ARCHIVES OF ACOUSTICS
22, 1,326 (1997)

PARAMETRIC REPRESENTATION OF MUSICAL SOUNDS

B. KOSTEK and A. WIECZORKOWSKA

Sound Engineering Department
Faculty of Electronics, Telecommunications and Informatics,
Gdarisk University of Technology
(80-952 Gdarisk, ul. Narutowicza 11/12)

The rationale of this research work was to find appropriate sound parameters on the basis of
which it is possible to discern musical instrument sounds. A review of parameters used in musical
acoustics was carried out focusing on the frequency-domain, Some of parameters were extracted
from sound representations. Then, the quality of calculated parameters was tested statistically.
Additionally, some discretization methods were applied in order to create so-called feature vectors
that are to be used for feeding inputs of decision algorithms. Experimental results and conclusions
are showed in the paper.

1. Introduction

The most advanced techniques of signal analysis come out of the speech analysis
domain. However, in the recent years, many of these techniques have been success-
fully applied to the musical signal domain. The speech domain has received also a
gradual and continual increase in the recognition systems both speaker-dependent and
speaker-independent ones. Classical example of such an increase may be voice control
over a computer. Still further, the introduction of artificial intelligence domain methods
significantly improved recognition processes. Although the musical signal domain bene-
fits from the implementation of techniques used in the speech domain, many problems
are not solved up to now. Among such problems one may find automatic recognition and
editing of musical sound patterns, detection of transient states and articulation features in
sounds, automatic extraction of a single instrument pattern from an orchestral piece. The
most advanced system solution within mentioned examples would be the elaboration of
sound editor, which in the automatic way would recognize information about the musical
material in a chosen cue point and further would allow to search for and to find such cue
points defined by the user. Although there exist many analysis-synthesis methods based
on the mathematical and physical representations [10, 18] resulting in modeling of the
musical instruments, including the newest ones based on the waveguide synthesis [5, 7,
23], but yet the complexity and the dynamics of the problems related to musical sound
analysis do not provide adequate techniques for the recognition stage. Another problem
is the fact, that some definitions of sound properties are based on subjective descriptors,
especially concerning musical timbre [11].
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The tasks related to preprocessing and classification of data derived from the classical
methods of acoustical analyses are as follows: determination of dynamic and timbre
specifications, segmentation of signal into onsets and steady state segments, derivation of
relevant attributes. The latter procedure allows one to create the feature vector. As the
extraction of the feature vector provides the first element of any system for intelligent
processing of musical sound, the problem is to find appropriate sound parameters that
are to be used for feeding inputs of decision algorithms. The decision algorithms are
trained directly with consecutive feature vectors at their inputs, thus learning classifiers
must learn to evaluate the similarities occurring among analyzed sound patterns. It is
also convenient to provide decision algorithms with integer input data. This requires
discretization of real data into integer domain. Therefore, the rationale for this research
work was to calculate chosen parameters at first, then check their quality, and finally
apply some of discretization methods to the selected parameters.

In the paper problems related to the musical data extraction and preprocessing will be
discussed. Samples extracted from sound patterns of 20 musical instruments provided a
basis for the experimental studies. Time and spectral parameters were derived from these
data. For the purpose of assessing their quality the parameters were checked statistically.
The Behrens - Fisher statistics has been applied to this task. For this research work three
methods of discretization have been applied. Experimental results and conclusions are
to be shown in the paper.

2. Musical signal parametrization — a short review

There are at least two basic approaches to the musical signal analysis: non-parametric
and parametric. The main difference between these two approaches is the degree of
information reduction. The first one consists of methods like wavelet analysis, granular
analysis, linear predictive coding [2, 10, 18]. However, in the experiments carried out by
authors, the non-parametric approach to the musical signal analysis was not interesting,
as the decision algorithm based systems require the creation of a knowledge base.

In the second approach there are at least two groups of methods that deal with musical
signal parametrization. The main difference appears due to the fact that there are two
possible ways of approaches to the analysis of musical instrument signals. The first one is
taking into account a specific model of the sound production. Therefore, it is necessary
to have some kind of knowledge about the instrument of which the signal is analyzed.
The relationship between the excitation source and the resonance structure results in
formants in the signal spectrum [3, 12]. The second way of analysis is the arbitrary choice
of parameters extracted from both time- and frequency-domains. In that case, the main
task is to qualify whether a chosen parameter or signal attribute is of some significance.
Both, statistical and learning algorithm based systems may be used as a tool to check the
significance of attributes [13]. .

Another method that is taken into account when parametrizing sounds is the so-called
analysis-by-synthesis approach. This approach was actually introduced by RisseT [8] in
order to extract sound parameters. Then, in that case a resynthesis of a sound is possible
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on the basis of calculated parameters. For example, harmonic-based encoding of musical
instrument tones for the additive synthesis may be used as a sound parametrization.
Although this data representation is usually very large, principal component analysis can
be used to encode such data, which is usually redundant, into a smaller set of orthogonal
basis vectors with a minimal loss of information [21].

The basis of musical instrument sound parametrization is harmonic-based spectral
analysis, usually concerning the steady-state of a sound. However, while describing mu-
sical sounds it is important not only to analyze steady-state of sounds, but also tran-
sients [16].

When musical sound timbre is analyzed, then brightness, rapidity of attack and spec-
tral fine structure are calculated [9, 15]. These parameters allow to perceive dissimilarity
of timbres. In some applications, statistical parameters are used, for example average
amplitude and frequency variations, average spectrum calculations, standard deviations,
autocorrelation and cross-correlation functions [1]. Statistical features are different for
the group of lower partials (from 1 to 8) and for the group of higher partials (9 and
higher, or partials from 10 to 50 are considered together in some cases [24]). Another
group of parameters, called Tristimulus, shows graphically the time-dependent behaviour
of musical transients [19]. In the Tristimulus method loudness values measured at 5 ms
intervals are converted into three coordinates, based on loudness of (i) the fundamental,
(i) group containing partials from 2 to 4 and (iii) group containing partials from 5 to
n, where n is the highest significant partial. This procedure allows a graph to be drawn
that shows in a simple manner the time-dependent behaviour of the starting transients
in relation to the steady-state. In order to perform automatic recognition of musical tim-
bre there are also used such parameters as cepstrum coefficients, spectral moments and
approximate formant frequencies [12].

3. Differences between sounds of different instruments

In order to extract parameters of feature vectors, sounds belonging to different in-
strument groups were analyzed. Examples of FFT-based analysis were observed so as to
pursue characteristic description that would remain typical throughout the various tones
and therefore may be useful for the identification of an instrument group.

While analyzing musical instrument sounds it is necessary to take into account both
time- and frequency-domains. Moreover, spectra should be calculated not only for steady-
states of sounds, but also for consequential parts of sounds. Exemplary analyses for a
selected sound of a bassoon are shown in Fig. 1. These pictures have been prepared
using the application Spectro 3.0, available on the Internet at NeXT workstations. This
application allows one to follow the evolution of the spectrum and changes of harmonic
amplitudes within the whole sound. It is very important to make this observation possible,
because the envelope of the sound and the shape of the spectrum may vary for various
instruments and also for sounds of the same instrument. The comparison between the
attack of sounds of the same pitch, namely G4 (392Hz), for oboe and B-flat clarinet
sounds is shown in Fig.2 (time-domain) and Fig. 3 (frequency-domain). As is seen, both
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Fig. 1. Time-domain (a) and spectra (b, c) of the sound F4 (349 Hz) of the bassoon: b) for all frames
(“waterfall” plot), c) for the selected frame.
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Fig. 2. Comparison of the time-domain plots for oboe (a) and B-flat clarinet (b) sounds (G4-392 Hz).

transients differ substantially each from the other one in time- and frequency-domains.
The transient of the clarinet sound is much shorter than for the oboe sound. Moreover,
assuming the ADSR (Attack-Decay-Sustain-Release) model of the sound, it is to see that
there is no decay phase for the clarinet sound (Fig. 2). Figure 3 shows that the steady-state
for the clarinet is reached almost immediately, whereas higher harmonics in spectrum of
the oboe are fully reached only after about 0.3s.

Further differences are noticeable while looking at the single frame of the spectrum.
Figure 4 presents the differences of the spectrum of the B-flat clarinet and bassoon
sounds of the same pitch. The spectrum of the bassoon is quite poor in comparison to
the spectrum of the clarinet. On the other hand, even harmonics in the spectrum of the
clarinet are generally smaller than odd ones, while in the spectrum of the bassoon they
are quite significant.
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Fig. 3. Comparison of the evolution of spectra for oboe (a) and B-flat clarinet (b) sounds (G4 — 392 Hz).
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Fig. 4. Comparison of spectra for B-flat clarinet (a) and bassoon (b) sounds (F4 — 349 Hz).

These exemplary analyses make obvious problems related to the extraction of musical
instrument parameters and to the recognition of an instrument class the instrument
belongs to. Therefore, the frequency-domain representation will not provide sufficient
representation on the basis of which it will be possible to recognize a chosen instrument.

4, Experiments

4.1. Steady-state parameters

The experiments carried out at the Sound Engineering Department of the Gdafisk
University of Technology consisted of several stages. The first one requires the creation
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of a knowledge base of musical instrument signals. For this task an existing data base
of musical signals was used. This base, named SHARC [20] contains information about
FFT domain of 24 orchestra instruments, some of them of different articulation, in total
39 examples are gathered [14]. The FFT based data contains a choice of all notes from
the chromatic scale characteristic for a chosen instrument. Additionally, amplitudes and
phases of subsequent harmonics are given in reference to the fundamental one. The
source of this data base was a library of musical signals, McGill University Master Samples
(MUMS), edited on CD’s [12]. The data about the instruments contains also additional
information, like: pitch of a note (in the standard of the Acoustical Society of America),
note number, maximum value of amplitude of samples in the segment used in analysis,
nominal fundamental frequency in reference to the equal-tempered tuning, frequency
measured for the signal sample, information about the organization of catalogues and
files containing these data, total duration of a performed note (in seconds), time point
from which the analysis was taken (relative to the onset of a note), centroid of the
spectrum (in Hertz). More details are to be found in references [12, 14, 20].

The SHARC gives a list of amplitudes and phases in the range of 0 to 10kHz for
steady-state portions of every sound. The level of the strongest harmonic is always as-
signed to 0 dB.

On the basis of the SHARC database, authors calculated some spectral parameters,
namely:

- F' - normalized frequency:

F=i/l, (4.1)
where I — number of notes (sounds) available for a parametrized instrument, ¢ — number
of a parametrized sound; sounds are numbered from 1 to I;

— T3 - the second modified Tristimulus parameter:

4
LA,
T,="2—, (4.2)
5
n=1

where A, - amplitude of the n-th harmonic; N — number of all available harmonics;

— T3 - the third modified Tristimulus parameter:
N
;A
T; = ”;5 : (4.3)
> A
n=1

where A,,, N - as before;
— B - brightness:

where A,, N - as before;
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— Ev — contents of even harmonics in spectrum
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where A,, N - as before,
M = Entier(N/2);
— Od - contents of odd harmonics excluding the first one in spectrum:

ol
(]
[ANg!
o
[l
ol
A

Odw (4.6)

™=
S
S

3
1L
Frary

where A, , N — as before,
L = Entier(N/2 + 1).

These parameters describe the shape of the spectrum in the steady-state phase. Calculated
parameters were normalized, i.e.

Ty + T+ 75
Ty + Ev* + Od*

1, (4.7)
i (4.8)

where T - energy of the first harmonic (the first modified Tristimulus parameter) ac-
cording to the formula (4.9):

N
Ty = A3/ A2, (4.9)
n=1

The first parameter F' was calculated so as to distinguish between sounds of one instru-
ment rather than between sounds of different instruments. Additionally, some parameter
values depend on the fundamental frequency of the sound. Therefore, the parameter
F was added in order to normalize frequencies of subsequent sounds in the chromatic
scale. The Tristimulus parameters were modified based on those proposed originally by
PoLLARD and JaNssoN [14, 19].

4.2. Time-related parameters

Calculated parameters have been included in a created database, called MISS (basis
of parameters of Musical Instrument Sounds based on Sharc). The MISS database not
only contains steady-state spectral parameters, but also time-related ones. The latter
parameters are based on both time- and frequency-domains. As the basis of time-related
parameter calculation, the ADSR model of the sound envelope was used. Calculated
parameters are extracted from the starting sound transients. Time-related parameters
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were calculated on the basis of sound transients edited from the MUMS library, since
the SHARC database does not contain this information. The FFT analyses were done
for 1024 sample frames with overlapping of 700 samples. The digital stereo records
of 44.1kHz sampling frequency were used and the Hamming window was applied to
analyses.

Extracted parameters contained in the MISS database are as follows [14]:

— P; - rising time of the first harmonic expressed in periods;

- P, — T at the and of the attack divided by T} for the steady-state (see Eq. (4.9));

— P5 - rising time of the second, the third and the fourth harmonic expressed in
periods;

— Py — T at the and of the attack divided by T3 for the steady-state (see Eq. (4.2);

— Ps — rising time of the remaining harmonics expressed in periods;

- Pg — T3 at the and of the attack divided by T3 for the steady-state (see Eq. (4.3));

— P; - delay of the second, the third and the fourth harmonic in relation to the first
harmonic during the attack;

— Pg — delay of the remaining harmonics in relation to the first harmonic during the
attack.

The MISS database contains parameters for 20 instruments and is still under progress.
Single instrument sounds were selected, omitting string ensembles and organ plenum.
This database contains data concerning a simple kind of musical articulation. Parameters
of a single sound are represented by 14-dimensional vector, namely: 6 steady-state pa-
rameters and 8 time-related ones. Vectors of parameters for one instrument are grouped
together as one class, starting with parameters for the lowest sound and ending with
the highest one. Every parameter is placed in the database in the same column. The
matrix-like layout is easy then to feed the inputs of learning algorithm based systems.

5. Discernibility of parameters

In order to check the discernibility of the calculated parameters statistical methods
can be used. In this research work, the Behrens - Fisher statistics V' was applied to this
task. It was calculated for every parameter of two classes (instruments) X and Y':

Ve X-Y (5.1)

JS2/n + 82/m

where X ,Y — mean parameter values, 57, S% - variance estimators:

52 = nili(xi—f)z, ‘ (52)
i=1
S2 = ﬁi(ﬂ—?)z. (5.3)

i=1
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As one can see, this statistics depends on mean values, variances and numbers of ex-
amples for each instrument. The bigger the absolute value of this statistics |V'| for the
selected parameter for the chosen pair of instruments, the easier to distinguish between
these instruments on the basis of this parameter. This implies that instruments will be
discernible on the basis of the selected parameter if their mean values are definitely
different, variances are small and examples are numerous. Exemplary mean values, dis-
persions, i.e. square roots of variances, and the Behrens - Fisher statistics absolute values
for the selected instruments are showed in Tab. 1<-Tab. 4.

Table 1. Comparison of mean values, dispersions and the Behrens - Fisher statistics absolute values |V'|
for particular steady-state parameters of the bass trombone and the contrabass clarinet.

Parameter F T T3 B Ev Od
bass trombone mean value 0.520 0.213 0.777 12.994 0.701 0.705
contrabass clarinet mean value 0.522 0.228 0.455 12,972 0.793 0.213
bass trombone dispersion 0.288 0.201 0.214 6.137 0.030 0.030
contrabass clarinet dispersion 0.288 0.134 0.198 4.227 0.112 0.071
V| 0.020 0.305 5.315 0.014 331 29.034

Table 2. Comparison of mean values, dispersions and the Behrens - Fisher statistics absolute values |V|
for particular steady-state parameters of the oboe and the bassoon.

Parameter F T, Ts B Ev Od
oboe mean value 0.516 0.550 0.089 2937 0.335 0.621
bassoon mean value 0.516 0.643 0.265 5.037 0.540 0.718
oboe dispersion 0.289 0.294 0.173 1.206 0.246 0.258
bassoon dispersion 0.289 0.311 0.327 2.850 0.276 0.157
vl 0 1121 | 2656 | 3779 | 2781 1.795

Table 3. Comparison of mean values, dispersions and the Behrens - Fisher statistics absolute values |V |
for particular attack parameters of the bass trombone and the contrabass clarinet.

Parameter Py P Py " By Ps F Py P
bass trombone mean value 0.164 | 2452 | 0.157 | 1.519 | 0177 | 0350 | 0.351 | 0.152
contrabass clarinet mean value | 0.199 | 1.852 | 0.170 | 1.118 | 0.152 | 0.359 | 0.044 | 0.020
bass trombone dispersion 0.118 | 2.127 | 0.117 | 1564 | 0.102 | 0.335 | 0.146 | 0.248
contrabass clarinet dispersion 0.049 | 1.844 | 0.072 | 1.033 | 0.082 | 6.199 | 0.139 | 0.132
V] 1351 | 1.023 | 0.444 | 1.034 | 0582 | 0.109 | 2.241 | 2277

The first two tables contain results for the steady-state parameters, while the next
tables contain results for the time-related parameters. In the first and the third tables
results for bass trombone and contrabass clarinet sounds are showed. These instruments
are of the similar musical scales, but they belong to different groups of instruments:
single-reed woodwinds (contrabass clarinet) and brass (bass trombone). In the second and
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Table 4. Comparison of means, dispersions and Behrens - Fisher statistics absolute values |V| for particular
attack parameters of the oboe and the bassoon.

Parameter Py P, Py Py Ps Py Py P
oboe mean 0.475 0.732 0.413 0.687 0.710 0.718 —.006 0.023
bassoon mean 0.186 2.230 0.198 0.946 0.366 0.211 0.015 0.128
oboe dispersion 0.253 0.190 0.233 0.225 0.923 0.428 0.142 0.204
bassoon dispersion 0.091 1.503 0.117 0.799 0.284 0.122 0.128 0.176

4l 5.990 5.508 4,576 1.742 1.980 6.343 0.599 2.185

fourth tables results for oboe and bassoon sounds are presented. These two instruments
belong to the same group, namely: double-reed woodwinds.

Any single parameter would not be sufficient to distinguish between all instruments.
That is why it was necessary to prepare quite a few parameters. Parameter values may
vary within the chromatic scale for one instrument, on the other hand they may be similar
for different instruments, It may be illustrated on the examples shown in Fig, 5.

n 131'1‘ 1516171819 202122 2321 25 bass trombone

Od Od

4 31011 !? 1334 15 1‘ 17 1819 2021 2223 contrabass clarinet 45678 910111213341516171819202 lznnmsznvznnnsua bassoon

Fig. 5. Calculated values of the parameter Od (vertical axis) for the subsequent sounds of the selected
instruments (horizontal axis - subsequent numbers of sounds in the chromatic scale of the given instrument):
bass trombone, contrabass clarinet, oboe and bassoon.

As one can see, although values of the parameter Od (contents of odd harmonics
in spectrum) are quite similar within the whole scale of the bass trombone, analogic
values for the contrabass clarinet diminish for higher sounds, while these values for
the oboe and the bassoon are almost random. Since amplitudes of harmonics (along
with the envelope of the sound) vary for different sounds of various instruments, the
irregularity of parameters’ values is unavoidable. Exemplary graphical illustrations of
the discernibility of the selected pairs of parameters are presented in Fig. 6--Fig.9 [14].
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Fig. 6. Parameters extracted from steady-state sound portions: T3 vs. Ev (see Eqgs. (4.3) and (4.5)):
a) for bass trombone and contrabass clarinet, b) for oboe and bassoon.
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Fig. 7. Parameters extracted from steady-state sound portions: Ev vs. Od (see Eq. (4.5) and Eq, (4.6)):
a) for bas trombone and contrabass clarinet, b) for oboe and bassoon.
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Fig. 8. Parameters extracted from the attack phase: P; vs. F: a) for bass trombone and contrabass clarinet,
b) for oboe and bassoon.
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As seen from Fig. 6, parameters Ev and T3 are quite mixed both for the bass trombone
vs. the contrabass clarinet and for the oboe vs. the bassoon. Figure 7 shows that although
parameters Ev and Od for the oboe and the bassoon are still quite mixed, the parameter
Od allows one to distinguish between the bass trombone and the contrabass clarinet
very well. This is not surprising since the Behrens - Fisher statistics absolute value in this
case was very high (appr. 29), in comparison to the values from 0 to 5.315 for other
parameters. Figures 8 and 9 present time-related parameter values for the same pairs of
instruments. Parameters P; vs. Ps and Py vs. P are always strongly mixed for the bass
trombone and the contrabass clarinet, but on the other hand this pair of instruments may
be discernible on the basis of the parameter Od. However, time-related parameters are
a good basis to distinguish between oboe and bassoon.

6. Discretization of parameters

6.1. Review of discretization methods

Calculated parameters are the real value ones. However, it is more convenient and
useful to operate on integer value parameters, which can take only several values —
discretized ones. This is because obtained parameters may be used to train artificial in-
telligence algorithms such as rough sets and neural networks. Although neural network
algorithms may process the real value data, other learning algorithms need discretized
parameters, consequently the discretization of parameters was performed. After the dis-
cretization process, instead of dealing with real values, the ranges of values may be taken
into account.

Discretization can be performed in two ways. The first possibility is to divide the
parameter domain interval into subintervals. The division is defined as follows:

Let A be a real value parameter and let the interval [a, b] be its domain. The division
[1, on [a,b] is defined as the set of k subintervals:

H.A = {[G'U?a‘l)v [ﬂ.l,ﬂ,g),.. ) [ak—lsak]}: (6.1)

where g = a, ai—1 < a;, i =1,...,k a; = b.

This approach to discretization is based on calculating division points a;. After the
discretization the parameter value is transformed into the number of the subinterval to
which this value belongs.

The simplest division is the binary discretization, where |[] ;| = 2. The unary discretiza-
tion, where |[],| = 1 is excluded because it causes the loss of information. A method
called adaptive discretization may be performed on the binary scheme. In this method the
parameter domain is first partitioned into two equal width subintervals. Then a learning
system is run to induce rules and obtained rules are tested. If performance measure falls
below a fixed threshold, one of obtained subintervals is further divided. This process is
repeated until the final performance level is reached [4].
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LENARCIK and Piasta proposed a method of discretization of all parameters at
a time, also based on the binary one [17]. By a set of intermediate values for R™,

different from attributes values, they mean an ordered family A = {A® ... A} of
sets AW = {al? < ff'()q)} g = 1,...,m. For every a¥) the bmary attribute is
defined as:
0 for eu(u)< a(q)
Tes(u) = o (6.2)
1 for c4(u)> al?
Then X 4= {21,150+ vs Bty e 5By -sTm n(m)} i8 a set of binary attributes corre-

sponding to intermediate values from A,

Another method of the parameter domain division is Equal Interval Width Method
(EIWM), where the parameter domain is partitioned into equal width intervals [4]. More
sophisticated methods are based on calculating of entropy. One of them is based on max-
imal marginal entropy used as a criterion of division. This process involves partitioning
the domain such that the sample frequency in each interval is approximately equal and
is called Equal Frequency per Interval Méthod (EFIM) [4]. The number of intervals is
provided by the experimenter. In Minimal Class Entropy Method a list of “best” break-
points is evaluated. The class information entropy of the partition induced by a break
point g is defined as:

|52|

E(A,q;U) = |Ent(S’)+ il

71 Ent(S3), (6.3)

where 51, 52 — results of the division of U, U - the set of all examples of the data set.

The point for which E(A,q; U) was minimal is chosen. This determines the binary
discretization for attribute A. In order to obtain k intervals the procedure described
above is applied recursively & — 1 times. Having computed the division U into [/; and
Us, further discretization is performed after calculating E(A, ¢i; U;) and E(A, g U2),
where ¢; - the best point of division for U;, 1 = 1,2, If:

E(A,q5U1) > E(A, g2 1), (6.4)

then U, is partitioned, else — U, (“worse” of sets U; and U5) [4].

SkowroON and NGUYEN proposed a method of division of all parameters domain
based on the Boolean reasoning approach [14, 22]. Firstly, the Boolean function p(a, k)
is related to every parameter value, where k is number of parameter value v, a is the
parameter number/name and if v(1) < v(2) < v(3) etc. At the beginning, every parame-
ter value is considered as a division point. Function p(a, k) = true if there is the division
point p such that v(k) < p < v(k + 1) and false in the contrary. For every pair of ob-
jects belonging to different classes (instruments), function p values are calculated. These
values are placed in a so-called decision table as rows, whose columns are connected to
division points. Next, columns with the biggest number of “true” are chosen from the
table. After every choice the selected column is removed from the table. This process
ends when the decision table turns empty. Finally, division points chosen from the table
while executing the procedure above are moved from v(k) to (v(k) + v(k + 1))/2.
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Further methods of the parameter domain division are based on statistical approach.
Two of them are based on calculating the Behrens - Fisher statistics V' for every parameter
for two classes (instruments) X and Y [6]. Basing on this statistics, the following value
is calculated:

X+Y

dey = = if Si=25, (6.5)
2t Y 52 + Y-S1 .
doy = — % if S1#S,. (6.6)

This value serves as the discriminator between parameter domain subintervals. The first
method based on calculating the Behrens-Fisher statistics is called the constant dis-
cretization. In this method the same number of subintervals for each parameter domain
is chosen. The division points are selected from the calculated discriminators, for which
absolute values of calculated statistics |V'| are giving the highest results. The second
method based on this statistics is called the variable discretization. This method is prac-
tically leading to obtain a different number of subintervals for each parameter domain.
The division values are selected for the absolute value of the statistics |V| exceeding the
selected threshold.

6.1.1. Clusterization. Another way of discretization of parameter domains is clus-
terization. In this case, parameter values are joined into intervals and then, like in the
previous methods, the real values are transformed into the number of subintervals which
these values belong to. A very simple method of clusterization, based on statistical ap-
proach, was prepared at the Sound Engineering Department of the Gdansk University
of Technology. In this method parameter values are gathered together and form intervals
on the basis of the following algorithm [14]:

1. For each parameter the O, value is calculated. O, is defined as
0, = a-E(0) + b-D*O) + ¢-Min(0) + d-Max(0) + e-1, (6.7)

where O - interval between each neighbouring parameter values, £ — mean value, D? -
variance, a,b, ¢, d, e € R — values defined by an experimenter.

2. If the interval between two neighbouring parameter values is smaller than O, they
are joined into an interval. Joining is repeated for every pair of neighbouring points.

3. After finishing joining, obtained intervals (or isolated points) are enlarged with a
small value in order to have all parameter values included into obtained intervals.

4, Described procedure can be repeated when new objects are added (i.e. parameter
vectors) and the previously calculated parametrization is used as the input data.

After the clusterization process is finished, some parts of the parameter domain may
remain not assigned to any interval. In this case, some new objects may not be classified
while recognizing, but on the other hand, the experimenter can notice that an object
representing a new class appeared.
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In the Cluster Analysis Method, proposed by M.R. CHMIELEWSKI and J.W. GRrzy-
MALA-BUSSE, a hierarchical cluster analysis is used [4]. The clusterization is performed
as far as it is possible and then neighbouring intervals are fused, using class entropy
measure as a criterion of joining. Let:

m = |U]|, where U - the set of all examples of the data set,

{A1,..., Ai, Ais1, ..., A} — the set of all attributes (parameters),

where Ay, ..., A; - continuous attributes, i.e. real value ones, and A;+1,. . ., A, — discrete
attributes.

Each element e € U can be divided into the continuous component:
€continuous = (:cies s 1"17;?)1

and the discrete component of e:

Ediscrete = (Z41+++5Tn)-

Since continuous attributes’ values may not be of the same scale (feet, pounds, meters,
etc.), they are normalized to zero mean and unit variance for clustering to be successful.

Clustering starts with computing an m x m distance matrix between every pair of
continuous components Ve € U. The entries in this matrix correspond to squared Eu-
clidean distances between data points (parameter vectors) in i-dimensional space. At the
beginning m clusters are introduced, (all i-dimensional), since each i-dimensional data
point is allowed to be a cluster of cardinality one. New clusters are introduced by joining
of the two existing before, for which the distance between them is the smallest. Clusters b
and ¢ form a new cluster bc, and the distance from bc to another cluster a is computed as

da(bc] = d(bc)a = ay ‘dab +a, dg. + bedy. + g '[dab - dacl, (68)

where for example a; = a. = 0.5, b = —0.25 and g = 0 for the Median Cluster Analysis
Method [4].

At any stage of the clustering obtained clusters induce a partition of U, because objects
belonging to the same cluster are indiscernible by the subset of continuous attributes.
Therefore, the criterion of finishing of the cluster formation can be

R <L,

where L. — the original data level of conmsistency, L? - the discretized data level of
consistency. ;

The next stage of this method is joining of intervals for every single attribute, i.e. in
1-dimentional space. Let r denote the number of clusters obtained and K - cluster. For
the attribute A; and the cluster K the obtained interval is:

Tty = (L, Raca,] = [minGes), maxas)| (69)
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For given A; the cluster K domain can turn out to be a subdomain of another cluster
K’y i
Lk, 2 Lg,a;,  and Ri.a; < RK,A;. ‘ (6.10)

Then subinterval Ik 4 ; can be eliminated. After eliminating subintervals, sets of left and
right boundary points are constructed, L; and R;, respectively. Hence, the partition 7;
for the attribute A; is equal to

T = {[mim(L,-),m'mz(Lj)), [mina(L; ), mina(L;)), - .., [min,(L,-),max(R,-)]}, (6.11)

where min,(L;) - the n-th smallest element of L;.
The consequent stage of this method is joining of existing intervals. Let

74, = {la0,01), [a1,@2), ., [@k-1, @]} (6.12)

If class entropy is equal to zero, the two neighbouring intervals [a;-1, ;) and [a;, @1+1)
can be fused into J;_1 ;+1 without diminishing the consistency of the set. The zero-valued
entropy means that ;1 ;41 describes only one concept, in part or in full. Merging can
be continued, but this involves resolving two questions:

o which attribute intervals to fuse first,

¢ which adjacent intervals to fuse first.

In order to determine priorities of merging the entropy class function is applied. This
function is calculated for each pair of intervals for each continuous attribute. The pair
of the smallest entropy is chosen. Before merging is performed, the accuracy of the new
data set is checked. If the accuracy falls below the given threshold, this pair is marked
as non-mergeable and the joining is performed otherwise. The process stops when each
possible pair of neighbouring intervals is marked as non-mergeable.

0.2. Discretization of the database

Some of the described methods of discretization were used in experiments. The fol-
lowing discretization methods were applied: EIWM, methods based on calculating the
Behrens - Fisher statistics — both constant and variable discretization, and the clusteriza-
tion method based on statistical approach. In methods with definite number of intervals,
i.e. EIWM and constant discretization, the division into 5, 6, and 7 intervals was per-
formed. Additionally, in variable discretization the number of intervals was also limited
in order to avoid too dense division of the parameter domain.

Discretization not only transforms real value parameters into integer ones, but also
changes the way the parameter values concentrate in groups for particular instruments.
Figure 10 illustrates how parameter values for the same pair of instruments change for
different discretization methods. It is interesting that another discretization method may
lead to definitely different layout of parameter values. Discretization usually changes the
discernibility of parameters and may decrease it. Nevertheless, the discretization process
is necessary since these parameters were prepared so as to use artificial intelligence
decision algorithms as automatic musical instrument classifiers.
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Fig. 10. Parameter values for P; and P, before discretization (a), after the ETWM discretization,
5 intervals (b), variable discretization, threshold 0.8 (c) and clusterization based on the statistical
approach a = ¢ = 0.5, b = d = 0.02, e = 0.1 (d) for the oboe and bassoon.

7. Conclusions

In this paper the review of some methods of parametrization and processing of mu-
sical sounds were presented. A database was created during the performed experiments.
The constructed database contained parameters computed from sound steady-states and
starting transients. The parametrization process is necessary to prepare feature vec-
tors ‘describing musical instrument sounds for experiments using learning algorithms.
Experiments showed that steady-state spectral parameters are not sufficient for distinc-
tion between different instrument sounds. Therefore, calculating time-related parame-
ters was necessary. The quality of the calculated parameters were checked using the
Behrens - Fisher statistics. Additionally, some methods of data discretization were de-
scribed and some details related to these methods were quoted. Experiments on discreti-
sation were also performed and then the discernibility of such transformed parameters
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was verified. Since statistical methods such as the Behrens - Fisher statistics prove that
particular parameters are not fully separable, application of learning algorithm based
systems seems to be appropriate as a method for automatic musical instrument classifi-
cation.

Performed tests show that further experiments should develop towards derivation
of parameters being more stable within the musical instrument scale. It is particularly
important due to the non-uniformity and non-linearities within the pitch scales of musical
instruments.

It is expected that future experiments would allow for drawing out more general
conclusions and provide a platform for accurate recognition of musical instrument sounds.
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The aim of the presented work was to train a neural network in order to recognize a class of
a chosen musical instrument. As problems related to analysis of sounds are related to human
subjective perception abilities, then it seems that such tools of analyses as neural nets should
be used for recognition processes. On the other hand, an artificial neural network should not
be trained directly with subsequent samples of a sound, thus the feature extraction procedure is
needed at first. As, there is no consensus regarding the selection of parameters for feature vector
extraction, thus the experiment aimed to check whether calculated parameters are sufficient
for creating a set of sound patterns used for neural network training. Some neural nets were
investigated in the experiment, they were trained with so-called ELEVEN and FOURTEEN
vector types. After the learning procedure was executed, other examples of the previously created
database (but not seen by the neural network) were presented to neural nets. Results show that
NNs (neural networks) are able to generalize information included in feature vectors. Therefore,
when presenting data to NN inputs, there is no problem with variation of parameters within data,
and consequently with data clustering, because a NN has the ability to generalize information
during the learning phase. In the paper, an analysis of experimental results will be carried on,
and conclusions derived from the performed tests will be presented.

1. Introduction

Despite the development of contemporary computer systems and growth in their pro-
cessing power, there still exists a certain class of problems that have not been assigned the
solving method. This class includes, among others, musical instrument sound recognition
tasks. From the viewpoint of sound engineering the effectiveness of sound recognition is
still imperfect even in well designed systems based on learning algorithms. Neural net-
works are one of the most frequently used learning algorithms. Systems that are based
on these algorithms have become especially significant in the process of recognition of
images, speech, also applications of musical sounds classifications have appeared [1, 2,
3]. It is the latter field that belongs to the most interesting aspects of musical acoustics.

One of the main advantages of artificial neural networks is the ability to generalize,
that is the ability to correctly classify when the network comes across a new object at
the input. The neural network processes the input object using the knowledge acquired
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during the training phase. Therefore a neural network is applicable to solving all types
of classification tasks and to recognition, that is difficult to be described algorithmically.
The effectiveness of processing of input objects depends on the quality of the training
phase progress. If the network is imprecisely taught, it may fail to learn how to generalize,
hence its effectiveness in the recognition phase will be small. On the other hand, if the
network gets taught too excessively it will lose the ability to generalize and will process
correctly only elements of the training set. It is difficult to determine the moment at
which the training of the network should be terminated as it depends on the character
of the training set, the selected structure of the network, initial conditions, parameters
of the network and the selected training method.

Artificial neural networks have found extensive application in many fields. Despite,
however, a big number of various methods of training and the structures of the networks,
the most often used are multi-layer networks of the feedforward type that are taught using
the error back-propagation method (EBP) [4, 5].

The goal of this research work was to design a neural network for the purpose of
classifying musical instruments patterns, and then to determine the effectiveness of its
processing. The basis for the below research was a parametrized basis of musical sounds
developed at the Sound Engineering Department of the Gdansk University of Technology.
In the article, out of necessity, the issues related to searching for parameters that would
best represent distinctive features of sound of various classes of musical instruments were
narrowed down to a presentation of parameters that were examined previously [6, 7, 8].

2. Architecture of the neural network — descripiton of the algorithm

2.1. Model of the artificial neuron

Each artificial neural cell consists of a processing element with n + 1 synaptic input
connections attached to it and with a single output coming out of it. Additionally, one
connection, a so-called threshold, is distinguished. Its input is permanently fed by value
of —1.

The output signal of the neuron is given by the following relation:

0= f(w'x), @)

where w is the vector of weights and x is the input vector. Because of the presence of
the threshold, they are augmented by w,+1 and —1, respectively, and are defined as:

T T
w= w1w2...wnwn+1] \ x=[a:1:zg oo, =11 . (2.2)

Function f in the formula (2.1) is referred to as a neuron activation function. Its
domain is represented by the set of activation values expressed as [4]:
net = w’ x. ’ (2.3)

Since the error back-propagation method using the delta learning rule requires a dif-
ferentiable function, that is why the commonly used activation functions are of sigmoidal
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type (unipolar, bipolar, hyperbolic tangent, etc.) [4]. The unipolar continuous activation
function defined in (2.4) is presented in Fig. 1.

A

f(net) 1

——k=05
—1=1
—
-5 -3 f 3 5 net
-05
Fig. 1. Diagram of the unipolar function.
1
f(net) = (2.4)

1+ exp(—A-net)’

where net is given by the expression (2.2), whereas A > 0 is proportional to the network
gain and defines the steepness of the activation function. The function defined in formula
(2.4) is very convenient to use since its derivative is expressed using simple expressions.
Assuming the coefficient A = 1, the derivative f'(net) adopts the form [4]:

f'(net) = f(1-f). (2.3)
2.2. Structure of the two-layer network of the feedforward type

The structure of the two-layer network of the feedforward type is one of the most
commonly used structures. The consecutive layers are the input layer x, hidden layer
y and output layer o. The number of neurons for the consecutive layers is respectively:
x—1I,y—J, o— K. The input and hidden layers may have additionally one dummy neuron
each. The output value of the neuron is constant and equals to —1, whereas the value of
the weight may change. The dummy neuron is therefore an equivalent of the threshold
synapse for all neurons in the next layer. Matrices V(J + 1 x I + 1), W(K x J + 1) are
sets of synaptic weights respectively: from the input layer toward the hidden one and
from the hidden toward the output layer,

2.3. Delta learning rule as the basis of the EBP algorithm

The error back-propagation method is based on the delta learning rule [4] which
determines how the vector of weights should be updated in the successive step of the
training. The increment of the vector of weights in the step s + 1 is expressed in the
following way:

wtl=w +Aw'], (2.6)

where s signifies the number of the training step.
In the course of training the increment in the weight vector Aw requires a change in
the direction of the negative gradient in the error space. This is the general concept of
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the delta learning rule [4]:
Aw'tl = gV E(wW), 2.7

where 7 is the constant that determines the rate of learning, whereas the error F is
given by the definition (2.8). It signifies the squared error between the current value at
the output of the network o and the required response of the network d [4]:

1
E=3lld-olp, 28)

where o and d signify K -element vectors, while K is the number of neurons in the output
layer.

2.4. Algorithm of the error back-propagation method

In order to simplify the notation of the error back-propagation method [4], it was
adopted that the layers: output and hidden ones were extended by a neuron with a
constant value at the input equal to —1. Therefore it was assumed that the number of
neurons in the input layer equals I, in the hidden J, and the output one K.

Due to the above assumptions there are two matrices of weights V(J x I'), W(K x J),
whose values change in the course of the training phase:

11 V12 e vr w11 Wiz i wiy
v v ‘o Var w W m w Wy

V= 21 22 , W= 21 (2-9)
Vrir Vy2 ... Vjg WK1 W2 ... WgyJg

and 3 vectors x(I x 1), y(J x 1), o( K x 1) denoted as the outputs of the particular layers:

X = [.'1:1 O :c;_l—l]T, y= [y1 Yo o yJ]T, o= [0102 OK]T. (2.10)

Considering the simplicity of the matrix notation of the EBP method, vectors: f,
f, are defined. Their elements are derivatives of neuron activation function defined in
the formula (2.5) and refer to neural nodes in the output layer and in the hidden one,

respectively: layers o and y. The vectors: f7, f, are as follows:

) = [fi(nety) fy(nets) ... fi(netx)]”, )
£, = [fimets) fynets) ... f;(nety)]”.
Moreover, let linear diagonal operator ®[q] and nonlinear one I'[q] be defined as below:
g 0 ... 0 fi(q) 0 0
sq=|° 2 - 0| pg=| 0 L@ - 0 1 5y
0 0 ... gq 0 0 ... ffg)

where fi, fa,..., fo — neuron activation functions as defined in the formula (2.4).
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If the layers responses are as follows:
y =T[Vx], o =I'[Wy] (2.13)
then error signal terms fm" respective layers are defined:
8, = —VE(o), for the output layer o,
8, = —VE(y), for the hidden layer y.

After having performed required calculations, the vectors for the error signal terms
are expressed as follows:

(2.14)

6, = ®[d—o]-f,
6, = wj -8,-f,,

According to the delta learning rule (2.6)-(2.7), the update of weights V, W in the
k +1-th step is calculated as in the formulae:

VL = VE 4+ by xT,
wk+1 s wk +n60yT,

(2.15)

(2.16)

In order to accelerate the convergence of the EBP training process, a momentum
method is often applied by supplementing the current weight adjustment with a fraction
of the most recent weight adjustment [4]. The momentum term (MT) in the k +1-th
iteration is expressed by the relationship:

MT 4! = o AwF, (2.17)

where a - user-defined positive momentum constant, typically from the range 0.1 to 0.8,
Aw* — increment of weights in the k-th step.
And thus, the final equations for the updates of matrices V, W with the momentum
terms are computed as below:
Ve = VE 4 b, xT + oAV,
Wi = WE 4 pb,yT + AW,
The dataflow of the EBP algorithm is diagrammed in Fig. 2.
The more detailed description of the algorithm from Fig. 2 is presented below:

(2.18)

Step 1 — weights of matrices V, W are initialized at small random values, which is
recommended in the literature [1, 4]. In the majority of cases the variability of the
weights values should range from —1 to 1.

Step 2 — cumulative cycle error F is set for 0. The goal of the training is to adjust the
weights of the neural network in such a way that the value of the cumulative cycle error
drops below the arbitrarily set value Ema. Therefore parameter E is increased by the
value computed using the expression (Eq.(2.8)) for each pattern from the training set.

Step 3 — an element is selected from the training set. It is recommended for vector x

to be selected at random. At the same time the vector of required responses of network
d gets updated.
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Fig. 2. Algorithm of the EBP method for a two-layer neural network.

Step 4 — responses of the particular layers are computed: y, o.

Step 5 — error signal terms are computed for the consecutive layers: §,, 8, according
to the equation (2.15).

Step 6 — if training process is performed with the momentum correction, matrices of
weights V, W are updated based on the formula (2.16), otherwise on the equation (2.18).

Step 7 — error of the network is determined for the given pattern, whereas this value
is added to the value of the cumulative error E.
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Step 8 - if it is not the last pattern in the training set, then a consecutive object is
selected at random and the processing goes back to Step 3. At the same time the object
that was used is removed from the training set and does not take part further within one
cycle of training.

Step 9 - in the contrary case if it is the last element in the training set, cumulative error
E is compared to the condition of stop providing an arbitrarily assigned threshold value
Emax. If the neural network processes all patterns in the training set with a satisfactory
error (E < Fnx0), the algorithm stops.

Step 10 — in the contrary case (E > FEnay), one cycle of training is completed. The
value of parameter F is reset to 0, the training set is reconstructed and another training
cycle begins.

3. Experimental phase — training of the network

The goal of the experiments was to study the possibility of identifying selected classes
of instruments by a neural network in order to verify the effectiveness of the extracted
parameters of sounds. In the study a database, containing vectors of parameters of musical
sounds that was prepared at the Sound Engineering Department of the Gdansk University
of Technology was used [6, 7]. The basis for the created database was digital recordings
of musical instruments on CD records, released by McGill University Master Samples
(MUMS) and partly the SHARC basis developed at the Sussex University [6]. However,
as the SHARC database contains only FFT information of musical instrument sounds,
therefore additional spectral parameters, such as brightness, energy of even and odd
harmonics, the Tristimulus [9] parameters etc were calculated [6, 7, 8]. Additionally, some
time-related parameters were extracted from sound patterns and added to the database.

The sounds of the instruments were represented by vectors of parameters, The train-
ing of the network and its testing was carried out on the basis of 2 types of vectors of
parameters, called respectively: ELEVEN and FOURTEEN. The first one contained 11
parameters of steady-state and an initial transient, the latter additionally encompassed
3 parameters of steady-state on the basis of the SHARC database [6]. Since a stereo
sound constituted the basis for calculating the parameters of musical sounds, so the same
parameters were calculated separately for the left channel and the right one. Below for-
mats of vectors and mathematical relations on the basis of which the parameters were
calculated are shown.

Table 1. Formats of feature vectors, namely ELEVEN and FOURTEEN.
ELEVEN:
(F[a[n[a]a[na]A[A]|R|~[A]

FOURTEEN:

|F|T2|T3|P1|PZIP3IP4|P5|P5|P1IPQIB|Od|Ev|
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where [8]
F' — normalized frequency,
Ti - energy of the first harmonic (the first modified Tristimulus parameter):

N
Ty= A3y A2, @.1)
n=]

where A,, — amplitude of the n-th harmonic, NV — number of all available harmonics;
T, — the second modified Tristimulus parameter:

4 N
T2=ZAi/ZA3,. (3.2)
n=2 n=1

T3 — the third modified Tristimulus parameter:

N N
L=y 4 /Y4, (33)
n=5 n=1

P, — rising time of the first harmonic expressed in periods of the signal,

P, - T at the and of the attack divided by T} for the steady-state (so-called overshoot)
(see Eq.(3.1)),

P; - rising time of the second, the third and the fourth harmonic expressed in periods
of the signal,

P, — T at the and of the attack divided by T for the steady-state (see Eq.(3.2)),

Ps — rising time of the remaining harmonics expressed in periods of the signal,

Ps — T at the and of the attack divided by T3 for the steady-state (see Eq.(3.3)),

P; — delay of the second, the third and the fourth harmonic in relation to the first
harmonic during the attack,

Py — delay of the remaining harmonics in relation to the first harmonic during the
attack,

B — brightness,

N N
B=Zn-An/ZA,,, (3.4)
n=1

n=1

Od - contents of odd harmonics without the first one in spectrum:

L N
Od = JZA%;,_I/JZA%, (3.5)
k=2 n=1

where L = Entier(N/2 + 1);
Ev — contents of even harmonics in spectrum:

M N -
Ev=\jZA§k/JZA3,, ‘ (3.6)
k=1 n=]1

where M = Entier(N/2);



APPLICATION OF ARTIFICIAL NEURAL NETWORKS 35

These parameters were normalized, i.e.:
Ti+ T2+ T3 1. (3'7)
Ty + EV +0d* = 1. (3.8)

A multi-layer neural network of the feedforward type was used in the experiments.
The number of neurons in the initial layer was equal to the number of elements of
the parameters vector, hence it was respectively: 11 or 14, In turn, each neuron in the
output layer was matched to a different class of the instrument and so their number
was equal to the number of classes of instruments used in the experiment. The given
network contained a hidden layer, too. The number of hidden neurons was arbitrarily
adopted at 15. The first stage of the experiments encompassed the phase of training of
the neural network. The training of the neural network was carried out using the error
back-propagation method several times: 2 for the vector type ELEVEN, 3 - for the
vector type FOURTEEN for the same training set. Each time different initial conditions
were adopted as well as training parameters: the training process constant (7)) and the
momentum term (o) were changed dynamically in the course of the training. They were
used later to evaluate the progress of the training process. Additionally the number of
iterations was observed necessary to make the value of the cumulative error drop below
the assumed threshold value.

To train the neural network, parameters vectors of 4 classes of instruments were se-
lected: BASS TROMBONE, TROMBONE, ENGLISH HORN, CONTRA-BASSOON.
In general, 2 types of training sets were formed: one encompassed all parameters vec-
tors for the given channel (type ALL), while the other one contained about 70% of all
vectors for the given (left or right) channel (type 70_PC). The vectors that were included
in the set type 70_PC were chosen at random, however, it was attempted to maintain
a uniform distribution. To make the results comparable, sets of type 70_PC consisted
of vectors of the same indexes in the database, irrespective of the type of parameters
vectors (ELEVEN or Fourteen). Below in Table 2 the number of parameters vectors for
the given class of instruments in the training set type 70_PC in regard to the size of the
class is shown. Additionally, this relation is presented in per cent, and also mdexes of
vectors that were excluded from the set type 70.PC are mentioned.

Table 2. Representation of the training set type 70_PC.

Instrument Size of the class | Size of the class | Vectors excluded from the set
70PC 70PC in [%] type 70_PC
BASS TROMBONE 18/25 72% 2, 7,10:°14. 18, 21,23
TROMBONE 22/32 68.75% 1, 4, 7, 10, 15, 18, 22, 26, 29, 30
ENGLISH HORN 21/30 70% 3,5,8, 12,16, 19, 22, 27, 30
CONTRA-BASSOON 22/32 68.75% 3,6,8, 11, 14, 19, 22, 25, 28, 31

The training set type ALL included 119 parameters vectors, while the set type 70_PC
encompassed 83 vectors (69.75%).

For the selected phases of the training process, graphic presentations were made
of dynamic changes of the parameters of training: 7 and a, respectively. Additionally,
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the relation between the number of iterations and the maximum admissible value of
cumulative cycle error is shown. The values of this error are at the same time the condition
of discontinuing the process of training. The diagram of the above relation illustrates an
increase in the number of required iterations along with an increase in accuracy of the
training, Data matching this relation are presented in appropriate tables.

3.1. Training of the network on the basis of vectors type ELEVEN

In the case of training using vectors type ELEVEN, one training set was formed with
parameters for the left channel. The set was type 70_PC. The training was continued
up to the moment when the value of the cumulative error in the EBP method dropped
below 0.005. This value was adopted arbitrarily in order to observe a possible case of
network over-training. The diagram of the research is presented graphically in Fig. 3.
The adopted descriptions have the following respective meanings: 70_PC - type of the
training set, while variables range_}' and range W give information on the range of
values of elements of matrix V and W. In the first case (1), matrices of network weights
were initiated at random, however, these values did not exceed the range of (—0.2,0.2),
while in the second case (2) this range decreased to values within (—0.1,0.1).

LEFT-

70_PC y range_V=range_W=0.2 70_PC ¥y range_V=range_W=0.1

Fig. 3. Diagram of the training phase for the parameters of the left channel.

3.1.1. Training process — LEFT.1_70PC (ELEVEN). For this type of the training set
(LEFT.1.70PC), the following initial conditions were adopted: unipolar activation func-
tion of the neuron, random initialization of values of elements of matrices V and W rang-
ing from —0.2 to 0.2, training with the momentum method applied, 7 = 0.6, « = 0.4. In
Fig. 4 the dynamic change of training parameters is shown. Additionally, in Table 3 the
convergence of the training phase is presented.

, O
s 0.8 3
0.6 Ho
0.4
0.2
o ' “ cycle
0 32 68 311 538 yE
none 11.953 7.484 1.585 0.284

Fig. 4. Dynamic change of training parameters.

Table 3 lets one draw a conclusion that the network did not have any problems with
training parameter vectors. Up till the value of the cumulative error 0.02 the training
process proceeded quickly and relatively uniformly. Then the progress of training was
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Table 3. Convergence of the training phase.

Emax | Number of iteration
0.05 714

0.04 783

0.03 897

0.02 1137

0.01 1902

0.005 3430

significantly curbed. It is worth noticing that all dynamic changes (see Fig.4) of training
parameters took place before the accuracy of training increased below 0.1.

3.1.2. Training process — LEFT.2_70PC (ELEVEN). For this type of the training set
(LEFT.2_70PC), the same initial conditions were adopted as in the case of the training set
type (LEFT.1_70PC). However, random values of elements of matrices V and W ranged
from —0.1 to 0.1. In Fig.5 the convergence of the training phase is presented. On the
basis of diagram in Fig. 5 it is possible to see that up to the value of 0.05 of the cumulative
error, the network training proceeded uniformly. Further growth in the required changes
of values of weights should be small (because the maximum admissible error was small).
It is also worth noticing that the last dynamic change of training parameters took place
at error 0.1.

cycle

6000
4000
2000

0

0.1 0.09 008 007 006 005 0.01 0.005 Emax

Fig. 5. Convergence of the training parameters.

3.2. Network training on the basis of vectors type FOURTEEN

For the purpose of training on the basis of vectors type FOURTEEN, 4 training
sets were formed, 2 for each channel: the network was trained on all available vectors
(100%) — type ALL and on about 70% (69.75%) of vectors from the database — type
70_PC. The training was proceeding up to the moment when the value of the cumulative
error dropped below 0.01. This value was selected to be arbitrarily small so that a possible
state of network over-training could be achieved. Twelve network training processes were
conducted, 6 for each channel. A diagram of the training phase is presented in Fig. 6.
The descriptors are analog to those that were presented in Fig. 3.

The ranges of random initialization of weights of matrices V and W for expenments
marked as (1) and (2) are the same as for training sets type ELEVEN, as the objective
was to observe the effects of initial conditions in the training process for both types
of training sets. While training diagrams, marked as (3) (for both channels), have an
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RIGHT

range_V = range_W= 0.2 range_V = range_W=0.1

70_PC ALL  70_PC ALL  70_PC ALL

LEFT

range_V = range_W=0.2 range_V = range_W=0.1

70_PC ALL  70_PC ALL  70_PC ALL
Fig. 6. Diagram of the training phase conducted for parameters of both channels: Left and Right.

identical range of random weight initialization as diagram (2). However, these routines
differ from one another because each time the values of the weights during random
initialization are different. The purpose of such diagrams (2) and (3) is to compare the
process of training convergence within the same type of a training set.

The network training according to adopted training routines is shown in detail on the
basis of the left channel.

3.2.1. Training process — LEFT.1.70PC (FOURTEEN). For this type of the training
set (LEFT.1.70PC), the following initial conditions were adopted: unipolar activation
function of the neuron, random initialization of values of elements of matrices V and
W ranging from —0.2 to 0.2, training with the momentum method applied, 7 = 0.05,
a = 0.45. In this training routine the network learned quickly to the level of error at
0.07—0.06. Further growth of required accuracy (decreasing the assigned threshold value
of error) caused a drastic prolongation of the training period. It is due to a small value
of the training coefficient. It is worth emphasising that in the proximity of the error
value at 0.02 and 0.01 the term 7 was increased many times which caused the previously
mentioned high error oscillations and finally attainment of required accuracy.

3.2.2. Training process - LEFT.1 ALL (FOURTEEN). The initial conditions were
the same as in the case of training set (LEFT.1.70PC), however values were selected
differently, namely: 7 = 0.01, @ = 0.4. The network training was proceeding very slowly.
Starting from a maximum admissible error of the network at the level of 0.05, increasing
the accuracy by 0.01 required additional 10 000 — 15000 iterations. When the error gen-
erated by the network was equal to 0.0195, then the value 7 was increased from 0.004 to
0.03. Next 77 was being decreased gradually which caused the error to drop in consecutive
iterations. This was happening at the expense of the speed of convergence. The end effect
was a case when the training process stopped at a certain flat local minimum, which was
observed in the proximity of error at 0.0101 — 0.01. That was why 7 was increased by
100 which caused rapid oscillations in the proximity of 0.01 and the result was that the
training terminated with the final error below 0.01. The values of the n were adjusted at
a relatively low level so as not to reduce the magnitude of the oscillations that arose.
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3.2.3. Training process — LEFT.2_.70PC (FOURTEEN). The following initial condi-
tions were adopted in the case of the LEFT.2_70PC training set, namely: unipolar ac-
tivation function of the neuron, random initialization of values of elements of weight
matrices covering the range (—0.1,0.1), training with the momentum term, = 0.05,
a = 0.4. In Fig. 7 the dynamic change of training parameters is presented. Additionally,
in Fig. 8 the convergence of the training process is shown.

cycle
80000

60000

40000

20000

0
0.1 009 008 007 006 005 004 003 002 0.01 Emax

Fig. 7. Convergence of the training process.

n, o

0 238 3877 4303 4871 55666 55757 56010 76625 80925 cycle
none 7.034 0.0962 0.0826 0.0781 0.0204 0.0204 0.02 0.0101 0.0104 E

Fig. 8. Dynamic change of training parameters.

The data from Fig. 7 and 8 show clearly that the training process was sharply stopped
because the value of admissible error was decreased below 0.05. Initially the training
proceeding very rapidly and attained the assigned boundary error of 0.1 — 0.7 within
only several thousand of iterations. As the accuracy of training was being increased, the
number of necessary iterations was growing. It was due to the fact that the speed of
training 7 was very low (~ 0.005) and at the same time the momentum term « was
reaching a high value (~ 0.5). It can be observed that close to the value of the error at
0.02 the value of 7 was increased ten times to evoke higher error oscillations. The result
was such as that after about 250 iterations the accuracy of the training dropped below
0.02. On the other hand, close to the value of 0.01 (0.0101) the speed of training was
reduced twice (0.01 — 0.005) in order to reduce the error generated, to go below the
boundary value of 0.01. However, it did not succeed, the error generated increased and
only by evoking higher error oscillations (7 was increased twenty times) was the training
terminated.

3.2.4. Training process — LEFT.2 ALL (FOURTEEN). In the training routine used
next — LEFT.2_ALL the training was proceeding quickly and without interferences. The
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following initial conditions were adopted: unipolar activation function of the neuron, ran-
dom initialization of values of elements of weight matrices covering the range (—-0.1,0.1),
training with the momentum term, n = 0.03, a = 0.45. Less than 10000 iterations were
needed to obtain training accuracy below 0.03. What could be observed was that the
training was paused at the admissible error of 0.02 and 0.01. However, such regularity
was also oresent in other trainine routines.
cycle
100000 |

80000 +
60000

o AIJ lﬂl :

0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Emax
Fig. 9. Convergence of the training process.

3.2.5. Training process — LEFT.3_70PC (FOURTEEN). The following initial condi-
tions were adopted: unipolar activation function of the neuron, random initialization of
values of elements of weight matrices covering the range (—0.1,0.1), training with the
momentum term, 7 = 0.05, a = 0.5. Despite initial fast convergence of network train-
ing, the value of parameter 7 was reduced to 0.003 at app. 0.08 error. This small value
excluded big magnitude of error oscillations during the training, however, this happened
again at the expense of the training speed. It was also tested if this parameter could be
increased, but it turned out that the training process in this case was unstable. It was
only at 0.02 accuracy that n could be increased several times, which decisively speeded
up the final termination of the training,

3.2.6. Training process — LEFT.3_ALL (FOURTEEN). In the case of the LEFT.3_ALL
training set the following initial conditions were adopted: unipolar activation function of
the neuron, random initialization of values of elements of weight matrices ranging from
—0.1 to 0.1, training with the momentum term, = 0.05, @ = 0.45. The training process
was the longest of the experiments conducted. From the beginning the process was slowly
converging and the assigned values 77(~ 0.02) turned out to be too high. It is worth ob-
serving that the attempt to increase n from 0.002 to 0.003 (for iteration equal to 23 865)
did .not succeed and therefore the network was learning with a training coefficient at
0.001. The changes introduced pertained only to the momentum term, responsible for
damping of undesirable error oscillations (because as it would turn out — the network
was in a very unstable state and had great difficulty in learning). Increasing the value of
7 happened close to the threshold error of value at 0.03. By adopting this value of 7 it
was possible to speed up the training process.

3.3. Recapitulation of the training phase

It is possible to observe a huge difference in the training process between vectors
type ELEVEN and FOURTEEN. In the first case the training was proceeding quickly,
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uniformly and it reached the error value 0.01 after a relatively small number of iterations
(3000 — 5000). Besides, dynamic changes of training parameters were not required often.
Also the values of these parameters could be adjusted at a relatively high level, particularly
the training speed term 7(~0.3).

Training of vectors type FOURTEEN proceeded differently both for the left and
right channel. The conclusions below pertain to network training for both channels in
line with the adopted routines (Fig.6). It can be observed that a quick convergence of
the training process would take place at the beginning of the training until the error
generated by the network was bigger from about 0.07 — 0.05. Next, the process would
stop in a certain area of error space and within several or a dozen thousand iterations
there was no improvement in the quality of the training. The training would usually end
after several dozen thousand iterations (60 000 — 90 000). The value of the training speed
term 7 had to be very small which additionally prolonged the training process, and on
the average it was about 0.001 — 0.005. In some cases, increasing the value would cause a
drastic increase in the error. At the same time quite frequently the dynamic parameters
of training had to be changed. For this type of network, occasionally a training technique
was applied which was to gradually reduce 7 in proximity of a certain boundary value of
the error, the result of which was that the error generated by the network diminished
below this value. Sometimes in similar cases the value of 7 was increased which caused
high error oscillations and consequently a drop in the error below the threshold value,

What seems interesting is the fact that the addition of 3 elements to the vector brought
about such a big change in the quality of the training. Network accuracy of 0.01 for the
vector type FOURTEEN was reached after almost 10 — 20 times more iterations than
for type ELEVEN.,

4. Testing phase of the neural network

After the training phase was over, 14 neural networks were available: 2 were trained
with vectors type ELEVEN and 12 with vectors type FOURTEEN. In the testing phase
the purpose was to test the effectiveness relation of identifying new objects by the network
as it relates to network training accuracy. The neuron whose output value was the highest
showed the winning class and such was the classification done by the network. The number
of correct and wrong responses expressed in per cent (pos/neg [%]) and in numbers
(pos/neg) is presented in the recognition effectiveness table. This record encompasses
recognition both in the particular classes as well as the total effectiveness of the network.
Besides, the numbers of indexes (in the set type ALL) of these vectors are given, that
were wrongly classified.

It is worth observing that the effectiveness of the network does not determine the
quality of the trained network. Good quality can be understood as a feature of the
network that causes that k-th neuron at the output will generate a high value in relation
to the values of outputs of the remaining neurons (e.g. 0.8 to ~ 0.005) for a given vector
at the input, being a member of k-th class. In the case when the values at the remaining
outputs are substantial in relation to k-th output, one can speak about a decreased
quality of the trained network. In order to designate the recognition quality, all outputs
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of neurons were observed when the vectors from the k-th class were being presented.
The values of outputs of neurons were treated as deviations from the expected value of
0. Variance can then be a measure of the quality of the trained network. The bigger the
variance calculated for particular outputs of neurons is, the stronger the classifications for
particular classes are. This parameter is computed on the basis of the following formula:

{
Var;, = -—N—k Z o? 5 (4.1)
i=1

where Var; — value of variance for k-th neuron, N — number of parameter vectors,
members of the k-th class and not present in the training set, o; — output of the k-th
neuron for k-th parameter vector.

In the tables presented in the next paragraph the values of variances for the partic-
ular neurons are listed when the network was activated with vectors belonging to the
consecutive classes. Distribution of variance of network outputs is given in relation to
training accuracy. The purpose for that presentation was to check until what value of the
threshold error the network could be taught to obtain the best quality of recognition for
the given testing set. On the basis of the exemplary tests, the procedure of effectiveness
verification of the given network will be shown.

4.1. Testing a network trained for parameters of the left channel (ELEVEN).

4.1.1. Network test — LEFT 30PC. The test was conducted on a set type LEFT_30PC.
The tested network was type LEFT1_70PC. The recognition effectiveness for the chosen
testing set is presented in Table 4.

Table 4. Recognition effectiveness.

BASS TROMBONE | TROMBONE | ENGLISH HORN | CONTRA-BASSOON | Total score
Emax | pos/neg pos/ pos/neg | pos/ | pos/neg | pos/ | pos/neg pos/ pos/neg | pos/
[%) neg [%] |neg| [%] | neg | [%) neg [%] | neg
PR O T I B T S et TR T DR I R B B B
0 0 10 1 0 0 30 3 11.11 4
o | @ [ 7 [ % [9[ @ [T s [ m A TN
0 0 10 1 0 0 30 3 11.11 4
o7 | @ [ 7 [w [s[ [ 9 [ m 7| B [ %
0 0 10 1 0 0 30 3 11.11 4
ops | @ [ 7 [ % [ [ 9 [ & 5 |96 [ 3
0 0 10 1 0 0 20 2 8.33 3
oo | W [ 7 [% [9[m [ 5 [ & 5|96 |3
0 0 10 1 0 0 20 2 8.33 3
oos| W | 7 | % [9[0 [ 9 [ @ [ & ||
0 0 10 1 0 0 20 2 8.33 3

Indexes of wrongly classified vectors are presented for this type of the testing set:
TROMBONE:
— 10; Emax = (0.1 - 0.005)
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CONTRA-BASSOON:

— 8, 19, 28; Ena = (0.1-0.07)

— 8, 19; Emax = (0.06 — 0.005).
As is seen all vectors representing objects from BASS TROMBONE and ENGLISH
HORN classes were recognized correctly.

For the purpose of presenting the values of variances, two classes of instruments were
selected, namely: BASS TROMBONE (Tab. 5) and TROMBONE (Tab. 6). The first of
these instruments was identified with better effectiveness than the other one.

Table 5. Variances in outputs of neurons upon presentation of vectors of the class BASS TROMBONE.

Emax | BASS TROMBONE | TROMBONE | ENGLISH HORN | CONTRA-BASSOON
0.1 0.9185582 0.0005653 0.0001944 0.0008058
0.09 0.9185272 0.0005191 0.0001844 0.0008058
0.07 0.9180164 0.0003908 0.0001581 0.0007576
0.05 0.9174483 0.0003162 0.0001296 0.0006543
0.01 0.9187201 0.0001693 0.0000340 0.0001537
0.005 0.9163189 0.0001222 0.0000174 0.0000873

Table 6. Variances in outputs of neurons upon presentation of vectors of the class TROMBONE.

Emax | BASS TROMBONE | TROMBONE | ENGLISH HORN | CONTRA-BASSOON
0.1 0.0000060 0.8361880 0.0005759 0.1158222
0.09 0.0000054 0.8387308 0.0005390 0.1175816
0.08 0.0000045 0.8412930 0.0004921 0.1194312
0.07 0.0000043 0.8392953 0.0004291 0.1249455
0.06 0.0000041 0.8412675 0.0003830 0.1277956
0.05 0.0000034 0.8437424 0.0003230 0.1324253
0.01 0.0000013 0.8663360 0.0000854 0.1481672
0.005 0.0000007 0.8721313 0.0000494 0.1511610

The recognition effectiveness increase with changing the accuracy of the network from
0.07 to 0.06. Despite a further increase in accuracy up to the value Emax = 0.005, the
effectiveness remained at the same level. It is to say that the best recognition results were
obtained at 0.06 — 0.05 of the cumulative error Emax.

4.1.2. Network test - LEFT_30PC. The test was conducted also on a set type LEFT-
30PC, but in this case the tested network was type LEFT2_70PC. The recognition effec-
tiveness for the chosen testing set is presented in Table 7.

Indexes of wrongly classified vectors are presented for this type of the testing set:

TROMBONE:

— 10, 18; Emax = (0.05 — 0.005)

CONTRA-BASSOON:

— 8; Emax = (0.05— 0.005).
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Table 7. Recognition effectiveness.

BASS TROMBONE | TROMBONE | ENGLISH HORN | CONTRA-BASSOON | Total score
Emax | pos/neg pos/ pos/neg | pos/ | pos/neg | pos/ | pos/neg pos/ pos/neg | pos/
%) neg (%) |neg| [%) | meg | [%] neg [%] | neg
JURURN ST IR D A R P A A Y RS ¥ )
0 0 20 2 0 0 10 1 8.33 3
oot | 20| L o -8 LEL o lie 1 o a3
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The per cent of correctly qualified vectors was equal to 91.67% for all values of the
cumulative error. It is to say also that the recognition effectiveness increase with the
growing accuracy of the network.

4.2. Testing a network trained for parameters of the left channel (FOURTEEN)

4.2.1. Network test - LEFT_30PC. The test was conducted on a set type LEFT_30PC.
The tested network was type LEFT1_70PC. The recognition effectiveness for the chosen
testing set is presented in Table 8.

Table 8. Recognition effectiveness.

BASS TROMBONE | TROMBONE | ENGLISH HORN | CONTRA-BASSOON | Total score
Emax | pos/neg pos/ pos/neg | pos/ | pos/neg pos/ | pos/neg pos/ pos/neg | pos/
[%] neg [%] neg | [%] neg [%] neg [%] neg
R EEEENEEEEE R EEE
0 0 30 3 0 0 80 8 3056 | 11
009 | 0 ! L 2 - 2 e 12
0 0 0 0 0 0 10 1 2.78 1
ag | @ |7 [ || 10 1T T 8 T |
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oo | @ | 7 [0 [ w0 |9 [ CR N S
0 0 0 0 0 0 10 1 2.78
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0 0 0 0 ] 0 10 1 2.78 1
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Below, indexes of wrongly classified vectors are presented for this type of the testing
set:

TROMBONE: :

—1, 29, 30; Epax =0.1

CONTRA-BASSOON:

—3, 8, 11, 14, 22, 25, 28, 31; Eqx =0.1

— 8; Enax = (0.09—-0.01).

For the purpose of presenting the values of variances, two classes of instruments were
selected, namely: BASS TROMBONE (Tab. 9) and TROMBONE (Tab. 10). The first of
these instruments was identified with much better effectiveness than the other one.

Table 9. Variances in outputs of neurons upon presentation of vectors of the class BASS TROMBONE.

Emax | BASS TROMBONE | TROMBONE | ENGLISH HORN | CONTRA-BASSOON
0.1 0.3597468 0.0060959 0.0026676 0.0606067
0.09 0.9647862 0.0027156 0.0000044 0.0003433
0.07 0.9672036 0.0025964 0.0000038 0.0002916
0.05 0.9721547 0.0023566 0.0000030 0.0002217
0.03 0.9778430 0.0022333 0.0000021 0.0001452
0.01 0.9856030 0.0032118 0.0000008 0.0000564

Table 10. Variances in outputs of neurons upon presentation of vectors of the class TROMBONE.

Emax | BASS TROMBONE | TROMBONE | ENGLISH HORN | CONTRA-BASSOON
0.1 0.0059164 0.3968045 0.0432925 0.0353321
0.09 0.0000000 0.8179480 0.0014706 0.0222385
0.07 0.0000000 0.8193167 0.0016362 0.0204443
0.05 0.0000000 0.8198924 0.0019054 0.0180781
0.03 0.0000000 0.8206997 0.0022593 0.0148136
0.01 0.0000000 0.8223629 0.0029912 0.0090919

The visible change of recognition effectiveness happened upon changing the accuracy
of the network from 0.1 to 0.09. Despite a further increase in accuracy, the effectiveness
remained at the same level — 97.22%, that is only one vector was wrongly classified.
Upon the presentation of the vectors of the particular classes it can be observed that the
quality of identifying new objects was slightly growing together with a reduction in the
cumulative error Fog,: variance in values increased at the output of the neuron which
represented the given class, while at the other outputs usually a drop in the variance is
observed.

4.2.2. Network test - RIGHT 30PC. The test was conducted on a set type RIGHT.
30PC. The tested network was type LEFT1_70PC. The recognition effectiveness for the
chosen testing set is presented in Table 11.
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Table 11. Recognition effectiveness.

BASS TROMBONE | TROMBONE | ENGLISH HORN | CONTRA-BASSOON | Total score
Emax | pos/neg pos/ pos/neg | pos/ | pos/neg pos/ | pos/neg pos/ pos/neg | pos/
[%] neg [7%] | neg | [%] neg [%] neg [%] | neg
o | 8 | 2 [BR[3[ 1 [ % [ee| B | 568]|%
12 3 21.88 7 0 0 59.38 19 2437 | 29
100 25 100 32 100 30 96.88 31 99.16 | 118
0.09 — — — = — — — - — | —
0 0 0 0 0 0 3.12 1 0.84 1
oo7 | @ | B |10 [m 100 [ 30 [ %88 | 3 | %16 |18
0 0 0 0 0 0 3.12 1 0.84 1
oos | W | B |10 2100 [ 30 9688 | 31 | 96 |18
0 0 0 0 0 0 3.12 1 0.84 1
o | W [ 3 [0 [2[ 10 [ 3 |9%8 | 31 | %618
0 0 0 0 0 0 3.12 1 0.84 1
oo | 0 [ 3 [%8 310 [ 30 |8 | 3 | %m0
0 0 3.12 1 0 0 3.12 1 1.68 2

Below, indexes of wrongly classified vectors are presented for this type of the testing
set:

BASS TROMBONE:

— 8,9, 16; Emax = 0.1

TROMBONE:

—1,2,3,4,9,29, 30; Epa =0.1

CONTRA-BASSOON:

—1,3,10, 11, 14 - 17, 21 — 29, 31, 32; Enax = 0.1

— 3; Emax = (0.09 — 0.01).

The visible change of recognition effectiveness happened upon changing the accuracy
of the network from 0.1 to 0.09. In that case, 12 vectors of the CONTRA-BASSOON
class, previously wrongly recognized, were classified correctly. It is also possible to observe
the case of the network over-training, when the cumulative error Fpax was reduced from
0.02 to 0.01. In consequence, one vector of the TROMBONE class was wrongly classified.

4.2.3. Network test - RIGHT_ALL. The test was conducted on a set type RIGHT_ALL.
The tested network was type LEFT1_ALL. The recognition effectiveness in this case was
very good. All vectors from the testing set were recognized correctly by the network.

4.3. Recapitulation of the testing phase

The best scores of recognition effectiveness for the particular training routines of
the test were compiled in Table 12 and 13 (separately for sets. of type FOURTEEN and
ELEVEN). The consecutive columns signify: the test routine (name of the training and
testing set), classification effectiveness expressed in per cent and numbers and respective
values of Epay.
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Table 12. Compilation of the best classifications for sets type FOURTEEN.

. p Classification effectiveness
Test routine - Testing set B
) pos/neg [%] pos/neg
RIGHT.1.70PC | RIGHT30PC 98_1;37 _333: (0.1-0.01)
LEFT 95.80 114 0.08; 0.07; 0.01
4.20
RIGHT.1.ALL | LEFT.ALI .40 us (0.1-0.01)
0.84 1
22 35 (0.1 — 0.08);
RIGHT.2.70PC | RIGHT 2.3 3
O i 2.78 1 (0.06 — 0.01)
98.32 117 0.09; 0.08; 0.06;
LEFTALL 1 3 (0.04 — 0.01)
RIGHT2.ALL | LEFT.ALL — ;45 118 (0.1-0.01)
RIGHT.3.70PC | RIGHT.30PC _11'3‘;" 33_3 (0.03 - 0.01)
B 96.64 115 (0.06— 0.01)
3.36 4
RIGHT3ALL | LEFT.ALL ik 17 (0.1-0.01)
1.68 2
LEFT.1.70PC | LEFT30PC —97'7282 = (0.09 - 0.01)
RIGHT.ALL .16 118 (0.09— 0.02)
0.84
LEFT.1.ALL | RIGHTALL % 102 (0.1-0.01)
LEFT2.70PC | LEFT.30PC n.a 35 0.02; 0.01
278 1
RIGHT.ALL oo 17 0.1; 0.09
1.68 2
LEFT.2_ALL RIGHT.ALL % 1T19 (0.1-0.01)
LEFT3.J0PC | LEFT.30PC in P 34 (0.1-0.01)
5.56 2
RIGHT ALL Naz 17 (0.1-0.07)
1.68 2
LEFT.3_ALL RIGHT.ALL =1 % (0.1-0.01)

Tables (Table 12 and 13) show that recognition effectiveness during the experiments
was very high and was always above 90%. Since the testing was done on sets with 36
and 119 elements, these results can be divided into two classes: for the first type of
sets, the score of correct classification ranged from 91.67% to 97.22%, but the number
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Table 13. Compilation of the best classifications for sets type ELEVEN.

Classification effectiveness

Test routine Testing set B
pos/neg [%] pos/neg
LEFT.1.70PC | LEFT.30PC 91.67 33 (0.06 — 0.005)
8.33 3
LEFT.2.70PC | LEFT30PC 98_1'3*;’ % (0.05 - 0.005)

of unrecognized vectors was from 1 to 3. And then for the set with 119 vectors the
effectiveness of the classification was at the level from 95.80% to 100% where the number
of wrongly classified vectors ranged from 5 to 0.

Another fact worth observing is that the change of training vectors from the type
ELEVEN into FOURTEEN contributed to an increase in effectiveness of the classifica-
tion. For vectors type ELEVEN the network attained the recognition score at 91.67%,
while extension of the vector up to fourteen parameters caused the score to reach the
value of 94.44% -97.22%.

In all cases a network trained with the set type 70_PC and tested with a set type ALL
(with data for the second channel) would give worse results than the network trained
on a set type ALL and tested on ALL, too (also with data for the second channel). It
is to observe that unrecognized objects amounted to app. 1-2%, and in the worst case
— app. 4.5%. At the same time it is possible to see that the number of unrecognized
objects is bigger if the network was trained in parameter vectors of the right channel
(RIGHT) than the left one (LEFT) where the biggest variance amounted to app. 1.5%.
One can therefore draw a conclusion that a 30% increase in the training set only relatively
increased the effectiveness of classification.

It is visible that a slightly better effectiveness was observed in networks that were
trained with vectors type LEFT than RIGHT. On this basis it is possible to conclude
that a subspace consisted of vectors type LEFT overlaps to a large extent the subspace
spanned by vectors type RIGHT enclosed in the object space, with the first subspace
giving better generalization possibilities.

It is possible to see that the highest effectiveness was found in networks whose accu-
racy was close to 0.03-0.01. On the other hand, however, there was also a big number of
networks that reached their best recognition at accuracy at 0.1. Tables 1213 do not con-
sider, however, the quality of recognition which was characterized by values of variances
at the network output. Analyzing these values of variances it is possible to assume that
the networks were best at classifying when the value of the error Epa was below 0.05.

Table 14. Numbers of wrongly classified vectors (TROMBONE).

Training set Testing test | Vector number * Emax

LEFT.1.70PC | LEFT30PC | 10 (0.1-0.005)

LEFT.2.70PC | LEFT30PC | 10, 18 (0.05-0.005)
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Additionally, Tables 14— 15 give numbers of those vectors that were wrongly classified
for the particular classes of instruments and test routines limited to training vectors
type ELEVEN. Additionally, the tables show the maximum value of error Ey,. that was
achieved in the course of the training. It also needs to be noted that all vectors of classes
BASS TROMBONE and ENGLISH HORN were correctly identified.

Table 15. Numbers of wrongly classified vectors (CONTRA-BASSOON)

Training set Testing test | Vector number Emax

LEFT.1.70PC | LEFT30PC | 8, 19, 28 (0.1-0.005)
8,19 (0.06-0.005)

LEFT.2_.70PC | LEFT30PC | 8 (0.05-0.005)

5. Conclusions

The result of the experiments conducted shows a high effectiveness of classification
of musical instruments by neural networks. The results obtained show that only in a
dozen of experiments (with various initial parameters of the training) per several hundred
total some vectors were not correctly identified. Hence the presumption that data in
these very vectors may be incorrectly acquired. It is to remember that parametrized
signals were sounds recorded in real conditions, i.e. a free way of a musical performance.
Therefore phenomena such as musical articulation or differentiated dynamic with all
features specific for an individual musician are included in the signal and resulted in
signal modulation, amplitude overshoots, etc. That may cause in some cases a certain
kind of “non-adaptation” to the engineered algorithms in which only three models of the
relation between Attack-Decay-Sustain phases in a sound were assumed. What becomes
evident is a way of testing the correctness of parametrization, if for a statistically big
number of examined networks, the wrongly classified vectors are always the same, then
it is these vectors that should be subjected to verification.

What seems interesting is the relation between the results obtained in the testing
and the course of the training phase. It was possible to observe that the network trained
with 14 element training sets: RIGHT.1_70PC and RIGHT.3_70PC obtained the worst
results. The training of these networks was not easy, it required many changes of values
of raining parameters — the coefficient of training speed (77) and the momentum term
(). At the same time the process of training did last for very long. On the other hand,
when the training phase was short or there were no interferences in the course of the
training process, the results obtained by the network in the test were significantly better.
Presumably it is due to the fact that the network failed to acquire the ability to correctly
classify indefinite cases. High oscillations of error in the course of the training could
have caused relatively slight changes in the values of input vectors to bring about a
wrong classification. Then the network would lose its ability to generalize. There were
also cases (training on some of the LEFT sets) when despite a long training phase, the
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caused a gradual increment in the values of weights. The network had a very high grade
of generalization which eventually provided effectiveness even at the level of 100%.

The research conducted shows that the neural network performs well the task of
identifying classes of musical instruments. The obvious advantage of this type of classifier
is the fact that there is no need for quantization of values of parameters included in
the vector which describes the musical sound. There is no doubt that a certain disadvan-
tage of this type of testing is a huge amount of work needed to complete the training
phase. Further research will focus on testing the effectiveness of a constructed classifier
in terms of identifying other musical instruments. For that purpose in the base that was
constructed at the Sound Engineering Department, Gdafsk University of Technology
[6, 7] sets of feature vectors were included that describe sounds of musical instruments
which belong to other groups. The usefulness of an artificial neural network for this type
of applications seems all the bigger as the feature vectors included in the database en-
compass representations of consecutive sounds in the chromatic scale. In this case a high
instability of designated parameters is observed, the additional element which affects the
lack of stability of parameters is the presence of non-linearity related to differentiated
articulations and dynamics of musical sounds. However, in both cases the network ability
to generalize allows a correct classification of the objects being under the test.
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REFRACTION - THE SIMPLEST CASE
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At longer ranges of outdoor sound propagation, refraction due to temperature and wind vari-
ations results in ray paths that are curved. Under the assumptions of the linear effective sound
speed and nearly horizontal propagation, the ray path in the form of parabola is used. The shape
of the ray and the position of the shadow zone, in the presence of a negative gradient, is stud-
ied. In the converse case of a positive gradient, the analysis of the additional reflected rays is
performed. This is the most simple case of the theory of refraction.

1. Introduction

Sound propagation outdoors involves a number of wave phenomena, among them,
refraction. It is assumed that the atmospheric surface layer is stratified, therefore the
sound speed, ¢, and the speed of wind, V' (blowing along the z-axis), are functions of
height z. For simplicity we ignore the crosswind, so that rays from the source stay within
a vertical plane, ¢ = const (Fig. 1). Thus, a ray undergoes refraction as if it were moving
in the atmosphere with no wind, but with an effective sound speed [10],

c(z) =c+V(2): cos®. (1.1)

In other words, the effective sound speed, c, is the sum of the local sound speed and
the component of the wind speed in the direction of propagation. Within the scope of
geometrical acoustics, many functions have been suggested to model the real profile of
c(z) [4, 6, 8, 13]. Among them, the linear function,

c(2) = ¢(0)-(1 + az), (1.2)
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Fig. 1. Geometry of source, S, and receive, O. The wind is in the direction of the z-axis.

with ¢(0) expressing the sound speed on the ground, outlines the most salient feature of
the effective sound speed: either it increases (a > 0) or decreases (¢ < 0) with height.
Note that the above equation is theoretical assumption that yields the average outcome of
both sound speed and wind speed variations. Therefore, the coefficient a is the equivalent
sound speed gradient. The results obtained by EMBLETON et al. [2], HIDAKA et al. [5],
Rasmussen [11], and most recently, by L’ESPERANCE et al. [7], show that the linear
profile explains some field data quite satisfactorily.

For the source on the ground (Fig. 1 with H, = 0), the linear function c(z) yields the
ray path in the form of a circle [3, 9, 10, 12]. It can be rewritten in the following form:

z=tan¥,-R - a-(R? + 2%)/2, (1.3)

where ¥, expresses the angle of emission, and R is the horizontal distance. If sound
propagates near the ground,
z4& R, (1.4)

and the source is above the ground surface (H, > 0), then Eq.(1.3) takes the form of
parabola, )
z=H,+tan¥,-R—a-R?/2. (1.5)

A long time ago BarTon [1] has proved that the ray path obeys parabola, when the veloc-
ity profile is approximated by linear function. Starting from his result given by Eq. (1.5),
we derrived expressions for the ray’s vertex, angle of reflection (Sec. 2), shadow zone
(Sec. 3), and multiple reflections (Sec. 4).

2. Ray path geometry

For a homogeneous atmosphere with a = 0, Eq.(1.5) yields a straight line,
z(R) = H, +tan¥, R, ’ (2.1)

with a constant slope, tan ¥,, as expected. For a negative, a < 0, and positive value of
the equivalent gradient, a < 0, the ray leaving a source at the angle, ¥,, is bent upward
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. a<(

R

Fig. 2. For negative (a < 0) and positive value of the equivalent gradient (a > 0), the ray is bending upward
and downward, respectively (Egs. (1.5)-(2.2)).

and downward, respectively (Fig. 2),
z(R) = zo(R) — a- R?/2. (2.2)
The vertex of the parabola defined by Eq. (1.5) occurs at,

tan ¥, tan? ¥,
R = a’, Zn = H, + 5
Figure 3 shows that both the emission angle and the equivalent gradient are simultane-
ously negative (¥, < 0, a < 0) or positive (¥, > 0, a > 0), so the horizontal distance to
the vertex from the source remains positive, R,, > 0. The value of z,, determines the
ray’s height above the ground at the zenith (R = R,,).

: (2.3)

Fig. 3. The ray’s height above the ground at the zenith, zr, Eq.(2.3), depends upon the equivalent gradient, a.

The emission angle of a ray, ¥,, that reaches the receiver at R = Ry and 2 = Hy,

can be calculated from,
Ho—H

s, @
tan¥, = 7y + E'RO' (2.4)
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The equation of the corresponding parabola is,

e a Ho—- H, a 5o
Z—H,+(2R0+T) R—'E'R, (25)
with the vertex at,
R, = B0 Ho-H,
2 aRy (2.6)
o = Ho+Hy aRf (Hy—H,) '
m 2 8 2aR}

Considering a nearly horizontal propagation, we set H, ~ Hy ~ H (Fig.3) and

obtain, ’

R, ~ % : Zm~ H + GTRO :
It is clear that the vertex occurs halfway between source, S, and receiver, Q. For a small
value of the equivalent gradient, a, the ray is deflected slightly upward (z,, > H) or
downward (z,, < H), depending upon the sign of a. The situation changes when the
value of a becomes greater (See Secs. 3 and 4).

Although it is beyond of the scope of this paper, let’s calculate the angle of reflection
from the ground surface, ¥, (Fig.4), which is used for the calculation of the sound
pressure over a finite impedance ground [7]. When a ray strikes the ground, the angle of
reflection can be calculated from the derivative dz/dR (Eq.(1.5)),

2.7)

tan ¥, = %—* + %Ro. (2.8)

R,

a

Fig. 4. Reflected ray originates at (R, 0) at emision angle ¥, and reaches the receiver (Ry, Hp).

3. Effect of a negative gradient

For a negative value of the equivalent gradient, a < 0, the critical ray may grazes the
ground (¥, = 0, z,, = 0) at some distance, R., from the source (Fig.5). Substituting z
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by Hy in Eq. (1.5) we get equation of the critical ray,

R:E(\/JT,—\/Z), 0<R<R., (3.1)
R=E(\/F,+ﬁ), R.< R < , (3.2)

where (Eq. (2.8)),

2R,
Rn« = T ¢ (33)
Setting z,,, = 0 in Eq. (2.3) the emision angle of the critical ray emerges,
tanW, = —/—2aH, . (3.4)

Finally, this result, in conjunction with Eq. (1.5), yields the alternative equation of the
critical ray,

z=H,—\/—2aH,-R—%-R2, 0< R < . (3.5)

For R > R, the critrical ray separates the insonified and shadow zones (Fig. 5). To obtain
the distance to the shadow zone from the source, we substitute z = H into Eq. (3.5),

RD=\/§(¢E+¢H—O). (3.6)

Note, that for 2 = Hp and R = R, expression (3.2) yields identical result.

 Z

R.

RO

Fig. 5. The boundary of the shadow zone is defined by Eq. (3.6) with 0 < Hg < oo.

4, Effect of a positive gradient

In the presence of a positive equivalent gradient, in addition to the direct path,
there can be paths involving one or more reflections at intermediate points between the
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source and receiver. As illustrated in Fig. 6, there are three rays that strike the ground at
horizontal distances R;, B> and R3. From elementary geometry one can show that Ry,
R and Rj are determined by roots of the cubic equation,

z

Fig. 6. There are three possible rays that have one reflection at the ground.

The shape of the reflected ray that originates at the source (0, H,) and reaches the
receiver (R, Ho; see Fig. 4), is given by Eq.(1.5), with the emission angle, ¥,, replaced
by the angle of reflection ¥, (Eq.(2.8)). Setting z = H, we obtain,

H0=tan!Ilg-(Ro—R)—%-(RQ—R)Z, 0< R< Ry, (4.1)
and finally, by applying Eq. (2.8) we arrive at this cubic equation,
2a-R® - 3aRy-R* + (2H, + 2Ho + aR3)- R — 2HyRy = 0. 4.2)

If the atmosphere is homogeneous (@ = 0), then only one reflection takes place at the
distance, i
s

R = mRU . (43)
In the case of a # 0, three reflections occur when the cubic equation (4.2) has three real
roots. To examine the meaning of these roots in more detail, we make the simplifying
assumption that source and receiver heights are equal, i.e. H, = Hy = H. With this
assumption three distances emerge,

_ Ry R*\?
M= [ 1_(30) ’
Rz = &, (4.4)
2
_ Ry R 2
B - Rl (5],
where,
B e (4.5)
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The root R, represents the obvious ray that intersects the ground halfway between source
and receiver. The other two roots, Ry and R3, are symmetrically displaced from R;. The
first corresponds to the ray that strikes the ground near the source (R = 0) and the
second describes the ray striking the ground near the receiver (R = Ry). If the distance
between the source and receiver is not sufficiently large, Ry < R*, ie,,

Ry <24/ % 5 (4.6)

then the two roots, R; and R3, become complex and only one reflection takes place at
Ry = Ry/2, as if the atmosphere were homogeneous (a = 0).
A related analysis of this problem for a circular ray path is reported in Ref. [2].

5. Conclusion

Under the assumptions that,

« the atmosphere is stratified, i.., the sound speed, ¢, and wind speed, V, depend
upon the height above the ground,

o the crosswind is ignored, so refraction can be described as if the atmosphere were
at rest and characterized by the effective sound speed, ¢(z) (Eq. (1.1)),

o the effective sound speed is approximated by the linear function (Eq. (1.2)),
the sound ray path has a form of parabola (Eq. (1.5)). For nearly horizontal propagation
(Eq. (1.4)), parabola portrays a realistic shape of a ray.

Making use of Eq. (1.5) we have derived the expressions for the ray’s vertex (Eqs. (2.3)
and (2.6)), angle of reflection (Eq. (2.8)), the border of the shadow zone (Egs. (3.1), (3.2)
and (3.5)), and the horizontal distances for multiple reflections (Egs. (4.1)-(4.6)).

Corresponding formulae for the ray’s vortex, angle of reflection, etc., derived for a
circular, or any other path ray, are more complicated than mentioned above equations.
Therefore one can say that parabola yields the simplest ray theory.

The results presented in this paper can be useful for noise propagation problems.

References

[1] E.H. BARTON, On the refraction of sound by wind, Phil. Mag,, 1, 159-165 (1901).

[2] T.F.W. EMBLETON, G.J. THiEsseN and J.E. PIERCY, Propagation in an inversion and reflections of the
ground, J. Acoust. Soc. Am., 59, 272-282 (1976).

[3] S. Fuitwara, On the abnormal propagation of sound, Bulletin Central Meteorological Observatory of
Japan, 1, 2 (1912).

[4] B. HALLBERG, C. LARssoN and S. ISRAELSSON, Numerical ray tracing in the atmospheric surface layer,
J. Acoust. Soc. Am., 83, 2059-2068 (1988).

[5) T. Hipaka, K. KAGEYAMA and S. MAsuDA, Sound propagation in the rest atmosphere with linear sound
velocity profile, J. Acoust. Soc. Jpn. (E), 6, 117-125 (1985).

[6] H. KLUG, Sound speed profiles determined from outdoor sound propagation, J. Acoust. Soc. Am., 90,
475-481 (1991).



58 R. MAKAREWICZ and R. GOLEBIEWSKI

[7] A. L’EsPERANCE, P. HERZOG, G.A. DaIGLE and J.R. NicoLas, Heuristic model for outdoor sound

propagation based on an extension of the geometrical ray theory in the case of a linear sound speed profile,
Applied Acoustics, 37, 111-139 (1992).

[8] R. MAKAREWICZ, The shadow zone in statified medium, J. Acoust. Soc. Am., 85, 1092-1096 (1989).

[9] L. NyBorG and D. MINZER, Review of sound propagation in the lower atmosphere, WADC Technical
Report 54-602, 1955.

[10] A.D. PIERCE, Acoustics, McGraw Hill, New York 1981.

[11] K.B. RasmusseN, Outdoor sound propagation under the influence of wind and temperature gradient,
J. Sound and Vibr., 104, 321-335 (1986).

[12] I. RUDNIK, Propagation of sound in the open air, [in:] Handbook of Noise Control, C.M. Harris [Ed.],
McGraw Hill, New York 1957.

[13] W.K. VAN MooRrHEM, Y. Ma and J.M. BROWN, Ray paths near the ground in a realistic, thermally
stratified atmosphere, J. Acoust. Soc. Am., 80, 650-655 (1986).



ARCHIVES OF ACOUSTICS
22, 1, 59-75 (1997)

AXJAL NONLINEAR FIELD OF A VIBRATING CIRCULAR TRANSDUCER

M. A. FODA

Department of Mechanical Enginering
King Saud University
(P.O. Box 80, Riyadh 11421, Saudi Arabia)

The on-axis cumulative growth of nonlinear effects resulting from a monochromatic excitation
of a circular source mounted in an infinite rigid baffle is analyzed by perturbation analysis. The
first order (linear) signal is the summation of two propagating planar waves: one emanating from
the center of the source and the other originating from the source boundary. The mutual non-
linear interaction and propagation of these two waves are analyzed on the basis of the nonlinear
wave equation governing the velocity potential. Nonuniform validity of the pressure expression is
corrected by the method of renormalization and thereby obtaining uniformly accurate expression
in the near as well as far fields. Asymptotic trends at long range are derived which resulted in
a Fourier series description for the pressure signal. The results yield a computationally efficient
model that can predict the spectral components as well as the temporal waveform. The predicted
results are compared favorably with experimental observations over a wide range of variable
parameters.

1. Introduction

The subject of this paper first came to our attention when considering the problem
of distortion of two planar waves interacting at arbitrary angles [1] and the problems
of nonlinear interaction and dispersion of higher order modes in waveguides [2-3].
We recognized that the linear signal on axis of symmetry of a harmonically vibrating
circular plane transducer is a linear superposition of two simple planar waves of opposite
amplitudes. One of these waves is propagating parallel to the face of the piston and
its propagation distance is measured from the center of the piston along the axis of
symmetry. The other wave propagates in a direction that makes a nonzero angle with
the propagation direction of the first wave and its propagation distance is measured from
the edge of the piston. The significant aspect of this exact simple representation for the
linearized solution of the acoustic field on-axis provides a convenient frame work from
which one may workout the second order potential.

The radiation problem of the harmonically, vibrating, plane circular transducer moun-
ted in an infinite rigid baffle is one of several canonical problems in acoustics. Its linear
solution is the most well known and the most fundamental one. The analytical efforts
devoted to this problem is extensive. Although hundreds of paper are cited in literature,
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this problem still requires more work to obtain a simple and complete description of the
acoustic field.

There are two basic formulations for the linear problem: the Rayleigh surface integral
and the King integral [4—5]. The Rayleigh integral treats the signal as superposition of
spherical wavelets which are generated by infinitesimal sources on the piston face. The
King integral results from a Hankel (Fourier - Bessel) integral transformation transverse
to the axis of symmetry. The acoustic medium in such formulation becomes a waveguide
of infinite diameter, The Rayleigh surface integral is transformed into the ScHocH line
integral [6] by using observer related coordinates. Schoch solution is essentially a sum of
the plane wave and diffraction integrals. Although these formulations ar straightforward,
the basic difficulty with the linearized piston problem remains, i.e., while these exact
integral forms are simple in appearance, they can not be written in other exact simpler
forms which can be easily evaluated except by numerical integration.

The treatment of nonlinear effects which arise when the transducer is driven sinu-
soidally at a high amplitude has been analysed by several investigators. INGENITO and
WiLLiams [7] employed a perturbation series for the potential function in which the
leading term was described by the Rayleigh integral. Their solution was not uniformly
valid from the view point of the perturbation theory corresponding to a limitation to the
field close to the transducer (Fresnel zone). In addition, it is only valid for situations
where the axial wavelength is very small compared to the transducer radius (ka > 100).
Aside from these restrictions, their formulation does not address higher harmonics and
depletion of the fundamental. Consequently, it does not provide sufficient information
to predict waveform.

GINSBERG [8-9] described the linearized signal by the King integral and used an
asymptotic analysis to find the expression for the velocity potential. Only the cumulative
part was retained in that analysis since the expression for the second order potential was
quite intricate.

AANONSEN et al. [10] have used a finite difference method to calculate the harmonic
contents of an axially symmetric acoustic beam by solving the parabolic wave equation
in the frequency domain. The main limitions introduced by the parabolic approximation
are the frequency should be high (ka > 1), the angle off-axis must be small and the
distance from the source must not be small. BAcon and BAKER [11] and BACON et al.
[12] have compared the measured nearfield pressure with the numerical predictions of
the parabolic approximation of the nonlinear wave equation. The numerical scheme is
quite time consuming since the conditions required for step sizes and the number of
retained harmonics to get a stable accurate solution are rather sever.

Recent work by Too and GinsBERG [13] has modified the nonlinear progressive
wave equation (NPE) and the associated computer code, which has been originally de-
veloped by McDonaLD and KUPERMAN [14], to describe the axisymmetric sound beams
in the paraxial approximation. The basic assumption introduced in the derivation of this
equation is that the particle velocity is in the direction in which the signal propagates.
Therefore, like many previous models, NPE is inappropriate to the domain inside the
Fresnel zone. Apart from this shortcoming, a suitable computer scheme is needed to
initialize the window that is convected by NPE as the wave advances. The output results
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are dependent on the scheme used as well as on the choice of the boundaries for that
window. The computational cost to implement NPE is deemed to be excessive.

Based on the quasi-linear approximations of the solution of Khokhlof- Zabolotskaya-
Kuznetsov (KZK) equation for a Gaussian source, COULOUVART [15] has derived a uni-
form expression of the nonlinear effects in the sound beam by renormalizing the retarded
time. The KZK equation is a modified Burgers-type equation which often referred as the
paraxial parabolic equation. As alluded previously, several approximations must be made
to derive the parabolic equation. Accordingly, the KZK equation is only suitable in the
vicinity of the axis of the sound beam. Comparison between the experimental measure-
ments on a circular transducer generating short pulses in water and the numerical solution
of the KZK equation has been carried out by BAKER and HuMPHERY [16]. They used
the computer code developed previously by AANONSEN et al. [10].

In this paper a perturbation analysis has been adopted to describe the distortion of
the sound beams on axis of symmetry of a circular, plane, piston mounted in an infinite
rigid baffle and driven sinusoidally at a high amplitude. The analytical model presented is
derived from the prescribed boundary conditions on the source and the baffle, and from
the nonlinear wave equation governing the velocity potential. The analysis consistenly
accounts for the nonlinearity and diffraction. Dissipative effect has been discarded in the
present analysis. The perturbation method of renormalization is invoked to eliminate
secular terms from the pressure expression. The solution obtained is valid for the near,
as well as the farfield, provided that the location is closer to the source than the shock
formation distance.

Asymptotic trends, when the field point is distant compared to the radius of the trans-
ducer, are derived. The computational algorithm is simple and effecient. The predicted
results are in good agreement with experimental works of several investigators over a
wide range of variable parameters.

2. Formulation

Consider a circular plane transducer source of radius a lies in the plane z = 0 and
centered at z = y = 0. The rest of the source plane is a rigid baffle. The transducer is
driven continuously at a monochromatic angular frequency w and radiates a sound beam
symmetric about the z-axis into a dissipationless fluid half-space z > 0. Denote the
nondimensional time variable as ¢. The corresponding dimensional position coordinates
(z/k, z/k) and the dimensional time is t/w, where k = w/co is the wavenumber of
a nominal planar wave. cg is the small signal speed of sound in the linear theory. The
dimensionless velocity potential ¢ is related to the particle velocity components such that
v, = co(0p/0z), v, = co(O¢/0z). The continuity of the particle velocity at the interface
must be imposed at the displaced location of the transducer in the direction normal to
the deformed surface. By making use of the Taylor series expansion

(%‘i L z=0w+...)

o W

2=0+w
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one transfers the boundary condition to a stationary boundary at z = 0. Therefore,
for axisymmetric constant amplitude displacement of the transducer (uniform velocity
distribution), the boundary condition can be written as

00 _ouw 0%
0z Ot Y2

where the dimensionless displacement w is given by

= +0(w?) at z=0, (2.1)

0 = —%e“ +c.c. (2.2)

For weakly nonlinear waves, the acoustic Mach number ¢ is a finite parameter with
le] < 1. In general, c.c will denote the complex conjugate of the preceding term. The
nonlinear wave equation governing ¢ is [17]

2
vis- 2L =250 30w + £(v6-99) + 06, 2.3)

where [, is the coefficient of nonlinearlty. For ideal gas By = (v + 1)/2, where 7 is the
ratio of specific heats. The acoustic pressure is related to the velocity potential by the
Bernoulli equation which can be written in a binomial expansion as follows
P a¢ 9¢ 3
QO_C%— 8t+ VqS V¢——(at)}+0(¢») (2.4)

In addition to Eq. (2.1), the other boundary condition on ¢ is that the signal should
appear to be coming from the source, not travelling towards it. The other requirement
imposed on ¢ is that the physical state variables, such as the acoustic pressure or particle
velocity, derived from it should be bounded for large 2.

In accord with standard procedures, one expands ¢ in a straightforward perturbation
series. A slight modification of such an expansion leads to a sequence of equations
that more prominantly displays the role of g in the formation of nonlinear distortion.
Specifically, one lets

6= cor+e |3 30D+ i +0E), 25)

The equations governing ¢; and ¢, are found by collecting like powers of ¢ in Eqs. (2.1),
(2.2) and (2.3). The first order equations are

8%y
V=g = 26)
6451 _ 1 it
Bz, 2z TS

The resulting second order equations are

Vids- 86332 Pogy (‘69')
[1m 1.9

" (2.7)
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It is a straighforward matter to solve the linearized Egs. (2.6) by the Rayleigh integral or
King integral [5] with the following simple results for the on-axis signal
1

b1 = . [ei(t—z1) et ei(t—z)] + c.c, (2.8)

where
2 = (22 + k)", (2.8
Equations (2.8), (2.8') represent the exact first-order solution as a linear superposition
of two planar waves of opposite amplitudes. The time delay of the first wave corresponds
to the propagation time from the edge of the projector to the spatial point, while the time
delay of the second wave corresponds to the propagation time from the center of the
projector to the spatial point. This simple representation of the linarized solution on-axis
is of crucial importance because from this solution one may work out the second-order
potential.

3. Evaluation of the second order potential

The first step in deriving ¢, is to use Eq.(2.8) to form the inhomogeneous terms in
Eq. (2.7);. This is easily performed by considering the first wave that emanates from the
edge of the transducer equivalent to a planar wave emanating from its center (similar
to the second wave) with propagation direction making an angle § = tan~'(ka/z) with
the z-axis (see Fig.1). Accordingly, the observation point is considered as x = (ka, 2).

2ka

(x=ka z)

Fig. 1. Geometry of the superposition of the center wave and the edge wave.

Therefore Eq.(2.8) can be expressed in Cartesian coordinates. For example, let ny-x =
zsinf + zcosf and ny-x = z, where n; is the unit vector in the direction of the propa-
gation of wave 7. n;-x = z; when z = ka. The resulting equation governing the second
order potential is given by

2 . X
v2¢2 L 88;}:2 — ___I_agg e2ilt—21) e‘Zi(t—z) _ 26:(21:—2—2,) +c.C. (31)
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The first two exponentials in Eq. (3.1) excite second harmonics. Such signals propa-
gate parallel to the two waves forming ¢; which are the homogeneous solutions of the
linearized wave equation. The last inhomogeneous term is due to the nonlinear inter-
action of the two waves forming ¢;. It excites a second harmonic whose propagation
direction makes an angle /2 with the z-axis.

The solution of Eq.(3.1) consists of the complementary solution and the particular
solution. The form of the right-hand side of this equation suggests that the latter solution
is the superposition of the solutions associated with each of these inhomogeneous terms.
These solutions may be obtained by the method of variation of parameters, in which the
amplitudes of the homogeneous solution is considered to be unknown functions. Thus
let

¢ = u(2)e¥ +c.c,
u = Ci(2)e™%% + Cy(2)e 2 + Cy(2)e~"¢1*2).

It should be noted that the unknown functions C; depend on the axial distance only.
The harmonic nature of the excitation eliminates the dependence of these functions on
t. Similarly, the second order potential should depend on z through the phase variable
21 since one only seeks the on-axis expression. This restriction could not be satisfied if
C; were functions of z.

The result of requiring that Eqs. (3.2) satisfy Eq. (3.1) is a set of uncoupled differential
equations for the amplitude functions. These equations are found to be

(3.2)

CY —4icos6C) = —2po,

Cy —4Cs = 5o, (33)
C% —2i(1 + cos0)C§ + 2(1 — cos 0)C3 = if,

where the prime denotes differentiation with respect to z. The particular solution of
Eq. (3.3); is readily found to be

cP = ﬁﬂcose (34
The corresponding complementary solution is
CP = Ay + Aze®* ™4, (3.4)2
Therefore the amplitude C is given by
= -ﬂg 5+ Ay Agpecrst, (3.5)
Similarly
C, = é Boz + As + Age¥®. (3.6)

The particular solution of Eq. (3.3)3 is given by

_ ifo
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It is convenient to let CT appear explicitly in the complementary solution which is there-
fore written as

C} = : %;m [Ase*® + Age™*?], (3.7)2
where A; and A; are the roots of the characteristic equation
—2i(1 + cos@)A + 2(1 — cos §) = 0. (3.8)1
These roots are found to be
Az =i [(1 + cosf) F (3 + cos? 9)1/2] . (3.8),
Combining Egs. (3.7); and (3.7); yields
Cy= ﬁ [1+ Ase? + Ager?] . (3.9)

The expresion for ¢, obtained by substituting Eqs. (3.5), (3.6) and (3.9) into Egs. (3.2)
must satisfy the condition that ¢, represents an outgoing wave in the z-direction. Con-
sequently, ¢, must only contain negative imaginary exponentials in the z-variable. Satis-
faction of this condition requires that A, = A4 = Ag = 0. The remaining terms yield

_ [ 1Pz s 1oz —242
m () (1)

mi—ﬁg‘&‘gﬂ [1+ Ase™] e~ (3.10)
where A is redefined as the modulus of Ay (A = Aq/%).

Letting § — 0 (ka/z — 0) in Eq.(3.10) results in a singularity in the coefficient of
the last term. This is similar to the behaviour obtained in the course of investigating the
near resonant solution of the one-degree of freedom harmonic oscillator as discussed
by GINSBERG [18]. When the forcing frequency approaches the natural frequency for
this system, the amplitude of the particular solution increases as does the portion of
the homogeneous solution that cancels the initial value of the particular solution. The
combination of these two solutions is a temporal beating response that rises from zero
at the initial time. As the difference between the forcing frequency and the natural
frequency decreases further, the period of each beat increases, until ultimately, when
the two frequencies are equal, only rising portion survives. The corresponding resonant
response is a harmonic whose amplitude grows linearly with time.

In a similar manner, the singularity of Eq.(3.10) at # — 0 may be removed by appro-
priate selection of the coefficient of the homogeneous solution As. First, A is expanded
in a Taylor series for small (1 — cos #)

2(1—0059]1/2_ 1—cosf
(1+cosf)2] ~ 1+cosf 7’

ok 1—cosf | _ 1(1 — cos )z
CXP(EAZ) = exp [—%—Z:I =1- W +

A= (1+cosf)— (1+cost) [l+
(3.11)
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Threfore the corresponding asymptotic form for the last term in Eq.(3.10) is

_ b i(1 - c058)2) | iger4s)
U3—2(1_0059{1+A5[1— T e . (3.12)
The singularity for § — 0 is cancelled if one chooses the leading term in As = —1.

Thus let As = -1 + A;, where the coefficient A; may depend on (1 — cosf) in any
manner such that it is not singular as # — 0. The second order potential is now found
from Egs. (3.2) and (3.10) to be

5 (ngg:g M A1) Q2ilt=21) 4 (WTOZ +A3) e2it-2)
iBo

e 2(1 — cos®)

[1 -(1- A;)ei’\z] €@ yce. (3.13)

The foregoing expression for ¢, should satisfy the boundary condition given by
Eq.(2.7)2. This could be achieved by the appropriate selection of the coefficients Aj,
Az and A;. Each of them describes a homogeneous solution of the wave equation as-
sociated with the second order potential. Thus, they represent effects that O(?) at all
locations. In contrast, observable distortion phenomena are associated with the second
order terms that grow with increasing distance. However, the bounded O(c?) effects
might be significant near the transducer. Therefore, satisfying Eq. (2.7), and combining
the resulting expression for ¢, with the linearized solution given by Eq. (2.8), according
of Eq. (2.5), one arrives at the following expression for the potential

¢ = _% [ei(t—zl) _ ez’(t—z)] i 5_;_ {(ﬂoo_:s_g i 21') Rilt=21)

+ (ﬁoz = 3—22 — i) e2i(t-2) 4 44 [ﬁ%@j (1 _ ei)\z)

+ (1 - %) (Bo - 1)] ghdtori—a) . 22} +cc+ 0. (3.14)

4. Evaluation of the pressure

The pressure is related to the potential function by Eq. (2.4). The quadratic products
in that relation represent effects that are uniformly O(£?) at all locations. These bounded
effects might be significant near the projector. Thus differentiating Eq. (3.14) according
to Eq. (2.4) yields the following expression for the pressure

QPCZ _ 5% gilt=21) _ ei(t—z)] B 52@ [00296(2;(:_21)' + e2it=2)
0Cp
4

+ m (1 - ei)\z) ei(?t—h—-z)] + PNs + c.c+ O(Eg), (41)
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where

PNS = 52 [%621'(:—31) _ %(ﬂﬂ 4 2)6250-2) + Bei(Zt—zl—z)

- %(1 —cos@)eGi=A| . (4.2)

and
= % [(\/5_ 1) Bo + 1] ers — %(3 + cos0). (4.3)

Equation (4.1) reveals that the cumulative growth of the O(?) signal originates from
the first two terms of O(e?). This is manifested by the increase in the magnitudes of
the second harmonics with increasing z. In contrast, the amplitude of the third term of
O(&?) oscillates in the z-direction with period 27 / A. However, this amplitude grows with
increasing z when 6 is very small (ka < z). The nonsecular terms pys given by Eq.(4.2)
do not grow with increasing z and therefore are bounded at all locations. In general they
become unimportant at large z. However, their contribution in the nearfield should be
taken ino consideration.

The basic concern when growth is encountered in a regular perturbation series, such as
Eq. (4.1), is that the second order term might exceed the estimate of its magnitude. Such
behaviour is known as nonuniform validity. In this section we will derive an expression
for the pressure that behaves properly at all locations.

In order to render the pressure expression uniformly valid, the renormalization version
of the method of strained coordinates [19] will be employed. Therefore, one seeks a
coordinate transformation whose form is

5 = ai+e [Slei(t—cn) + Szei(t—ae) + C-C] ’ (4 4)

z = m+e [Sge"(““’) + Sgeilt—en) 4 c.c] .

In accord with standard procedures, the above coordinate transformations are sub-
stituted into Eq.(4.1), and a Taylor series in ascending powers of ¢ is employed. The
undetermined functions S;, j = 1,4, are then selected on the basis of removing the
nonuniformly accurate terms. This procedure yields the following expression for the pres-
sure

P _ Y [Litt-an) _ gi(t—aa) 3
o 52[6 eit=o3] + pys + O(E). (4.5)

The coordinate transformations are given by

Z1 = a1+ E%q‘ [zle’:("“‘) -~ 1_—%0W (1 - EMO{B) Bi(t_az) + C.C] 5
: (4.6)
- — ﬁg i(t—ag) _ 2 _ pidag) Li(t—an)
% = i&—eg [ze T—ooeg 1= )¢ g -

Evaluation of the pressure at a selected location z and time ¢ requires simultaneous
solution for the transcendental equations for the coordinate straining transformations,
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Eqgs. (4.6). This can be accomplished by using a numerical procedure such as the New-
ton-Raphson’s method. The frequency content of the pressure waveform may be eval-
uated from the Fourier analysis. It is to be remarked that the terms in Eqgs.(4.6) that
couple the strained coordinates a; and « do not show explicit growth with increasing
z. However as 6 — 0, the magnitudes of these terms increase and in the limit they have
explicit dependence on z as can be shown in the next section.

5. Asymptotic trends

Equations (4.5) and (4.6) are generally valid. Examination of the behaviour at the
limiting value of § — 0 (ka/z — 0) provides important insights when the field point
is distant compared to the radius of the transducer. For small ka/z, Eq.(2.8); can be
expanded in a Taylor series

z1§z+lﬁ+.... (5.1
2 2z

Substitution of Eq.(3.11); in the argument of the exponential functions (e**) in
Eqgs. (4.6) followed by expansion in a Taylor series in (1 — cos #), making us of Eq. (5.1),
simplifying by deleting higher order terms and then converting the results to real forms by
accounting for the complex conjugate of each term, yields the following common forms
for the coordinate transformations

21 ~ ay —efoz [sin(t — ay) — sin(t — az)]

= oy + 2¢3pz cos (t o8 ; az) sin (al ; (,152) , (5.2)

z ~ ay+ 2¢3pz cos (t— al;a2>sin (a1;a2>.

From which it follows

g1 —x ~ 01— 0y,

+ —
z1+ 2z ~ (a1 + ag) + 4efpz cos (t— e 3 az) sin(a1 5 az)_

(53)

As alluded previously, Pys can be neglected at large distances and the pressure expres-
sion Eq. (4.5) is written in a real form as

P ¢ [sin(t — @) — sin(t — az)] + 0(52)

o0¢}
= 2¢ cos (t s £ ; az) sin (al ; a2> . (5.4)

1 kz 2 )
The next step is to replace z; — = by 3 Ta by making use of Eq.(5.1) and then

substitute the first of Eqs. (5.3) in Eq.(5.4), and use the resulting expression for p to
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eliminate a; + a; between the second of Egs.(5.3) and (5.4). The pressure expression
that is derived in this manner is

242
2 aesin (3 55 ) cos (1- 2+ oLy )

2oCy QDC()

= ¢ Dcos (t—z-ﬂ@gz%) SR -
2 00CH

where
D =sin M/M,
and 4
= 2
M = PR (5.6)

in which zg is the Rayleigh distance nondimensionalized by the scale factor k.

Except for the fact that z and ¢ are nondimensional here and the amplitude shows
spherical spreading, Eq. (5.5) is identical to Earnshaw’s implicit closed form solution for
the finite amplitude planar wave [20] in the case of harmonic excitation at a boundary.

In order to obtain the spectral analysis of the pressure signal, one could implement
procedures that are similar to that used in [21-22] and will not be repeated here. Specif-
ically, the spectral representation for the pressure is

o0

Z nl (me)sin[m(t — z +7/2)], .7
where o
¢ = 2efpzsin ( 1 ) . (5.7

and J,,, are the Bessel functions of the first kind of order m.

The description given by Eq.(5.7) is valid if no shock form. That is up to the place
where discontinuity of the pressure wave profile occurs. The smallest value of z at which
multivaluedness of the waveform occurs is obtained when |c| = 1. That is

1
i S o (5.8)
This result is the same as that for the one dimensional nonplanar wave except that 3 is
replaced by 2(3. In otherwords, the shock formation distance for the piston problem is
half that of the planar finite amplitude wave.

Expanding the sine function in Eq.(5.5) in a Taylor series expansion for a small

argument and deleting higher order terms yields

L neZoos (t—z +ﬁgz-1°—) (5.9)
QOCU z QOC[}

Like in the linear theory, Eq.(5.9) shows that the pressure signal appears as though it
was coming from a spherical sound source of radius z.
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6. Results and discussion

Well documented exprimental data describing nonlinear effects in the nearfield is
quite sparse. GOULD et al. [23] measured the field generated by a transducer vibrating
at 2.58 MHz when cq = 1475 m/s which corresponds to k£ = 10990m~1. The geometrical
radius was 0.0101 m, but subsequent analysis of the linearized field caused INGENITO
and WiLLIAMS [7] to suggest that ¢ = 0.01042m is more appropriate. The results were
presented in Gould’s paper as selected traces of the amplitudes of the fundamental and
second harmonic either along or transverse to the axis of the beam. Such traces were
obtained by photographing an oscilloscope screen. So they are difficult to read accurately.
However travelling microscope readings of the axial distribution of the second harmonic
were reported by INGENITO and WiLLIAMS [7]. Figure 2 compares the measured axial
distribution of the second harmonic with the predicted results. The transducer was driven
at source pressure level of 5 atmosphers (506.6 KPa). The nondimensionalized Rayleigh
distance is 6657 which corresponds to 0.5966 m, whereas ka = 114.52. The overall agree-
ment between theory and experiment is good. It is to be noted that the prediction for
the farthest dip, near the nondimensional z = 1300, is somewhat less deep than that was
predicted by INGENITO and WiLiams (Fig.2 in Ref. [7]), while the dip near z = 600 is
deeper than their prediction and the one near z = 800 is substantially deeper.
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Fig. 2. Axial variation of the amplitude of the second harmonic in the Fresnel region. f = 2.58 MHz,
k = 10990m—1, « = 0.01042m, source pressure = 5atm (506.6 KPa) — : predicted, o: measured
values (Ref. [23]).
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The experiments recently reported by BAKER et al. [12] for propagation in a water
tank provide useful data for validating the analysis in the Fresnel region. The average
pressure across the transducer face was 100 KPa, the transdueer radius was a = 0.019m
and the frequency was 2.25 MHz. This corresponds to ka = 180.7 when ¢y = 1486 m/s.
The Rayleigh distance is 1.717m whereas the last axial pressure maximum ocurred at
0.5462m. Comparing the exprimental and computed results will, therefore, indicate how
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well the nearfield propagation properties are predicted. Figures 3 -5 show the variations
of harmonic amplitudes obtained by analyzing the waveform at numerous axial locations.
In Figs. 4 and 5, the experimental data have been smoothed slightly near the transducer
due to the difficulty in following small-scale fluctuations when published curves were
digitized in order to be presented here.
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Fig. 3. Axial variation of the first harmonic amplitude in the Fresnel region. f = 2.25MHz, k = 9514m~!,

a = 0.019m, source pressure = 100KPa — : predicted, o: measured values (Ref. [12]).
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Fig. 4. Axial variation of the second harmonic amplitude in the Fresnel region. f = 2.25MHz, k = 9514m~t,
a = 0.019m, source pressure = 100KPa — : predicted, o: measured values (Ref. [12]).

The theoretical prediction is compared to Moffett’s farfield measurements (Fraun-
hofer region) [24] of the fundamental and second harmonic in a fresh water lake. The
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Fig. 5. Axial variation of the third harmonic amplitude in the Fresnel region. f = 2.25MHz, k = 9514m~1,
a = 0.019m, source pressure = 100KPa — : predicted, o: measured values (Ref. [12]).

transducer in that experiment vibrated at 450 KHz and its diameter was 0,102 m; the cor-
responding Rayleigh distance is 2.59 m. The small signal speed of sound is ¢y = 1418 m/s.
The nondimensional Rayleigh distance is 5171 which corresponds to 2.593 m whereas
ka = 101.7. The source level S Ly is 215dB/1pPam. The theoretical predictions shown
in Fig. 6 compare favorably with Moffett’s measurements.
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Fig. 6. Axial variations of the amplitude of the first and second harmonic in the Fraunhofer region.
f =450KHz, k = 1994m~1, o = 0.051m, source pressure = 0.447atm (45.25 KPa). First harmonic;
—— : predicted, o: measured; second harmonic; - - - - : predicted, A: measured (Ref. [12]).

At ranges z = 0.4005m and 0.6007m Figs.7 and 8 exhibit the time waveforms for
BAKER’s [12] data. In comparison to the linearized signal, the wave distorted with the
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Fig. 8. Temporal waveform at z = 0.6007m, f = 2.25Mhz, k = 9514m~"!, a = 0.019m, source
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pressure = 100 KPa — : nonlinear signal, - - - - : lincar signal (Ref. [12]).
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Temporal waveform at z = 0.4005m, f = 2.25MHz, k = 9514m™', a = 0.019m, source
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pressure = 100KPa — : nonlinear signal, - - - - : linear signal (Ref. [12]).
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compressional phase being steeper than the rarefaction. The waveform has also developed
a marked top-bottom asymmetry with a positive peak being higher and sharper than the
negative one.
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7. Conclusion

An analytical representation of the on-axis finite amplitude continuous wave signal
radiated by a baffled transducer undergoing monochromatic excitation is derived. The
face velocity at the transducer is restricted to be constant. A uniformly valid description
that is suitable at any location up to shock formation distance is obtained. An asymptotic
analysis yields a simple expression for the long rang approximaton that is easy to evaluate.
The results form an efficient model that can predict the waveform and the harmonic
contents.
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In the paper the method of obtaining of thin layers of Pb(Zr, Ti)Os ceramics and the results
of their preliminary investigations are presented. The layers have been obtained by the sol-gel
technology. They were deposited on anodized surfaces of plates, parallelepipeds and cylinders of
Al The existence of ferroelectric (hysteresis loop) and piezoelectric (in poled layers) properties
has been ascertained. The possibility of the application of those layers as ultrasonic transducers
in the range of high frequencies has been proved using them for generation and reception of
pulses of ultrasonic longitudinal waves.

1. Introduction

Thin films of piezoelectric materials are widely used as ultrasonic transducers in
the frequency range above 100 MHz, as elements of acoustoelectric, acoustooptic and
electrooptic devices and as active layers in sensors and actuators. Thin films of piezo-
electrics of simple chemical composition are obtained using classical vacuum technologies
— two-source evaporation (CdS), reactive evaporation (AIN) or cathode sputtering (ZnO).
These methods are useless for the most often applied piezoelectric materials — LiNbO3
and PZT-type ceramic (PbZr,Ti;_xO3, with additives if needed). Thin layers of LiNbO;
with the properties comparable to those of monocrystals have not been obtained as yet in
spite of many works done at various research centres. Thin layers of the PZT ceramic are
produced by magnetron sputtering dc or rf in oxygen or in an oxygen-argon mixture [3].
Multielement targets (Pb, Zr, Ti) or sintered ceramic targets are sputtered. An expensive
and complicated equipment is necessary and the deposition process is time-consuming
(the deposition rate is about 0.1 nm/s). Therefore chemical methods are developed, e.g.
chemical vapour deposition [14]. In this method vapours of compounds containing Pb, Zr,
Ti are carried by a stream of an inert gas (usually Ar) and deposited on heated substrates.
Thin layers of PZT can be also obtained by laser ablation [6]. Ion-beam deposition [1]
or electron-beam evaporation [11] have minor practical applications.
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Recently a sol-gel (solution-gelation) method or its modification MOD (metallo-or-
ganic decomposition) are most often used to obtain thin layers of Pb(Zr, Ti)O; [7]. In
this paper the authors present the results of investigations of PZT thin layers obtained
by the sol-gel method.

To master the technology of PZT thin layers of high quality is very important for
many practical applications. Recently many papers have been published concerning the
application of PZT thin layers as elements of RAM memory [10]. This is a return to the
old idea of the ferroelectric memory. The sol-gel technology makes it possible to produce
very thin ferroelectric layers of high quality. Their polarization can be switched by low
voltages (< 5 V) and their properties do not change up to over 10! cycles write/read.
Those layers can be integrated with electronic IC’s.

Piezoelectric ceramics are widely used in sensors and actuators, e.g. in the so-called
intelligent structures [2] applied for the detection and compensation of deformations and
vibration of elements, e.g. in aeronautics. Unfortunately it is impossible to produce very
thin (thickness of several jum) ceramic plates. A similar problem exists in the construction
of piezoelectric bimorphs applied in sensors for surface investigations [12]. PZT thin
layers produced by the sol-gel method should be useful in both cases [8].

2. Sol-gel technology

The sol-gel technology permits to control the composition of the obtained layers
(Zr-Ti ratio, additives), to deposit layers on large surfaces (also non-planar) and it is
more simple and less expensive than the vacuum deposition techniques. The necessary
temperatures are lower than in the clasical technologies of PZT ceramic production (high
temperature sintering of metal oxides — up to 1500° C, often under high presssure). The
layers have a homogeneous structure and their grains can have dimensions of ~ 1 pm.
This is important for applications in the frequency range above 100 MHz.

The Pb(ZroTip4)O3 layers described in this article were obtained by chemical sol-
gel process [16] using dip coating. The stock solution was prepared from lead acetate
Pb(CH3C0O0);-3H,0 dissolved in glacial acetic acid, zirconium propoxide Zr(C3H70),
and titanium isopropoxide Ti[(CH3);CHO],. Distilled water and propanol were used
as solvents to regulate the wettability. The addition of ethylene glycol was necessary to
prevent cracking and to improve the surface smoothness of the films. The film thickness
was controlled by the concentration and the viscosity of the solution of metallo-organic
compounds. The hydrolysis and polycondensation of alkoxides produce an amorphous
network in the solution. The shelf life of the solution at the room temperature was long.
The solution was well fitted for use for at least several months.

The PZT layers were deposited on anodized surfaces of plates, parallelepipeds and
cylinders of Al The anodization process was carried on aluminium samples which were
immersed into a H,SO4 bath of concentration of 1.5 M. Hard and transparent aluminium
oxide films of fine porosity were obtained as a result. The increase of the film thickness
was regulated by the parameters of the anodization process. The current density ranged
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from 1 to 2 A/dm? at a voltage of 12—20 V. The process was conducted at the ambient
temperature and with intensive mixing. Three or four PZT layers were subsequently
deposited on the substrate surface. After deposition of every layer, the prepolimerized
coating in the form of a metallo-organic gel was dried in air at room temperature, then
further polycondensation took place at a higher temperature and finally an inorganic
oxide structure was formed.

During the drying stage the wet film was converted into a hard coating and a con-
siderable shrinkage of the coating occurred. Thus it was more effective to prepare thin-
ner layers than a thicker one. The next stage was to fire the samples in a furnace at
400° C for 15 minutes. During the firing the following processes went on: evaporation
of the solvent residues, decomposition of the organic compounds, removal of residual
— OH and — O — C3H; groups, pyrolisis of the organic compounds or groups into carbon
and progressive densification of the film. At the end of this stage the metallo-organic
film changed to a fine mixture of lead, titanium and zirconium oxides and free car-
bon. At higher temperatures the free carbon oxidized and carbon dioxide was removed
from the surface. The yellowish mixture of the oxides was transformed to an amorphous
PZT film that became milky and translucent. After final firing the samples were im-
mersed in a metallo-organic solution to deposit another layer and the procedure was
repeated.

In order to achieve a complete crystallographic structure, the fired films were an-
nealed. The purpose of annealing was to change the amorphous structure into the per-
ovskite one. This process was performed according to the following temperature-time
program. At first the annealing temperature was progressively raised, then maintained at
600° C for 6 h and subsequently it was progressively reduced to the room temperature.
During firing film crystal nuclei were formed and next, during the annealing, the growth
of the crystals and phase transformation continued.

For the measurements upper Ag or Al electrodes were deposited on PZT by the
vacuum evaporation.

3. Investigations of the ferroelectric properties of the Pb(Zr, Ti)O; thin layers

The existence of a hysteresis loop is the basis criterion to confirm the ferroelectric
properties of the material [5]. Measurements have been done by the standard method in
the Sawyer - Tower circuit [4]. Figure 1 presents the hysteresis loops of PZT thin layer
deposited by the sol-gel method on an Al parallelepiped. Figure 1a — the unpolarized
layer, Figure 1b — the polarized layer. The measurements have been done for f = 10 kHz
and the voltage U, = 50 V. The characteristic asymmetry of the hysteresis loop is visible
in the case of the polarized layer.

The shape of the loop and the way of its change with the increase of the applied
voltage testify that it is caused by the ferroelectric hysteresis and not, for example, by the
nonlinear conductivity of the non-ferroelectric material [5].
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Fig. 1. Hysteresis loop for Pb(Zr 6Tip 4)O3 thin layer a) unpolarized layer, b) polarized layer. In this case
the characteristic asymmetry of the hysteresis loop is visible.

4. Thin Pb(Zr, Ti)O; layers as ultrasonic transducers

The obtained PZT thin layers have been polarized and we have verified the possibility
to use them as ultrasonic transducers. We have measured the characteristics of the lines in
the form of thin layers PZT transducers deposited by the sol-gel method on the surfaces of
the parallelepipeds and cylinders of Al The transducer generated pulses of longitudinal
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ultrasonic waves which were received by the same transducer after the reflection at the
end surface of the line.

Figure 2 presents insertion loss as function of frequency for the thin layer PZT trans-
ducer on the Al parallelepiped of 9 mm length. The measurements were done without
electrical matching circuits between transducer and the generator (receiver). A “Matec”
apparatus was used as generator and receiver. The curve in Fig.2 is a typical, slightly
asymmetric, wide-band characteristic obtained for thin piezoelectric transducer loaded
by a solid propagation medium [9].
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Fig. 2. Insertion loss versus frequency for a line in the form of Pb(Zrg g Tig 4)O thin layer transducer
deposited on the parallelepiped of Al. The wide band-width and slight asymmetry of the curve
are typical of thin piezoelectric transducer loaded by a solid propagation medium.

Two examples of the oscillograms of the pulses (after detection by the receiver) for
different carrier frequencies are presented in Fig.3 - for 100 MHz and Fig.4 — for
175 MHz. The obtained trains of pulses are typical of the structure of the applied acoustic
lines [15]. In Fig. 3 one can see succesively: the electric pulse, the first acoustic pulse which
returned to the transducer after reflection at the line end, the second acoustic pulse which
returned to the transducer after two reflections at the line end and one reflection at the
line-transducer boundary, etc. In Fig.4 only one acoustic pulse is visible because the
insertion loss for 175 MHz was considerably greater than for 100 MHz — Fig. 2. The
results obtained for other lines of various dimensions were similar.

The PZT thin layers were also deposited on circular plates of an Al sheet of thick-
ness of 1 mm. These transducers received, among others, pulses of longitudinal waves
generated in a parallelepiped of fused quartz. A plate of LiNbO; (Y-36 cut) was the
transmitting transducer. The plate was indium bonded to the propagation medium and
worked in a wide band of frequency.



Fig. 3. Oscillogram of pulses generated and received by the Pb(Zrg ¢Tig 4 )O3 transducer deposited on a Al
parallelepiped with length [ = 9 mm, f = 100 MHz, 2ps/div. The electric pulse and three sucessive acoustic
pulses with transit paths 2i, 4/ and 6! are visible.

Fig. 4. As Fig.3 f = 175 MHz. Only one acoustic pulse is visible because the insertion loss for 175 MHz was
considerably greater than for 100 MHz.

[82]
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5. Conclusion

The presented results of preliminary investigations prove that the obtained Pb(Zr, Ti)O3
layers have ferroelectric and-piezoelectric properties. After the polarization they worked
as high frequency ultrasonic transducers. Their properties did not differ considerably
from the data published by other authors. Therefore it should be possible to apply them
in the devices mentioned in the introduction, similarly as the thin layers obtained by the
sol-gel method and described in [8, 13].

We have not obtained as yet completely satisfying properties of the thin layers of
Pb(Zr, Ti)O3. The microscopic investigations indicate that the grains are larger than
~ 1pm reported by other authors in previous publications. The uniformity of the layers
was not always perfect. A very good furnace was not available. The structure of PZT layers
depends on the conditions of firing and annealing. Further works with raw materials of
higher quality using an improved furnace and more precise control of the technological
processes should obviously allow to improve the quality of the layers.
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This article refers to the changes of spectral features of Acoustic Emission (AE) signal. The AE
signal is generated during drainage process concerning a foam made of detergent solution. The
subroutines to extract the AE events and its spectral features from the real AE signal recordings
are described. The effectiveness of classifying procedures based on two linear and one nonlinear
algorithms used to recognition different AE patterns is also discussed.

1. Generation of Acoustic Emission during the foam drainage process

In this paper the changes of spectral features of an AE signal generated by the foam
formed from the liquid phase are described. The theoretical model of this effect was pre-
sented in [1, 2]. The foam investigated in this article was made during a local pressure
fluctuation processes occuring when the liquid detergent was poured into the experimen-
tal vessel. The movement of the detergent resulted in the formation of a population of
bubbles on the surface of the liquid. The diameters of the bubbles gradually increased.
The multiphase complex described above tended to achieve a dynamic equilibrium in
approx. 15-20 min. after the foam formation. During this process, beside the bubble
diameter increase, a thinning of the bubble walls caused by the drainage and a gradual
approach of the bubble junctions to the walls of the experimental vessel was observed.
The thinning of the bubble walls led to collapsing and incorporation of the weakest struc-
tures while the AE signal was generated. It was evaluated in [3] that the mechanically
excited bubbles behave as resonant vibrators with specific pulsation wy:

ot 3v.5,

~ 2L )

where 7 - ratio of the specific heat under constant pressure to that at constant volume,
P. - pressure of the bubble in the absence of vibrations, ¢ — specific density of the
medium surrounding the bubble, R — diameter of the bubble at the equilibrium between
external and internal pressures.
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The pressure of the bubble depends of its diameter R and the pressure of the sur-
rounding medium £ according to the Laplace’s formula:

P.=Py+20/R, @)

where o - surface tension of the bubble coat.

In the investigations described a 0.142 M/dm® solution of the nonionic detergent,
Triton X — 100 was applied, which stabilizes the foam composition. The structure of the
detergent molecule is presented in Fig. 1.

CH3; CH;
| |
H;C-C-CH; -C- @ —(-0 - CH; — CH,-),OH
| |
CHj; CH;

z~10

Fig. 1. The structure of the detergent molecule used in the investigation.

The procedure of generation of the foam was similar to that used in the Ross-Miles
test for foaming properties of surfaces [4]. The experimental found amount of the de-
tergent (9.4 ml) was pouring from the height of 400 mm to the 55 mm diameter glass
test-tube. A small broadband sensor of type Nano 30, Physical Acoustic Corp. was glued to
the external surface of the test-tube. The AE signals were amplified and high-pass-filtered
(over 20 kHz) using a EA200 Acoustic Emission Processor, made at the Institute of
Fundamental Technological Research. An IWATSU DS 6612C storage oscilloscope was
connected to the output of the AE processor to capture the AE waveforms. When the
amplitude of the AE signal (after 93 dB amplification) was greater than 1 V, the trigger
of the oscilloscope enabled the capturing of 2 miliseconds of the AE signal at a sampling
rate of 500 kHz. More than 700 of such waveforms were stored in the disk logged in a
PC computer applying the procedure described above.

2. Classification of the recorded AE waveforms

The authors of the papers concerning the strategies of the processing of AE signal
generated at the presence of the liquid phase [5-7] recommend AE signal descriptors
derived in the frequency domain as an efficient signal characterization method. Therefore,
the following procedure was applied to determine the different classes of the recorded
signals, caused by separate phases of the drainage process. AE waveforms were registered
in 50 bytes and formed after Fourier transformation 25 bytes long feature vectors, where
the consecutive bytes corresponded to the power of the signal within the 10 kHz band.
Thus the entire feature vector covered the 250 kHz band of the registered spectra.

During recording the AE waveforms it was found that the AE activity fades and
reaches the noise level after approx. 1000 seconds after the initiation of the process. Ac-
cording to this, the following scheme was used to generate feature vectors corresponding
to the different phasees of the investigated process:

L. ten real 25-byte vectors were averaged to form the average feature vector,
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2. the first averaged vector was formed of the signals registered within the first 100
seconds of the process, the one was formed of the signals registered within the next 100
seconds of the process, the third vector corresponded with the signals registered within
the period 200 - 300 seconds after the beginning of the process and the fourth one within
400- 600 seconds after the beginning of the process,

3. the reference noise vector was formed of the signals recorded after 1000 seconds
of the process,

4. the intensity of the signal related to the 10 kHz spectral bands was discretized in
such way as to obtain 8 intensity levels, corresponding to the 3 db signal increase,

5. the certain averaged signal level was confirmed by registering its ocurrence in more
than 50 % averaged vectors.
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Fig. 2. Four binary average feature vectors reflecting four (A, B, C, D) phases of the drainage process
and the average noise feature vector (X).

The four binary average feature vectors, labelled A, B, C, D and the reference average
noise feature vector, labelled X, are shown in Fig, 2. The comparison of the image of the
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consecutive vectors let us to conclude that at the beginning of the foam drainage process
the lower frequencies, probably generated by the collapsing of the largest bubbles, are
dominant. In the next periods higher frequencies are registered. During the final signal
decrease the high frequency domination was continued. The time dependence of the AE
signal intensity, evaluated with the use of the averaged feature vectors described above,
is shown in Fig.3.
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Fig. 3. The time dependence of the AE signal intensity registered during the foam drainage process.

Three classifying procedures were used to perform the pattern recognition process
with application of the described above average feature vectors and a group of recored
signals. The first procedure was the scalar product P of the components taken from the
evaluated patterns and those of the investigated signal samples:

P =(zir1+ o+ orn) /(@ + .+ 22)V202 + L+ r2)2, (3)

whrere P - linear classifier based on the scalar product made of tested and reference
feature vectors, z1, ..., , — tested feature vector, rq,...r, — reference feature vector.
To find the lowest value of the scalar product used as the acceptance limit to classify
the investigated signal sample as similar to the certain feature vector, the set of 50 signal
samples, used previously in the averaging procedure, was classified.
As the second linear classifying procedure the smallest Euclidean distance [ between
the tested and reference vectors was used [8]:

D= ((1—r)*+ ...+ (zn - Tn)z)llz, 4)

where D - distance to classify the relation between the tested and reference feature
vectors, z1,..., T, — tested feature vector, rq, ..., r, — reference feature vector.

To find the highest value of this classifier as the acceptance limit to classify the inves-
tigated signal sample as similar to the certain feature vector, the set of 50 signal samples
was used in the same way as in method (3) described above.

As the third classifying procedure the nonlinear neural network was prepared. Neural
network was modelled in the computer memory as the structure consisted of multi-input
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vs. single output elements (neurons) connected in several chains called layers [9, 10]. Each
neuron output (except the output layer) was connected with all the neurons consisting the
next layer. The relation between the element input and output signal for such structures
can be expressed as:

vi(t + 1) = 0(X; wijz; (1) — i), (5)

where y;(t + 1) — neuron output signal after signal processing cycle, f — neural activation
functions (in this paper assumed as 1/(1 + exp(—z)), w;; — a weighting coefficient which
expresses the bonding strength between the connected neurons labelled j and ¢, z;({)
— neuron input signal before the signal processing cycle, p; — process parameter called
threshold level.

The computer model of the neural network consisted of a table of weight coefficients
being modified in the learning process. This process was carried out to vary the synaptic
weights to obtain a desired network output signal when a certain signal was fed to the
input of the network. The aim of the research work presented in this paper was to form
the network output signal as a measure of the association with one of the five reference
feature vectors. Each weight was changed according to a widely used iterative procedure
called “backpropagation of error”. The idea of the procedure is to make weight changes
proportional to the difference between the temporary network output and the desired
(optimal) output:

Awf}) = m(db(E:)/dE)z;of + mam™D, ©)
where
6 — activation function,

Awgf) — weight coefficient between the neuron labelled : in the layer k£ and the

neuron j in the layer (k — 1),

11 — parameter called learning rate, in this work experimentally equal to 0.01,

72 — momentum, a parameter optimising the learning process, in this work
equal to 0.008,

E; - total excitation of the j-th neuron in the layer k, equal to X;w

z; — desired signal at the :-th output of the network,

y; — temporary signal at the i-th output of the network,

m;; — change of the weight coeff. used in the previous iteration,

6 _ z; — y; for the output layer or Ezw(?“)a(“l) for the other layers.
i P 1 vl

(*)

ij s

¥

For the purpose of the research work described here, the following assumptions have
been made for the data processing procedure:

1. the used neural network consisted of 200 binary inputs to analyse the components
of the feature vectors,

2. the vector components were analysed in the first layer consisting of 62 neural units,

3. the second layer consisted of five neurons to generate five output signals due to
association between the currently analysed vectors and five learned patterns.
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3. Comparison of the effectiveness of the classifying methods

The five spectral patterns refferred to the five phases of the foam drainage process
were used to compare the effectiveness of the classyfying procedures described in the
previous Chapter. The process of classification was performed on five groups of the nine
test spectral feature vectors. The latter groups of vectors were preparred as follows. They
were derived from the AE signal recorded 25 miliseconds after the signal samples used to
form spectral patterns. The idea of this scheme was to obtain the signal samples similar
but significantly different with respect to the applied patterns. To find the limit values
forming the acceptance ranges to classify the certain vectors to one of the five classes,
all the feature vectors once used to form the averaged patterns, were classified. The
results of the classification of the test spectral feature vectors by applying the procedure
described above are shown in Table 1.

Table 1. The results of the classification of the test spectral feature vectors by applying the three procedures
described in Chapter 2.

method of classification the acceptance range the percentage of succesfully
of the classifier classified vectors
scalar product (Eq.(3)) > 0.85 47 %
Euclidean distance (Eq. (4)) < 6.6 58 %

class A: > 0.225
class B: > 0.171
class C: > 0.206
class D: > 0.165

neural network (Eq. (6)) 44 %

Each of the presented methods alone was able to recognize about 50 % of the pre-
sented feature vectors. Both linear methods recognized generally the same vectors but
the effects of the application of the neural network showed the individual way of classifi-
cation. Utilizing the neural network method, among the 16 correctly classified vectors of
the total population of 36 seven were missed by the linear methods. An example of the
differences in the classification process is shown in Fig. 4. The right side of this Figure
presents one of the tested vectors of type B (the averaged pattern of this type is drawn
on the left side of the Figure). The linear classifiers have recognized this test vector as
a type B one. However, in this case, there is some likeness to the types A and C, so the
neural network method indicated equal similarity to the three types mentioned.

Important problems related to the propagation of the acoustic emission signal in
different media are caused by the attenuation of this signal. Figure 5 presents the averaged
pattern of type A (on the left side) and the same pattern after 6 dB attenuation (on
the right side). It was proved experimentally that the linear methods were unable to
recognize the attenuated feature vector, presented in the described Figure. The same
problem was succesfully solved by using the neural network method because the absence
of the “traces” of likeness to the concurrent vectors, The ability of the recognition of the
vectors derived from weak signals may be explained with respect to the specific signal
processing used in the neural network method. The linear methods generate a result
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Fig. 4. Binary average feature vector of class B (left) and an example of the member vector of that class
succesfully recognized when processed with linear methods and unrecognized when the neural network
method was used (right).
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Fig. 5. Binary average feature vector of class A (left) and a modification of this vector after 6 dB attenuation
of the Acoustic Emission signal (right).

of comparison increasing the coefficient of likeness for each pair of the fitting elements
of the two vectors. The agorithm of the neural network is more complex. Among the
positive components forming the likeness coefficient related to the actually processed
vector, there are the negative components related to the other memorized vectors.

4. Conclusions

Three methods applicable for classifing the real feature vectors derived from the
Acoustic Emission signal were presented in this article. They allow for automatic pro-
cessing of large sets of signal samples. Each method alone was able to classify correctly
about 50 % of processed vectors. According to the assumed criteria, the scalar product
method classified 11 % vectors less than the Euclidean distance method.The applica-
tion of linear methods causes problems of recognition of the weak signals. The neural
network method is less effective when there is signifficant likeness of the investigated
signal to more than one class. Due to the different classification strategy applied by the
neural network method, it is reasonable to use the latter method additionally to one



92

Z. RANACHOWSKI and P. RANACHOWSKI

of the linear classifiers. According to the investigation described above, both linear and
non-linear strategies resulted in approx. 78 % of right vector recognition, which seems to
be sufficient for the source identification and the related classifying procedures.
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ULTRASONIC AND THERMODYNAMIC EFFECTS OF SELF-ASSOCIATION
OF ALIPHATIC ALCOHOLS IN CYCLOHEXANE
III. SECONDARY AND TERTIARY BUTANOLS

K. BEBEK, E. GRZYWNA and S. ERNST

Silesian University, Institute of Chemistry,
(Szkolna 9, 40-006 Katowice, Poland)

The ultrasound velocities in and densities of mixtures of cyclohexane with 2-butanol

{:1,'1 sec —C4HoOH + (1 — z1)CsHyz }
and with 2-methyl-2-propanol

{z tert — C4HgOH + (1 — z1)CsHy2}
have been measured at 293.15 K. The adiabatic compressibility coefficients, 3, = —1/V(8V/0p)s,
and compressibilities, s = —(8V/8p)s, as well as the excess molar volumes, V¥, and free in-
termolecular lengths, L, were determined in the whole concentration range for both the systems
studied. Using the measurement results in connection with literature data, the isothermal com-
pressibility coefficients, 5 = —1/V(8V/8p)r, and isochoric molar heat capacities, C, for the
pure components were calculated. The above values were used to estimate the excess adiabatic
compressibilities, =2, of the mixtures under test accoring to the thermodynamically rigorous
definitions recommended by Benson er a/. The dependences of those excess functions on the mix-
ture composition, reproduced by the Redlich-Kister equations, were compared and discussed in
terms of the free intermolecular length and other factors affecting the self-association of alcohols
(molecular geometry of the hydro-carbon chain and position of the OH group).

1. Introduction

Solutions of aliphatic alcohols in cyclohexane have been the subject of detailed studies
in our laboratory. The thermodynamic and acoustic properties of binary mixtures of
isomers of primary butanols and primary and tertiary pentanols with cyclohexane as a
common component were reported in our previous papers of this series [1, 2]. From
the results, in connection with the literature information, it could be concluded that the
volume and compressibility effects of mixing of alcohols with cyclohexane are determined
mainly by the intermolecular hydrogen bondings of the alcohol molecules (i.e. by their
self-association potential) that result in molecular aggregates of different lenghts and/or
branching of the alkyl chains, these factors determining predominantly the space-filling in
the solution. In particular, it has been found that the length of the hydrocarbon chain and
the position of the OH group are also the main factors determining the self-association
capability of the aliphatic alcohols [1-5] and that the formation of alcohol oligomers
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through hydrogen-bondings may be inhibited by steric hindrances and/or by the physical
dipole-dipole interactions between the monomers and multimers as well as by structural
changes of the non-polar solvent accompanying the solvation process [6, 7].

In order to complete the previous results, we report in this paper the excess molar
volumes, V' ¥, excess adiabatic compressibilities, xZ, and free intermolecular lengths, L,
for binary mixtures of cyclohexane with 2-butanol and 2-methyl-2-propanol at 293.15 K.

The molar volumes, V, and the adiabatic compressibilities, ., as well as the free in-
termolecular lengths, L, for the pure components (except those of 2-methyl-2-propanol
which at 293.15 K is a solid) and mixtures were obtained from density and ultrasonic
velocity measurements. Studying both the mixtures of alcohols with the rather inert
non-polar solvent (cyclohexane), we focused our attention on the possible multimeriza-
tion of the alcohols by intermolecular hydrogen bondings and other factors determining
their self-association as well as on the solvation of the alcohols.

2. Experimental

2-Butanol and cyclohexane (POCh Gliwice, Poland, analytical grade) were stored over
molecular sieves (POCh Gliwice, type A3 and A4) and were partially purified by fractional
distillation. The purified liquids were refluxed over calcium oxide to remove residual water
and degassed under vacuum. The removal of water was checked by measurements of the
densities and refractive indices (2-butanol: 806.8 kgm~3, 1.3961; cyclohexane — product
No. 1: 778.3 kgm™3, 1.4265; cyclohexane — product No. 2: 778.8 kgm~3, 1.4265).

2-Methyl-2-propanol (UbiChem Eastleigh, England, analytical grade) was used with-
out further purification (its freezing point was about 26° C, the water content was specified
to be less than 0.05%).

The binary mixtures were prepared by mixing weighed portions of the pure com-
ponents immediately before the measurements. The error in the mole fraction of the
binaries was less than 3 x 105,

The densities of the 2-butanol/cyclohexane system were determined by the Kohlrausch
method described in [1]. The temperature fluctuations in the sample cell did not exceed
+0.01 K and the accuracy of the density determination was estimated to be better than
0.1 kgm~>. The densities of 2-methyl-2-propanol/cyclohexane system were measured py-
cnometrically (bicapillary pycnometer, details can be found in [8]) and by using a vibrat-
ing tube densimeter (MG 2, Unilab). The temperature was (293.15 + 0.01) K in both
cases. The results obtained by these two methods were compared with each other (the
differences did not exceed +0.03 kgm~2) and the accuracy was assumed to be better
than 0.05 kgm—3,

All the weighings, ie. those before mixing the components and during the density
measurements, were made by an analytical balance WA-35 (ZMP Gdansk), with the
resolution of 10~° g, and reduced to vacuum.

The ultrasound velocity measurements were carried out by the sing-around method
using an equipment designed and constructed in our laboratory (the ultrasonic group
velocity was measured at a frequency of about 4 MHz) [9, 10]. Purified water (electrolytic
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conductivity 1.8 x 1074 Q~Im~! at 293.15 K) was used as standard for calibration and
the ultrasound velocities in water were calculated from the polynomial of DEL Grosso
and MADER [11]. The precision of ultrasonic velocity measurements depended mainly
on the difference between the measured velocity and that in water used as standard
for calibration and varied from 0.05 to 0.30 ms~!. The sample cell was kept in a water
bath and heated by a proportional-integrating temperature controller (Unipan 660) and
cooled by water from another thermostat. The temperature deviations did not exceed
+0.005 K. The accuracy of the ultrasound velocity measurement was estimated to be
better than 0.5 ms~! [9)].

3. Measurement results

The ultrasound velocities in and the densities of both the binary liquid systems were
measured at 293.15 K. The 2-butanol/cyclohexane system was investigated in the whole
concentration range and the 2-methyl-2-propanol/cyclohexane one only up to 0.9113 be-
cause of the phase transition occurring at higher alcohol concentrations. Therefore the
corresponding numerical values of the ultrasound velocity and the density for the pure
2-methyl-2-propanol were estimated by a best-fit extrapolation procedure.

The measured ultrasound velocities and densities together with those extrapolated
for 2-methyl-2-propanol are given in Table 1.

Table 1. Ultrasound velocities and densities for the butanol (1) + cyclohexane (2) mixtures at 293.15 K.

zy ¢ [ms—1] o [kgm™3] T ¢ [ms—1] o [kgm—3)
{z1sec —C4HoOH + (1 — wl)ngHn} {zy tert — C4HoOH + (1 — z])C‘gHu}
0.0 1281.0 778.8(8) 0.0 1281.6 778.3(3)
0.0032 1280.3 778.7(2) 0.0037 1280.2 778.3(3)
0.0062 1279.1 778.7(6) 0.0066 1278.8 778.1(9)
0.0092 1277.8 778.6(4) 0.0083 1277.9 778.0(9)
0.0114 1277.0 778.6(4) 0.0097 12773 778.0(3)
0.0374 1270.3 778.6(3) 0.0202 1273.6 777.9(7)
0.0585 1266.1 778.5(6) 0.0301 1270.5 777.6(5)
0.0877 1261.3 778.9(1) 0.0632 1262.2 777.3(3)
0.1273 1255.6 779.1(7) 0.0922 1256.1 777.3(3)
0.2814 1237.9 781.3(1) 0.1221 1249.5 777.0(1)
0.5047 1229.6 787.5(3) 0.2616 1222.2 776.5(2)
0.8252 1225.8 799.3(2) 0.5263 1177.3 776.9(8)
1.0 1231.9 806.8(4) 0.8149 1153.7 781.3(7)
0.9113 1146.9 782.7(5)

1.0 1144.5* 784.1(7)*

* extrapolated values

The molar volumes, V, and excess molar volumes, V ¥, of the pure liquids and mix-
tures were calculated from the measured densities, p, by the following equations:

V = (21 M) + 22M3)/ p, (1)
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Vo= VeV, @)

where x is the mole fraction and M the molar mass of the mixed components (the
indices 1 and 2 refer to the aliphatic alcohol and to the cyclohexane, respectively) and
V4 denotes the molar volume of the hypotetical thermodynamically ideal mixture:

Vid = $1V1 + $2V2 : (3)

The adiabatic compressibility coefficients, /3,, were calculated from the measured densi-
ties and ultrasound velocities, ¢, by the Laplace equation:

Bs = 1/(ec?) 4
and have been used to determine the isentropic compressibilities (k, = —(9V/dp),):
K, =V0,. (5)

The isothermic compressibility coefficients, r, and the molar heat capacities at the
constant volume, C,, for the pure components were calculated from the following equa-
tions:

Br = B, +*VT/Cy, (6)
C, = Cpﬁs/ﬁT (7)

using the coefficients of thermal expansion (o = 1/V(9V/dT'),), estimated from the
temperature dependence of density data (measured at 293.15 K and available in the
literature for neighbouring temperatures [12]) and the isobaric heat capacities, C, taken
as well from literature [13].

The values calculated for the pure components from Eqgs. (6) and (7) together with
the coefficients of thermal expansion and the isobaric heat capacities (taken from [13])
are collected in Table 2.

Table 2. Isothermic compressibility coefficients, isochoric and isobaric molar heat capacities
and coefficients of thermal expansion for the pure components at 293.15 K.

cyclohexane sec —C4HoOH tert — C4HoOH
Br [Pa~1] x 1012 1091.1 963.7 1191.2
Cy [Imol~1K—1] 1122 168.5 183.9
Cp [Tmol~1K~1] 156.5 198.8 225.0
o [K1] x 10° 138 1.01 1.33

The excess isentropic compressibilities, £Z, were calculated using the following rela-

tion: .

"i,E ==y = Vldﬁ:da (8)
where the adiabatic compressibility coefficients related to the ideal mixtures, (39, as well as
the corresponding values of the isothermic compressibility coefficients, 3%, were obtained




ULTRASONIC AND THERMODYNAMIC EFFECTS 97

from the thermodynamically rigorous definitions recommended by DOUHERET et al. [14,
15] and BENSON et al. [16]:

pi. = B — (aPVYT/CY, )
B = (1/VY(@1ViBri + z2Vafr2), (10)

where o/ and C} are given by:

Il

a = (1/V¥9)(z1Vien + 22V2), (11)
C}ijd = xiCp,l + Isz,Z- (12)

Thus, the excess molar volumes as well as the excess adiabatic compressibilities have been
estimated using the states of the pure components under the measurement conditions
as standard states. In this way a common reference state has been chosen for all the
quantities determined.

According to JAcoBsoN [17], the free intermolecular lengths, L, were obtained, based
on the relation to the adiabatic compressibility coefficient, from the following relationship:

ﬂs = kﬁLz‘qa (]3)

where k; is an empirical constant slightly dependent on the temperature and given for
associated and nonassociated liquids in [18].

Table 3. The A; parameters and mean standard deviations s of the least squares fit by Egs. (14} and (15) for
the butanol (1) + cyclohexane (2) mixtures at 293.15 K.

F or FE Ay ! s | s As i As I i
{z1sec —C4HoOH + (1 — z1)CsHpz }
V [mPmol—!] x 10° 108.11 -13.84 —2.48 - - 0.02
Bs [m3N-1] x 1012 783.1 339.1 —746.6 -747.5 —-306.3 0.22
ks [m*Pa~lmol='] x 10'® 847.5 202.5 —507.4 209.3 - 0.58
L [m] x 1012 54.31 33.48 —50.73 20.93 - 0.07
VE [m*mol—!] x 107 22.24 12.96 6.07 1.81 - 0.04
xZ [m*Pa—!mol—1] x 101 6.32 7.99 9.18 0.81 - 0.03
{zytert — C4HgOH + (1 — x1)CsHyz }
V [m*mol~!] x 10% 108.15 -11.52 =217 - - 0.01
Bs [m*N—1] x 1012 784.1 351.2 -150.5 -11.6 = 0.45
ks [m*Pa~'mol~!] x 10 848.2 279.5 —145.8 ~-147.1 85.4 0.51
L [m] x 10'2 54.25 43.59 —29.89 5.47 - 0.05
VE [mPmol~!] x 107 21.93 —-0.13 -3.78 19.78 - 0.09
xE [m*Pa~!mol~!] x 10V 10.97 -3.11 -23.89 4.55 35.89 0.02
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It was found that the dependences of V, &, and L on the mole fraction of alcohol,
z1, can be satisfactorily represented by simple polynomials:

F=>) Ajz"". (14)

i=l1

They were fitted to the experimental results by the method of unweighted least squares.
The composition dependence of the excess thermodynamic functions, VZ and sZ,
have been estimated smoothing the experimental values by the Redlich - Kister equation:

P = ml(l—m)i A;(1 -2z YL (15)

i=1

The parameters A; of the equations (14) and (15) and the corresponding mean
standard deviations, s, are given in Table 3.

4. Discussion and conclusions

As shown in Fig. 1 the molar volumes of both systems studied decrease monotonically,
although not linearly, with increasing concentration of alcohol, while the densities of the
2-methyl-2-propanol/cyclohexane mixture show a minimum at about z; = 0.25 (Table 1).
Also the ultrasonic velocity in both the binaries decreases as the alcohol concentration
increases, but for the mixtures of 2-butanol, a minimum appears in the alcohol-rich

1.1E-004
5 1.1E-004 N
£ i
;\ _
E -~
-y 1.0E-004 =
- i
o i
E 9.5E-005 —
2 _
% i
5 -
o Q. 0E-005 —
£ = nzdns tert—C,HOH — CeHyz
] et sec—CHOH — CgHyy
8.5E—-005 T T T 7T T 7T 7T T T T T T T T T 17T
0.00 0.55 0.50 0:75 1.00

mole fraction of alcohol

Fig. 1. Molar volumes of mixtures of secondary and tertiary butanols with cyclohexane at 293.15 K. Curves
represent the best-fit values calculated from equation (14) with the coefficients given in Table 3.
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region (z1 ~ 0.8). The observed concentration dependences are doubtlessly related to
the complex variations of the thermodynamic properties of the systems under test.

The self-association of pure alcohols, including that occurring in solutions in non-polar
solvents, was discussed rather extensively in our earlier paper [1] in that the stronger
self-association of n-butanol in comparison with that of iso-butanol was emphasized.
Whatever the particular multimeric structures (“open” entities, with simple or branched
multimeric hydrocarbon chains, or “closed” ones, the latters having possibly chains when a
terminal OH group and an intermediate monomer are engaged in the “closing” reaction),
the results of our measurements indicate clearly that the association potential decreases
with increasing branching of the alcohol molecule.

9.5E-014
9.3E-014

9.0E-014

8.8E-014

[ I IR N AR O O A A B O O A B A |

B.SE-014

8.3£-014

8.0E-014

isentropic compressibility, k,/ m> /Pa-mol

EERENEENE NN R BN

7.8E-014 sy terl—CHgOH — CeHy2
-3-3-3-3-4 SSC-CqH‘OH - C.ng
7.5E-014
7.3E-014 T A O N O L
0.00 0.25 0.50 0.75 1.00

mole fraction of alcohol

Fig. 2. Isentropic compressibilities of mixtures of secondary and tertiary butanols with cyclohexane at
293.15 K. Curves represent the best-fit values calculated from equation (14) with the coefficients given
in Table 3.

For the pure butanol isomers, the molar volumes and the free intermolecular lengths,
calculated from Eq. (13), increase in the sequence n — B < iso — B < sec — B < tert -B
and in a very similar sequence (n — B < sec — B < iso — B < tert — B) increase the isen-
tropic and isothermic compressibility coefficients (a similar relation of the properties
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of the n- and tert-pentanols was observed [2]). The isentropic compressibilities of the
sec- and tert-butanols show the same sequence (Fig.2). These sequences may result ei-
ther from the decreasing space-filling ability when the alcohol molecules become more
ball-shaped or from the decrease in the self-association due to steric obstacles. However,
the evidently larger thermal expansion coefficients of the tert-butanol and tert-pentanol
compared to those of the corresponding secondary alcohols indicate a rather important
effect of the formation of hydrogen bonds (self-association) on the properties of the pure
alcohols.

The positive excess molar volumes, excess compressibilities and excess compressibility
coefficients are doubtlessly due to the self-association of the butanol isomers when dis-
solved in cyclohexane: the dilution of the alcohols with cyclohexane results in the rupture
of hydrogen bonds and a diminishing of dipole-dipole interactions between monomers
and oligomers accompanied by positive volume effects [1-3, 7]. However those effects
may be, at least partially, equalized by the increasing space-filling ability and by solvation
processes in that the solvent molecules may become partially more structured [6, 19, 20].

E -
~ ]
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g E
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3] bbb sec—CiHeOH — CaHya
O O o o o o o e S s oy s s s B B
0.00 0.25 0.50 0.75 1.00

mole fraction of alcohol

Fig. 3. Excess molar volumes of mixtures of secondary and tertiary butanols with cyclohexane at 293.15 K.
Curves represent the best-fit values calculated from equation (15) with the coefficients given in Table 3.

For the tert-butanol solutions, the increase in the excess values become more rapid
with increasing cyclohexane concentration and the maxima appear at higher alcohol con-
centrations suggesting a lower capability of self-association of the tert-butanol in com-
parison with that of the sec-butanol (Figs.3 and 4) because of steric hindrances to the
formation of intermolecular hydrogen bonds. Also the mean free intermolecular length
increases slowly with increasing dilution of the sec-butanol (Fig. 5), most probably, be-
cause of the gradual breakage of the butanol oligomers. For the tert-butanol solutions, the
mean free intermolecular length decreases monotonically with the increasing cyclohexane
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in Table 3.
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in Table 3.

[101]



102 K. BEBEK, E. GRZYWNA and S. ERNST

concentration (Fig. 5) because of the more perfect space-filling, while the self-association
plays a negligible role.

From the results of this work and from those obtained earlier [1, 2], it may be con-
cluded that the self-association potential is the main factor, or at least a very important
one, determining the volumes and compressibilities of the pure alcohols and their so-
lutions in non-polar solvents, and thereby also the speed of ultrasound in those liquid
systems.
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Prof. dr hab. Jerzy Ranachowski

The Polish Acoustical Society, founded in 1952, is one of the eldest european acousti-
cal societies. Every year a General Convention of Deputies of this society takes place and
every three years a new management of the Society is elected. In September last year,
the outstanding Polish acousticians, Prof. Dr Jerzy Ranachowski, was elected President
of the Polish Acoustical Society. On this ocasion, it would be worthwhile acquanting the
readers of the Archives of Acoustics with the scientific biography of Prof. Ranachowski.

Prof. Ranachowski was born in 1926, in 1951 he completed his study at the Electrical
Faculty of the Wroclaw University of Technology and also there he took his doctor’s
degree in technical sciences in 1964. In 1976 he was appointed full professor. In the
years 1950-75 he held different scientific and didactic post at the Wroctaw University of
Technology. Since 1975 he has been active at the Instiute of Fundamental Technological
Research of the Polish Academy of Sciences holding of responsible positions; among
other things, he has been assistant manager of this Institute and managing director of
the Acusto-Electronic Centre.

The starting point of the scientific activity of Prof. Ranachowski was research con-
cerning the relationship between the microstructure and texture of ceramic materials
and composites and their mechanical and electrical mechanical and electrical properties.
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Analysing different conventional measurement techniques suitable for this purpose, Prof.
Ranachowski focused his attention particularly on the acoustic ones that provide a great
quantity of information about those properties. However, he has been still active in the
field of materials engineering. It is this junction of materials technology with acoustics
which is typical of Prof. Ranachowski’s research activity.

The research work of Prof. Ranachowski in the 1960s and 1970s concerned mainly the
application of ultrasonics to non-destructive inspection of materials. To his main achieve-
ments belongs the correlation found between speed and attenuation of ultrasounds and
the microstructure parameters of the material under test. From the practical and scientific
points of view, the most important research of Prof. Ranachowski referred to the acous-
tic properties of porous and microporous materials. He succided in developing acoustic
methods of determination of the microporosity parameters of ceramics and the estima-
tion of the usefulness of those materials. He succided in developing acoustic methods
of determination of the microporosity parameters of ceramics and the estimation of the
usefulness of those materials. These methods have been of basic significance in the im-
provement of the inspection of electrical porcelain. Investigation of the interrelationship
between the speed and the attenuation of ultrasonic waves and the mechanical parame-
ters of the tested material furnish the only method providing information of its properties
in the static state. In order to investigate dynamic states of ceramic materials, Prof. Rana-
chowski extended his research towards the acoustic emission (AE). AE signals generated
inside a material, caused either by mechanical loading or thermal stresses, yield a unique
source of information of the progress of cracking and microcracking processes and phase
transitions. A number of his works during the last 6 years have concerned problems of
this kind.

The following achievements of Prof. Ranachowski should be numbered among those
of major importance:

e determination of the crtitical stress and “life-time” of materials and constructions
on the grounds of the AE threshold value,

e complex evaluation of the long-lasting resistance of concrete constructions applying
the AE method,

e application of the AE methods to the utilization inspection of high-voltage,

o connection of the AE method with direct crack measurement technics (DCM) for
the determination of the critical stress intensity factor,

e monitoring of processes occurring in ceramics during thermal shocks by utilizing
AE method,

e developing of AE methods of investigation of electric and electromagnetic attendant
upon brittle cracking.

AE-analyzers constructed under the leadership of Prof. Ranachowski have found wide
application in scientific and industrial laboratories.

Prof. Ranachowski is author of 60 papers published in scientific journals and of 5
books. He conferred 6 doctor’s degrees. The fact that Prof, Ranachowski has been
vice-president of the Acoustical Committee of the Polish Academy of Sciences of the
European Society for Materials Testing has secured a good co-operation of the Polish
Acoustical Society with those organizations.
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The new Authorities of Polish Acoustical Society
elected on 15.10.1996 by the General Assembly of Delegates:

BOARD:

Prof. Jerzy Ranachowski — President

Aleksander Opilski — Vice-President

Roman Bukowski — General Treasurer

Tadeusz Pustelny — General Secretary

Urszula Jorasz, Grazyna Lypacewicz, Aleksander Opilski, Maria Rabiega, Antoni
Sliwiniski — Members

AUDITORS:
Jacek Cieslik, Henryka Czyz, Eugeniusz Soczkiewicz, Zbigniew Wesotowski

ARBITRATION:

Zygmunt Kleszczewski, Tadeusz Powatowski, Eugeniusz Kozaczka

Also the Presidents of all Sections of Polish Acoustical Society are the members of
General Management:

Grazyna Grelowska — Gdansk Section of PAS

Mieczyslaw Roczniak — Gornoslaski Section of PAS

Ryszard Panuszka — Cracow Section of PAS

Marek Niewiarowicz — Poznan Section of PAS

Witold Rdzanek — Rzeszéw Section of PAS

Ryszard Plowiec — Warsaw Section of PAS

Andrzej Jaroch — Wroclaw Section of PAS

101 st AES Convention,
Los Angeles 8-11 November 1996

According to the well established tradition AES Conventions are held twice a year:
in Europe — in Spring, and in America — in the Fall. Within this tradition the 101st
Convention was an unusual one for many reasons. It was held in the Los Angeles Congres
Centre newly rebuilt and perfectly well matched to the Convention requirements. In the
six years since the 89th Convention last graced Los Angeles, the Centre was considerably
expanded and modernized which made it one of the most modern and user-friendly
convention halls in the world.

The huge exhibition area enabled 363 companies, competing on the world audio mar-
ket, to display their products in conveniently arranged booths, More than 18 thousands
visitors were expected to attend this exhibition — the grewatest number ever recorded -
during four Convention days. This was really a great event for the AES.

The Organizing Committee chose the following as a slogan for the Convention “Head
out on the Highway” having in mind the highway of information. The choice was, however,
decided by coincidence of numbers. Namely, a highway passing through the City of Los
Angeles to the North-West bears the number 101, similar to the Convention number. At
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any rate, the domain of electronics and informatics are increasingly tightly coupled and
involved in the further progress of the audio industry, which is now expanding quickly in
a vaste area of sound and vision (multimedia) applications.

The Opening ceremony was very well organized. About a thousand participants gath-
ered in a theatre-auditorium admiring an unusual musical introduction. On a darkened
stage a dozen mute, immobile musicians were holding their brass-instruments, which glit-
tered with reflected hall lights. In one, may be two minutes, the opened microphones
sent to loudspeakers increasingly amplified noise-sounds from the darkness. Suddenly,
the noise stopped, stage lights went on, and the powerful sounds of trumpets, horns,
trombones and tubas, accompanied by kettles, cymbals and drums, began to play an orig-
inal modern composition, recurring to a music signal, which had been presented during
the opening ceremony of the 100th Convention in Copenhagen, by two players using
brass instruments of special construction.

After this introduction, warmly applauded by the audience, followed short addresses
of the AES President Mr Tim Shelton, and AES Director Roger Furness, as well Chair-
man of the 101st Convention Chairman Van Webster. Then, a ceremony of Awards and
Fellowship presentations took place. Seventeen persons received high AES distincitions.
A key address by John Strawn completed the ceremony.

Self-service lunch for all participants was ready in an adjacent hall, seating at one of
the numerous round tables being available for everybody. The opening ceremonies were
so efficiently arranged that Technical Sessions and other program events of the afternoon
could take place without any delays.

The scientific part of the Conference debates, running parallel to the exhibition,
boasted a variety of sessions. First of all, the sixteen Technical Sessions were devoted to
reading and discussing papers contributed and edited, prior to the Convention, as AES
Preprints. The following titles represented the Session subjects (number of papers - in
brackets): Sound Reinforcement (4), Analog Electronics (4), Transducers (7), Musical In-
struments, Acoustic/Electronic Music (4), Sound Perception and Quality Evaluation (7),
Multimedia (4), Networks, Digital Audio, and Music (7), Spatial Perception and Pro-
cessing (6), Signal Processing, Part 1 and 2 (13), Instrumentation and Measurements (6),
Analysis and Synthesis of Sound and Music (5), Recording and Reproduction Systems (4).

The total number of papers was 93 (21 invited and 72 contributed). They were written
by 172 authors and co-authors.

Sixteen other Sessions were devoted to the Workshops. The 69 panelists presented
practical properties of particular techniques, technologies, systems, programs, designs and
processes. These Sessions were especially instructive for those interested in the audio
engineering practice.

Besides the regular Sessions several meetings were organized as Special Events (such
as: An Afternoon with Leo Beranek; Film Sound in Next Millenium; Student Conclave;
Education Fair; AES in Schools; Women in Audio; etc). Among other special events an
organ concert was organized, this deserving special mention.

This concert was delivered by Graham Blyth, renowned organist and technical director
of Soundcraft Company. He presented his recital at the First Congregational Church of
Los Angeles, on November 10, at 8 p.m. All attending were transported from their
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hotels to the Church by several shuttle buses. The Church houses one of the largest
and very interesting pipe organs in the United States. Its description being impossible
here, it may be sufficient to mention the number of divisions (20), ranks (almost 300)
and pipes (above 16 thousand). The magnificient Gothic settings and acoustics of the
Church interior enhanced the sound sensations and added to the grandeur of the music
played. To explore the wealth of possible music styles and registrations attainable with this
instrument Mr Blyth’s program included works by Bach, Schumann, Jongen, Guilmant,
Messiaen and Widor. His organ playing was wery warmly aplauded, and despite the late
night, he was forced to encore several times.

Authors of Convention papers, coming from many countries all over the world, con-
tributed decidedly to the high scientific level of the debates, thus confirming the leading
role of AES Conventions in the world field of audio engineering. It might be interesting
to compare contributions of authors from particular countries. Such statistics based on of-
ficial Convention programs, composed for the last seven Spring- and six Fall-Convention
years, yields the following results:

Authors’ country Total numbers of Papers
1. | USA 366
2. | United Kingdom 198
3. | Germany 197
4, | Denmark 88
5. | Netherlands 79
6. | Poland 62
7. | Japan 60
8. | France 55
9. | Canada 48
10. | Switzerland 23
11. | Austria 22
12. | Greece 22
13. | Russia 20
14. | Finland 18
15. | Sweden 18
16. | Australia 15
17. | Italy 10
18. | Spain 9
19. | Belgium 9
20. | Czechia + Slovakia 9
21. | Hungary 7
22. | Ireland 7
23. | Portugal 7
24. | Yugoslavia 7
25. | Norway 6
26. | China 5
27. | Croatia 5
28. | Korea 4
29. | Malaysia 4
30. | New Zealand 4
31. | Israel 3

32-35. | Mexico, South Africa,
Ukraine, Venezuela at 2
36-40. | Argentina, Bulgaria, Hong-Kong,

Serbia, Slovenia at1
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Theses results show distinctly the role of the Central Europe Region in conceptual
contribution to exchange of ideas animated and supported by AES activities. The to-
tal number of papers from the Central European countries exceeds that from those of
America. The Polish contribution may also be easily distinguished there. At the 101st
Convention it was illustrated by four papers and an organisational participation.

Let us hope that future Conventions, and first of all, the oncoming 102nd Convention
in Munich (22-25 March, 1997) will strengthen the observed tendency towards the growing
activity of several recently organized AES Sections, mostly in Central and Eastern Europe.

Marianna Sankiewicz

The Acoustical Conferences organized in Poland in 1997
(in co-operation with Polish Acoustical Society):

1. XXVI Winter School on Molecular and Quantum Acoustics, 24-28.02.1997, Ustrofi-
Zawodzie, Gornoslaski Section of PAS

2. XXVI Winter School on Noise and Vibration Control, 24-28.02.1997, Ustron-Za-
wodzie, Goérnoslaski Section of PAS

3. Structural and Biomedical Acoustics, 21-26.04.1997, Zakopane, Cracow Section of
PAS

4, International Symposium on Hydroacoustics and Ultrasonics (EAA Symposium, for-
mely 13th FASE Symposium), 12-16.05.1997, Gdynia-Jurata, Gdarisk Section of PAS

5. 7th Spring School on Acousto-Optics and Application, 18-22.05.1997, Gdansk Section
of PAS

6. Highway Traffic Noise, end of May 1997, Bialowieza, Warsaw Section of PAS

7. Fechners Day (Psychological Acoustics), September 1997, Poznan, Poznaf Section of
PAS

8. XLIV Open Seminar on Acoustics OSA’97, 16-19.09.1997, Jastrzebia Gora, Gdansk
Section of PAS

New doctoral thesis in acoustics

,»Characteristics of back scattering ultrasonic signals from the floor of Southern Baltic”
Jarostaw Tegowski, Institute of Oceanology, Polish Academy of Sciences, Sopot
Ph.D. Thesis in marine physics supervised, by Associate Professor Zygmunt Klusek.

Relationships between physical and statistical parameters of acoustic signal echo and
properties and structure of sediments distributed in the Polish economic zone of Baltic
Sea were studied and presented in the Thesis. The results of measurements of the sea
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bottom reverberations of the ultrasonic with-modulation pulse signals of frequencies of
30, 50, 60, 120 and 210 kHz were collected from the board of the rv "Oceania” during
several cruises to Southern Baltic in 1991-1994.

These experimental data were numerically processed and elaborated to withdraw
from the signal these distinctive parameters which were related to the type of bottom
and sediments. The parameters are of physical nature like:

— the pressure reflection coefficient at the water-sediment interface, the integral

— backscattering strength, the duration of reverberation, the attenuation

— coefficient for selected sediment layers and statistical ones like:

— the centre of gravity of the reflected pulse, the normalized moment

- of inertia of the echo, the skewness of the signal envelope.

In the Thesis, also, for interpretation purposes the numerical model correlating de-
pendences between the space distribution of the scattered acoustic field and the statis-
tical parameters of corrugated interface surface taking into account attenuation in the
sub-bottom layer has been developed and discussed.

Main achievements of the Thesis have been presented on a number of drawings
and few maps representing dependences examined and established by the author. In
the majority of cases where only existing geological data allowed to do it the acoustical
characteristics have been compared to the corresponding geological maps of the sea
bottom based on the classical method of direct geological corer data sampling.

Applying the method of cluster analysis to the data sets of averaged acoustic signal
characteristics the author classified them into four groups. The groups have corresponded
to the four centres of clusters and were assigned to a given type of sediments. These
most often met in the Southern Baltic types of sediments grouped in the four classes are:
1) marine clayey silts on silty clayes (depth 70-80m), 2) marine silty clays, silty sands,
3) marine fine sands on till, 4) marine gravel sands and marine sandy gravels (depth
20-30m).

Examples of a good correlation between acoustical signal characteristics and different
types of sediments determined for selected acoustical transects (across Stupsk Furrow
and Southern Middle Bank or in the Gdaiisk Bay) have shown that the method applied
by the author is useful for the sea bottom characterisation.

Antoni Sliwiriski

Obituary

Ph.D Doc. dr inz Janusz Zalewski born on 3 of December 1926 in Brzes¢, died on
August 9, 1966.

Doctor Zalewski completed his engineering studies at Wroctaw Technical University
in 1952, his MSc in 1954, and his Ph.D in 1964. He worked as assistant profesor and then
as associate professor from 1953 till his retirement in 1992 and next worked part-time.
Hew was an outstanding academic teacher, simultaneously carrying out scientific activity
in the field of acoustics. He was an author of over thirty scientific articles. Under his
supervision nine doctoral and large number of MSc thesis were written.
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In the years 1987-1991 he held the post of the Director of the Institute of Telecom-
munication and Acoustics. He was a co-organizer of the Environmental Laboratory of
Noise and Vibration and was its Head in the years 1973-1991.

Doctor Zalewski was repeatedly awarded Rector’s Awards for his pedagogical, scien-
tific and organizational achievements and also received the Award of Ministry of National
Education. .

He was decorated with a Medal of Board of National Education, Knight Cross of
the Order of Poland’s Revival, Golden Cross of Merits and Golden Badge of Wroclaw
University of Technology.
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