.19 0.33
27 13.51 0.30
28 13.19 0.28
29 11.27 AIC(4)
32 12.60 0.26
34 12.77 0.25

Fig. 7. Relationship between modelling error and number of coe�cients for NARMAX model.

5.4. High-order model

A NARMAX model was built according to the algorithm described in Sec. 4 for the
following modelling parameters:

� the order of nonlinearity � l = 3,
� the order of the model � nx = ny = 33,
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� the number of rows in matrix P � N = 700,
� the number of coe�cients determined in one step � Mi = 400,
� the number of samples for model testing � Nf = 8192,
� the criterion for the selection of coe�cients � error reduction ratio [err],
� the criterion for ending the creation of the model � AIC(4).
The modelling resulted in a 64-coe�cient NARMAX model characterized by error

ε = 13.9%.
The response of the model and that of the actual loudspeaker to the same excitation

are shown in Fig. 8; the impulse responses and the frequency characteristics are shown
respectively in Figs. 9 and 10.

Fig. 8. Model response (solid line) and actual loudspeaker response (dashed line).

By comparing the impulse responses and the frequency characteristics we can assess
only the linear properties of the model. To check how the model copes with nonlinearities,
THD (a coe�cient commonly used for assessing nonlinear distortions) was employed. To
obtain the data needed for the calculation of THD, sinusoidal excitations with di�erent
frequencies were fed at the loudspeakers input and a spectral analysis of the loudspeaker
responses was carried out, yielding the levels of the particular harmonics. The same exci-
tation signals were fed at the input of the model and the latter's response was analyzed.
Spectra of the response to the 300Hz sinusoidal signal excitation are shown in Fig. 11.
To see them better, the two spectra are shifted slightly relative to each other on the
frequency axis. No components higher than the third harmonic occur in the model re-
sponse spectrum (the left spectral lines) � due to the fact that the model nonlinearity
was limited to the 3rd order.
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Fig. 9. Model impulse response (solid line) and actual loudspeaker impulse response (dashed line).

Fig. 10. Model frequency characteristic (solid line) and actual loudspeaker frequency characteristic
(dashed line).
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Fig. 11. Spectra of loudspeaker response (right spectral lines) and model response (left spectral lines)
to 300Hz sinusoidal signal excitation.

The THD (dB) for the �rst three harmonics was calculated from the following formula:

LTHD = 10 log(10L2/10 + 10L3/10)− L1 [dB]. (16)

The results are given in Table 5.

Table 5. THD for actual loudspeaker and model responses.

Frequency [Hz] Loudspeaker THD [dB] Model THD [dB]
100 −21.9 −39.1

150 −25.9 −48.2

200 −25.5 −33.2

300 −28.9 −35.1

500 −30.7 −35.6

700 −38.5 −44.0

1000 −37.8 −49.3

2000 −33.1 −51.8

4000 −49.5 −73.6

6. Conclusions

The simulations and the measurements have shown that to model a dynamic loud-
speaker correctly it is necessary to use a high-order NARMAX model. A polynomial
representation of such a model requires a very large number of coe�cients. Besides the
obvious computational and interpretational problems associated with operations on such
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a large set of data, it is also di�cult to obtain stability. All the unoptimized NARMAX
models proved to be unstable (Table 1).

Therefore an optimization procedure was applied and as a result the number of coef-
�cients was reduced considerably whereby the stability of the model improved (Table 2).

It follows from Table 3 that the chosen criterion (based on AIC(4)) for ending the
selection of model coe�cients ensured the highest accuracy of the model in the analyzed
range of numbers of coe�cients.

An analysis of the higher-order model showed a close similarity between the model
linear characteristics and the actual loudspeaker linear characteristics. Some di�erences
can be observed between the frequency characteristics � the model one is more jagged
and irregular.

The model response has smaller linear distortions owing to the fact that no terms
with higher orders of nonlinearity occur in the model: their presence would result in the
appearance of higher harmonics and increase the level of the second and third harmonic.
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In the actual situation of measuring an environmental noise, it is very often that only
the resultant stochastic �uctuation contaminated by an additional noise of arbitrary dis-
tribution type can be observed. In this paper at �rst a noise cancellation for reasonably
removing the e�ect of the above additional noise, especially in a whole probability distri-
bution form, is derived theoretically in order to estimate only the undisturbed objective
output response. Next, for the purpose of predicting a whole expression form of the out-
put response probability of an acoustic system excited by an arbitrary stochastic input
with the additional noise, a new stochastic signal processing method, re�ecting the e�ect
of the additional noise �uctuation, is proposed in a whole probability distribution form.
The e�ectiveness of the proposed theoretical methods is experimentally con�rmed too by
applying them to the actual data measured in the complicated sound wall systems.

1. Introduction

In the actual measurement of environmental noise, the desired signal is usually con-
taminated by an additional noise of an arbitrary distribution type and it is only the
resultant signal that can be observed [1].

In this paper, at �rst, a new practical trial of estimating (especially in a whole prob-
ability distribution form) the uncontaminated output response probability of sound wall
systems with background noise is derived without using any arti�cial error criterion like
the least-squares method. More concretely, a mathematical model of arbitrary sound en-
vironmental systems is introduced by using a physical law of additive principle on the
energy scale [2] in a form of a linear system on the intensity scale. At �rst, after in-
troducing a probability expression form of the resultant output response contaminated
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by the background noise, a noise cancellation method in a whole probability distribu-
tion form is developed by which only the uncontaminated output response probability
function form for the above sound environmental systems can be detected from the data
contaminated by the background noise. Next, for the purpose of predicting the output
response probability excited by an arbitrary stochastic input with background noise, a
new signal processing method of probabilistically re�ecting the e�ect of the background
noise is proposed. More speci�cally, a relationship between two kinds of the probabil-
ity density function (abbr. p.d.f.) and the cumulative distribution function (abbr. c.d.f.)
forms on the system output excited by a speci�c stochastic input of reference type and
an arbitrary random input without the additional noise for an arbitrary environmental
systems is discussed in the form on an intensity scale. Then, a relationship between two
kinds of p.d.f.s of the system outputs excited by an arbitrary stochastic input in the
absence and in the presence of background noise is also derived in the form on an in-
tensity scale. Based on these relationships, a new prediction method on a whole p.d.f.
and/or c.d.f. forms of the system output for the arbitrary environmental systems with
the background noise is proposed especially by the use of the observed data excited by
the speci�c stochastic input of reference type with the background noise. Finally, the
e�ectiveness of the proposed methods is con�rmed experimentally too by applying them
to the actual type sound wall systems.

2. Theoretical consideration

2.1. Noise cancellation on a whole probability form

The observed data are usually given in a sound level form (dB scale) based on the
logarithmic type non-linear transformation of the sound pressure. Therefore, for the pur-
pose of determining the uncontaminated output response, it is necessary to �nd a method
of reasonably removing the e�ect of the background noise and that of the observation
mechanism based on the above non-linear transformation.

Based on the additive principle of sound energy, the arbitrary sound environmental
systems on an intensity scale can be described in a simpli�ed form of the following linear
system:

ξ =
N∑

i=0

ai · xi , (1)

where ξ and xi are the system output and input, respectively. Here, the acoustic system
order N and the system parameters ai (aN+1 = 1) have been found in advance in the
previous paper [3]. Let us consider the observation mechanism based on the linear and/or
non-linear transformations as following equations:

y = f(ξ), (2)

z = f

(
ξ +

N+1∑

i=0

ai · vi

)
. (3)
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Hereupon, f(·) denotes the mechanism of the linear and/or non-linear transformation
measurement. Also, z and y are two kinds of observed data with and without the back-
ground noise. And, vi (i = 1, 2, ..., N) and vi (i = N + 1) show the sound intensities of
background noises added on the input and output sides, respectively.

Let us derive a synthetic probability density function of the stochastic sound environ-
mental system with background noise, after the linear and/or non-linear transformations
in Eqs. (2) and (3). If employing this synthetic probability expression into an inverse
direction of analysis, it becomes possible to estimate reasonably a p.d.f. of the output
response uncontaminated by the background noise without introducing any arti�cial er-
ror criterion like the well-known least-squares method. More concretely, we introduce
an arbitrary function ψ(z) which plays the role of a certain kind of the catalytic like
operation in the decomposition of the above synthetic expression for the p.d.f. Here, let
us write the expectation value of this arbitrary function under consideration, as a certain
catalytic function of analysis, as follows:

I ≡ 〈ψ(z)〉 =

∞∫

−∞
ψ(z)pz(z) dz, (4)

where pz(z) is a p.d.f. of z and 〈∗〉 denotes an expectation operation with respect to the
variable ∗. Here, it seems to be natural to assume that the i-th (i = 0, 1, 2, ...) successive
derivatives of ψ(z) and/or pz(z) tend to zero at the boundary region z → ±∞. After
substituting Eq. (3) into ψ(z) and expanding it in a Taylor's expansion series form under
the above natural boundary condition, ψ(z) can be rewritten as follows:

ψ(z) =
∞∑

n=0

[(
N+1∑

i=0

ai · vi

)n/
n!

]
· (d/dξ)n · ψ(f(ξ)). (5)

Accordingly, after substituting Eq. (5) into Eq. (4) and successively integrating by
parts, the expectation I of the arbitrary function ψ(z) can be concretely expanded under
the above natural boundary condition as follows:

I =

∞∫

−∞
ψ(y) ·

{ ∞∑
n=0

(−1)n
/

n! ·An · [〈Bn | f−1(y)〉 · py(y)
]
}

dy, (6)

where

A =




1
df−1(y)

dy

d

dy


, B =

(
N+1∑

i=0

ai · vi

)
.

After replacing y with z owing to the property of the de�nite integral operation in
Eq. (6) and comparing the de�nition of the expectation of the arbitrary function in Eq. (4)
with Eq. (6), the above p.d.f. pz(z) of z can be derived as the following equations:

pz(z) = py(z) +
∞∑

n=1

(−1)n
/

n! ·An · [〈Bn | f−1(z)〉 · py(z)
]
, (7)
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or

py(z) = pz(z)−
∞∑

n=1

(−1)n
/

n! ·An · [〈Bn | f−1(z)〉 · py(z)
]
, (8)

Here, we must notice the fact that py(z) means to replace only a stochastic variable y

with z in the p.d.f. expression py(y) of y itself. Based on the above synthetic probability
expression Eq. (8), it is possible to estimate reasonably only the undisturbed p.d.f. py(y)
of the objective output y without the background noise for arbitrary sound environmental
systems. That is, after substituting py(z) in the expansion series expression on the right
hand side of Eq. (8) by the whole right side of this equation and successively repeating
the same procedure, the following expression of py(y) can be derived:

py(y) = pz(y)−
∞∑

n1=1

An1 ·An1 · [〈Bn1 | f−1(y)〉] · pz(y) + · · ·

+ (−1)s
∞∑

n1=1

∞∑
n2=1

...

∞∑
ns=1

s∏

k=1

Ans ·Ank · [〈Bnk | f−1(y)〉] · pz(y) + · · · , (9)

where
Ank

= (−1)nk/nk!.

Therefore, the p.d.f. expression for the output response of sound environmental systems
after noise cancellation can be explicitly estimated from the observed actual data obtained
by the logarithmic type non-linear transformation of the data including background noise.

2.2. Prediction of the system response probability with background noise
and arbitrary input

First, we derive, both on the intensity scale and in the parameter di�erential form, the
relationship between two p.d.f.s of the system outputs excited by a reference stochastic
input and an arbitrary input without additional noise. Let a system output without
additional noise change from y0 to y:

y = y0(1 + γ/s0), (10)

where y0 and y denote two system outputs emitted by a speci�c stochastic input of
reference type and an arbitrary random input without additional noise in the form of
the intensity scale, respectively. The γ/s0 shows some ratio of a dimensionless deviation
from a standard distribution type and is statistically independent of y0. We can express
a relationship between two p.d.f.s of acoustic system responses excited by a speci�c input
of reference type and an arbitrary input without additional noise in the expression form
of p.d.f. as follows [4]:

py(y) =
∞∑

l=0

(−1)l/l! · (d/dy)l
[〈

(γ · y/s0)l | y〉 · py0(y)
]
. (11)
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Here, we must notice the fact that only a random variable is changed from the original
y0 to y in the proper p.d.f. expression py0(∗) of y0. Also, the conditional moment can be
directly obtained as: 〈

(γ · y/s0)l | y〉
= yl/sl

0 · 〈γl〉. (12)

Accordingly, after substituting Eq. (12) into Eq. (11), the latter can be easily rewritten
as follows:

py(y) =
∞∑

l=0

(−1)l/l! · (d/dy)l
[
yl/sl

0 · 〈γl〉 · py0(y)
]

=
∞∑

l=0

(−1)l/l! · 〈γl〉(d/dy)l
[
py0(y) · yl/sl

0

]
. (13)

Paying our attention to the fact that the system output on an intensity scale, y

always �uctuates in a non-negative region. The probability density function for the system
output can be expressed in advance especially in the general form of a statistical Laguerre
expansion series [5] as:

py0(y) =

{
1 +

∞∑
n=1

Cn · L(m0−1)
n (y/sl

0)

}
pΓ (y; m0, s0), (14)

where
m0 = 〈y〉2

/ 〈
(y − 〈y〉)2〉 , s0 =

〈
(y − 〈y〉)2〉

/
〈y〉, (15)

pΓ (y; m0, s0) = ym0−1 · e−y/s0/ (Γ (m0) · sm0
0 ) (16)

and
Cn = Γ (m0) · n!/Γ (m0 + n) ·

〈
L(m0−1)

n (y/s0)
〉

, (17)

where L
(m0−1)
n (∗) is a Laguerre polynomial of the n-th order, and Cn is the expansion

coe�cient re�ecting hierarchically the lower and higher order statistics of the output
intensity �uctuation. Furthermore, Eq. (14) can be transformed into a parameter di�er-
ential type series expansion expression taking a gamma distribution function as the �rst
expansion term:

py0(y) =

{
1 +

∞∑
n=1

C ′n(∂/∂s0)n

}
pΓ (y; m0, s0), (18)

where
C ′n = Γ (m0) · (−s0)n

/
Γ (m0 + n) ·

〈
L(m0−1)

n (y0/s0)
〉

. (19)

After some complicated calculation procedures, the following relationship between
the variable di�erential and the parameter di�erential can be derived as:

(∂/∂y)l
[
py0(y) · yl/sl

0

]
= (−1)l(∂/∂s0)lpy0(y). (20)

Consequently, by employing Eq. (20), Eq. (13) can be rewritten as follows:

py(y) =
∞∑

l=0

1/l! · 〈γl〉 · (∂/∂s0)lpy0(y). (21)
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Next, the relationship between the two kind p.d.f.s of the system output emitted by
the arbitrary stochastic input with and without additional noise is also introduced by
the expression of the parameter di�erential form on an intensity scale. Based on these
relationships, we derive a new prediction method being able of evaluating the acoustic
system output excited by the arbitrary stochastic input in the presence of additional
noise. The output �uctuation on the intensity scale for the arbitrary sound environmental
system can be written in the following linear form:

z = y +
N+1∑

i=0

aivi , (22)

where z and y denote the system outputs with and without additional noise in the form
of an intensity scale. Here, N and ai are the system order and system parameter. Also,
vi (i = 1, 2, ..., N) and vi (i = N + 1) denote the intensities of additional noises on the
input and output sides, respectively. The following expression can be simply deduced
from Eq. (7) taking into consideration that df−1(z)/dz = 1 for the system output given
by Eq. (22) and 〈Bn|f−1(z)〉 = 〈Bn〉 when the system output y and the additional noise
are statistically independent:

pz(z) =
∞∑

n=0

(−1)n/n! ·
〈(

N+1∑

i=0

aivi

)n〉
· (d/dz)npy(z). (23)

After substituting Eq. (21) into Eq. (23) under the above condition, it is possible to
rewrite Eq. (23) as:

pz(z) =
∞∑

n=0

(−1)n/n! ·
〈(

N+1∑

i=0

aivi

)n〉
· (d/dz)n

{ ∞∑

l=0

1/l! · 〈γl〉 · (∂/∂s0)lpy0(z)

}

=
∞∑

n=0

(−1)n/l! · (∂/∂s0)l

{ ∞∑
n=0

(−1)n

/
n! ·

〈(
N+1∑

i=0

aivi

)n〉
· (d/dz)npy0(z)

}
. (24)

Consequently, after taking into consideration a p.d.f. py0(z) of z corresponding only to
y0 (instead of y) expressed in the same form as Eq. (23), we directly have:

pz(z) =
∞∑

l=0

1/l! · 〈γl〉 · (∂/∂s0)lpz0(z). (25)

Thus, we can predict theoretically the response p.d.f. for an actual sound environmental
system with an arbitrary stochastic input in the presence of additional noise, especially
by employing the information on the system output p.d.f. for the same system with a
speci�c reference input in the presence of an additional noise knowing its statistics.

3. Experimental consideration

3.1. Experimental arrangement

Figure 1 shows a block diagram of the experimental arrangement in two reverberation
rooms. The speaker excites the transmission room and two microphones receive the input
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and output intensity �uctuations of the sound insulation system respectively. Table 1
shows values of the system parameters for the sound insulating structures considered
in the experiment (the system order N = 2). We have employed the actual road tra�c
noise measured in Hiroshima City and the white noise as the stochastic input and the
background noise, respectively. The aperture of the wall between the transmission and
the reception has an area of 1.74m× 0.84m.

Fig. 1. Block diagram of experimental arrangement.

Table 1. Values of the system parameters.

a0 a1 a2

Single wall 2.43× 10−3 2.10× 10−3 1.95× 10−3

Non-parallel double wall 9.28× 10−3 6.08× 10−3 5.53× 10−3

Double wall with sound bridge 5.52× 10−3 4.18× 10−3 3.37× 10−3

The proposed methods are applied to three types of the sound insulation wall systems,
a) a single wall � an aluminum panel (surface density : 3.22 kg/m2, thickness : 1.2mm),
b) a non-parallel wall � composed of aluminum (at an angle 9 degrees each other), and
c) a double wall with sound bridge � composed of aluminum with a sound bridge (air
gap thickness : 50mm).

3.2. Experimental results

3.2.1. Noise cancellation on a whole probability form. The results of the c.d.f. for the
estimation of the output response probability after the background noise cancellation in
cases of the double wall with sound bridge and the non-parallel double wall are shown
in Fig. 2. The good agreement between the theoretically calculated values and experi-
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a)

b)

Fig. 2. Comparison between theoretically estimated curves and experimentally sampled values for cu-
mulative distribution function; a) a double wall with sound bridge, b) a non-parallel double wall. The
observed and �tted curve for Qz(z) are shown as (◦) and (· · · ). The true and estimated curves for Qy(y)

are shown as (•), (� · �): 1st approx. and (�): 2nd approx.

mentally observed data is recognized in Fig. 2 by employing only the �rst few expansion
terms in the proposed theoretically expansion expression.

3.2.2. Prediction of the system response probability with background noise and an
arbitrary input. The results of the c.d.f. for the prediction of the system output are
shown in Fig. 3 in cases of the single wall and the non-parallel double wall, respectively.
Here, the 1st, 2nd or 3rd approximations correspond to the cases of employing the 1st, 2nd
or 3rd terms in the above theoretical expansion expression, respectively. In the inverse
problem of in�nite series expression, there is generally some risk of series divergency
even if its original series expression is convergent. So, some reasonable countermeasure
of divergent error seem fairly important. For the purpose of reasonably minimizing this
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a)

b)

Fig. 3. Comparison between theoretically predicted curves and experimentally sampled values for cu-
mulative distribution function; a) a single wall, b) a non-parallel double wall. Experimentally sampled
values in cases of the arbitrary input and the reference input are marked by (•) and (◦), respectively.
Theoretically predicted curves are shown by (�): 1st approx., (· · · ): 2nd approx., (� · �): 3rd approx.

and (� ·· �): averaging method.

divergency error caused by employing only the �rst �nite terms in the above in�nite series
expansion expression, some averaging evaluation procedure can be derived theoretically
as follows:

Q(z) = Q0(z) + (b + c)/(a + b + c) ·Q1(z) + c/(a + b + c) ·Q2(z)

+1/(a + b + c) · (a · ε0 + b · ε1 + c2 · ε2), (26)

where Qi(z)'s (i = 0, 1, 2) are respectively the c.d.f. in the special cases taking the 1st,
2nd or 3rd terms in the above in�nite series type theoretical p.d.f. expansion expression,
and a, b and c are the arbitrary constants. Also, the εi's (i = 0, 1, 2) denote the errors
caused by use of the �nite expansion terms in the cases of Qi(z) (i = 0, 1, 2), respectively.
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From Fig. 3, it seems that the 1st, 2nd and 3rd approximation curves do not show any
agreement with the experimentally sampled points owing to the above error. The aver-
aging method in Eq. (26), however, shows a better agreement with the experimentally
sampled points compared with the other curves.

4. Conclusion

In this paper, we have proposed two stochastic signal processing methods on a whole
probability distribution form without introducing in advance any arti�cial error criterion.
That is, for the arbitrary sound environmental system under the existence of background
noise, we have developed the method of estimating the output response probability after
noise cancellation and that of predicting the system output emitted by an arbitrary input
with background noise by employing the information on the system output p.d.f. for the
same system excited only by a speci�c reference input in the presence of the background
noise knowing its statistics.

Finally, the practical e�ectiveness of the proposed methods have been experimentally
con�rmed too by applying them to the actually observed response data in the reverber-
ation room.

Since the present methods are at an earlier stage of study, there still remain some
kinds of future problems, for example, to apply them to many other actual systems and
to �nd more simpli�ed methods for practical use through some approximation of the
proposed methods.

Appendix A

A.1. Simpli�ed determination method of the order for an arbitrary sound insulation
system based on time series model

An arbitrary sound insulation system can be described by the following discrete-time
type:

zk = f(Xk; A) Xk ≡ (xk, xk−1, ..., xk−l), (A.1)

where xk and zk are the system input and output at the discrete-time k, and f( )
denotes the linear and/or non-linear mechanisms of the system. Furthermore, a vector
A ≡ (a1, a2, ..., aN )T show system parameters.

We introduce a somewhat more simpli�ed method rather than such methods as the
well-known AIC method or the FPE method for determining the system order on the
time series model. When the white noise is adopted on trial as a test input of the system
described by Eq. (A.1), the relationship between the test input (= uk) and the system
output (= yk) can be written in the following form:

yk = f(Uk; A) Uk ≡ (uk, uk−1, ..., uk−l). (A.2)



SOME NOISE CANCELLATION AND PREDICTION METHODS ... 303

Because the statistical independence property originally does not change, even in an
arbitrary nonlinear transformation of the systems, the statistical independence for the
arbitrary random signal yk can be evaluated in terms of the following measure ε(yk, yk+j):

ε(yk, yk+j) =
〈ykyk+j〉
〈yk〉〈yk+j〉 − 1, (A.3)

where 〈∗〉 denotes the expected value of ∗ and ε(yk, yk+j) = 0 when yk and yk+j are
statistically independent. Then, it is surely reasonable that we adapt the system or-
der as l = j − 1, in the case when the value of ε(yk, yk+j) is saturated downward the
neighborhood of zero at j.

Figure 4 shows the result of the system order determined by Eq. (A.3). From this
�gure, it can be found that the system order is approximately 2 because the value of
ε(yk, yk+j) is close to zero at j = 3.

Fig. 4. Identi�cation results for the order of time series model based on the criterion function of inde-
pendency; ε(j) = 〈yk, yk+j〉/〈yk〉 · 〈yk+j〉 − 1.

A.2. Prediction of output probability distribution

Equation (A.1) can be rewritten as the following linear system on an intensity scale
supported by the well-known statistical energy analysis method:

zk =
2∑

i=0

aixk−i . (A.4)

By use of Eq. (A.4), the prediction of the output probability distribution can be obtained
for the sound insulation system excited by random input contaminated by background
noise.



304 M. OHTA and N. TAKAKI

Acknowledgements

The authors would like to express our cordial thanks to Prof. K. Hatakeyama, Prof.
A. Ikuta, Mr. K. Nishihara and Mr. N. Hanada for their helpful assistance.

References

[1] A. London, Transmission of reverberant sound through double walls, J. Acoust. Soc. Am., 22, 270�
279 (1950).

[2] M.J. Crocker and A.J. Price, Sound transmission using statistical energy analysis, J. Sound
Vib., 9, 469�486 (1969).

[3] M. Ohta and H. Yamada, A simple method for predicting the output energy distribution of an
arbitrary sound insulation system by use of the least-squares method [in Japanese], J. Acoust. Soc.
Jpn., (J)39, 756�765 (1983).

[4] M. Ohta and N. Takaki, A practical estimation and prediction method of response probability
distribution for arbitrary sound environmental systems with background noise and its application to
the sound wall system, J. Acoust. Soc. Jpn. (E)17, 3, 121�126 (1996).

[5] M. Ohta and T. Koizumi, General statistical treatment of the response of a nonlinear rectifying
device to a stationary random input, IEEE Trans. Inf. Theory, IT-14, 595�598 (1969).



ARCHIVES OF ACOUSTICS
26, 4, 305�329 (2001)

EVALUATION OF MATERIAL PARAMETERS, TEXTURE AND STRESS
OF A PRESTRESSED POLYCRYSTALLINE AGGREGATE
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The propagation of ultrasonic plane waves in a polycrystalline aggregate (steel) is con-
sidered for a bulk sample of the material with plane initial (residual) stress, the material
being made of cubic crystals of the highest symmetry. Some e�ective sti�ness moduli of
the bulk sample and the components of the initial stress are found as functions of the prop-
agation velocities of the respective ultrasonic plane waves. Moreover, the use is made of
Jaynes' principle of maximum Shannon entropy and the averaging procedure proposed by
Voigt. In this way, the probability density function of the crystallite orientation (texture)
and the e�ective sti�ness moduli of a single crystallite of the polycrystalline aggregate
are evaluated numerically for the initial plane stress increasing from zero up to about
300MPa (in the range of elasticity). The numerical analysis shows that while the e�ect
of the initial stress on the results of these calculations increases with increasing initial
stress, the changes in the texture and e�ective sti�ness moduli of a single crystallite are
inconsiderable in the region of the values of the initial stress taken in to account.

Keywords: Polycrystalline aggregate, texture, initial (residual) stress, ultrasonic waves,
elastic moduli.

1. Introduction

Polycrystalline metals are of the form of polycrystalline aggregate of numerous grains,
each grain being a crystallite (monocrystal) with a single crystal symmetry of its struc-
ture and elastic properties. In general, in a macroscopic sample of the polycrystalline
aggregate, which is free of initial stress and is in the so-called natural state with respect
to its plastic deformation history (i.e., is in the state before its �rst plastic deformation),
the grains are randomly oriented resulting in isotropic symmetry of the overall (e�ective)
elastic properties of the sample. Anisotropy of the e�ective elastic properties and residual
stress in bodies, however, usually arises from forming processes being accompanied by
plastic and often nonuniform deformation. Such processes leave the crystallites in certain
preferred orientations called the texture and subjects the body to a state of residual
stress. The texture and residual stress induce anisotropy of the e�ective elastic proper-
ties, and consequently, cause variations in the speeds at which ultrasonic waves propagate
through the sample, the variations depending on the directions of wave propagation and
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polarization. In this context, it is natural to de�ne the e�ective elastic coe�cients (e.g.,
sti�ness moduli) of a such prestressed inhomogeneous body in a well-known manner as co-
e�cients in linearized equations of motion governing the propagation of small-amplitude
elastic waves in this body, the governing equations being assumed to be of the same
mathematical form as the equations governing the propagation of the waves in a bulk
prestressed monocrystal with the same symmetry of the elastic properties as that of the
inhomogeneous polycrystalline body under consideration. Making use of this de�nition,
we arrive at the acoustoelastic dependencies which raise the possibility of using ultrason-
ics as a nondestructive technique for measurements of residual stress and evaluating some
e�ective sti�ness moduli of the bulk sample as well as for estimating the texture and the
e�ective sti�ness moduli of a single crystallite in the body. In this context, the proba-
bility density function of the crystallite orientation in such a body with non randomly
oriented grains, which describes the texture, is called herein also the texture. The aim
of the paper is to present the proposal of a procedure which allows us to evaluate initial
(residual) stress and some e�ective sti�ness moduli of the bulk sample as well as enable
us to estimate the texture and the e�ective sti�ness moduli of the single crystallite from
the variations of the velocity of ultrasonic waves propagating through a bulk sample of
a prestressed polycrystalline aggregate, which has been plasticly deformed.

The rudiments of the acoustoelastic theory, which is employed in constructing the
procedure, have been developed in Refs. [1, 2]. Many practical suggestions utilized in
the present paper have arisen from studying Refs. [3 � 5] or have their origin in these
works. Proceeding in this direction, we become able to evaluate both e�ective sti�ness
moduli of the prestressed sample of the polycrystalline aggregate under consideration
and the initial plane stress in that from measurements of the propagation velocities of
ultrasonic waves. The second part of the problem to be solved is preparing a procedure
of estimating from the same ultrasonic measurements both the texture and the e�ective
sti�ness moduli of a single crystallite in the body under consideration. The rudiments
of an information theory approach are developed in this work within the framework
of inversion of the Voigt [6] concept of evaluating the e�ective sti�ness moduli of a
polycrystalline aggregate. It is well known that the essential step of utilizing the Voigt
averaging procedure is calculation of the orientational volume average of functions of
single crystal elastic sti�ness moduli. Here the calculation of the orientational volume
average denotes averaging over all crystallites in the bulk sample through the probability
density function of the crystallite orientation (i.e., weighting by the probability density
function). Therefore, the assumption that the Voigt concept of evaluating the e�ective
sti�ness moduli of the polycrystalline aggregate under consideration is equivalent to that
based on the propagation equations and measurements of ultrasonic velocities, raises
the possibility of formulating a set of integral equations with the probability density
function of the crystallite orientation as an unknown function. In this context, the inver-
sion of the Voigt procedure of evaluating the e�ective sti�ness moduli of a prestressed
polycrystalline aggregate we de�ne as seeking the answer to the following question: for
what probability density function of the crystallite orientation (texture) and for what
values of the e�ective sti�ness moduli of a single crystallite do the velocities of plane
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ultrasonic waves propagating in the polycrystalline aggregate take the measured values?
Formulated in such a way, the problem is ambiguous and is insoluble by using determin-
istic formalism. To overcome these di�culties, we make use of the probability density
function of the crystallite orientation in the form implied by Jaynes [7] principle of min-
imum prejudice and make choice of the values of the e�ective sti�ness moduli of a single
crystallite in accordance with the minimum di�erence criterion, following Refs. [8, 9],
respectively.

The paper is organized in the following manner. Within the framework of the formu-
lation of the problem, basic equations, de�nitions, notations and concepts on acoustoelas-
ticity are introduced in Sec. 2, the scope of the compendium being limited to that needed
for formulating and solving the problem for the cases of plane initial stress di�erent from
zero and equal to zero. In Sec. 3, the theory and relevant expressions for constructing al-
gorithms for these two cases are summarized, together with pointing out the di�erences
between the algorithms. Controlling on line the convergence of iteration procedures and
checking the exactness of numerical calculations are described in Sec. 4. Finally, numer-
ical results obtained for steel polycrystalline aggregate with texture approximating the
orthorhombic one are discussed in Sec. 5.

2. Formulation of the problem

Now a brief outline is given of the theoretical preliminaries of the proposed ultrasonic
method that enable us to determine simultaneously the texture, stress and material ef-
fective parameters of a textured and prestressed polycrystalline aggregate. The solid
bulk samples are assumed to be composed of a large number of cubic crystallites with
the highest symmetry. In this paper, only such orientation statistics of the crystallites
is considered which contributes to the orthorhombic symmetry of the e�ective dynamic
properties of a solid bulk specimen of the polycrystalline material under examination. To
discuss the orientation of a crystallite and describe all the vector and tensor quantities
involved in the problem under analysis, we introduce two orthogonal reference systems.
A Euler orthogonal reference system 0x1x2x3 with the axes 0x1, 0x2, and 0x3 is supposed
to be suitably chosen, for example, in the case of a rolled plate, 0x1 could coincide with
the rolling direction, the axes 0x2 and 0x3 being transverse to the rolling direction and
normal to the rolling plane, respectively. Then the planes x1x2, x2x3 and x3x1 are the
planes of mirror symmetry connected with the orthorhombic symmetry of the solid bulk
sample. The unit vectors along the directions of the axes 0x1, 0x2, and 0x3 are denoted
by e1, e2 and e3, respectively. The other orthogonal reference system 0X1X2X3 with the
axes 0X1, 0X2, and 0X3 is supposed to be suitably chosen for a single cubic crystallite,
the axes being chosen in the crystallographic directions [100], [010] and [001], respec-
tively. The unit vectors along the directions of the axes 0X1, 0X2, and 0X3 are denoted
by E1, E2 and E3, respectively. In the subsequent considerations, the orientation of a
crystallite within the polycrystalline sample is described by giving the values of three
Eulerian angles, θ, ϕ and φ, of the OX1, OX2, and OX3 axes relative to the sample
axes, Ox1, Ox2, and Ox3. The notations θ (θ = cos−1(E3 · e3)), ϕ and φ stand for the
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angle of nutation, precession and proper rotation respectively. The texture will be de-
scribed by the probability density function of the crystallite orientation, p(ξ, ϕ, φ), where
ξ = cos(θ). Then p(ξ, ϕ, φ) dξ dϕ dφ expresses the probability of a crystallite having an
orientation described by the Euler angles θ (= cos−1 ξ), ϕ and φ, lying in the intervals
〈cos−1 ξ, cos−1(ξ +dξ)〉, 〈ϕ,ϕ+dϕ〉 and 〈φ, φ+dφ〉, respectively. The following consider-
ations are concerned with orthorhombic bulk samples that are under applied or residual
constant plane stress called the initial stress, σ0

ij (i, j = 1, 2, 3). It is assumed that the
two principal axes of the initial plane stress, σ0

ij , coincide with symmetry axes 0x1 and
0x2 of the orthorhombic material. Then the initial stress, σ0

ij , does not change the sym-
metry and the number of independent e�ective elastic constants of the bulk sample under
consideration. Generally, when a stress tensor σij is referred to the reference system with
the axes Ox1, Ox2, and Ox3 coinciding with the principal directions of the stress σij ,
then the shear stress components σ12 = σ21, σ13 = σ31 and σ23 = σ32 vanish. Then
for plane stress analysis, where the shear stress components σ0

12 = σ0
21, σ23 = σ32, and

σ13 = σ31 as well as the component σ33 vanish or are negligible small as compared with
{σ0

11, σ
0
22}, the only components of the initial stress, σ0

ij , present in the considerations
are {σ0

11, σ
0
22}.

To be enabled to determine simultaneously the texture and initial stress σ0
ij of a

polycrystalline aggregate from the measurements of the propagation velocities of ultra-
sonic waves in a sample of the material being acted on by an ultrasonic transducer, some
e�ective material parameters [10] must be known for characterizing both overall and
single-crystal e�ective elastic properties. The term e�ective properties of the bulk sample
under study is used to describe both the physical properties of the so-called equivalent
homogeneous medium that exhibits the same symmetry of the macroscopic mechanical
properties as the sample, and the so-called e�ective displacement response, u, of the
equivalent medium to the transducer loading. The e�ective displacement response is the
same as the averaged displacement response of the polycrystalline material to the same
loading, the averaging being carried out over a statistical ensemble of the bulk sam-
ples [8], i.e. over all crystallites through the function p(ξ, ϕ, φ). The e�ective dynamic
properties of the prestressed orthorhombic polycrystalline aggregate under study and its
single cubic crystallite (monocrystalline grain) are de�ned by the tensors of the e�ective
elastic sti�ness moduli, Ceff

ij and ceff
ij , respectively. Since it is assumed that the princi-

pal axes of the initial stress, σ0
ij , coincide with the symmetry axes 0x1 and 0x2 of the

orthorhombic material then the initial stress, σ0
ij , does not change the symmetry and

the number of independent e�ective elastic constants of the solid bulk sample. There-
fore, the non-vanishing independent e�ective elastic sti�ness moduli of the orthorhombic
polycrystalline bulk sample under consideration as well as those of a single cubic crys-
tallite of the macroscopic sample are {Ceff

11 , Ceff
22 , Ceff

33 , Ceff
44 , Ceff

55 , Ceff
66 , Ceff

12 , Ceff
13 , Ceff

23 } and
{ceff

11 , ceff
12 , ceff

44}, respectively.
Such residual plane stresses in steel may be induced by inhomogeneous plastic defor-

mation in some technological processes, e.g., when the steel is uniaxially rolled in cold
rolling process. Then, if the axis 0x1 of the reference system coincides with the rolling
direction, while the other axes 0x2 and 0x3 of the reference system are transverse to
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the rolling direction and normal to the rolling plane, respectively, the axes Ox1 and Ox2

coincide simultaneously with the principal directions of the residual stress. Consequently,
if the tensor σ0

ij of the residual stress is referred to the reference system with axes Ox1,
Ox2, and Ox3, then the shear stress components σ0

12 = σ0
21, σ0

13 = σ0
31, σ0

23 = σ0
32 vanish

and if moreover σ0
33 also vanishes (or at least is negligible small), the residual stress is

plane. Without going into detail, the process of inducing the residual stress in the steel
uniaxially rolled in cold rolling process σ0

ij may be explained after [11] as follows: The
friction between the plate surface and the rolls together with plastic �ow result in a com-
plex process with the dominant component in the form of material �ow process similar
to sausage �lling. Namely, the surfaces of the plate act as a skin, and the interior of the
plate is pressed in between towards the exit side of the roll gap, the interior being in the
state of compression. The compression causes also transverse material �ow in the roll gap,
the transverse �ow being much smaller than that in the rolling direction. In this way, in
the cold rolling mill, the plate becomes longer and thinner due to the plastic �ow. Since
all volume elements of the plate are stuck together, these length changes are absorbed
partially by elastic strains, which are accompanied by the residual stresses {σ0

11, σ
0
22}. In

turn, the residual stresses are stored in the material as dislocations in the atomic lattice.
If the temperature is su�ciently high, the dislocations are free to move becoming able
to release the residual stresses.

In the paper, for the sake of brevity and convenience, the following tensor quantities
are de�ned:

cij =
ceff
ij

ρ
, Cij =

Ceff
ij

ρ
, σ 0

11 =
σ0

11

ρ
, σ 0

22 =
σ0

22

ρ
. (1)

The quantities Cij and cij are used in describing the e�ective dynamic properties of the
polycrystalline aggregate under study and its single crystallite, respectively. ρ denotes
the e�ective density which is assumed in this paper to be equal to the density averaged
over the volume of a single bulk sample. In a prestressed solid, apart from the stress
σij accompanying the strain εkl due to, e.g., the propagation of ultrasonic waves, there
exists an additional initial stress σ0

ij which is accompanied by the initial strain ε0
kl, both

the initial quantities being assumed to be independent of time. As was mentioned, the
stress σ0

ij can be both applied and residual since there is no restriction that the resulting
deformations are elastic. Every Cijkl is highly dependent on both microstructure and the
initial stress σ0

ij . For a monocrystal Ceff
ijkl = ceff

ijkl = cijkl, when σ0
ij = 0.

Similar to the e�ective (average) density, ρ, the e�ective elastic moduli Ceff
ijkl are also

independent of the position vector x (space coordinates x1, x2, x3), but they are depen-
dent on the angular frequency ω of the loading ultrasonic transducer. In contrast, the
average (e�ective) displacement �eld resulting from the dynamic load with the angular
frequency ω is harmonically dependent on the position vector x = (x1, x2, x3) and time
t with the same frequency ω and, consequently, is also called the e�ective displacement
wave u.

In the Euler coordinate system 0x1x2x3, the equations of motion for small e�ective
elastic displacement, u, which accompanies the propagation of an ultrasonic displacement
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wave in the prestressed solid under consideration, can be written in the following form:
(
Cijkl + σ 0

jlδik

) ∂2uk

∂xj∂xl
=

∂2ui

∂t2
, i, j, k, l = 1, 2, 3, (2)

where δik is the Kronecker tensor. Equation (2) are written by utilizing some results of
Refs. [1, 2, 4, 5] under the assumption that both the material properties Cijkl and the
initial stress σ 0

ij vary only slightly over distances of the wavelength.
In this paper, we are interested only in the average displacement �eld, u = (u1, u2, u3),

in the form of a plane ultrasonic wave propagating in the direction of the unit vector
n = (n1, n2, n3) and polarized in the direction of the unit vector p = (p1, p2, p3). Through
the remainder of the paper, all equations, relations and formulae are written with locating
the vector and tensor quantities relative to the 0x1x2x3 reference system. Then, xi = x·ei,
ui = u · ei, ni = n · ei

.= cos(αi) and pi = p · ei
.= cos(βi), and the wave being of interest

for us may be described by the following equation:
u = pu0 exp [iknp(n · x− Vnpt)]

.= pu0 exp [iknp(n · x− ωt)] , (3)

where Vnp is the phase velocity of a wave propagating in the direction of the unit vector
n and polarized in the direction of the unit vector p, knp stands for the wave number,
knp = ω/Vnp and u0 denotes the displacement wave amplitude. The two sets of angles,
{αi} and {βi}, i = 1, 2, 3, de�ne the directions of the wave propagation and polarization,
respectively.

We seek a simple particular solution to Eqs. (2) in the form given by Eq. (3). On this
basis, if we put the expression given by Eq. (3) in Eqs. (2), we can infer for each pair
of the propagation and polarization directions (n and p) that Eqs. (2) may be solved.
Moreover, the satisfaction of Eqs. (2) not only requires that, for a given polarization
direction p, the phase velocity Vnp depends on the propagation direction n, material
parameters Cijkl and initial stress σ 0

ij but also determines the form taken by the function
Vnp = Vnp

(
n, Cijkl, σ

0
ij

)
. Going into detail let us remind that on substituting the plane

wave solution (3) into Eqs. (2), one obtains the so-called Christo�el equations for an
anisotropic material under the initial plane stress σ 0

ij . If the plane stress tensor σ 0
ij is

referred to the orthogonal reference system 0x1x2x3 with axes Ox1 and Ox2 coinciding
with the principal directions of the stress σ 0

ij , then, for the case under consideration, the
Christo�el equations referred to the same reference system 0x1x2x3 may be expressed in
the following form:[

Cijklninl +
(
σ 0

ilninl − V 2
np

)
δjk

]
pk = 0 ⇔ Ajkpk = 0, i, j, k, l = 1, 2, 3, (4)

where
A11 =

(
C11 + σ 0

11

)
(n1)2 +

(
C66 + σ 0

22

)
(n2)2 + C55(n3)2 − V 2

np ,

A22 =
(
C66 + σ 0

11

)
(n1)2 +

(
C22 + σ 0

22

)
(n2)2 + C44(n3)2 − V 2

np ,

A33 =
(
C55 + σ 0

11

)
(n1)2 +

(
C44 + σ 0

22

)
(n2)2 + C33(n3)2 − V 2

np ,
(5)

A12 = A21 =
(
C66 + C12

)
n1n2 ,

A13 = A31 =
(
C55 + C13

)
n1n3 ,

A23 = A32 =
(
C44 + C23

)
n2n3 .
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If the system of Eqs. (4) is to have a solution di�erent from the trivial one: every pk = 0,
then, in accordance with Cramer's rule, the determinant constructed from the coe�-
cients of the Aij given by Eqs. (5) must vanish. Thus we arrived at the following secular
equation:

|Aij | = 0 (6)

which enables us to establish the above mentioned dependence of the phase velocity
Vnp on n, Cijkl, and σ 0

ij . Equation (6) is an equation of the third degree in Vnp and
therefore has three roots. Therefore, for any pair of unit vectors n = (n1, n2, n3) and
p = (p1, p2, p3) we arrive at the system of Eqs. (4) � (6) and obtain three functions
Vnp = Vnp

(
n, Cijkl, σ

0
ij

)
, after utilizing Cardan's solution of the cubic equation. For

an ultrasonic wave given by Eq. (3) and for a vector p, each of the three relationships
de�nes such a form of the dependence Vnp = Vnp

(
n, Cijkl, σ

0
ij

)
, which ensure that the

wave given by Eq. (3) satis�es Eqs. (2).
It is obvious that the knowledge of the three relationships, Vnp = Vnp

(
n, Cijkl, σ

0
ij

)
,

enables us to construct, in the �rst step, an algorithm for computing some moduli Cijkl

and initial stress components σ 0
ij from the measurements of phase velocities Vnp. This

step is based on �nding the solution with respect to Cijkl of the Christo�el equation
(6) and consists in applying the method proposed and developed by A.D. Degtyar
and S.I. Rokhlin [5] for evaluating some Ceff

ijkl and σ0
ij from the nondestructive mea-

surements of the respective ultrasonic velocities Vnp in the polycrystalline material under
examination. On �nding from Vnp the respective Ceff

ijkl of an orthorhombic polycrystalline
made of cubic crystals with the highest symmetry, we are able to estimate, in the second
step, the texture (i. e., to �nd the estimate of the function p(ξ, ϕ, φ)) and all the three
independent e�ective sti�ness moduli, c11, c12 and c44, of a cubic crystallite. This step
consists in applying the approach proposed and developed by Lewandowski [8, 9] and
is based on utilization an algorithm which can be constructed by inverting the Voigt
[6] scheme of calculating Cijkl. Here let us remind, that the Voigt scheme consists in
averaging some functions of θ, ϕ, φ, c11, c12, and c44 with p(ξ, ϕ, φ) as the weight func-
tion to obtain the respective e�ective sti�ness moduli, Cijkl. Therefore, in the situation
where Cijkl can be evaluated from the measurements of Vnp by utilizing Eqs. (4), (6),
the function p(ξ, ϕ, φ) may be estimated together with c11, c12, and c44, by inverting the
Voigt [6] scheme of calculating Cijkl. However, the problem formulated in such a way is
not unambiguous and the lack of uniqueness must be overcome by employing a suitable
additional condition. For this reason, Lewandowski [8, 9] proposed to introduce the
Jaynes' [7] principle of the maximum prejudice as a suitable additional condition and,
consequently, has developed the method of estimating the function p(ξ, ϕ, φ) by inverting
in the maximum-entropy approximation the Voigt averaging procedure.

Although the method proposed and developed by A.D. Degtyar and S.I. Rokhlin
[5] seems to be the most promising nondestructive way of evaluating Cijkl and σ 0

ij , great
di�culty is encountered in analysis when one wishes to utilize this method for a case
described by Eqs. (4) � (6) in the full form. In consequence of that, in this case all the
quantities, which are to be calculated from the ultrasonic measurements, are involved in
an algorithm describing relationships between them, the relationships being nonlinear and
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of great complexity. Evidently, when the initial stress, σ 0
ij , is not plane and its principal

axes do not coincide with the symmetry and reference axes 0x1, 0x2 and 0x3, to which
is referred the tensor of the stress σ0

ij , the situation is still more complex. However, in
the situation where we con�ne ourselves to consider a case described by Eqs. (4) � (6)
with respectively chosen Vnp, Eqs. (4) � (6) are to be used in more or less reduced form
inducing in this way simpli�cation of the algorithm. An example is presented below of
such choice of a set of ultrasonic velocities Vnp which not only enables us to evaluate
σ 0

ij as well as some of moduli Cijkl, c11, c12 and c44, but also gives the possibility of
estimating the function p(ξ, ϕ, φ).

Throughout the remainder of this paper, the procedure is outlined, which enable
us to evaluate some Cijkl, σ 0

ij , c11, c12 and c44, and to estimate the function p(ξ, ϕ, φ)
in the maximum-entropy approximation. In these considerations are involved ultrasonic
plane- and linearly-polarized waves that propagate in polycrystalline aggregates with
orthorhombic symmetry, the aggregates being composed of crystals of the cubic class
with the highest symmetry. The experimental tools for the investigations discussed in
this paper are con�ned to the measurements of the propagation velocities Vij (i = 1, 2, 3)
of ultrasonic plane waves propagating and polarized in the directions of the Cartesian
reference axes 0xi and 0xj , respectively, the reference axes being simultaneously the
axes of the symmetry of the material bulk sample and the principal axes of the initial
plane stress σ0

ij . Moreover, the bulk sample is made of steel by rolling and the axis
0x1 coincides with the rolling direction, the other axes 0x2 and 0x3 being transverse to
the rolling direction and normal to the rolling plane, respectively. Then the axes Ox1,
Ox2, and Ox3 coincide both with the symmetry axes of the material bulk sample (plate)
and with the principal directions of the plane initial stress σ0

ij . Consequently, the shear
components of the initial stress, σ0

12 = v0
21, σ0

13 = σ0
31 and σ0

23 = σ0
32, vanish, and two

principal stress components, σ0
11 and σ0

22, are the only nonzero initial stress components.

3. Algorithm for numerical calculations

In accordance with the earlier assumption, let us insert into Eqs. (4), (5) the ultrasonic
velocities only in the form of the propagation velocities Vij (i = 1, 2, 3) of ultrasonic plane
waves propagating and polarized in the directions of the Cartesian reference axes 0xi and
0xj , respectively, the reference axes being simultaneously the axes of the symmetry of
the orthorhombic material bulk sample and the principal axes of the initial plane stress
σ0

ij . This situation reduces Eqs. (4), (5) to the following simple relationships:

C11 = V 2
11 − σ 0

11 , C22 = V 2
22 − σ 0

22 , C33 = V 2
33 ,

(7)
C44 = V 2

23 − σ 0
22 = V 2

32 , C55 = V 2
13 − σ 0

11 = V 2
31 , C66 = V 2

12 − σ 0
11 .

Hence,

σ 0
22 = V 2

23 − V 2
32 , σ 0

11 = V 2
13 − V 2

31 , C11 = V 2
11 + V 2

31 + V 2
31 − V 2

13 , (8)

an so on.



EVALUATION OF MATERIAL PARAMETERS ... 313

Therefore, if the values of the eight ultrasonic velocities V11, V22, V33, V12, V13, V23,
V31, V32 (see Table 1) are known, the two principal stress components, σ0

11 and σ0
22, as well

as the e�ective material parameters C11, C22, C33, C44, C55, and C66 can be evaluated
immediately from Eqs. (7), (8) but the values of the other e�ective material parameters
(C12, C13, C23, C22 and C66) remain unattainable.

Table 1.

Input data [105 cm s−1]

N V11 V22 V33 V12 V13 V23 V31 V32

1 5.93552 5.91855 5.87884 3.15212 3.22559 3.25662 3.22559 3.25662
2 5.93553 5.91855 5.87883 3.15214 3.22560 3.25661 3.22557 3.25659
3 5.93553 5.91855 5.87883 3.15217 3.22561 3.25659 3.22555 3.25656
4 5.93553 5.91857 5.87883 3.15237 3.22574 3.25644 3.22545 3.25630
5 5.93552 5.91860 5.87883 3.15262 3.22589 3.25624 3.22531 3.25596
6 5.93552 5.91862 5.87883 3.15288 3.22602 3.25605 3.22515 3.25563
7 5.93553 5.91864 5.87883 3.15312 3.22617 3.25586 3.22501 3.25530
8 5.93552 5.91877 5.87883 3.15465 3.22704 3.25472 3.22414 3.25332
9 5.93836 5.91999 5.87883 3.15796 3.23111 3.25280 3.22269 3.25000

Among the material parameters C11, C22, C33, C44, C55, and C66 involved in Eqs. (7),
(8) only C33 can not be presented in the form of Cii = V 2

jk−σ 0
mm (i = 1, 4, 5; j, k = 1, 2, 3;

m = 1, 2), but is of the form Cii = V 2
jk only. Therefore, from all the material parameters

Cii involved in Eqs. (7) � (8) only C33 represents an entirely textural contribution to the
material anisotropy, the other Cii contributing to the material anisotropy due to the
texture (preferred orientation of the grains) together with the initial stress σ0

ij . However,
in the situation where the initial stress is negligibly small or is absent, i.e., in the limiting
case σ0

ij → 0, Eqs. (7) � (8) becomes a part of the system of equations describing the case
when only the texture contributes considerably to the anisotropy of physical properties.
This limiting case was discussed by Lewandowski in Ref. [9] where the full system of
equations was outlined with utilizing some Sayers's [3] results as well as some ultrasonic
velocities were employed to predict either the texture p(ξ, ϕ, φ) in the maximum-entropy
approximation and the values of some e�ective macroscopic parameters Cij and the
e�ective parameters c11, c12, and c44 of a single crystallite.

In the present paper similarly as in Ref. [9], we solve the problem of estimating the
texture p(ξ, ϕ, φ) in the maximum-entropy approximation con�ning ourselves to invert-
ing the averaging procedure of Voigt [6] only. The Voigt procedure will be explained
here as expressed by Eqs. (9), (10). The reason of con�ning ourselves in both papers to
considering the case when the texture p(ξ, ϕ, φ) is estimated in the maximum-entropy
approximation with using the Voigt averaging procedure only is as follows: Earlier in
Ref. [8], Lewandowski compared the results of seeking the maximum-entropy estimate
of the function p(ξ, ϕ, φ) for orthorhombic texture by employing in the long-wavelength
approximation, the results being obtained with inverting successively the averaging pro-
cedures of Voigt [6], Reuss [12] and Hill [13]. Moreover, the results were obtained
under the assumptions that three respectively chosen velocities, Vij , had been measured
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and the single-crystal material parameters, c11, c12, c44 and ρ were known and did not
vary (ideal polycrystalline aggregate approximation) with varying texture (due to plas-
tic deformation). After �nding the function p(ξ, ϕ, φ) from the three known ultrasonic
velocities, the other six velocities, Vij (i = 1, 2, 3), were successively determined for each
applied averaging procedure in the following two ways: from the orthorhombic symmetry
conditions and by employing the maximum-entropy estimate of the function p(ξ, ϕ, φ).
Next the results of calculating these velocities from both the symmetry conditions and
the function p(ξ, ϕ, φ) were successively compared with each other in pairs, for each
applied averaging procedure, to verify the proposed method of �nding the maximum-
entropy estimate of the function p(ξ, ϕ, φ) from the ultrasonic measurements. In these
tests, only the velocities in each pair, in which one of the velocities was deduced from
the analysis with inverting the Voigt averaging procedure, �tted the same values. This
agreement in values in velocity pairs shows that the analysis with inverting the Voigt
averaging procedure yields such a maximum-entropy function, p(ξ, ϕ, φ), which implies
the same anisotropy of the dynamic (and propagation) properties of the polycrystalline
aggregate under consideration as that deduced from the observed ultrasonic velocities
by employing the othorhombic-symmetry rules. In other words, if the three respective
velocities, Vij , �t the measurements performed on an ideal polycrystalline aggregate with
orthorhombic symmetry of the e�ective dynamic properties and if the maximum-entropy
estimate of the function p(ξ, ϕ, φ) is deduced from this three Vij by the analysis with
inverting the Voigt averaging procedure, then the values of the other six velocities, Vij ,
of ultrasonic waves propagating and polarized along the principal directions, which are
calculated from the function p(ξ, ϕ, φ), also �t the respective measurements performed
on the same material. As was mentioned above, in the present, paper similarly as in Ref.
[9], this conclusion is the reason to con�ne ourselves to considering only the case when
the maximum-entropy estimate of function p(ξ, ϕ, φ) is deduced by inverting the Voigt
averaging procedure. In Ref. [9] was presented an approach which enables us to determine
simultaneously for the limiting case σ0

ij → 0 the e�ective sti�ness dynamic moduli of a
single grain in orthorhombically deformed steel, ceff

11 , ceff
12 and ceff

44 , some e�ective (overall)
sti�ness dynamic moduli, Ceff

ij , of the bulk sample under examination and its p(ξ, ϕ, φ),
all the quantities being estimated from the measurements of ultrasonic velocities.

The algorithm of the presented numerical analysis starts with Eqs. (7), (8) which
de�ne some e�ective macroscopic parameters, Cij, as functions of Vij and σ 0

i,j , c11, c12,
c44. Let us remind that, the Voigt procedure of averaging the single-crystal elastic moduli,
c11, c12, c44, enables us to evaluate the e�ective elastic moduli, Ceff

ij , of a bulk sample
of the considered polycrystalline aggregate, the evaluation being performed under the
assumption of the uniformity of strains εij across the crystallite boundaries, i.e., under
assumption that all grains are subjected to the same strain. This assumption arrives us
at the following equations enabling us to calculate Cij = ceff

ij /ρ:

Cijkl = 〈Tmnpq〉(cmnpq/ρ), Tmnpq = timtjntkptlq ,
(9)

〈Tmnpq〉 =

1∫

−1

dξ

2π∫

0

dϕ

2π∫

0

dφ Tmnpqp(ξ, ϕ, φ),
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where tim denote components of the transformation matrix t(ξ, ϕ, φ) which appears in
the following rule of the coordinate transformation from Xj to xi:

xi = tjiXj . (10)

The solutions of the Christo�el equations for an orthorhombically textured solid,
which are obtained with applying the Voigt approximation (averaging procedure) to the
calculation of the e�ective sti�ness moduli of an ideal polycrystalline aggregate, are listed
in Ref. [3] as formulae (10) � (21). It should perhaps be stressed that the values of the
dynamic sti�ness moduli c11, c12, c44 and density ρ of a single grain (crystal), were
considered in [3, 8] for a deformed and textured steel as being equal to the values of c11,
c12, c44 and ρ, which had been determined for a single-crystal of pure Fe with using a
statical method. It is not to be expected that such an approximation, which can be called
the long-wavelength and ideal Fe crystal approximation, would be always acceptable for
steel, which is a polycrystalline aggregate of Fe with impurities and structure defects.

Herein is presented the next stage of the modi�cation of seeking a complex solution to
the problem of �nding simultaneously ceff

11 , ceff
12 and ceff

44 , some e�ective sti�ness dynamic
moduli Ceff

ij of a prestressed orthorhombic polycrystalline aggregate, the initial stress
σ0

ij , and p(ξ, ϕ, φ) from the measurements of ultrasonic velocities. In the present paper,
we are estimating numerically the solution to this problem in the situation where the
stress σ0

ij increases from zero to a �nite value. We do that in the two following ways:
�rst, in the limiting case σ0

ij → 0, by utilizing the approximation of small initial plane
stress developed in Ref. [8, 9] and secondly, by making the use of Eqs. (7), (8) when σ0

ij is
di�erent from zero. While sketching out the main points of the enlarged numerical anal-
ysis of these problems, which is based on Eqs. (7), (8), only the concepts, de�nitions and
equations required for following the considerations will be reiterated herein after [8, 9].

Therefore, analysing the �rst case when the initial stress σ0
ij → 0, we utilize the

approach proposed in Ref. [9] in seeking p(ξ, ϕ, φ) as well as ceff
11 , ceff

12 , ceff
44 , and some moduli

Ceff
ij . Let us remind that in this approach [9], using [3, formulae (10) � (21)], which had

been deduced from the de�nitions given by Eqs. (9), we arrived at the following equations
[9, Eqs. (5) � (10)], after algebraic manipulation:

〈r1(ξ, ϕ, φ)〉 =
1
2c

(
c11 − V 2

11

)
, c = c11 − c12 − 2c44 , (11)

〈r2(ξ, ϕ, φ)〉 =
1
2c

(
c11 − V 2

22

)
, (12)

〈r3(ξ, ϕ, φ)〉 =
1
2c

(
c11 − V 2

33

)
, (13)

〈r4(ξ, ϕ, φ)〉 =
1
c

(
V 2

23 − c44

)
, (14)

〈r5(ξ, ϕ, φ)〉 =
1
c

(
V 2

31 − c44

)
, (15)

〈r6(ξ, ϕ, φ)〉 =
1
c

(
V 2

12 − c44

)
, (16)

where
r4 = r3 + r2 − r1 , r5 = 2(r1 − r2) + r4 , r6 = 2r1 − r5 , (17)
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r1 = l21l
2
2 + l21l

2
3 + l22l

2
3 , r2 = m2

1m
2
2 + m2

1m
2
3 + m2

2m
2
3 ,

(18)
r3 = n2

1n
2
2 + n2

1n
2
3 + n2

2n
2
3 ,

li = Ei · e1 , mi = Ei · e2 , ni = Ei · e3 .

The abbreviations 〈rq〉, q = 1, 2, ..., 6, in Eqs. (11) � (16) denote averaging the functions
rq(θ, ϕ, φ) of a single-crystal orientation de�ned earlier, the averaging being performed
over all the crystallites in the sample, i.e. 〈rq(θ, ϕ, φ)〉 is rq(θ, ϕ, φ) weighted by p(θ, ϕ, φ):

〈rq(ξ, ϕ, φ)〉 =

2π∫

0

2π∫

0

1∫

−1

rq(ξ, ϕ, φ)p(ξ, ϕ, φ)dξ dϕ dφ. (19)

The probability density function p(ξ, ϕ, φ) ful�ls the normalization condition

〈p(ξ, ϕ, φ)〉 .=

2π∫

0

2π∫

0

1∫

−1

p(ξ, ϕ, φ)dξ dϕ dφ = 1. (20)

It should perhaps be emphasized that each left-hand side of the six equations (5) �
(10) is of the form of an expectation value of one of the six known functions, rq(ξ, ϕ, φ),
of a single-crystal orientation. From these six functions, only three functions rq(ξ, ϕ, φ)
are linearly independent of each other. Each right-hand side of the six equations (5) �
(10) is of the form of a known function of an ultrasonic velocity, Vij , and single-crystal
e�ective material parameters c11, c12, c44 de�ned by Eqs. (1). It can be easily seen from
Eqs. (11) � (16) that each of such three velocities Vij , which satis�es the rule that each of
the numbers 1, 2 and 3 appear as subscripts i and/or j at no more than two velocities
(e.g., V11, V33, and V31) is involved in a formula determining the value of only one
expectation value, 〈rq(ξ, ϕ, φ)〉, the three expectation values being linearly independent
of each other. For this reason, the measurements of V11, V33, and V31 were in Ref. [8]
su�cient for the probability density function p(ξ, ϕ, φ) to be fully estimated for aggregates
with orthorhombic symmetry with known c11, c12, c44, and σ0

ij = 0. Essentially, then the
probability density function p(ξ, ϕ, φ) implied by the Jaynes' [7] principle of maximum
Shannon entropy is given in terms used in Eqs. (11) � (16) by the following expression:

p(ξ, ϕ, φ) =
1
Z

exp [−L1r1(ξ, ϕ, φ)− L3r3(ξ, ϕ, φ)− L5r5(ξ, ϕ, φ)] , (21)

where the partition function Z and the Lagrangian multipliers L1, L3 and L5 are to be
determined from Eqs. (11), (13), (15) and the normalization condition (20).

In Ref. [9], which concerns non-prestressed (σ0
ij = 0) aggregates with orthorhombic

symmetry, the system of equations (11) � (18) was used for estimating in the maximum
entropy approximation the probability density function p(ξ, ϕ, φ), unknown material pa-
rameters c11, c12, c44, and some Cij . The problem was solved in two steps for the case
when the same three ultrasonic velocities V11, V33, V31 and additionally one of the veloc-
ities V22, V23 and V12 are known. In the �rst step, the analytical form of the probability
density function p(ξ, ϕ, φ) was deduced from the observables V11, V33 and V31 by utiliz-
ing the Jaynes' [7] principle of maximum Shannon entropy. Consequently, the analytical
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form of p(ξ, ϕ, φ) in [9] also is given by Eq. (21) but with the partition function Z and
the Lagrangian multipliers L1, L3 and L5, which are to be found in the second step to-
gether with the material parameters c11, c12 and c44, from the seven equations (11) � (16),
(20) with employing the orthorhombic symmetry rules and the values of the ultrasonic
velocities V11, V33, V31, and an additional one, say, V23. Since the system of equations
(11) � (16), (20) for the quantities Z, L1, L3, L5, c11, c12 and c44, which results from
formulating the variational problem for the conditional maximum of missing information
and inverting the Voigt averaging procedure, describes very complicated dependencies of
these quantities on each other, a direct solution of the task is not available and a tedious
numerical method is required to be used. A more detailed description of the operations
of the program evaluating Z, L1, L3, L5, c11, c12 and c44 was presented in Ref. [9]. To
avoid making the paper even longer, any detailed description of the numerical method
will not be reiterated herein after [9], although it should be stressed that the approach
proposed in Ref. [9] is considered here as a suitable one only in the case when the initial
stress, σ0

ij , is small, i.e., in accordance with Eqs. (8), when

DABS
((

V 2
ij − V 2

ji

)
/DMIN1

(
V 2

ij , V
2
ji

)) ¿ 1, i, j = 1, 2, 3, i 6= j. (22)

The nomenclature introduced in Eq. (22) is as follows: DABS denotes the FORTRAN
77 intrisinc function that returns the absolute value of its argument, DMIN1 is another
FORTRAN 77 intrisinc function which returns the minimum value in the argument list.
The smaller are the components of the initial stress, σ0

ij , the better is the approximation
of the texture of a prestressed polycrystalline obtained by using the approach proposed
in Ref. [9].

In this paper, the proposed method of estimating the textural contribution to the
orthorhombic acoustic anisotropy of prestressed polycrystalline aggregates (σ0

ij 6= 0) is
based on Eqs. (7), (8). On inserting Eqs. (9), (10) into Eqs. (7), (8), we arrive at the
following system of equations, after employing [3, formulae (10) � (21)] and algebraic
manipulation:

〈r1(ξ, ϕ, φ)〉 =
1
2c

(c11 −H11) , H11 = V 2
11 + V 2

31 − V 2
13 , (23)

〈r2(ξ, ϕ, φ)〉 =
1
2c

(c11 −H22) , H22 = V 2
22 + V 2

32 − V 2
23 , (24)

〈r3(ξ, ϕ, φ)〉 =
1
2c

(
c11 − V 2

33

)
, (25)

〈r4(ξ, ϕ, φ)〉 =
1
c

(
V 2

32 − c44

)
, (26)

〈r5(ξ, ϕ, φ)〉 =
1
c

(
V 2

31 − c44

)
, (27)

〈r6(ξ, ϕ, φ)〉 =
1
c

(
H2

12 − c44

)
, H12 = V 2

12 + V 2
31 − V 2

13 . (28)

Equations (23) � (28), (20) are the reliable basis for the maximum-entropy estimate of
the orthorhombic texture of the prestressed polycrystalline aggregate from the measure-
ments of the propagation velocities Vij (i, j = 1, 2, 3) of the ultrasonic plane and linearly
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polarized waves. This method consists in �nding in two stages the maximum-entropy es-
timation of the probability density function p(ξ, ϕ, φ). Similarly to Eqs. (11) � (16), each
left-hand side of Eqs. (23) � (28) is of the form of the expectation value of one of the func-
tions ri(ξ, ϕ, φ), i = 1 to 6, weighted with p(ξ, ϕ, φ), and each right-hand side of these
equations is of the form of a known function of some quantities belonging to the set of the
following �ve quantities: an ultrasonic velocity, Vij , three material parameters c11, c12,
c44 and the two (σ0

11 and σ0
22) non vanishing components of the initial plane stress, σ0

ij .
From the system of Eqs. (23) � (28), (20), it can immediately be seen which of the nine
ultrasonic velocities Vij (i, j = 1, 2, 3) should be known from the measurements for each
situation under consideration. On performing the respective measurements, the two (σ0

11

and σ0
22) non-vanishing components of the initial plane stress can be evaluated directly

from Eqs. (8). The analytical form of the function p(ξ, ϕ, φ) can be determined from a
system of three equations obtained by reducing the system of six equations (23) � (28)
to that with three functions ri(ξ, ϕ, φ), which are linearly independent of each other.
Then the analytical form of p(ξ, ϕ, φ) can be determined from such a system of three
equations by inverting in the maximum-entropy approximation the Voigt averaging pro-
cedure, which was assumed to be suitable for calculating the expectation values involved
in Eqs. (23) � (28). For example, if r1(ξ, ϕ, φ), r3(ξ, ϕ, φ), and r5(ξ, ϕ, φ) are chosen as
the three independent of each other functions ri(ξ, ϕ, φ), then the analytical form of
the function p(ξ, ϕ, φ) is again given by Eq. (21). While the probability density function
p(ξ, ϕ, φ) implied by the observables V11, V33 and V31 and by the Jaynes' [7] principle of
maximum Shannon entropy is also of the form given by Eq. (21) as in Ref. [9], now the
partition function Z and the Lagrangian multipliers L1, L3 and L5 are to be determined
together with the unknown material parameters c11, c12 and c44 from Eqs. (23) � (28),
(20), some of them being more complicated than their analogues in Ref. [9]. The increase
in the complexity is due to the dependence of each of the seven unknown quantities Z,
L1, L3, L5, c11, c12 and c44 on both the texture p(ξ, ϕ, φ) and the initial plane stress
σ0

ij = {σ0
11, σ

0
22} 6= 0.

4. Results of numerical analysis

In the subsequent numerical analysis, we seek the function p(ξ, ϕ, φ), material param-
eters c11, c12, c44, and some Cij for a rolled steel plate. It is assumed that the values of
the ultrasonic velocities presented in Table 1 were obtained from experiments. Moreover,
it is assumed that the set of the values in each row was obtained in the same of the nine
groups of measurements, each measurement of any group being performed on the same
sample in the same state of the initial plane stress σ0

ij . In accordance with Eqs. (7), (8),
the values given in any row of Table 1 enable us to evaluate immediately the initial plane
stress σ0

ij = {σ0
11, σ

0
22} 6= 0 and some material parameters, C11, C22, C33, C44, C55,

and C66 of the prestressed body. After algebraic manipulation, the values given in any
row of Table 1 lead us directly to that given in Table 2 in the row of the same number
where the Input data are presented in the form suitable for inserting into Eqs. (23) � (28)
in order to perform further calculations, with utilizing also Eq. (20). These calculations
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are performed for the case when r1(ξ, ϕ, φ), r3(ξ, ϕ, φ), and r5(ξ, ϕ, φ) are chosen as the
three independent of each other functions ri(ξ, ϕ, φ), i.e., when the analytical form of the
function p(ξ, ϕ, φ) is given by Eq. (21). On inserting the values given in the respective row
of Table 2 into Eqs. (23) � (28) and enclosing Eq. (20), we arrive at a system of nonlinear

Table 2.

Input data [cm2s−2]

No H11 · 10−11 V 2
33 · 10−11 V 2

31 · 10−11 H22 · 10−11 V 2
32 · 10−11 H12 · 10−11

1 3.52304 3.45607 1.04044 3.50293 1.06056 0.993586
2 3.52303 3.45607 1.04043 3.50292 1.06054 0.993581
3 3.52301 3.45607 1.04042 3.50291 1.06052 0.993579
4 3.52286 3.45607 1.04035 3.50286 1.06035 0.993559
5 3.52267 3.45607 1.04026 3.50280 1.06013 0.993530
6 3.52248 3.45607 1.04016 3.50273 1.05991 0.993501
7 3.52230 3.45607 1.04007 3.50267 1.05970 0.993471
8 3.52117 3.45607 1.03951 3.50227 1.05841 0.993309
9 3.51930 3.45607 1.03857 3.50162 1.05625 0.993019

Table 3. Some results of numerical calculations.

σ11 · 10−6
No L1, L3, L5 σ22/σ11 Qc qmin · 107

[cm2s−2]
L1 = −2.235763183772

1 L3 = 1.0979886139440 0.0 � 0.100859 3.184
L5 = 0.5487668886877

L1 = −2.235960972127
2 L3 = 1.0983295503730 1.87084 0.4874 0.100992 4.879

L5 = 0.5488253145014

L1 = −2.236795947828
3 L3 = 1.0988891388090 3.74168 0.4874 0.101234 4.879

L5 = 0.5491093285845

L1 = −2.234641453048
4 L3 = 1.1000725429550 18.7084 0.4874 0.101991 4.892

L5 = 0.5496786820460

L1 = −2.232686689108
5 L3 = 1.1023022949130 37.4169 0.4873 0.103102 2.746

L5 = 0.5505769647418

L1 = −2.229401607267
6 L3 = 1.1030163310740 56.1252 0.4873 0.103932 4.894

L5 = 0.5511099378546

L1 = −2.225893773403
7 L3 = 1.1043245324470 74.8337 0.4872 0.104756 4.871

L5 = 0.5515539359085

L1 = −2.207377222687
8 L3 = 1.111587495000 187.84 0.4870 0.110156 4.875

L5 = 0.5551990370096

L1 = −2.149780065096
9 L3 = 1.104165497590 374.168 0.4866 0.114811 4.880

L5 = 0.5570847777796
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equations of great complexity that are regarded by us as a reliable basis for evaluating
numerically the partition function Z, the Lagrangian multipliers L1, L3, and L5 together
with the single-crystal e�ective material parameters c11, c12 and c44. Some of the results
obtained by utilizing this algorithm are presented in Table 3, the others are presented
in the forms of the diagrams in Figs. 1 � 10. All the numerical results are obtained for
polycrystalline aggregate being under plane initial stress {σ0

11, σ
0
22} with the components

σ0
11 ≥ 0, σ0

22 ' 0.487σ0
11 having successively the value of zero and eight di�erent positive

values.
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Fig. 1. Ceff
11 /ρ, Ceff

22 /ρ, and Ceff
33 /ρ plotted against σ0

11/ρ. On the horizontal (normalized initial stress
σ0
11/ρ) axis is set log scaling.

Solving the problem numerically, we have been encouraging in trying to do that by
the implicit function theorem, which gives us only the hope, not certainty of satisfying
seven nonlinear Eqs. (23) � (28), (20) in seven unknowns, Z, L1, L3, L5, c11, c12 and c44,
simultaneously. However, a set of nonlinear equations may have no (real) solutions at all
or, contrariwise, it may have more than one solution, as it happens in each of the nine
examples under consideration. In such nonlinear problems, solution �nding invariably
proceeds by iteration. Starting from some trial values of L1, L3, and L5, a useful algorithm
will improve the solution until some predetermined convergence criterions are satis�ed,
the solution being a set {Z,L1, L3, L5, c11, c12, c44}. In order to have some check of the
actual accuracy of calculation and the rate of convergence, a parameter Gm has been
de�ned, the parameter Gm being a modi�cation of that given in Ref. [9]:

Gm = DMAX1 (G11, G22, G33, G12, G31, G32), (29)
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where

Gαβ = DABS
[(

H
(input)
αβ −H

(deduced)
αβ

)
/DABS

(
H

(input)
αβ

)]
, αβ = 11, 12, 22,

Gγδ = DABS
[(

H
(input)
γδ −H

(deduced)
γδ

)
/DABS

(
H

(input)
γδ

)]
, (30)

H
(...)
γδ =

(
V

(...)
γδ

)2

, γδ = 31, 32, 33.

The superscripts (input) refers to the values of the quantities Hαβ , Hγδ and V 2
γδ, which

are given in the respective row of Table 2. As was mentioned, these values, which are
the basis for determining (in the approximation of maximum Shannon entropy) the un-
knowns Z, L1, L3, L5 (i.e., the function p(ξ, ϕ, φ)) as well as c11, c12, c44, are regarded
as experimental data (observables) obtained for the sample subjected to the initial plane
stress σ0

ij . Similarly, the superscripts (deduced) refer to the values of the quantities Hαβ

and Hγδ which are deduced from Eqs. (23) � (28), (20), after inserting both the prob-
ability density function p(ξ, ϕ, φ) and the parameters c11, c12, c44 calculated from the
observables in the former step. DMAX1 is the FORTRAN 77 intrisinc function, which
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returns the maximum value in the argument list. The values of Gm for every set of input
data, at which the respective iteration has been ended, are denoted by qmin and are listed
in the sixth column of Table 3.

As was mentioned, each of the nine tasks of �nding the unknowns Z, L1, L3, L5,
c11, c12 and c44 from Eqs. (23) � (28), (20) has more than one solution. This raises
the need to provide a constructive criterion for making choice between numerous sets
{Z, L1, L3, L5, c11, c12, c44} satisfying Eqs. (23) � (28), (20). Following Ref. [9], we make
use herein of the criterion of the minimum value of the di�erence Qc

Qc = DMAX1(Gc11, Gc12, Gc44), (31)

where

Gcij = DABS
[(

cij − c 0
ij

)
/c 0

ij

]
,

(32)
c 0
ij = c0

ij/ρ0, ij = 11, 12, 44.

The values of the elastic sti�ness moduli c0
11, c0

12, c0
44 and density ρ0 of a single cubic

crystal of the polycrystalline material (or a material as similar to that as possible) in the
natural state (before deformation) are assumed to be known. Similarly as in Ref. [9], it is
assumed that such a natural material for the rolled steel may be approximated by BCC
Fe, which is characterized by the following values of c 0

11, c 0
12, and c 0

44:

c0
11 = 2.5982d + 07(m/s)2,

c0
12 = 1.6857d + 07(m/s)2, (33)

c0
44 = 1.5843d + 07(m/s)2.

Now we formulate the criterion of minimum di�erence as the proposal of choosing this
set of the values of Z, L1, L3, L5, c11, c12, and c44 satisfying Eqs. (23) � (28), (20),
which contains such values of the material parameters c11, c12, and c44 that lead to the
minimum value of the di�erence parameter Qc and simultaneously contains such values
of Z, L1, L3, L5 that lead to the probability density function p(ξ, ϕ, φ) achieving the
maximum value of Shannon entropy. In each of the nine rows of the �fth column of
Table 3, there is presented the value of the minimum di�erence Qc corresponding to
the solution {Z, L1, L3, L5, c11, c12, c44} of one of the nine examples under consideration.
The �rst example concerns the situation where the material is not prestressed (σ0

ij = 0).
The full set {Z, L1, L3, L5, c11, c12, c44} for each of the nine examples (rows of Table 1)
can be read in the following way: L1, L3, L5 can be found in the respective row of the
�rst column of Table 3, c11, c12, and c44 can be read out of Fig. 3 for each of the eight
(No = 2, 3, . . . , 9) prestressed states (σ0

ij 6= 0) of the material. Since log scaling is set
on the horizontal (normalized initial stress σ0

ij/ρ) axis of each of Figs. 1 � 3, then the
predicted values of material parameters C11, C22, C33, C44, C55, C66, c11, c12 and c44 of
the non-prestressed body can not be indicated in Figs. 1 � 3. These values, expressed in
[1011 cm2s−2] units are as follows: 3.52304, 3.50293, 3.45607, 1.06056, 1.04044, 0.993586,
2.65267, 1.82618, 1.45220.
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5. Discussion and conclusions

The data presented in the �rst column of Table 3 show the predicted changes in the
values of the Lagrangian multipliers L1, L3 and L5 with increasing stress components
σ0

11 ≥ 0, σ0
22 ≥ 0 in the case when σ0

22/σ0
11 ' 0.487. For given L1, L3 and L5, the

partition function Z and, consequently, the function p(ξ, ϕ, φ) can also be regarded as a
known quantity, since Z can be calculated immediately from the normalization condition
(20). Therefore, the data presented in the �rst column of Table 3 enable us to estimate
the in�uence of the increasing initial plane stress {σ0

11, σ
0
22} on the predicted texture of

the polycrystalline aggregate under consideration. In order to visualize this e�ect, the
quantities

nφ(φ2, φ1)
.=

φ2∫

φ1

2π∫

0

1∫

−1

p(ξ, ϕ, φ) dξ dϕ dφ, (34)

nϕ(ϕ2, ϕ1)
.=

2π∫

0

ϕ2∫

ϕ1

1∫

−1

p(ξ, ϕ, φ) dξ dϕ dφ, (35)

nθ(θ1, θ2)
.=

2π∫

0

2π∫

0

ξ1∫

ξ2

p(ξ, ϕ, φ) dξ dϕ dφ,

θ1 = arccos ξ1, θ2 = arccos ξ2, 0 ≤ θ1 ≤ θ2 ≤ π (36)

were calculated successively for L1, L3 and L5 corresponding to the �rst and ninth sets
{L1, L2, L3}, which are written in the �rst and ninth rows of the �rst column of Table 3.
The abbreviations, nφ(φ2, φ1), nϕ(ϕ2, ϕ1), and nθ(θ2, θ1) denote the fractions of the total
number of crystallites

(i) with the angle of proper rotation, φ, lying in the interval φ1 ≤ φ ≤ φ2;
(ii) with the angle of precession, ϕ, lying in the interval ϕ1 ≤ φ ≤ ϕ2, and
(iii) with the angle of nutation, θ, lying in the interval θ1 ≤ θ ≤ θ2, respectively.
In Figs. 4 and 5, examples of numerical calculations of nφ(φ2, φ1) and nϕ(ϕ2, ϕ1),

respectively, are presented for the case σ0
11 = σ0

22 with the whole domains [0◦, 360◦]
of the rotation angle φ and precession angle ϕ being divided into parts (subdomains) of
equal size, 18◦, with centres at φ = (φ1−φ2)/2 = 9◦, 27◦, 45◦, ..., 351◦ (Fig. 4) and at ϕ =
(ϕ1 +ϕ2)/2 = 9◦, 27◦, 45◦, ..., 351◦ (Fig. 5). Similarly, in Fig. 6, an example of numerical
calculations of nθ(θ2, θ1) is presented for the same case σ0

11 = σ0
22 with the whole domain

[0◦, 180◦] of the nutation angle θ being divided into parts (subdomains) of equal size,
18◦, with centres at θ = (θ1 + θ2)/2 = 9◦, 27◦, 45◦, ..., 171◦. The crystallite fractions
nφ(φ2, φ1), nϕ(ϕ2, ϕ1), and nθ(θ2, θ1) were calculated separately for each subdomain and
the results of these calculations are presented in the form of bar graphs (histograms) in
Figs. 4 � 6. Results of numerical analysis show that the absolute values of the discrepancies
between the elements of the histogram pairs, which correspond to the same subdomain of
the same orientational angle φ, ϕ or θ but concern di�erent initial stresses σ0

11 = σ0
22 = 0

or σ0
11 6= 0, σ0

22/σ0
11 ' 0.487, increases with increasing σ0

11 (and σ0
22). In this analysis,
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σ 0
11 = 3.74 ·108 cm2s−2 and σ 0

22 ' 0.487 ·σ 0
11 were the maximum values of the normalized

plane stress {σ 0
11, σ

0
22} under consideration. In Figs. 7 � 9, the values are presented of the

relative discrepancies between elements of each of the three pairs of histograms nφ(φ2, φ1),
nϕ(ϕ2, ϕ1), and nθ(θ2, θ1), respectively, each of the histogram pairs being composed of
two histograms for the same orientation angle φ, ϕ or θ and for the two limiting stresses:
{σ0

11 = σ0
22 = 0} and {σ 0

11 = 3.74·108 cm2s−2, σ 0
22 ' 0.487·σ 0

11}. The relative discrepancy
is de�ned for an angle subdomain as the ratio of the discrepancy in the subdomain
between two histograms of the considered pair to the value of the histogram belonging
to the same pair and concerning the case {σ0

11 = σ0
22 = 0}. The values of the relative

discrepancies may be regarded as a measure of the e�ect of initial plane stress on the
texture predicted by using the approach proposed in this paper. From Figs. 7 � 9 it can
easily be seen that this e�ect for stress non greater than {σ 0

11 = 3.74 · 108 cm2s−2,
σ 0

22 ' 0.487·σ 0
11} is revealed by the relative discrepancies smaller than 0.007 and therefore

is negligibly small.
The increase of σ0

ij = {σ0
11, σ

0
22} 6= 0 also induces changes in the predicted normalized

moduli C11, C22, C33, C44, C55, C66, c11, c12 and c44, which can be seen from Figs. 1 � 3.
The maximum value of the relative changes in all the moduli (i.e., the changes in all the
moduli divided by the values of the respective moduli of non-prestressed material) are
smaller than 0.02, if σ 0

11 increases from zero to about 374 ·106 cm2s−2. For the steel of the
density ρ = 7.819 g cm−3, it denotes the changes in the value of σ0

11 lying in the interval
from zero to about 292MPa. This value is a typical one of residual stress in steel being
plastically deformed (e.g., rolled). Hence we can conclude that for rolled steel the changes
in the predicted values of the considered moduli, which are induced by the considered
residual stress, are negligibly small.
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The propagation velocities of four ultrasonic waves in a steel plate are measured in
twelve equally spaced observation points lying in a rolling plane on a straight line perpen-
dicular to the rolling direction. The plate material was rolled plastically and uniaxially in
the situation where the edges parallel to the rolling direction were free. The plate is con-
sidered to be a bulk sample with orthorhombic symmetry of bulk mechanical properties
made of cubic crystals of the highest symmetry. The local probability density function of
the crystallite orientation and the local e�ective sti�ness moduli of a single grain (crystal-
lite) are found from four ultrasonic velocities and the rules of orthorhombic symmetry and
Jaynes' principle of maximum Shannon entropy. These results, which have been obtained
for twelve mesodomains centered at each of the twelve observation points, show the e�ect
of the distance between an observation point and a free plate edge on the local e�ective
sti�ness moduli and on the local probability density function of the crystallite orientation.

1. Introduction

In an isotropic polycrystalline material the ultrasonic velocities are independent of
the direction of the ultrasonics' propagation through a macroscopic sample of the mate-
rial. Most polycrystalline materials (e.g. metals) were acted on by forming forces, which
caused plastic deformation, subjected the body to a state of stress or deformation and
left the crystallites (basic units, grains) in certain preferred orientations. Consequently,
the forces of the forming process caused anisotropy of the overall (e�ective) mechanical
(amongst them acoustical) properties of the material. The non-random distribution of
the crystallite orientation, which is caused by plastic deformation, is called the texture.
Therefore, most polycrystalline materials exhibit texture resulting from their forming
processes. The acoustical anisotropy is revealed by the variations in speeds at which
ultrasonic waves propagate through the sample, the variations being dependent on the
directions of the wave propagation and polarization. In numerous situations, the texture
considerably contributes to the mechanical and acoustical anisotropy of the material.

Among the problems of forming the texture in metals during plastic deformation,
there are mainly two �elds of interest for both a fundamental and an applied researcher.
The �rst is directed to the e�ect of roll forces, their geometry as well as another rolling
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parameters and conditions on the texture. The second is concerned with the in�uence of
the texture on the mechanical properties of rolled metal (e.g. steel). For example, for the
application of structural steels in various �elds of engineering, high strength, su�cient
ductility and a good weldability as well as formability are often highly desired. Therefore,
the changes in these steel properties during a plastic forming process (e.g. rolling) may
be more exactly predicted as our knowledge of the problems belonging to these two �elds
becomes better.

In the paper, the considerations are con�ned to ultrasonic plane and linearly polarized
waves which propagate in macroscopic pollycrystalline aggregates with orthorhombic
symmetry of the bulk (e�ective) elastic properties, the aggregates being composed of a
large number of cubic crystallites of the highest symmetry. The macroscopic orthorhombic
symmetry is of considerable practical interest since the rolling process in one direction
only of a polycrystalline aggregate with virgin (before deformation) isotropic symmetry
always results in the transformation of the isotropic symmetry (or another one) into the
othorhombic symmetry.

In the paper, there is presented a nondestructive ultrasonic method of the estimation
of some local material parameters and the local texture of a steel plate which was rolled
uniaxially in the situation where the edges parallel to the rolling direction were free.
Thus in this paper, only such orientation statistics of the crystallites is considered which
contributes to the orthorhombic symmetry of the dynamic properties of a bulk specimen
of a polycrystalline aggregate made of cubic crystals of the highest symmetry. Using the
approach proposed by Lewandowski in [2], we do not neglect the e�ect of other causes
on the e�ective mechanical and ultrasonic propagation properties of the polycrystalline
aggregate as well as on the macroscopic symmetry of these properties, since this approach
is based on taking into account the fact that the values of measured velocities of the
ultrasonic waves are determined not only by the structure and physical properties of the
acoustical medium under examination but also by all these physical phenomena occurring
in the medium which in�uence on the propagation. In other words, the measured velocities
of ultrasonics, which are the basis for all calculations presented in the subsequent text,
contain information on the structure and properties of the material, among other on the
values of the dynamic single-crystal material parameters in�uenced on by the defects and
imperfections of crystal microstructure, residual stress, scattering and the phenomena of
mechanical energy dissipation.

2. Formulation of the problem

Although numerous ultrasonic investigations have been carried out in connection
with the rolling process, quantitative information on the complete distributions both of
some local mechanical properties of the plate material and the local texture in a plate
undergoing rolling seems to be little. Among others here arises the question how strongly
are the local mechanical properties and texture in�uenced on by the distance x between
an observation point determined by the position vector r and one of the two plate edges
parallel to the rolling direction, in the situation where these edges are free.



ESTIMATION OF LOCAL MATERIAL AND STRUCTURE PARAMETERS 333

It should perhaps be emphasized that in this paper the term local concerns the use of
three measuring scales, the smallest of which refers to a structural grain or crystallite of
the material. For simpli�cation of the analysis, an assumption is used as the �rst approx-
imation of the internal contribution to the material response on an external (ultrasonic
transducer) loading. In accordance with this assumption, the constitutive internal rela-
tions of a microelement (grain or crystallite) are describable by continuum laws, whilst
the stress and displacement �elds are described either in terms of random variables or
stochastic processes depending on the loading and the material under investigation. All
parameters concerned with the smallest region are pre�xed by micro. Next an intermedi-
ary scale is introduced referred to as a mesodomain that contains a statistical ensemble
of crystallites. A mesodomain is interpreted to be much smaller than the macroscopic
domain of the entire material body (macroscopic sample), but is much larger than the
domain of a microelement as containing a statistical ensemble of crystallites. In the sub-
sequent text, the term local texture (properties) does not mean the texture (properties)
in a point in the plate under study, which is determined by a position vector r, but means
the texture (properties) of the plate material �lling a mesodomain geometrically centered
at the point determined by the position vector r. This point is called in the subsequent
text the observation point.

In the paper, we are interested in some mechanical properties and the local texture of
a steel plate of dimensions of 0.38m× 0.26m× 0.02 m which was rolled uniaxially in the
situation where the edges parallel to the rolling direction were free. We are interested �rst
in showing that it is possible to estimate from ultrasonic measurements the distribution of
the local propagation (mechanical) properties and texture of the steel plate. Secondly, we
are going to reveal the in�uence of the distance x between an observation point and the
reference free edge on the the local values of e�ective material parameters and the local
texture. For this reason, we are interested in deducing from the ultrasonics measurements
the local values of e�ective material parameters of a crystallite as well as the distributions
of the local texture in the plate in twelve equally spaced points (0.02m apart) lying in
rolling plane on a straight line perpendicular to the rolling direction. In this way, the
measurements of the propagation velocities, Vij , where i, j = 1, 2, 3, of ultrasonic plane
waves propagating and polarized in the directions of the Cartesian reference axes 0xi and
0xj , respectively, are the only experimental tools for texture investigations discussed in
this paper. The Cartesian coordinate system 0x1x2x3 with the axes 0x1, 0x2 and 0x3 is
de�ned below.

Among the reasonable choices of the reference system for analysing this problem is
the Cartesian coordinate system 0x1x2x3 with the axes 0x1, 0x2 and 0x3 chosen as the
rolling R, transverse (perpendicular to R in the rolling plane) T and normal (to the rolling
plane) N directions, respectively. Let the abbreviations e1, e2 and e3 denote the unit
vectors along the directions of the axes 0x1, 0x2 and 0x3, respectively. The Cartesian
coordinate system 0x1x2x3 will be called the macroscopic reference system. To de�ne
the texture precisely, we also make use of a local Cartesian coordinate system 0X1X2X3

called the microscopic reference system. This reference system is de�ned, similarly as
in Refs. [1, 2], for each single cubic crystallite. Its reference 0X1 axes, 0X2 and 0X3

are chosen in the crystallographic directions [100], [010] and [001], respectively. Let the
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abbreviations E1, E2 and E3 denote the unit vectors along the directions of the axes
0X1, 0X2 and 0X3, respectively. In the subsequent considerations, the orientation of
a crystallite in the polycrystalline sample is described by giving the values of three
Eulerian angles θ, ϕ and φ where θ, ϕ and φ denote the Eulerian angles de�ned in this
paper in the same way as in Ref. [3], i.e. θ is the angle of nutation, ϕ is the angle of
precession and φ is the angle of proper rotation. In the paper, the texture is described
by using the probability density function of the crystallite orientation, p(ξ, ϕ, φ), de�ned
in such a way that p(ξ, ϕ, φ) dξ dϕ dφ expresses the probability of a crystallite having an
orientation described by the Euler angles θ = cos−1 ξ, ϕ and φ, lying in the intervals
〈cos−1 ξ, cos−1(ξ + dξ)〉, 〈ϕ, ϕ + dϕ〉 and 〈φ, φ + dφ〉, respectively.

Using the approach proposed by Lewandowski [2], we utilize the fact that the propa-
gation properties of the polycrystal under examination, which are revealed by the results
of ultrasonic measurements, contain information on the structure and properties of the
components of the medium as well as on the phenomena occurring in the polycrystal and
in�uencing on the propagation (e.g., scattering). It means that the dynamic mechanical
and propagation properties (the values of the components of the e�ective sti�ness ten-
sor) of a single grain in the approach proposed in Ref. [2] and applied in this paper are
taken to be �as they are" by letting the experimental data (ultrasonics wave velocities
and the rules of orthorhombic symmetry) to determine the single-grain e�ective elastic
properties and texture of the bulk sample under consideration. The respective numerical
calculations are performed by using the equations which are derived and listed in Ref.
[2, Eqs. (5), (7), (9), (15), (21) - (23)]. Starting from these equations, we �nd the function
p(ξ, ϕ, φ) and obtain values of the components of the so-called e�ective sti�ness tensor,
c
(eff)
ij , (i, j = 1, 2, 3), of a single grain of the polycrystalline aggregate under examination.
The reasoning leading us to such results may be presented shortly as follows:

We start from the hypothesis that the propagation properties of the bulk specimen
under examination are de�ned by the macroscopic tensor of the e�ective elastic sti�ness,
C

(eff)
i,j , of the sample (or, equivalently, elastic compliance tensor) and the e�ective density,

ρ, the last being assumed in this paper to be equal to the density averaged over the
volume of a single bulk sample. Let us remind that the symmetry of the e�ective elastic
sti�ness tensor of the bulk sample of the polycrystalline aggregate under examination,
which is called in the subsequent text the macroscopic symmetry of the bulk sample, is
orthorhombic in the situation where the material was plastically rolled in one direction.
More strictly speaking, the term e�ective properties of the bulk sample is used to describe
the physical properties of the so-called equivalent homogeneous medium [4] that exhibits
the same macroscopic symmetry as the bulk sample under study, and the displacement
response of the equivalent medium to the transducer loading is the same as the averaged
displacement response of the polycrystalline material to the same loading, the averaging
being carried out over a statistical ensemble of bulk samples, i.e. over all crystallites
through the function p(ξ, ϕ, φ). Similar to the e�ective density, the e�ective elastic moduli
are also independent of the position vector (space coordinates), but they are dependent
on the frequency of the loading transducer. In contrast, the average displacement �eld
resulting from the dynamic load is dependent on the position vector, r, time, t, and
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load (angular) frequency, ω, and, consequently, is called the e�ective displacement �eld
or e�ective wave � especially, if is harmonically dependent on the position vector and
time.

Knowing the e�ective properties of the sample under examination, we are able to
estimate the dynamic response of the sample being acted on by ultrasonic transducer.
In the case, when the response is of the form of ultrasonic plane waves propagating
and polarized in the directions of the macroscopic Cartesian reference axes 0xi and
0xj (i, j = 1, 2, 3), respectively, the propagation velocities, Vij , of these waves can be
calculated from the Christo�el equation [5]

det
(
Γ ik − ρV 2

ghδik

)
= 0, g, h, i, k = 1, 2, 3 (1)

in which
Γ ik = C

(eff)
ijkl ηjηl (2)

is the so-called �Christo�el-Kelvin sti�ness", ρ stands for the mass density, and δik is the
Kronecker delta. In Eq. (2) the de�nition of Γ ik, the components C

(eff)
ijkl (e�ective sample

sti�ness moduli) of the sti�ness tensor of the macroscopic sample are related to C
(eff)
ij by

using the reduced subscript notation. The abbreviations ηj and ηl denote the components
of the unit vector in the direction of the wave propagation.

On the other hand, by using a suitable averaging procedure the e�ective sample sti�-
ness moduli, C

(eff)
ij , can be calculated from the values of the dynamic sti�ness moduli c11,

c12, c44 of a single cubic grain (crystal), its density ρ, and from the probability density
function of the crystallite orientation, p(ξ, ϕ, φ). There are numerous procedures to ap-
proximating the e�ective elastic constants, proposed by such authors as Voigt [6], Reus
[7] and Hill [8]. The solutions of the Christo�el equations (1) for an orthorhombically
textured solid, which are obtained with applying the Voigt approximation (averaging
procedure) to the calculation of the e�ective sample sti�ness moduli, C

(eff)
ij , are listed in

Ref. [9] as formulae (10) � (21). It should perhaps be emphasized that the values of the
moduli c11, c12, c44 of a single cubic grain (crystal) were considered in Refs. [9, 1] for a
deformed and textured steel as being equal to the values of c11, c12, c44 and ρ, which had
been determined for a single-crystal of pure BCC Fe with using a statical method. It is
not to be expected that such an approximation, which can be called the long-wavelength
and ideal Fe crystal approximation, would be always acceptable for rolled steel, which is
a polycrystalline aggregate of Fe with impurities and structure defects. For this reason,
herein is used a modi�ed approach proposed by Lewandowski in Ref. [2], in which the
values of c11, c12, c44 are replaced by the so-called e�ective dynamic sti�ness moduli of
a single grain in deformed steel, c

(eff)
11 , c

(eff)
12 and c

(eff)
44 , the last being determined also

from measured values of ultrasonic velocities. Using the Sayers' solutions [9, formulae
(10) � (21)], Lewandowski [2] arrived at the following equations, after a little algebra
and manipulation

〈r1(ξ, ϕ, φ)〉 =
1
2c

(
c11 − V 2

11

)
, c11 =

c
(eff)
11

ρ
,

(3)
c =

1
ρ

(
c
(eff)
11 − c

(eff)
12 − 2c

(eff)
44

)
.= c11 − c12 − 2c44 ;
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〈r2(ξ, ϕ, φ)〉 =
1
2c

(
c11 − V 2

22

)
, (4)

〈r3(ξ, ϕ, φ)〉 =
1
2c

(
c11 − V 2

33

)
, (5)

〈r4(ξ, ϕ, φ)〉 =
1
c

(
V 2

23 − c44

)
, c44 =

c
(eff)
44

ρ
, (6)

〈r5(ξ, ϕ, φ)〉 =
1
c

(
V 2

13 − c44

)
, (7)

〈r6(ξ, ϕ, φ)〉 =
1
c

(
V 2

12 − c44

)
, (8)

where
Vij = Vji ,

V 2
i1 + V 2

i2 + V 3
i3 = V 2

1j + V 2
2j + V 2

3j = ca , (9)

ca =
1
ρ

(
c
(eff)
11 + 2c

(eff)
44

)
,

r4 = r3 + r2 − r1 , r5 = 2(r1 − r2) + r4 , r6 = 2r1 − r5 , (10)

r1 = l21l
2
2 + l21l

2
3 + l22l

2
3 ,

r2 = m2
1m

2
2 + m2

1m
2
3 + m2

2m
2
3 , (11)

r3 = n2
1n

2
2 + n2

1n
2
3 + n2

2n
2
3 ,

li = Eie1 , mi = Eie2 , ni = Eie3. (12)

The abbreviations 〈rq〉, q = 1, 2, ..., 6, in Eqs. (3) � (8) denote averaging the above de�ned
functions of a single-crystal orientation, rq(θ, ϕ, φ), over all the crystallites in the sample,
i.e. 〈rq(θ, ϕ, φ)〉 is rq(θ, ϕ, φ) weighted by p(θ, ϕ, φ):

〈rq(ξ, ϕ, φ)〉 =

2π∫

0

2π∫

0

1∫

−1

rq(ξ, ϕ, φ)p(ξ, ϕ, φ) dξ dϕ dφ. (13)

Let us remind that p(ξ, ϕ, φ)dξ dϕ dφ stands for the probability of a crystallite having an
orientation described by the Euler angles θ (= cos−1 ξ), ϕ and φ, lying in the intervals
〈cos−1 ξ, cos−1(ξ +dξ)〉, 〈ϕ,ϕ+dϕ〉 and 〈φ, φ+dφ〉, respectively. The probability density
function p(ξ, ϕ, φ) ful�ls the normalization condition

〈p(ξ, ϕ, φ)〉 =

2π∫

0

2π∫

0

1∫

−1

p(ξ, ϕ, φ) dξ dϕ dφ = 1. (14)

It should perhaps be emphasized that each left-hand side of the six equations (3) � (8)
is of the form of an expectation value of one of known six functions, rq(ξ, ϕ, φ), of a single-
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crystal orientation. As it follows from Eqs. (9) � (12), only three functions rq(ξ, ϕ, φ) are
linearly independent of each other. Each right-hand side of the six equations (3) � (8) is
of the form of a known function of an ultrasonic velocity, Vij , the e�ective single-crystal
sti�ness moduli c

(eff)
11 , c

(eff)
12 , c

(eff)
44 , and density ρ. In Ref. [1], where the polycrystalline

aggregate was approximated by the respective ideal polycrystalline solid, the values of
all the quantities appearing on the right-hand side of each of the six equations (5) � (10)
are regarded to be known and are to be equal to the respective single-crystal sti�ness
moduli c11, c12, c44 and density ρ.

As it was shown in Ref. [1], in the situation, where the left-hand sides of Eqs. (3) �
(8) are the expectation values of rq(ξ, ϕ, φ) weighted with p(ξ, ϕ, φ) and the right-hand
sides of these equations are functions of the observables Vij , and when c11, c12, c44

are known, the information theory approach can be used successfully for determining
the probability density function p(ξ, ϕ, φ) in the long-wavelength and ideal polycrystal
approximation. It can be done for uniaxially rolled material from three of Eqs. (5) �
(10) with such three functions rq(ξ, ϕ, φ), which are linearly independent on each other.
This requirement is ful�lled by three equations under testing, if each of the numbers 1,
2, and 3 appears as subscripts i or/and j at no more than two velocities involved in
the equations [1]. Such a system of three equations was called in the Ref. [2] the basic
system of three equations. From results of Refs. [1, 2] it follows that the measurements of
three propagation velocities involved in the basic system of three equations, e.g. V11, V33

and V13, are su�cient for the probability function p(ξ, ϕ, φ) to be fully determined for
aggregates with orthorhombic macroscopic symmetry and when c11, c12 c44 are known.
Then the probability density function p(ξ, ϕ, φ) implied by the Jaynes' [10] principle
of maximum Shannon entropy is given in terms used in [2, Appendix] by the following
expression

p(ξ, ϕ, φ) =
1
Z

exp [−L1r1(ξ, ϕ, φ)− L3r3(ξ, ϕ, φ)− L5r5(ξ, ϕ, φ)] , (15)

where the partition function Z and the Lagrangian multipliers L1, L3 and L5 may be
determined from Eqs. (3), (5), (7) and the normalization condition (14).

The method proposed in Ref. [1] has been improved in Ref. [2] by avoiding the limiting
assumptions concerning the length of ultrasonic waves (long-wavelength approximation)
and the absence of imperfections (e.g. voids, imperfect adhesion of neighbouring grains,
residual stress, impurities) of the material of the polycrystalline aggregate and its mi-
crostructure. In Ref. [2], a theoretical approach has been proposed utilizing the same
as in Ref. [2] information theory method to determine the probability density function
p(ξ, ϕ, φ) and the material parameters c11

.= c
(eff)
11 /ρ, c12

.= c
(eff)
12 /ρ, c44

.= c
(eff)
44 /ρ from

the rules of macroscopic orthorhombic symmetry and the results of the measurements
of four respectively chosen ultrasonic velocities, Vij , three of them being involved in the
basic system of equations.

In the remainder of this paper, the procedure proposed in Ref. [2] will be utilized
for solving the problem of determination the function p(ξ, ϕ, φ) and the single-crystal
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material parameters c11, c12, and c44 in the case when the same three ultrasonic ve-
locities V e11, V e33, V e13 and additionally one of the velocities V e22, V e33 and V e12,
namely V e23, are known. Similarly as in Ref. [2], henceforth, a value of Vij , which
will be regarded to be obtained experimentally, will be denoted V eij . The ultrasonic
measurements were performed in the twelve observation points on the real material un-
der examination. Hence, the values of measured velocities, V eij , contain information on
the structure and properties of the material as well as on the phenomena in�uencing
on the propagation and occurring in the polycrystal under examination. Therefore, it
may be expected that the values of V eij together with the symmetry rules allow us to
determine the function p(ξ, ϕ, φ) as well as the material parameters c11, c12, and c44.
In this case, assuming that the probability density function p(ξ, ϕ, φ) is implied by the
Jaynes' [10] principle of maximum Shannon entropy, p(ξ, ϕ, φ) is also of the form given
by Eq. (15). Contrary to Ref. [1], now the partition function Z and the Lagrangian multi-
pliers L1, L3 and L5 are to be determined together with the material parameters c11, c12

and c44 from the seven Eqs. (3) � (8), (14), after setting the results of the measurements
of the ultrasonic velocities V e11, V e33, V e13, and V e23. Therefore, from the four veloci-
ties V eij , the maximum-entropy estimate of the probability density function, p(ξ, ϕ, φ),
will be determined together with the material parameters c11, c12 and c44, after en-
larging the approach presented in paper [1] by including a self-consistent computatio-
nal procedure proposed in Ref. [2]. In using such a procedure the dynamic parame-
ters of the ideal single-crystal material, c

(0)
11 = c

(0)
11 /ρ, c

(0)
12 = c

(0)
12 /ρ, c

(0)
44 = c

(0)
44 /ρ,

should be replaced by the e�ective ones, c11, c12, c44, of the crystallite in the real bulk
specimen, the e�ective moduli being calculated also from the four ultrasonic velocities
and symmetry rules given by Eqs. (9). Contrary to the problem de�ned Ref. [1], the
problem of �nding the maximum-entropy estimate of the function p(ξ, ϕ, φ) and the
values of material parameters, c11, c12, c44, from the results of the measurements of
four propagation velocities V eij of ultrasonic waves and from the rules of macroscopic
orthorhombic symmetry is not unambiguous. To make a choice between numerous so-
lutions to the problem, Lewandowski [2] proposed the criterion of the minimum rela-
tive di�erence between the values of the material parameters, c11, c12, c44, obtained in
the procedure of the maximum-entropy estimate, and their analogues, c

(0)
11 , c

(0)
12 , c

(0)
44 ,

referring to the same (or the most similar) ideal material in the virgin (before defor-
mation) state. Obviously, a great di�culty of the analysis is encountered when one
wishes to �nd the solution to such a problem of great complexity. In considering this
problem, only the concepts and equations required in this study are reiterated herein
after [2].

In the present paper, the method proposed in Ref. [2] is utilized for the estimation
of the local texture and local basic material parameters of a steel plate which was rolled
uniaxially in the situation where the edges parallel to the rolling direction were free.
In this way, we seek the answer on the question how strongly are some local material
parameters and the local texture in�uenced on by the distance x between an observation
point r on a plate and one of the two plate edges, which are parallel to the rolling
direction.



ESTIMATION OF LOCAL MATERIAL AND STRUCTURE PARAMETERS 339

3. Measurements and numerical analysis

The measurements have been con�ned to measuring only the ultrasonic velocities
V e11, V e33, V e13, which are involved in the so-called basic system of three equations,
and additionally the velocity V e32. The twelve equally spaced observation (measurement)
points have been chosen as lying on a straight line in the rolling plane, the straight line
being perpendicular to the 0x1 (rolling) direction. The measurement points have been
chosen at the distances x = (0.02, 0.04, 0.06, ..., 0.24)m from the reference 0x1-edge of
the plate.

The volume of a macroscopic sample is regarded as large enough to include a large
number of crystallites with each of the occurring orientations. Then, it is reasonable
to assume that the measured velocities of ultrasonic pulses propagating through such
a macroscopic sample (the pulses being generated by a transducer oscillating normally
or transversely to the coupling surface) are equal to the propagation velocities of the
respective ultrasonic waves.

The propagation velocities of waves propagating normally to the rolling plane (V e33,
V e32) have been measured by using commercially available wide-band ultrasonic trans-
ducers having a maximum middle frequency of 2.5MHz. By making use of re�ection, a
single transducer served as both a transmitter (source) and a receiver (detector). The
longitudinal and shear waves propagating parallel to the rolling plane, i.e. V e11 and
V e13, respectively, have been generated and detected by using transducers mounted on
Plexiglas wedges and inclined at such angles to the plate surface that ensure the values
of the refraction angles of the waves to be nearly critical (equal to 90◦). These pieces of
equipment allow the transit time of acoustic waves to be measured for all desired direc-
tions. The transit distance is to be regarded for the �rst pair of waves (V e33, V e32) as
the double plate thickness at the region of the coupling of the transducer and plate, the
plate thickness being equal to 0.02m. Similarly, the transit distances are to be regarded
for the second pair of waves, V e11 and V e13, as the distances between the geometrical
centres of the regions of coupling of the plate with the transmitter and receiver, the dis-
tances being equal to 0.182m and 0.0985m, respectively. The propagation velocities of
the second pair of waves deduced from the transit times are regarded to be the velocities
at the distances x from the reference 0x1-edge, x being determined by the middles of
the respective distances between the geometrical centres of the regions of coupling of the
plate with the transmitter and receiver. The transit time was measured with an error
equal to 5 · 10−10 s. The �nal results of the determination of the ultrasonic velocities for
the twelve values of x from the transit time are presented in Figs. 1 � 2.

In the subsequent numerical analysis, we examine the texture in the twelve equally
spaced observation points by utilizing for each observation point separately the results of
the measurements of the ultrasonic velocities V e11, V e33, V e13, which are involved in the
basic system of three equations, and additionally the velocity V e32. It means that �rst we
�nd for each observation point separately the analytical form of the maximum-entropy
probability density function p(ξ, ϕ, φ), which is that given by Eq. (15). On evaluating
the material parameter ca for each observation point from Eq. (9), after substituting
Vij = V eij , j = 1, 2, 3, the second step was to calculate the two missing velocities V e12
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Fig. 1. Velocities V e11 and V e33 of longitudinal waves plotted against the distance x between an
observation point on the steel plate and one of the two plate edges parallel to the rolling direction.
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Fig. 2. Velocities V e13 and V e32 of shear waves plotted against the distance x between an observation
point on the steel plate and one of the two plate edges parallel to the rolling direction.
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and V e22 (for each observation point as well) from the following equations:

V e12 =
√

Ca − V e2
11 − V e2

31 ,
(16)

V e22 =
√

Ca − V e2
12 − V e2

23

which are deduced from the macroscopic othorhombic symmetry, i.e. are derived also
from Eq. (9). In this way for each observation point we have arrived at the following set
{V eij} of the values of the six velocities

{V eij} = {V e11, V e22, V e33, V e12, V e23, V e31}. (17)

As it will be pointed out below, the knowledge of the set (17) enable us to make some
check of the actual accuracy of calculating digitally the partition function Z, Lagrangian
multipliers L1, L3, L5 and material parameters c11, c12, c44. In the situation where the
material parameters c11, c12 and c44 are unknown, the task consists of �nding Z, L1,
L3, L5, c11, c12 and c44 for each observation point separately from Eqs. (3) � (8), (14).
Seeking the texture for each of the twelve observation points, we utilize the numerical
procedure proposed in Ref. [2] for each such a point separately. Any full description of
the numerical method will be omitted from this paper for the sake of brevity.

As was mentioned above, the partition function Z, Lagrangian multipliers L1, L3, L5

and single-crystallite (grain) material parameters c11, c12, c44 are to be determined from
Eqs. (3) � (8), (14). However, these equations present so complicated nonlinear dependen-
cies of the quantities Z, L1, L3, L5, c11, c12 and c44 on each other that the problem of

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

5 10 15 20

c i
jef

f /ρ
 [

10
11

cm
2

s-2
]

Distance x [10 -2 m]

c11
eff / ρ

c12
eff / ρ

c44
eff / ρ

Fig. 3. E�ective single-crystallite material parameters c11, c12, and c44 calculated from ultrasonic
measurements plotted against the distance x between an observation point on the steel plate and one of

the two plate edges parallel to the rolling direction.
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evaluating these quantities from Eqs. (3) � (8), (14) is not unambiguous. This raises the
need to make a choice between numerous solutions of the problem. In this way arises
the need to provide a constructive criterion for choosing one set of Z, L1, L3, L5, c11,
c12 and c44 from all such sets satisfying Eqs. (3) � (8), (14). Following Ref. [2], in the
subsequent text we con�ne ourselves only to present numerical results obtained in the
situation where the criterion of the minimum value of a di�erence is used, the proposal
of the criterion of the minimum di�erence being described after Ref. [2] below.

First we suppose that the rolled polycrystalline material (steel) we are dealing with
herein is such that, on one hand, all the values of the e�ective material parameters, c11,
c12 and c44, of a single cubic crystal in the bulk sample of the rolled material are un-
known and, on the other hand, all the parameter values, c

(0)
11 , c

(0)
12 and c

(0)
44 , of a single

cubic crystal of the polycrystal material (or a material as similar to that as possible)
in the virgin state (before deformation) are known from measurements. In accordance
with the criterion of the minimum di�erence, c11, c12 and c44, are as close to c

(0)
11 , c

(0)
12

and c
(0)
44 , respectively, as it is allowed by Eqs. (3) � (8), (14). Moreover, if we are inter-

esting in rolled steel, similarly as in Refs. [1, 2], and its parameters' values c
(0)
11 , c

(0)
12

and c
(0)
44 are unknown, it is supposed that such a virgin material for the rolled steel

may be approximated by BCC Fe, which is characterized by the following values of C
(0)
11 ,

C
(0)
12 , C

(0)
44 :

c
(0)
11 = 2.5982d + 07

(m
s

)2

,

c
(0)
12 = 1.6857d + 07

(m
s

)2

, (18)

c
(0)
44 = 1.5843d + 07

(m
s

)2

.

Now we de�ne the di�erence parameter Qc by the following formula, using the FOR-
TRAN 77 intrisinc functions DMAX1 and DABS

Qc = DMAX1 (Gc11, Gc12, Gc44). (19)

The nomenclature introduced in Eq. (17) is as follows:

Gcij = DABS
[
(cij − c

(0)
ij )/c

(0)
ij

]
. (20)

According to the choice rule applied herein after Ref. [2], we use this set of the values of
Z, L1, L3, L5, c11, c12 and c44 satisfying Eqs. (3) � (8), (14), which contains such values of
the material parameters c11, c12 and c44 that lead to the minimum value of the di�erence
parameter Qc and simultaneously contains such values of Z, L1, L3, L5 that lead to the
probability density function p(ξ, ϕ, φ) achieving the maximum value of Shannon entropy .
In this way, we formulate the criterion of the minimum di�erence.

On �nding for each of the twelve observation points the partition function Z and
Lagrangian multipliers L1, L3, L5, the maximum-entropy probability density functions,
p(ξ, ϕ, φ), are known for all the observation points. Then the next step was to make the
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use of the functions p(ξ, ϕ, φ), and the material parameters c11, c12 and c44 for calculating
the ultrasonic velocities V m11, V m22, V m33, V m12, V m23, V m31 for each of the twelve
observation points. In the remainder of this paper, the value of a velocity Vij will be
denoted by V mij , if it is calculated in the maximum-entropy approximation. Thus on the
basis of the previously determined maximum-entropy estimate of the probability density
function p(ξ, ϕ, φ) and the material parameters c11, c12 and c44, all the six ultrasonic
velocities V m11, V m22, V m33, V m12, V m23, V m31 were calculated from Eqs. (3) � (8)
for each observation point. By comparing in pairs the values of velocities V m11, V m22,
V m33, V m12, V m23, V m31 with their analogues de�ned by Eqs. (17), it was possible to
have some check of the actual accuracy of calculating digitally the partition function Z,
Lagrangian multipliers L1, L3, L5 and material parameters c11, c12 and c44 by employing
a numerical method, which consists of a succession of iterations with increasing accuracy
of calculation. To have some estimation of the actual accuracy of calculation, the error
parameter Qm has been used. Qm had been de�ned in Ref. [2] using the FORTRAN 77
intrisinc function, DMAX1, which returns the maximum value in the argument list. Qm

had been de�ned by the following formula:
Qm = DMAX1(Gm11, Gm22, Gm33, Gm12, Gm23, Gm31). (21)

The nomenclature introduced in Eq. (21) is as follows
Gmij = DABS [(V mij − V eij)/V eij ] , (22)

where the FORTRAN 77 intrisinc function DABS returns the absolute value of its argu-
ment.

In solving numerically the system of Eqs. (3) � (8), (14) with respect to Z, L1, L3,
L5, c11, c12 and c44 for each of the twelve observation points, the succession of iterations
with increasing accuracy of calculation was continued as long as the error parameter
Qm became less than 1.0× 10−6. In this way we obtained the numerical results given in
Table 1.

In each of the twelve columns of Table 1, there is presented a numerical solution of
the system of Eqs. (3) � (8), (14) with respect to Z, L1, L3, L5, c11, c12 and c44, which are
calculated with an exactness characterized by the values of the parameters of error, Qm,
and di�erence, Qc. The values of Qm and Qc are given in each column in the before last
row and in the last one, respectively. In all columns, the error parameters Qm are less
than 1.1×10−8. The x-th column (x = 2, 4, 6, ..., 24 cm) is the set of the values of Z, L1,
L3, L5, c11, c12 and c44 which satis�es Eqs. (3) � (8), (14), after inserting the results of the
measurements the observables V11, V33, V13, and V32 performed in the x-th observation
point and employing the symmetry rules given by Eqs. (9). Moreover, one can say that
the x-th column contains such values of the material parameters c11, c12 and c44 that
lead to the minimum value of the di�erence parameter, Qc, and simultaneously contains
such values of Z, L1, L3, L5 that lead to the maximum-entropy estimate of the function
p(ξ, ϕ, φ) for the observables V11, V33, V13, (and V32). For these reasons, the values of Z,
L1, L3, L5, c11, c12 and c44, which are given in each column, should be regarded in the
paper as the solution to the problem under consideration for the respective observation
point.
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Table 1. Results of numerical calculations of Lagrangian multipliers and material parameters from
ultrasonic measurements for twelve observation points.

x [cm] 2 4 6 8
Z 6.98979 7.01548 7.12077 7.07534
L1 −1.51127138407 −1.52080828560 −1.52376497056 −1.59628175935

L3 0.839757785471 0.90380655508 0.89713214274 1.00258928214
L5 1.30840170534 1.292058967 1.22100600410 1.2274019498

c11 [m2s−2] 2.72759× 107 2.73678× 107 2.63767× 107 2.42525× 107

c12 [m2s−2] 1.84753× 107 1.83255× 10−1 1.88247× 107 2.01129× 107

c44 [m2s−2] 1.41477× 107 1.40824× 107 1.45381× 107 1.55000× 107

c [m2s−2] −1.37794× 107 −1.16776× 107 −0.896665× 107 −0.894442× 107

ca [m2s−2] 5.55712× 107 5.55326× 107 5.54530× 107 5.52525× 107

Qm 9.85135× 10−7 9.22084× 10−7 8.68158× 10−7 1.54281× 10−7

Qc 1.29988× 10−1 1.35226× 10−1 0.99639× 10−1 0.98409× 10−1

x [cm] 10 12 14 16
Z 7.41466 7.30817 7.43995 7.44211
L1 −1.61829511744 −1.52896286792 −1.60507903061 −1.61990847820

L3 0.85983673731 0.911152470345 0.87014804885 0.85225414589
L5 1.14268717833 1.07185579723 1.09977675460 1.13241671318

c11 [m2s−2] 2.44562× 107 2.44249× 107 2.45795× 107 2.45747× 107

c12 [m2s−2] 1.97888× 107 1.98309× 107 1.96878× 107 1.96895× 107

c44 [m2s−2] 1.54512× 107 1.54737× 107 1.54021× 107 1.53979× 107

c [m2s−2] −2.62351× 107 −2.63534× 107 −2.59126× 107 −2.59106× 107

ca [m2s−2] 5.53586× 107 5.53723× 107 5.53838× 107 5.53705× 107

Qm 9.69190× 10−7 9.77151× 10−7 8.52790× 10−7 9.45054× 10−7

Qc 1.40431× 10−1 1.42255× 10−1 1.36023× 10−1 1.36097× 10−1

x [cm] 18 20 22 24
Z 7.38138 7.21346 7.18267 7.19703
L1 −1.61571682028 −1.55860866956 −1.60577916205 −1.60124022736

L3 0.85416318209 0.86426789517 0.85955105606 0.85111195804
L5 1.16982116073 1.22217644441 1.30172316513 1.29450264631

c11 [m2s−2] 2.53361× 107 2.65628× 107 2.66659× 107 2.64029× 107

c12 [m2s−2] 1.92828× 107 1.86581× 107 1.86364× 107 1.88732× 107

c44 [m2s−2] 1.50390× 107 1.44553× 107 1.44134× 107 1.45692× 107

c [m2s−2] −2.40246× 107 −2.10060× 107 −2.07972× 107 −2.16058× 107

ca [m2s−2] 5.54140× 107 5.54734× 107 5.54927× 107 5.55414× 107

Qm 4.79940× 10−7 9.42212× 10−7 3.86125× 10−7 9.66848× 10−7

Qc 1.17873× 10−1 1.05939× 10−1 1.09158× 10−1 0.98728× 10−1
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The degree and type of the texture in each of the twelve observation points can be
determined in the fullest detail by making use of the function p(ξ, ϕ, φ), which gives the
probability density of a given crystallite having a speci�ed orientation with respect to
the axes of the Cartesian coordinate system of the sample (plate), the crystallite being
placed in the region of the considered observation point in the sample. Following Refs.
[2], we use the quantities

nϕ(ϕ2, ϕ1) =

2π∫

0

ϕ2∫

ϕ1

1∫

−1

p(ξ, ϕ, φ) dξ dϕ dφ, (23)

nθ(θ2, θ1) =

2π∫

0

2π∫

0

ξ1∫

ξ2

p(ξ, ϕ, φ) dξ dϕ dφ, (24)

as examples of such speci�cations. Here

θ1 = arccos ξ1 , θ2 = arccos ξ2 , 0 ≤ θ2 ≤ π (25)

and nϕ(ϕ1, ϕ2), nθ(θ1, θ2) denote the fractions of the total number of crystallites (in the
region of the considered observation point in the sample) with the angle of precession, ϕ,
lying in the interval ϕ1 ≤ ϕ ≤ ϕ2 and with the angle of nutation, θ, lying in the interval
θ1 ≤ θ ≤ θ2, respectively. In Fig. 4, examples of numerical calculations of nϕ(ϕ1, ϕ2) are
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Fig. 4. nϕ(ϕ2, ϕ1) de�ned by Eq. (23) and plotted against both the distance x between an observation
point on the steel plate and one of the two plate edges parallel to the rolling direction as well as
against the the number of each subdomain of the precession angle ϕ, the whole domain [0◦, 360◦] of the
precession angle ϕ being divided into parts (subdomains) of equal size, 18◦, numbered from 1 to 20,

with centres at ϕ0 = (ϕ1 + ϕ2)/2 = 9◦, 27◦, 45◦, ..., 351◦.
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presented (for each of the twelve observation points) with the whole domain [0◦, 360◦]
of the precession angle ϕ being divided into parts (subdomains) of equal size, 18◦, with
centres at ϕ0 = (ϕ1 + ϕ2)/2 = 9◦, 27◦, 45◦, ..., 351◦. Similarly, in Fig. 5, examples of
numerical calculations of nθ(θ1, θ2) are presented (also for each of the twelve observation
points) with the whole domain [0◦, 180◦] of the nutation angle θ being divided into parts
(subdomains) of equal size, 18◦, with centres at θ0 = (θ1 + θ2)/2 = 9◦, 27◦, 36◦, ...,
171◦. For each region of the twelve observations points, the particle fractions nϕ(ϕ1, ϕ2)
and nθ(θ1, θ2) were calculated separately for each subdomain and the results of these
calculations are presented in Figs. 4 and 5.
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Fig. 5. nθ(θ2, θ1) de�ned by Eq. (24) and plotted against both the distance x between an observation
point on the steel plate and one of the two plate edges parallel to the rolling direction as well as against
the number of each subdomain of the nutation angle θ, the whole domain [0◦, 180◦] of the nutation
angle θ being divided into parts (subdomains) of equal size, 18◦, numbered from 1 to 10, with centres at

θ0 = (θ1 + θ2)/2 = 9◦, 27◦, 36◦, ..., 171◦.

From Figs. 4 and 5 it can easily be seen that rolling, say, in the 0x1 direction, leaves
the crystallites in some non-random orientations. The statistics of the forced non-random
orientations leads to the occurrence of the most preferred intervals of the Euler angles,
the preferred orientation being a periodic function of the Euler angles. Obviously, all
the symmetry properties of nϕ(ϕ1, ϕ2) and nθ(θ1, θ2), which are shown in Figs. 4 and 5,
result in the orthorhombic symmetry of the macroscopic mechanical properties of the
polycrystalline aggregate (rolled steel). Similarly as in Ref. [2], the preference of the
crystallite orientations, which is revealed by the numerical results presented in Figs. 4
and 5, can be de�ned in the crystallographic terms as follows: If a solid plate made of
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cubic crystallites with the highest symmetry is uniaxially rolled, say, in the 0x1 direction,
the rolling process leaves the crystallites in a non-random orientations with an orienta-
tion preference for the crystallographic plane [1, 1, 0] to be parallel to the rolling plane
x1x2 as well as for the crystallographic direction 〈1, 1, 0〉 to be parallel to the rolling
direction Ox1.

4. Final remarks and conclusions

This paper is concerned with the nondestructive ultrasonic method of the estimation
of the local texture and local basic material parameters of a steel plate which was rolled
uniaxially in the situation where the edges parallel to the rolling direction were free. The
aim of the paper was also to estimate how strongly are the local texture and mechanical
properties in�uenced on by the distance x between an observation point determined by
the position vector r and one of the two plate edges parallel to the rolling direction,
in the situation where the edges parallel to the rolling direction were free during the
rolling process. In the presented method, there is involved the inversion of the problem of
calculating the ultrasonic velocities from texture with making use of the Voigt averaging
procedure. The inversion, which has been performed with using the information theory
approach, leads to the maximum-entropy estimate of the probability density function
of the crystallite orientation, p(ξ, ϕ, φ). This function for each of the twelve observation
points is of the form given by Eq. (15), this form being implied by Eqs. (3), (5), (7), (14)
under the assumption that the ultrasonic velocities (observables) V e11, V e33 and V e13

in these regions are known from measurements. Next the same Eqs. (3), (5), (7), (14)
together with Eqs. (4), (6), (8), (9) and the criterion of the minimum di�erence are used
for determining, for each of the twelve observation points successively and separately,
both the exact form of p(ξ, ϕ, φ) (by evaluating the three Lagrangian multipliers L1,
L3, L5 and normalization constant Z) and the values of three single-crystal material
parameters (c11

.= c
(eff)
11 /ρ, c12

.= c
(eff)
12 /ρ, c44

.= c
(eff)
44 /ρ). These quantities and parameters

are to be calculated from the values of four observables (V e11, V e33, V e13 and V e32) and
orthorhombic symmetry rules given by Eqs. (9).

The analysis presented in Ref. [2] leads to the relations between the probability density
function of the crystallite orientation, p(ξ, ϕ, φ), as well as the values of single-crystal
material parameters cij , ij = 11, 12, 44, of the rolled material and ultrasonic velocities
(V e11, V e33, V e13 and V e32). The present study, moreover, leads to showing that the
quantities and parameters involved in the analysis performed by using the method of
Ref. [2] are considerably in�uenced on by the distance x = (0.02, 0.04 0.06, ..., 0.24)m
between an observation point on the steel plate and one of the two plate edges parallel
to the rolling direction, the edges being free during the rolling process. If along a straight
line of distance x the rolling load and other forces acting in the rolling process were
constant and the microstructure of the material in the virgin (before deformation) state
had been statistically homogeneous, then the changes in the values of all the quantities
and parameters (V e11, V e33, V e13, V e32; p(ξ, ϕ, φ), L1, L3, L5, Z; cij , ij = 11, 12, 44),
which are observed in the material in a plane parallel to the rolling plane, would be both
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constant along the straight line and symmetrical with respect to the axis of geometrical
symmetry of the plate, the symmetry axis being parallel to the rolling direction. From
Table 1 and Figs. 1 � 3 it can immediately be seen that the deviations of the changes
from the axial symmetry are considerable in the case of the material under examination.
These deviations contain information on the local inhomogeneity of the material under
investigation.

In the presented method, there is involved the inversion of the problem of the rela-
tions between the probability density function of the crystallite orientation, p(ξ, ϕ, φ),
and the values of the e�ective single-crystal material parameters, cij , ij = 11, 12, 44,
of the rolled material as well as of the measured ultrasonic velocities (V e11, V e33, V e13

and V e32). This analysis has been performed for the polycrystalline aggregate with or-
thorhombic macroscopic symmetry, the aggregate being composed of cubic crystals. In
every heterogeneous elastic body, the ultrasonic velocities depend on the e�ective density
and components of the so-called e�ective dynamic tensor of sti�ness of the bulk sample as
well as on the frequency of the ultrasonic waves. In turn, the components of the e�ective
dynamic tensor of sti�ness of the bulk sample are determined by the probability density
function of the crystallite orientation, p(ξ, ϕ, φ), as well as by the values of the e�ective
single-crystal material parameters, cij , ij = 11, 12, 44. In the limit, as the wavelength
increases to in�nity (or the frequency diminishes to zero), the dynamic e�ective moduli
in these relations may be replaced by the static e�ective moduli, if the polycrystal under
consideration may be regarded as an ideal polycrystalline aggregate. In accordance with
the long-wavelength approximation and in view of the common opinion that plastic de-
formation does not induce any considerable changes in the static values of single-crystal
material parameters, cij/ρ, ij = 11, 12, 44, it seems to be reasonable to replace the
e�ective dynamic values of these material parameters, which are involved in problems
of ultrasonic testing of plastically deformed materials, by their static values measured
before deformation. However, from the the twelve examples, which has been considered
above and in which 9.84% < Qc < 14.23%, it can easily be seen that such assumptions
may lead to considerable errors in analysing problems concerning the application of ul-
trasonic methods in material science, because observed changes in acoustic (ultrasonic)
anisotropy may be accompanied by considerable changes in the values of cij/ρ, ij = 11,
12, 44.

In this context, it can easily be seen the advantage of the approach applied above
and proposed by Lewandowski in [2] over that which are based on the long-wavelength
and ideal polycrystal approximations. By contrast, one might claim that the approach
proposed in this paper is more free because it allows us to determine completely the
e�ective single-grain dynamic properties and the texture of the bulk sample under ex-
amination from experimentally observed data (velocities V e11, V e33, V e13, V e32) and
Eqs. (3) � (8), (9), (14). In this way we avoid neglecting the e�ects of the changes in the
grain shape (morphological texture) as well as the in�uence of the distributions of such
material defects as voids, impurities, residual stress, etc. on the mechanical and propa-
gation properties of the polycrystalline aggregate made of steel. In this approach we also
avoid neglecting the in�uence of the scattering and mechanical energy dissipation on the
propagation of ultrasonic waves.
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The method of deriving the evolution equation, based on projecting is applied for
the evaluation of the sound velocity and the parameters of nonlinearity for real gases
and liquids. The method yields in a coupled system of interacting modes: leftwards and
rightwards acoustic and heat modes in the one-dimensional �ow problem. The general
form of the caloric equation of state allows to get the coe�cients of nonlinear equations in
the general form. As an example, the sound velocity and the nonlinear parameter B/A for
a variety of semi-ideal gases were calculated and the results compared with experimental
data.

Notations

x � space coordinate [m],
t � time [s],
ρ � density [kg/m3],
p � pressure [N/m2],
v � velocity [m/s],
T � absolute temperature [K],
e � internal energy per unit mass [J/kg],

ρ0, p0, v0, e0, T0 � unperturbed values,
ρ́, ṕ, v́, é, T́ � perturbations,

x∗, t∗, ρ∗, p∗, v∗ � dimensionless variables,
λ � characteristic scale of disturbance,
α � coe�cient responsible for amplitude of acoustic wave,

D1..D5 � dimensionless coe�cients in evolution equations,
E1..E5 � coe�cients in caloric equation of state,

c � linear sound velocity [m/s],
B/A, C/A � acoustic parameters of nonlinearity,

cv(p) � heat capacity under constant (volume) pressure per unit mass [J/kg·K],
R � the universal gas constant [J/mol·K],
µ � molar mass [kg/mol],

fosc � number of oscillation degrees of freedom of a gas molecule,
θi � characteristic temperature of oscillation [K],
γ � adiabatic gas constant (cp/cv).
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1. Introduction

The projecting method serves for deriving nonlinear evolution equations for the in-
teracting modes. Modes as basic types of motion of the concrete problem, to be de�ned
by this method as eigenvectors of the corresponding linear problem. The main physi-
cal idea hence is to �x relations between the perturbations of wave variables. For linear
�ows, the modes are independent and may be extracted from the overall perturbation
by operators projecting to the eigenspaces. The operators may be constructed by means
of the eigenvectors and are applied when either linear or nonlinear dynamics is con-
sidered. Acting projectors on the full nonlinear system of gas dynamic equations leads
to coupled nonlinear evolution equations which may be related with known evolution
equations.

Examples of acoustic-gravity waves in the atmosphere and electromagnetic waves are
studied in [1]. Nonlinear evolution equations for the bubbly liquid dynamics are derived
in [2], and the acoustics in the exponentially strati�ed atmosphere is investigated in [3]. In
the present paper, we apply the projecting technique for deriving the nonlinear evolution
equation for one progressive acoustic mode. The caloric and thermal equations of state are
incorporated in their general forms which allow to treat an arbitrary �uid. We, however,
go to the representation of the equations as multivariable Taylor series: these formulas are
convenient for practical purposes. Therefore the sound velocity, the nonlinear parameter
B/A and some nonlinear parameters of higher order (C/A, ...) depend on the coe�cients
of the Taylor series of the equations of state. A similar approach is developed in [4 � 6] on
a di�erent theoretical basis and applications. Beginning from the results in [4], the theory
allows to study the direct links of the acoustic parameters with the thermodynamic ones
and in turn the modeling of the intermolecular forces. Let also mention the developing
techniques and quality of the measurements of the nonlinear constants (see e.g. [7, 8]).
The results give hope of a progress in this di�cult problem of the condensed matter
physics.

Though a wide variety of gases and �uids may be treated in this way, we start from
the examples of semi-ideal gases which account for oscillatory degrees of freedom. The
motivation is simplicity, that help to explain the main ideas, as well as the existence of
explicit formulae for the state equations. One arrives at the sound velocity and the
nonlinear parameter B/A in an explicit form and it is easy to calculate both these
values over a wide range of equilibrium states of a gas. The important thing is the
existence of available experimental data with which the results of calculations could be
compared.

2. Basic equations

Let us repeat brie�y the ideas and results of the projecting method. We consider
an one-dimensional �uid �ow without thermal conduction and internal friction. A basic
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system thus represents conservation laws of momentum, energy and mass:
∂v

∂t
+ v

∂v

∂x
+

1
ρ

∂p

∂x
= 0,

ρ
∂e

∂t
+ ρv

∂e

∂x
+ p

∂v

∂x
= 0, (2.1)

∂ρ

∂t
+

∂(ρv)
∂x

= 0.

We should complete (2.1) with the caloric equation of state e(p, ρ). Let é has the form of
the Taylor series of two variables:

ρ0é = E1ṕ +
E2p0

ρ0
ρ́ +

E3

p0
ṕ2 +

E4p0

ρ2
0

ρ́2 +
E5

ρ0

ṕρ́

+
E6

p0ρ0

ṕ2ρ́ +
E7

ρ2
0

ṕρ́2 +
E8

p2
0

ṕ3 +
E9

ρ3
0

p0ρ́
3 + . . . , (2.2)

E1, ..., E9 are dimensionless coe�cients. The system (2.1), (2.2) is valid for a wide variety
of �uids and we are not restricted to any special cases of internal energy on pressure and
density since we use the caloric e = e(p, ρ) equation of state in a general form.

The equivalent system (v∗, ṕ∗, ρ́∗, ŕ∗, t́∗) in dimensionless variables:
v = αcv∗, ṕ = αc2ρ0ṕ∗, ρ́ = αρ0ρ́∗, x = λx∗, t = t∗λ/c, (2.3)

where c is the linear sound velocity, as follows from (2.1), (2.2)

c =

√
p0(1− E2)

ρ0E1
,

λ means the characteristic scale of disturbance along x and α is the coe�cient responsible
to the amplitude of the acoustic wave, may be written in the matrix form (asterisks for
dimensionless variables will be later omitted):

∂

∂t
Ψ + LΨ = Ψ̃ + ˜̃

Ψ + O(α3), Ψ =




v

ṕ

ρ́


, (2.4)

where

L =




0
∂

∂x
0

∂

∂x
0 0

∂

∂x
0 0




, Ψ̃ = α




−v
∂v

∂x
+ ρ́

∂ṕ

∂x

−v
∂ṕ

∂x
+

∂v

∂x
(ṕD1 + ρ́D2)

−v
∂ρ́

∂x
− ρ́

∂v

∂x




,

(2.5)

˜̃Ψ = α2




−ρ́2 ∂ṕ

∂x
∂v

∂x

(
ρ́2D3 + ṕ2D4 + ρ́ṕD5

)

0


,
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where the symbols D1..D5 denote dimensionless coe�cients in following forms:

D1 =
1

E1

(
−1 + 2

1− E2

E1
E3 + E5

)
,

D2 =
1

1− E2

(
1 + E2 + 2E4 +

1− E2

E1
E5

)
,

D3 =
1

1− E2

(
1− 3E9 − 2E4 − E7(1− E2)

E1
+

E5

E1
(1 + E2 + 2E4) +

E2
5(1− E2)

E2
1

)
,

D4 =
(1− E2)

E3
1

(
4E2

3(1− E2)
E1

− E6E1 + 2E3E5 − 3E8(1− E2)− 2E3

)
,

D5 =
1

E2
1

(
4E5E3(1− E2)

E1
+ 2E3(1 + E2)− 2E6(1− E2)− 2E1E7 − E1E5

+E2
5 + 4E3E4 − E1 − E5

)
.

The second-order nonlinearity column Ψ̃ will contribute to the B/A parameter, and the
third-order one ˜̃

Ψ will yield in C/A.

3. Projecting technique

For a linear �ow, we may �nd a solution as the sum of plane waves, every plane
wave being a solution of the linearized system (2.1), (2.2). Let us introduce plane waves
∼ exp(iωt − ikx) with amplitudes Vk, Pk and Rk. The eigenvalues of the correspond-
ing system of equations for Fourier transformed components in the linear problem, are
determined from the equation: ∣∣∣∣∣∣

iω −ik 0
−ik iω 0
−ik 0 iω

∣∣∣∣∣∣
= 0.

The solution of this equation serve as dispersion relations for the right- and left-
progressive and stationary components. Eigenvectors in the k-presentation look as:

Ψ1,2 =



±1
1
1


Rk1,2 , Ψ3 =




0
0
1


 Rk3 .

Therefore, returning to the (x, t) representation connections for the speci�c variables
appear and we write it down as:

v1,2 = ±ρ1,2, p1,2 = ρ1,2, v3 = 0, p3 = 0. (3.6)

In this way we de�ned the components of the right, left and stationary modes of a wave
in the linear model. From these relations (3.6) the projectors follow immediately:

P1 =
1
2




1 1 0
1 1 0
1 1 0


, P2 =

1
2




1 −1 0
−1 1 0
−1 1 0


, P3 =




0 0 0
0 0 0
0 −1 1


. (3.7)
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The matrices (3.7) have general properties of orthogonal projectors:

P1 + P2 + P3 = Ĩ ,

P1P2 = P2P3 = P3P1 = 0̃, P1P1 = P1, etc.,

where the Ĩ and 0̃ projectors separate the chosen mode from the overall �eld in a unique
way: Ψ1 : P1Ψ = Ψ1, P2Ψ = Ψ2, P3Ψ = Ψ3. Projectors P1, P2, P3 do commute both with
L and ∂/∂t, that allows to generate the equations of modes interaction acting by Pi on
the basic system (2.4).

4. Nonlinear coupled evolution equations

In the nonlinear problem we preserve the same notations for the modes. We consider
(now approximately de�ned) rightwards, leftwards and stationary modes of the nonlinear
problem with the eigenvectors Ψ1, Ψ2 and Ψ3 as it was accepted in the linear model
and assume that the relation equations (3.6) also holds. Thus, the de�ned modes are
strictly directed and stationary in the linear limit and form a system of coupled nonlinear
equations when the projectors act on both sides of (2.4). Marking these modes by indices
1, 2, 3 correspondingly for the quasi-rightwards, leftwards and stationary one, we get
�nally the system:

Pn
∂

∂t
Ψ + PnLΨ − PnΨ̃ − Pn

˜̃
Ψ + O(α3) = 0, (4.8)

or another one (for density only):

∂ρn

∂t
+ cn

∂ρn

∂x
+

α

2

3∑

i,m=1

Y n
imρi

∂ρm

∂x

+
α2

2

3∑

i,m=1

T In

imρiρm
∂ρ1

∂x
+

α2

2

3∑

i,m=1

T IIn

imρiρm
∂ρ2

∂x
+ O(α3) = 0, (4.9)

where

cn =





1 for n = 1
−1 for n = 2

0 for n = 3





and the matrices of constants the Y , T I and T II for the �rst mode are:
∣∣∣∣∣∣∣∣

Y 1
i,m m = 1 m = 2 m = 3

i = 1 −D1 −D2 + 1 D1 + D2 − 1 0
i = 2 −D1 −D2 − 3 D1 + D2 − 1 0
i = 3 −D2 − 1 D2 − 1 0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

T I1
i,m m = 1 m = 2 m = 3

i = 1 −D3 −D4 −D5 + 1 −D3 −D4 −D5 + 1 −D3 + 1
i = 2 −D3 −D4 −D5 + 1 −D3 −D4 −D5 + 1 −D3 + 1
i = 3 −D3 −D5 + 1 −D3 −D5 + 1 −D3 + 1

∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣

T II1
i,m m = 1 m = 2 m = 3

i = 1 D3 + D4 + D5 + 1 D3 + D4 + D5 + 1 D3 + 1
i = 2 D3 + D4 + D5 + 1 D3 + D4 + D5 + 1 D3 + 1
i = 3 D3 + D5 + 1 D3 + D5 + 1 D3 + 1

∣∣∣∣∣∣∣∣
The other matrices look similarly. There are also equivalent equations for pressure and
velocity.

The system (4.9) allows to calculate all possible interactions of modes. One may
specify a class of initial (boundary) conditions, de�ne the dominant modes and later
solve the system approximately. Here we are interested in the evolution equation for
one progressive (say, rightwards) mode. Physically it means, that this mode is dominant
initially: ρ1 À ρ2, ρ1 À ρ3, and we account self-interaction only in the evolution equation
for this mode:

∂ρ1

∂t
+ c1

∂ρ1

∂x
+ ερ1

∂ρ1

∂x
+ δρ2

1

∂ρ1

∂x
= 0, (4.10)

where ε = α
2 (−D1 −D2 + 1), and δ = α2

2 (−D3 −D4 −D5 + 1). The parameters B/A,
C/A are well known nonlinear parameters of the nonlinear acoustics equation:

p = p0 + A
ρ− ρ0

ρ0
+

B

2
(ρ− ρ0)2

ρ2
0

+
C

6
(ρ− ρ0)3

ρ3
0

+
(

∂p

∂s

) ∣∣∣∣
ρ,s=s0

(s− s0) + . . .

where s is entropy. For our accounting the last expression is neglected � we assume an
adiabatic process. The coe�cients A, B, C can be expressed as:

A =
1− E2

E1
p0, B = −(D1 + D2 + 1)

1− E2

E1
p0 ,

C = ((D1 + D2 + 1)(D1 + 2)− 2(D3 + D4 + D5))
1− E2

E1
p0 .

5. Semi-ideal gases: theory and experiment

We stress once more that the system (2.1) + (2.2) and the subsequent formula for
the operators are suitable for gases and liquids treated by the general caloric equation of
state. The case of ideal gas is considered with coe�cients:

E1 = E4 = E7 =
1

γ − 1
, E2 = E5 = E9 = − 1

γ − 1
, E3 = E6 = E8 = 0.

and: B/A = γ− 1, C/A = (γ− 1)(γ− 2). To �nd some corresponding coe�cients for the
semi-ideal gas, we have to accept the energy of oscillation in the molecules((1) ) [9]:

cv,sid = cv,id + cosc + ∆crot + ∆cel . (5.11)

We use the Einstein�Planck formula for the vibrational speci�c heat:

cosc = R

fosc∑

i=1

(
θi

T

)2
eθi/T

(
eθi/T − 1

)2 . (5.12)

(1) We neglect electron excitations energy because it concerns very high temperatures, and we omit
the energy of rotation � it is signi�cant for very low temperatures and light gases only.
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Using the above formula, we get the equation for the internal energy for semi-ideal
gases [9]:

e = eid +
R

µ

fosc∑

i=1

θi

eθi/T − 1
, eid =

p

ρ

1
(γ − 1)

, (5.13)

where c, e, µ, fosc mean respectively: molar heat, internal energy per unit mass, molar
mass and number of oscillation degrees of freedom of a gas molecule. θi it is characteristic
temperature of oscillation (T � absolute temperature) and γ � adiabatic gas constant
(cp/cv, in classical theory we take γ = 5/3 for a monoatomic ideal gas, 1.4 for a diatomic
one and 4/3 for other gases).

Below, we present a comparison of the values founded for a few gases treated �rst as
ideal ones and then as semi-ideal ones. To calculate the sound velocity c and B/A values
we use the following formulas:

c =

√
RT0

(1− E2)
E1

,
B

A
= −D1 −D2 − 1, (5.14)

where the coe�cients E1..E5, which have been used (see (2.2)), have the general forms:

E1 =
∂e

∂p

∣∣∣∣
p0,ρ0

ρ0, E2 =
∂e

∂ρ

∣∣∣∣
p0,ρ0

ρ2
0

p0
, E3 =

1
2

∂2e

∂p2

∣∣∣∣
p0,ρ0

ρ0p0,

E4 =
1
2

∂2e

∂ρ2

∣∣∣∣
p0,ρ0

ρ3
0

p0
, E5 =

∂2e

∂ρp

∣∣∣∣
p0ρ0

ρ2
0

(5.15)

and for the concrete semi-ideal gas model with account of oscillation degrees of freedom
(the model described above):

E1 = −E2 =
1

γ − 1
+

fosc∑

i=1

(
θi

T0

)2

eθi/T0

(
eθi/T0 − 1

)−2

,

E3 =
1
2

fosc∑

i

(
θi

T0

)2

eθi/T0

(
eθi/T0 − 1

)−2
(
−2− θi

T0
+ 2

θi

T0
eθi/T0

(
eθi/T0 − 1

)−1
)

,

E4 =
1

γ − 1
− 1

2

fosc∑

i

(
θi

T0

)3

eθi/T0

(
eθi/T0 − 1

)−2
(

1− 2eθi/T0

(
eθi/T0 − 1

)−1
)

,

E5 = − 1
γ − 1

+
fosc∑

i

(
θi

T0

)2

eθi/T0

(
eθi/T0 − 1

)−2
(

1 +
θi

T0
+

θi

T0

(
eθi/T0 − 1

)−1
)

.

For calculating C/A we need the next coe�cients: E6, ..., E9, which are higher order
derrivatives of e.

The results of calculations are presented in Table 1.
Now, we can notice that for any monoatomic gases (for example He) we have the

ideal gas model without oscillations, and for the diatomic ones (N2, CO) there is a very
small di�erence in the sound velocities (about 10−2 m/s). Next, for some poliatomic gases
(CO2, CH4) the di�erence is noticeable, especially for CO2, even for the low temperatures.
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Table 1. (2)

Gas Model of ideal gas Model of semi-ideal gas Experimental data
B/A c [m/s] B/A c [m/s] B/Aa c [m/s]b

He 0.67 972.9 0.67 972.9 0.66 971c

N2 0.40 336.9 0.40 336.9 0.40 334.0
CO 0.40 337.0 0.40 337.0 0.40 336d (338)
CO2 0.33 262.2 0.24 255.0 0.31 256.7
CH4 0.33 434.7 0.29 431.3 0.30 430

a All values are taken as γ − 1 from [9].
b All values are taken from [10].
c The experimental value is taken from [11].
d The �rst value is taken from [9].

It is necessary to add that the experimental data are taken from various sources, so we are
sure of the temperature measurements only (273K), but data on pressure are often not
available and we often do not know the other measurement parameters. (For example: c

value in the case of the gas CO.)
For an ideal gas B/A ≡ γ−1 [12], but it must be stressed that for a semi-ideal gas and

real gases cv is a function of temperature and a new γ′ has a new thermodynamic sense.
The experimental data of γ for monoatomic gases are almost the same as the theoretical
values, but for poliatomic gases the experimental values are lower than theoretical ones,
which results from the classical approach to the ideal gas [13]. Some experimental data
of γ, taken from other sources, for example [14], would be more close to our theoretical
values:

B/ACO2 = 0.28, B/ACH4 = 0.26,

but they describe some gases under somewhat di�erent measurement conditions. How-
ever, �nding various experimental data, we can notice the temperature and pressure
sensibility of the γ parameter.

Below we present also diagrams of the temperature dependence of c and B/A for
some gases:

Fig. 1. Comparison of theoretical values of sound velocities for CO2 gas.

(2) All values in Table 1 are obtained for T = 273.15K.
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Fig. 2. Di�erence of theoretical sound velocities: cid − csid for N2, CO and CO2 gases.

a)

b)

Fig. 3. Temperature dependence of theoretical values of B/A for: a) diatomic gases CO and N2 and
b) polyatomic ones: CO2 and CH4.
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6. Conclusions

A comparison of the theoretical values of the sound velocity and the nonlinear pa-
rameter B/A for an ideal and semi-ideal gas demonstrate that both of the approaches
give di�erent results for the considered gases. For some polyatomic gases (CO2, CH4)
the theoretical values of c at 0◦C, are in the semi-ideal model of gas closer to the exper-
imental ones. In the case of the B/A parameter, we have a less clear situation, but one
can notice that for the mentioned polyatomic gases the ideal gas model is valid.

The method presented in this paper was applied for deriving the evolution equation
for one progressive acoustic mode only, though its application is considerably extensive.
After adding some thermoconducting and viscous expressions to the basic system of
equations, and adding a thermic equation of state, we could get some new projectors for
a thermoviscous �ow. Also the formula of the equation of state written in the general
form allows to apply the method to di�erent liquids.
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Theoretical analysis of ultrasonic wave absorption and elastic moduli for TeO2-V2O5-
Sm2O3 glass system is presented. A correlation between low temperature ultrasonic relax-
ation parameters and other physical (elastic) properties for this glass system was achieved
according to a model presented by Bridge and Patel. Correlation coe�cients greater
than 96% were obtained indicating that correlations between ultrasonic attenuation and
activation energy at low temperatures and the bulk modulus of this glass system at room
� temperature (through the two crucial structural parameters, number of anions and
anion-cation force) exist.

1. Introduction

Based on the great deal of experimental information about the physical properties of
tellurite glasses (which have been obtained from ultrasonic investigations) it is generally
accepted that in almost all binary and ternary tellurite glass systems, the composition
is a decisive factor [1 � 8]. The elastic constants (bulk modulus), experimental ring size,
and the mean stretching force constant, calculated at room temperature, are strongly
compositional dependent. The change in these parameters with the increase of the mod-
i�er mol percent content is mainly due to progressive strengthening of the network with
more crosslinks between the units of the structure introduced by the increase of the mod-
i�er. On the other hand, the position and overall shape of the loss peaks (peaks of the
temperature dependence of ultrasonic absorption occuring at low temperature), number
of loss centers per oxygen atom, and activation energies of the relaxation process are
also strongly composition sensitive. The relaxation spectra have been attributed to loss
mechanisms of the standard linear solid type, and a broad distribution of Arrhenius-type
relaxation times. This is caused by thermal motion of particles in two-well potentials of
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atomic dimensions, with a distribution of barrier heights, [2, 5, 7]. The number of loss
centers per oxygen atom (vibrating particles in thermal motion) control the loss occured
in double-well potential which is a property of the vitreous network. The activation en-
ergy of the relaxation process (activation energy of the anion atoms in the double-well
system) depends on the value of the cation-anion forces.

Bridge and Patel [9] proposed a model of correlation between low temperature
ultrasonic relaxation parameters and other physical properties for oxide glasses. Their
study was carried out with gradual and wide ranging changes in the glass composition in
order to understand the microscopic origin of the relaxation mechanisms of the vitreous
system Mo-P-O. The model assumed that, in almost all glass systems, there is a dis-
tribution of the thermally averaged cation-anion-cation spacings about the equilibrium
values, and correspondingly a distribution of cation-anion-cation angles because straight
bond angles are rare and not necessarily equal to 180◦. It follows that there will exist
two-well systems with a distribution of barrier heights, for both longitudinal and trans-
verse motions of the anions with all kinds of bonds. The longitudinal and transverse
double-well potentials are associated with elongated and contracted cation-anion-cation
angles. In another article [10], Bridge and Patel tried to apply the model developed
from the study of the MoO3-P2O5 system to explain the di�erences in the low temper-
ature acoustic loss behaviour in di�erent oxide glass systems. A theoretical analysis of
ultrasonic wave attenuation and the elastic moduli of tellurite glasses was reported by
El Mallawany [11]. His treatment of the peak loss (maximum absorption coe�cient of
ultrasonic waves) and the bulk modulus for TeO2-MoO3 networks is based on the fact
that the total number of two-well systems per unit volume (number of loss centers) is
proportional to the oxygen density, and the average activation energy is proportional to
the mean �rst-order stretching force constant. He reported correlations between the ul-
trasonic absorption coe�cients and the activation energy at low temperatures, on the one
handside, and the bulk modulus of the glasses at room temperature, on the other side.
The correlations were achieved through two crucial structural parameters: the number
of anions and the anion-cation force.

The work under report aims to apply the model presented by Bridge and Patel [9]
to the ternary glass system TeO2-V2O5-Sm2O3 in order to examine its validity for this
glass system.

2. Model

Bridge and Patel [9] noted that there is a distribution in thermally averaged cation-
anion-cation spacings about the equilibrium values, and correspondingly a distribution
of cation-anion-cation angles. Furthermore, the authors noted that, the longitudinal and
transverse double-well potentials are associated with a spread of bond length and spread
of cation-cation spacings. Therefore, there exist double-well systems with a distribution
of barrier heights for all kinds of bonds. They also reported that the total number of loss
centers (n) is proportional to oxygen density [O], and it increases with the mean atomic
ring size (`). The activation energy (Ep) increases with the average stretching force
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constant (F ), and it also increases with the mean atomic ring size (`). Quantitatively,
they proposed the following empirical equations:

n = c1[O] `m, (1)
Ep = c2F`m, (2)

where [O] is the oxygen density that can be calculated from the chemical composition of
the glass according to the following relation [11]:

[O] = (c/D)(NA/16), (3)

where c is the total amount of oxygen in 100 g of the glass, D is the volume of 100 g of
the glass, NA is Avogadro's number, c1 and c2 are constants, and m is a high positive
power.

The total number of two-well systems per unit volume (n) is also given by:

n =
ρV 2

` Ep

2D

∞∫

0

C(E) dE, (4)

where ρ is the density of the glass, V` is the longitudinal ultrasonic velocity, Ep is the
activation energy of the relaxation process, D is the deformation potential (energy shift of
the two-well states in a strain �eld of unit strength), and the integral C(E) dE is the area
under the curve relating between absorption and temperature. The average stretching
force constant F for a network is calculated from the relation given by Higazy and
Bridge [12] as

F =
∑

(xnff)i∑
(xnf )i

, (5)

where x is the mole fraction of component oxide, nf is the coordination number of
cations (number of network bonds per formula unit), and f is the �rst order stretching
force constant of the oxide (values of stretching force of each cation-anion pair, or mean
force constant for respective types of the network bond).

Bridge et al. [13] argued that the average ring sizes could be obtained for the oxide
network by

K = c3F/`n, (6)

where K is the bulk modulus, and n is a high positive power. Taking c3 = 0.0106,
n = 3.84, F is in Nm−1, ` in nm, and K in GPa, they obtained a correlation factor of
99%. Then by eliminating (`) between equations (1), (2), and (6) Bridge and Patel found

N = c4(F/K)m/n, (7)
Ep = c5F (F/K)m/n, (8)

where N is the number of two-well systems per unit volume expressed as a percentage
of the number of oxygen atoms. From inspection of Eqs. (7) and (8), Bridge and Patel
observed that (F ) can in fact be eliminated to yield the relation

Ep = c6N
(1+n/m)K. (9)
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They tested their model on the Mo-P-O glass system and after performing linear
regression on Ln(N) and F/K, they obtained the relationship

N = 0.589(F/K)0.576 (10)

with a correlation coe�cient of 80%. A linear regression performed on Ep and F (F/K)
yielded the relation

Ep = 6.92× 10−5F (F/K)0.576 (11)

with a correlation coe�cient of 98%. However, apart from the correlation coe�cient, the
most important feature of Eqs. (7) and (8) is the fact that they predict correctly the
general character of the compositional dependence of (N) and (Ep).

3. Results and discussion

In previous published articles by the authors [6, 7], the results of studies on low-tem-
perature ultrasonic relaxation and physical properties for ternary tellurite glass system
TeO2-V2O5-Sm2O3 were reported. The authors observed that, the calculated bulk mod-
ulus (K) increases from 28.87GPa to 32.47GPa with increasing Sm2O3 from 0.1 to
5.0 mol %. Both the atomic ring size (`) and average stretching force constant (F ) de-
crease from 0.532 to 0.509 nm, and from 240.3 to 228.0N/m respectively, as the Sm2O3

content increases indicating a change in the glass structure given in Table 1. On the other
hand, as Sm2O3 mol % increases, both the activation energy (Ep) and total number of
loss centers (N %), decrease from 0.197 to 0.106 eV and from 5.88 to 3.54, respectively,
as given in Table 1. It was also observed that, the total number of loss centers (N %)
decreases with the decrease in the atomic ring size (`). The activation energy (Ep) also
decreases with the decrease of the stretching force constant (F ), Table 1. Moreover, the
total number of two-well systems per unit volume per oxygen atoms (N %) was found [7]
to be proportional to the oxygen density (i.e. to the reciprocal of the volume per gram
atom of oxygen). Moreover, the average activation energy (Ep) was found [7] to be pro-
portional to the mean atomic ring size (`) and the average stretching force constant (F ).
These observations show clearly the strong composition dependence of both the physical
properties at room temperature, and of the acoustic loss parameters at low-temperature
for the studied tellurite glass system TeO2-V2O5-Sm2O3.

Table 1. Values of the experimental bulk modulus (K), average stretching force constant (F ), ring
diameter (`), and the oxygen density (O).

Glass Composition K F ` O×1028

TeO2 V2O5 Sm2O3 (GPa) (N/m) (nm) (m−3)
65 34.99 0.1 28.87 240.3 0.532 4.79
65 34.95 0.5 29.04 239.3 0.531 4.78
65 34.00 1.0 29.45 238.0 0.528 4.788
65 33.00 2.0 30.30 235.5 0.523 4.79
65 32.00 3.0 30.66 233.0 0.520 4.73
65 31.00 4.0 31.83 230.6 0.513 4.79
65 30.00 5.0 32.47 228.0 0.509 4.74
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Table 2. Values of the experimental number of loss centers (Nexp %), theoretically calculated number
of loss centers (Nth %), experimental activation energy (Eexp), and theoretically calculated activation

energy (Eth).

Glass Composition Nexp % Nth % Eexp Eth

TeO2 V2O5 Sm2O3 (eV) (eV)
65 34.99 0.1 5.88 1.363 0.197 0.197
65 34.95 0.5 5.63 1.355 0.172 0.195
65 34.00 1.0 5.37 1.340 0.153 0.192
65 33.00 2.0 4.72 1.310 0.144 0.186
65 32.00 3.0 4.33 1.294 0.139 0.181
65 31.00 4.0 3.72 1.259 0.115 0.175
65 30.00 5.0 3.54 1.236 0.106 0.169

Taking the values of n = 3.84 and c3 = 0.0106 [13] and the value of m = 2.21, as
obtained from a close �t of equation (2) to the data given in Table 1, and performing a
linear regression on Ln(N) and (F/K) we obtained

N = 0.402(F/K)0.576, (12)

with a correlation factor of 99.8%.
The linear regression was performed on Ep and F (F/K) �tting equation (8) to the

experimental values of average activation energy for our glass system; we obtained

Ep = 2.42× 104F (F/K)0.576 (13)

with the correlation factor of 95.8%.
The linear regression was also performed on Ln(Ep/K) and Ln(N). It results in

Ep = 6.7× 104N1.374 ·K (14)

with a correlation factor of 98%.
Apart from the correlation coe�cients, the important feature of equations (12) and

(13) is the fact that they predict correctly the general character of the compositional
dependence of N and Ep, Table 1. Thus, as the Sm2O3 mol% increases from 0.01 to
5.0 mol%, the number of loss centers expressed as a function of the number of oxygen
atoms per m3, (Nth %), which was predicted from Eq. (12), decreases from 1.363 to 1.236
showing the same trend as found from the experimental data (Nexp %) which decreases
from 5.88 to 3.54. This is shown in Fig. 1. In the case of the average activation energy
(Ep), the values of the theoretically calculated data (Eth) predicted from equation (13)
decrease from 0.197 to 0.106 eV, Fig. 2.

The decrease in both the activation energy (Ep), stretching force constant (F ) and
the increase in the bulk modulus (K) ful�ll equation (13). The relations are shown in
Figs. 3 and 4.

From an inspection of the ring size values (`) given in Table 1, it can be observed that
the decrease in the average ring size (`) with decreasing activation energy (Ep) obeys the
�rst principal given in Eq. (2) and shown in Fig. 5.

The decrease of the oxygen density [O] from 4.79 to 4.74 × 1028 m−3 with increas-
ing modi�er content means that the number of loss centers decreases at a high Sm2O3
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Fig. 1. Compositional dependence of the number of loss center N expressed as a function of oxygen
atoms per cm3 (TeO2-V2O5-Sm2O3 glasses). Nexp and Nth (predicted theoretically by Eq. (12)).

Fig. 2. Compositional dependence of the average activation energy Eexp (experimental) and Eth (theo-
retically predicted by Eq. (13)).
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Fig. 3. Variation of the average stretching force constant with activation energy.

Fig. 4. Variation of experimental bulk modulus with activation energy.
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Fig. 5. Variation of the ring diameter with the activation energy.

content, that is added on the expense of V2O5. Since the number of loss centers is a frac-
tion of the oxygen density. Therefore, this decrease will cause a decrease in the average
activation energy and this �ts Eq. (9).

The discussion, under report explains the role of Sm2O3 on tellurium-vanadium
glasses. The behaviour of Sm2O3 in these glasses can be explained as follows; the ac-
tivation energy (Ep) of the ternary TeO2-V2O5-Sm2O3 glass system decreases due to
the decrease of both the average stretching force constant (F ), and the number of loss
centers (N %) (oxygen atoms per unit volume) on one hand side and the increase in bulk
modulus (K) on the other side.

4. Conclusion

The correlation between some physical properties for tri-component tellurite glasses
(bulk modulus K measured at room temperature and low temperature ultrasonic relax-
ation parameter, i.e. the activation energy Ep) was achieved through the two structural
parameters: the number of anions (N) and the anion-cation stretching forces (F ).
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