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The year 1997 is the 50th year of Professor’s Roman Wyrzykowski, one of the leading
Polish acousticians, scientific activity.

Professor Roman Wyrzykowski is an outstanding personage; his knowledge, that sur-
passes significantly his scientific speciality, makes him an authority both as acoustician
and a human.

He was born on the 5th of September 1922 in Grodzisk Mazowiecki in an intellectual
family. His grandfather was doctor of medicine and his father a violin player (he even
took his degree from an academy of music) and a lawyer, so, when he was employed in the
Bank of Poland, the family moved to Warsaw. His mother graduated from a Pedagogical
University and became a physicist.

The affiliation to the intelligentsia meant that the parents of Professor Wyrzykowski
paid special attention to his education and his good knowledge of languages. Roman
Wyrzykowski himself graduated from the Zamoyski Gymnasium in Warsaw which at
that time, as well as today, was recognised as one of the leading schools in the city.
He took his secondary-school certificate after completing on the study in clandestine
classes. Before the Second World War had begun, a decision, which reflected his parents
expectations, was made to base young Roman’s career on versatile studies combinning
physics and technical knowledge.

The events of the Second World War had a great influence on his life. He fought
in the conspiracy, took part in the Warsaw Uprising as soldier of the Home Army, was
seriously injured and, in consequence, lost his leg. In 1947, under supervision of prof.
Soltan, Professor Wyrzykowski took his first science degree at the Warsaw Institute
of Technology situated at that time in L6dz (Warsaw was at that time a completely
destroyed city); this degree is an equivalent to the nowadays’ Master of Engineering
degree. He started working at the Warsaw University together with his colleagues, at
that time engineers, Marian Danysz, Zbigniew Wilhelmi and Olgierd Wolczek, a team
of scientists interested in physics and completed by prof. Soltan for starting research on
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nuclear physics. It is worthy of mentioning here that during the first hydrogen bomb test
on the Bikini Atoll (on the Pacific Ocean) a group of outstanding physicists, including
professors Pienkowski and Soltan, was present there watching the test from a ship 16
miles away from the island and being protected only by dark glasses. None of them lived
after that longer than few years.

Roman Wyrzykowski, after he had won the contest for a researcher post at the
Industrial Chemistry Institute in Poznan, became head of the ultrasound laboratory in
which the production of sirens and strong acoustical field generators has been set up.
This way he became interested in acoustics. In 1951 he was dismissed from his work and
accused, on the grounds of the infamous clause 49, of concealing in his CV the affiliation
to the military college of the Home Army.

Between 1952 and 1956 he was lecturer at the Department of Theoretical Physics
at the Adam Mickiewicz University in Poznan, working first with prof. Szczeniowski,
later with prof. Kwiek. In the years 195661 he was assistant professor at the Physics
Department of the Institute of Technology in Lédz.

For the first time he presented his thesis for the candidate of science degree (now the
PhD degree) in 1957. His referees had to fight a real “battle” in the Central Qualifying
Commission for the acceptance of his thesis, however the opinion of the Commission
was negative. At the same time, a paper presenting a solution to the problem that was
subject of Professor Wyrzykowski’s thesis was published in one of the American journals;
this fact could not have been known to Professor Wyrzykowski at that time. In 1960,
the title of Doctor of Technics was conferred on Roman Wyrzykowski by the Board of
the Communication Department of the Warsaw Institute of Technology basing on the
thesis “The near field of a rectangle”. The degree of assistant-professor was given to
him already in 1963 by the Board of the Division of Communications of the Technical
University of Wroclaw, in virtue of the dissertation “The influence of the shape of the
acoustic pulse on the shape of a wave generated by an acoustic siren”. In the years
1961 - 1966, he was employed at the Institute of Physics of the Technical University in
Wroctaw and since 1966 he has worked at the Pedagogical University of Rzeszéw being
elected there head of the Physics Department, later he became head of the Acoustics
Department and finally Director of the Institute of Physics. After the martial law was
declared in 1981, he was relieved from his post of Director of the Institute of Physics
and sent to an internment camp. This post was given back to him in consequence of
the investigations of the Senate Commission for martial low victim affairs and was on
duty again in the years 1990-1992. In 1973 he received the title of associate professor,
however, he has not received the title of full professor until 1991 because of political
reasons. In 1992 he retired, but even today he is still active in scientific work publishing
papers with his younger colleagues, often the previous students or promoted doctors.
He still gives lectures and carries on seminars for students preparing their thesis for the
Master of Science degree.

His interests concerned mainly theoretical acoustics, especially the theory of diffrac-
tion and its application to the generation of strong acoustic fields and noise control.

Professor Wyrzykowski created his own school of theoretical acoustics inventing a new
mathematical approach applying the methods of statistical physics. He is the author of
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about fifty scientific papers that are well known both in Poland and abroad. Due to his
scientific activity, many new developments, designed to reduce noise in workshops and
factories, have been created and installed.

Professor Wyrzykowski was many times representative of polish science at acoustical
congresses abroad, for example at the biggest one — the International Congresses on
Acoustics in London in 1974 and in Madrid in 1977, a couple of times he participated
in conferences in Germany, Hungary, France and Switzerland. During his professional
career he has been a member of the French Acoustical Society, the Polish Acoustical
Society, the Polish Physical Society and also of the Committee of Acoustics of the Polish
Academy of Sciences. In 1973, thanks to his efforts, the division of the Polish Acoustical
Society was established in Rzeszéw and Prof. Wyrzykowski was elected its chairman for
many succeeding terms of office; he was also active in the Ecology Club in Rzeszow.
His younger friends have always felt to be supported by him, by his knowledge and
experience. He has given lectures on many fields of theoretical physics and advanced
mathematical methods for physicists. The wide range of his didactic activities led to the
preparation and issue of many monographic books and textbooks. A striking feature of
his books and publications is the intelligible manner of presentation of even the most
difficult problems.

Under his supervision some hundreds of students received their Master of Science
degree. He promoted twelve Philosophy Doctors (PhD); three others, because of some
formal reasons, were confided to someone else’s supervision. He was a reviewer of about
40 thesis for the PhD degree and of two thesis for assistant-professorship and wrote
one review in the procedure of conferring the title of full professor to one of his former
students.

The papers and researches made by him or inspired by him deal with the theory of
diffraction, acoustical coagulation and high efficiency sirens.

On the occasion of his 50 scientific activity jubilee, a circle of his colleagues would
like to express their admiration. We share a very common opinion — he is an outstanding
acoustician. For many years we have had the opportunity to admire his accomplish-
ments. This is why we feel obliged to tell a few words about his personality which had
such a great influence on the interests of many young acousticians and filled them with
enthusiasm for scientific research. He never gave up watching carefully the careers of
his students, taking interest in their achievements, encouraging, making suggestions and
raising spirits. He has been always happy about his pupils’ successes, the “acoustical
children and grandchildren” as he usually calls them.

Professor Wyrzykowski has always taught us a beautiful style of giving lectures,
introduced us into his own researches and encouraged to new projects carried out under
his mastery supervision.

The scientific and didactic activities are not the only passions of Professor Wyrzy-
kowski, he is interested in literature, music, history and speaks several languages fluently.
Travelling, connected with his professional activities, is also a great passion of his life
giving him opportunity to meet interesting people and other scientists. Intelligence,
good manners and diligence are the features he considers to be the most valuable and
virtue.
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Professor Wyrzykowski is always hopeful, very elegant, natural and stylish in his man-
ners. We would like to express our congratulations and wish the continuation of scientific
work to be always a source of happiness and satisfaction to Professor Wyrzykowski.
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MODEL OF AN ACOUSTIC SOURCE WITH DISCONTINUOQUS OPTIMAL ELEMENTS

A. BRANSKI

Institute of Technics, Pedagogical University
(35-310 Rzeszéw, Reytana 16a, Poland)

A new multi-elements model is considered. This model is composed of a sequence of
discontinuous elements. They are constructed basing on the zeros of the Tchebycheff’s
polynomial. In this case, the discontinuous elements, and consequently the discontinuous
model, are obtained. Such a model is particularly useful for modelling a source with corners
and arbitrary boundary conditions.

It has been proved that the new model is of better quality than other ones applied in the
BEM up to now. To confirm this conclusion, the error of the new model and their acoustic
fields have been compared with those of different other models.

In order to clearly demonstrate the advantages of the new model, a plane and fully
axisymmetric source has been taken into account, however the idea of the model with
discontinuous elements can be applied to more practical problems.

T;

We(z)
Mw;n41

]

vy

Pq(z)
M?’;nj,nij-}-l

Notations

nodes, to model My, 41; i =0,1,...,n,
polynomial of degree g,
one-element model of degree ¢ with n + 1 nodes; ¢ = n,
break points, j-subinterval (j-element) € [pj_1,p;), to Mp;nj,n‘.j_,_l; 322 13200y
nodes separately numbered on each element, to model M'P‘v"jv"sﬂ‘l; i=1,2,..n4,
piecewise polynomial of degree ¢,
n;-elements model of degree g with n;; + 1 nodes on each element; ¢ = maxn;;,
J

given any function, interpolating function,

wave number,

Bessel function of zero order,

infinite space solution of the Helmholtz equation for the point source [16] p. 641,
n-th divided difference of the function f(z) at the nodes =;, (3], (8] p. 193,

finite product, [3], [8] p. 193,

radius of the membrane,

from mathematical point of view.

1. Introduction

The first step of BEM is the discretization of the source boundary into elements [14]
(boundary = geometry and acoustic variables defined on the geometry). Next, applying
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the interpolation theory, the model of each element source is built. From the mathemat-
ical point of view, the model of the source constitutes the piecewise polynomials [11, 12].
Hereafter, for simplicity: model of the element = element, model of the source = model.

Because the elements may be connected in an arbitrary manner, the model, in general,
is a discontinuous function at singular points, i.e. at the points of discontinuity of the
physical variables and/or those of discontinuity of the geometry (corners). However,
the BEM requires, at these points, the existence of derivatives of the boundary [7, 17].
Under these circumstances the derivatives may not be determined and they require
special attention.

Two main techniques to circumvent to the singular points are proposed:

e by duplicating the singular point with a small gap between [15, 17]. However, the
problem arises how large the gap should be to ensure a good quality of the model,

¢ by using discontinuous (nonconforming) elements in which the nodes are shifted
inside the elements; in order words, the extreme nodes are not placed at the borders
of element [7, 9, 15, 17]; the problem arises how large the displacement of the node
from the corner should be. In [15] it was proposed to take a distance of 1/4 and 1/6
of the element length for linear and quadratic elements, respectively, but this was not
theoretically justified.

The aim of this work is to construct a model with optimal elements denoted by
Mp.o_n, i.e. optimal in the distribution of the nodes on each element. This was achieved
by applying the zeros of the Tchebycheff’s polynomial as the nodes; an idea of such
elements may be found in [3, 4, 5]. The Tchebycheft’s zeros are exactly distributed.
Such a model consists of a set of discontinuous elements. The new model turned out to
be better quality than other known models. To confirm this conclusion, the following
quantities have been calculated: the error of the models, their directivity functions and
the acoustic pressure near the boundary.

Two comparative models were taken into account: a one-element model of higher
degree and a multi-elements continuous model with evenly spaced nodes on each element.

For simplicity of the calculations, a plane axisymmetric membrane has been chosen
as the source.

2. Interpolation theory

Let f(z) be any given function. It is required to construct an interpolating func-
tion, f(m), which satisfies any (here Lagrange’s) interpolation condition, i.e. f(nodes) =
f(nodes).

In this paper two forms of f(z) are presented:

e a polynomial form; f(z) = W(z),

e a piecewise polynomial form; f(z) = P(z).

The W(z) and P(z) are two standard models for the f(z) function.
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2.1. Polynomaial interpolation
Let A be any partition of the interval [a, b], such that
A, a=2g <81 <" <Bj—1 <Zi*-*Tan=0> (2.1)

and the set of nodal values is {f(z;)}g = {fi}3-
One desires to find a g-degree polynomial W, (z) which satisfies the condition:

f@) =Wlz), q=n. (2.2)

There are several ways to represent an interpolating polynomial. It seems that the New-
ton form is the most efficient one [1] p. 3,

Wy(z) = Z fo..iPi(x). (2.3)
i=0
The interpolating polynomial Wy (z), among the nodes z;, is not identical with the
function f(z). Therefore, one defines the error of interpolation as follows:

Ew.ni1(z) = f(z) - Wq(m)' (2.4)

This error could be exactly expressed by one of the three formulas, [11] p. 118, but the
most known one is

f{"+1)(IC)

(n+1)! wt1(z),  ze € int(z, To, 71, .. ., Tn). (2.5)

Ewmn+1(z) =
The value Ey.,+1(z) cannot be calculated because f (n+1)(z,) is unknown. Therefore
two estimations of E,n41(z) are used. The first one is the estimation at the point z
and the second one the estimation over the interval [a, b]. They are given respectively by

My ns1
Ewins1(@)lleos < 5 Pars @), (2.6)
where
Ry ne1 = 1 (@)oo = s?pbllf(““)(:c)l, (2.7)
z€E|a,
and -
Epintr < (nf_’:-;)l,mp,nﬂ, (2.8)
where
M nt1 = |Prt1(®)lloo = sup |Prsa(z)]- (2.9)
! z€|a,b]

If the interpolation points are equi-spaced, M nt1 can be computed by the closed
formula, [10] p. 63: :

n+1
D = (b“i_a) (e DY (2.10)
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2.2. Piecewise polynomial interpolation

At first sight it would appear that by increasing the number of nodes, and hence
the degree of the polynomial, better interpolations to the function f(z) should be suc-
cessively obtained. However, in practice, between the nodes at the ends of the interval
[a,b] the interpolating polynomial of higher degree may oscillate quite violently (see
Runge’s problem, [1] p. 22, [11] p. 96). Thus it may reflect not truly the behaviour of the
function f(z).

An alternative approach is to use piecewise polynomial interpolation. Instead of look-
ing for a higher degree polynomial over all the interval [a, b], a polynomial composed of
a sequence of low degree polynomials is constructed that it is valid only locally.

Let A, be any partition of the interval [a, b], i.e.,

Ay a:;.m(,u,l<---<,uj,1<ﬂj<---<,unj:b. (2.11)
Furthermore, let A, be an arbitrary partition of the j-subinterval, € [u;_1, s;), Fig. 1,
Ay: pia S <y < o <Wing <Y <o < S G, (2.12)

and the set of nodal values {f(v:)}o” = {fi}o”, j = 1,2,..,n;, where n;; may be
different on each j-subinterval.

K M
; ® *— ® ——

VO vl s Vi s Vn

ij
Fig. 1. General distribution of the nodes on the j-subinterval.

A gj-degree polynomials Py, (z) and a g-degree piecewise polynomial P,(z) are de-
fined, on each j-subinterval and on the [a, b] interval, respectively,

Pyi(z) = Wy (z), T € [pj-1,14), @ =nij, (2.13)
Py(z) = Py;(z), §=1, Ly, G= mjaxqj , (2.14)

The polynomial Py, (z) fulfils the interpolation condition

E'.ﬂ;j (vi) = f(n) = qu (vi), Vi € [pj-1, 1j), (2.15)
or in the [a, b] interval
fnj,ﬂ;‘j (Vi) = f(yi) = Pq(yi)= vi € [G!., b] (216)

The error of piecewise polynomial interpolation ought to be expressed similarly as
pointed out above for polynomial interpolation. In this case, the error at every point of
the j-subinterval and of the interval [a,b] can be written respectively as follows

Epjny+1(z) = f(@) = Pg;(@), =€ [uj-1,45), (217)
Epinjnii+1(z) = f(z) - Pq(z), z € [a,b]. (2.18)
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Because of the reasons mentioned above, only the estimation of Ep;,, n, +1(z) at the
point  may be calculated, cf. Eq. (2.6),

sy 1@l € 222 1p () (2.19)
g = (ni; +1)! Tkl ’
where
Rynyt1 = [1FP 5D @)oo = sup  |f+)(z), (2.20)
z€[pj_1,45]

|-+ |lc = norm of C[u;_1,u;] space (Tchebycheff norm).
In practice, however, it plays a minor part. T'wo estimations are more important: the
estimation over the j-subinterval and that over interval the [a, b],

mf.ﬂ-.’j*H
1EP;jng+1lle = T 2 I Pmgtls TE€ (-1, 45), (2.21)
iJ .
@P;nj-,n¢j+l = mjax“E'P:j,nU-&-l”co; T € [a,b], (222)
where
Weng+1 = 1Pag+1(@)lloo = sup  [Poy1a(2)]. (2.23)
3 3] J
IEI.“j—]a.ugl
For equi-spaced interpolation points on j-subintervals we have,
Sﬁpmiﬁl == (‘u";—’%_l—) (nij +1)!. (2.24)
ij

With regard to the distribution of the nodes on each j-subinterval, two cases should
be considered: the first one, when two extreme nodes are placed at the ends of the
j-subintervals; vo = pj—1, vn,; = pj, and the second one, when these nodes are shifted
inside; vo > pj—1, Un,; < pj.

3. Models of the source

3.1. Acoustic source

For simplicity, let us consider the fully axisymmetric source, i.e. both the geometry
and acoustic variables are independent of the angle of revolution. Here, the membrane
placed in an infinite baffle is chosen as the source. In this case, the function f(z) may
be interpreted as a cross-section of the source, hence a = 0, b = .

An acoustic field of the source (exact acoustic field) has been described extensively
in Refs. [16] p. 594, [18] p. 187 or [2, 6]; the final expressions for the directivity function
and acoustic pressure near the source are given by,

Q(k,y) = ff(m)Jo(k:rsin'y)mdz, (3.1)
01-‘:, 27

olk, H,85) = ff(z) fG('r')dtp z d, (3.2)
0 0

respectively, where the geometric symbols are depicted in Fig. 2.
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Z

Fig. 2. Geometry of the problem.

3.2. Models of the source

Hereafter, the function f(z) ought to be interpreted as a cross-section of the model.
The error of the model constitutes the error of interpolation, i.e. Eq. (2.4) or Eq. (2.18).
Estimation of the model error on the interval [a,b], Eq. (2.8) or Eq.(2.22), is assumed
to be a direct measure of the quality of the model (see Sec.5.1 below). However, in
acoustics such a measure plays a minor part. It seems that the difference of the acoustic
field may be more useful (indirect measure of the quality, see Sec. 5.2 below).

3.2.1. One-element model Myy. Under the circumstances given above, the model
My is given by Eq. (2.3): My = W,(z) = fu(2). If Eq. (2.3) is substituted into Egs. (3.1)
and (3.2), the acoustic field of Myy is obtained; it is denoted by éw(k, v), pw(k, H,zp).
The error of the model Myy is given by Eq. (2.4) and the direct measure of the quality by
Eq. (2.8). In numerical calculations, the one-element model Myy with equi-spaced nodes
Te; is used as a comparative model. It is marked by Myy.r and z.; — B in Fig.3. All
the symbols ought to be completed by index n + 1; e.g. Mw.Rr.n+1-

3.2.2. Multi-elements model Mp. The model Mp is given by Eq.(2.14): Mp =
Py(z) = fnjnﬁ(z). If Eq.(2.14) is substituted into Egs.(3.1) and (3.2), the acoustic
field of Mp is obtained; it is marked by é'p(k, v), pp(k, H,zp). The error of the model
Mp is given by Eq. (2.18) and the direct measure of the quality by Eq. (2.22).

The multi-elements model Mp with equi-spaced break points p ; (all elements have
the same length) and equi-spaced nodes v, ; is called multi-elements regular model Mp.r
(in Fig.3 pe,; — V and ve ; — W). It is a comparative model in numerical calculations.
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X
Fig. 3. Distribution of the nodes and break points: 1 - Myy,p;5, | = Mp,g;2,3, 2 - Mp,0—_N,2,3-

Under conditions given above, instead of Eq. (2.3), Egs. (2.13) and (2.14), Mp.r may
be expressed by a simpler formula,
ﬂ'l'j
Poy(e) =Y feiPila), @€ [uj-1, 1), (3:3)
i=0
where f,; = f(ve;) and M;(z) are the shape functions; they can be easily found else-
where, [7] p.71. Up to now, this is a fundamental equation applied in modelling the
source in BEM. In this section the additional index n;, n;; + 1 has been dropped to
simplify the notation; e.g. the full symbol is Mp;Rr;n; n,;+1-

3.2.8. Multi-elements model with optimal elements Mp.o_n. The feature of Mp.o_n
are the equi-spaced break points p. ;, but the nodes are the Tchebycheff’s zeros.

Analysing formula (2.8), one can see that the error is a product of two factors. One
of them, My 1, depends on the properties of the function f(z) and is not amenable
to regulation, while the other one Mp .11, is determined by the choice of the nodes z;.
Thus the question of an optimal choice of z; arises so that M P.n+1 deviates less than
any other polynomial on interval [a,b]. This problem was solved by Tchebycheff, [3], [8]
p- 540, who pointed out optimal nodes, here marked as z7 ;. Detailed discussions of the
mathematical aspect of the nodes z7; can be found in (3, 4, 5, 6]. In these papers, zr;
were applied to construct the one-element optimal model.

Hereafter the idea of zp; is utilized to construct a multi-elements optimal model
Mp.o_n and z7; ought to be replaced by vr ;. Note, that the vy ; are non-uniformly
spaced. Furthermore, the external v ; are shifted from the borders of the j-subinterval
and these displacements are mathematically proved.

In the case under consideration the interpolating polynomial can be expressed by
Eq.(2.3). At such a particular distribution of the vr;, this formula takes a particular

form of
ngj

Py;(z) = Zfo,.iﬁ(x), Z € [pi-1, i), (3.4)
i=0
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where ’fn'.j is the Tchebycheff’s polynomial of n;;-th degree (the coefficient of ™ in
Ty, () is equal to unity); for further details, see Refs. [3] and (8] p.540. Next, the
Egs. (2.13) and (2.14) should be used.

In accordance with Eq.(2.5), the error of interpolation by Eq.(3.4) can be found
from a similar formula
fou(z) o
Ep.0-Nijn;;+1(2) = WTWH(W), T € [He,j—1) He,j)- (3.5)
For the same reasons as those after Eq. (2.5), two estimations, quite parallel to Eqs. (2.6)
and (2.8), can be applied,

By
Ep.o-nNiin.+1(x Coo M
” P;0 N‘J.nu'i'l( )IlOO,f = (n‘ij+ 1)|

Ty @ @€ luesrimes)  (36)
where M fmij+1 is expressed by formula (2.6) and

m}' nii+1
||EP;0—N;j,n,—j+1||oo < (n“—_:]_)'gm'l",ngj—fl: 2 € [feiais te i) (3.7)
ij .

The Mr,5,;+1 can be calculated analytically [13], p. 94,
mT,ﬂ.ijJ—l = (,ue,j - #e,j—l)nij+1 2_(27‘{3""1). (38)
The estimation of the error (3.5) over the [a, b] interval can be written as

@'P;O—N;nj.ni,‘-H = m:?x”E'P;O—-N;j.nij+1E|oo » z € [a,b). (3.9)

The Mp,o_ N model is given by Eq. (2.14) via (3.4): Mp,0-n = Py(z) = fnj ni; - Note
that this is a discontinuous model. If Eq. (3.4) is substituted into Egs. (3.1), (3.2), an
acoustic field of Mp.o_ i is obtained that is denoted by ép;o_N(k, v), pr.o-n(k, H,zp).
The error of the Mp,o_n model is given by Eq. (3.5) and a direct measure of the quality
by Eq. (3.9).

The multi-elements model Mp with equi-spaced break points p. ; and nodes vr; is
called the multi-elements model with discontinuous optimal elements Mp.o_n (in Fig.3
He,j — V and Vg = O).

In this section all the symbols should be completed by an additional index nj, ny; +1;
e.g. MP;O—N;ﬂj,ﬂij+1'

4. Numerical implementation

The aim of numerical calculations is to compare the quality of the new model Mp.o_n
with those of other models, i.e. with those of Myy. g and Mp.g. To do this the same total
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number of nodes and/or of the same degrees are assumed, see Fig. 3. To realise the task,
one takes into account:

Mw.R:s — l-element regular model of degree 4 with 5 nodes; the graphs
concerning this model are denoted by short dashed lines marked by 1,
Mp.p23 — 2-element regular model of degree 2 with 3 nodes on each element;

lines 1: short + long,

Mp,0-n;2,3 — 2-element model degree 2 with 3 nodes on each optimal element;
lines 2: short + short + long (bolted).
In all the figures the same kind of lines relates to the same model.

5. Calculations, results, conclusions

As a preliminary check of the quality of the models, the cross-sections of the source
and of the models are shown in Fig. 4; z € [0, z,/4], where z, = 1 is assumed. Inspection
of the figure reveals two conclusions:

o The model Mp.o_n consists of discontinuous elements.

\l\l]li[l|i\|I[lWIIiIITT}IIIIl]iI!

-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
X

Fig. 4. Cross-sections of the source and the models: solid line — membrane, 1 — Mw.Rg;5, | - Mp;Rr;2,3,
2- Mp,o-nN;2,3

Hereby it is quite suitable to modelling the boundary with singular points, see Ref.
[7] p.87, p.237. Furthermore, the displacements of the nodes inside the element from
singular points are exactly determined.

o The model Mp.o—n is more convergent to the source than the others are.
In order to confirm this conclusion, two measures of the model quality are examined.
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5.1. Direct measure of the model quality

As mentioned in Sec. 3.2, the estimation of the model error on the interval [a, b] makes
up a measure of the model quality, Eqgs. (2.8) and (2.22). Here they are plotted in Fig. 5.
As expected, the estimated error of Mp.o_y is less than that of Mp.r. Because the
error estimation on the [a, b] interval is a direct measure of the model quality.
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Fig. 5. Estimations of the errors: line 1 - || Ew,p;5()lloo, 7, 1 = a5, U = [|Ep;rsj,3(2) oo,
1Y = |Bp;Rijslloc, 1Y = €piri2,3, 2 = ||Bpi0-N,j,8(2)lloo, £+ 2} = |BPi0-N3j3llcs 2 = €pio-n;2,3-

e The model Mp,o_n is of better quality than Mp,g.
Note that the estimated error of Myy.p is the least one. This is due to the fact
that Myy.r is a smooth model. However in the present paper, the comparison between

Mp.o_n and Mp.g plays a greater role.

5.2. Indirect measure of the model quality

To confirm the last conclusion, the models are compared in a different manner. For
this purpose one defines:

. AQ(k:'Y) = Q(kv'}‘) = Q(k': ’Y):

e Ap(k,H,zp) = p(k,H,zp) — p(k, H,zp).

These differences may be interpreted as indirect measures of the model quality.

The differences in the directivity functions are presented in Fig. 6. The results clearly
confirm the last conclusion. For a comprehensive study, Figs. 7 and 8 show the differences
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Fig. 8. Difference in the acoustic pressures Ap(k, H,zp) on the line parallel to the radius of the source,
H =0.1zy, k = 5; line 1 - |Apw.ns|, | - |Appiri23l, 2 - |App,o-N;2,3]-

of the acoustic pressures near the surface of the models. Generally, all the results support
the last conclusion. Only in the range k > 20, Fig. 7, the quality of Mp.o_ N is somewhat
poorer than that of Mp,r. However an explanation of this phenomenon is impossible.

The quality of the model with optimal elements can be further improved by applying
an optimal discretization
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The paper presents, basing on the results obtained for the single tone and multitone
excitations, the theory of the white noise propagation in and radiation from a cylindrical
duct. The duct is assumed to be semi-infinite and hard walled, the excitation axisymmet-
rical and with no mean flow.

Solution of the wave equation with adequate boundary condition constitutes a base of
the carried out analysis. It allows for propagation of certain number of wave modes, which
cut-on frequencies are below the excitation frequency. Anyhow, when more than one mode
are present the analysis of the sound field complicates, as it requires the knowledge of
modes complex amplitudes.

To make any quantitative comparison between the theory and experiment possible two
extra assumptions are incorporated into the theory: on the equipartition of the density of
energy between all modes admissible at a given frequency and on their random phase. The
second assumption results in the necessity of describing the acoustical field by means of
the expected value, the variance and the standard deviation of the pressure, the intensity,
the power output etc.

The paper contains the directivity characteristics of the pressure and the intensity and
evaluation of the power output for the one third octave (tierce) band white noise.

1. Introduction

The aim of the presented paper is to extend the theory of sound wave propagating
in and radiating from a circular duct on a case of narrow-band white noise excitation.

The theory of propagation of acoustic waves in a semi-infinite duct predicts that at a
given frequency only some waves can propagate without damping [2, 3, 15]. The quantity
which is the most convenient for investigations on this problem is the non-dimensional
wavenumber, ka, being a product of the wave number k and the duct radius a, and
s0 combining the wave frequency with the duct size. Apart from the plane wave which
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propagates at any ka the occurrence of any higher mode is specified by the so-called
cut-on frequency. Propagation of the plane wave or single higher mode, in a duct excited
with a single tone signal has been considered by many authors, who applied the so-called
time independent form of the velocity potential [11, 25, 26, 6, 8, 9, 13, 14, 22].

In the following we consider a case in which the duct is excited with a narrow-band
white noise. That means that the velocity potential has to be written as a sum over all
allowed modes and an integral over frequencies.

The theory of sound field inside and outside the duct has been a subject of our interest
since long. Especially, we have analysed the far field of a single higher mode by means
of the directivity patterns (pressure, intensity, power-gain function) [17]. Next step has
been to derive the directivity characteristics for an arbitrary superposition of modes,
what has led to a conclusion that directivity strongly depends on complex amplitudes
L.e. on the modulae and phases of the excited modes [18].

That means that a set of numbers representing the modulae and phases has to
be inserted into mathematical formulae to make any predictions about the radiation
characteristics, the power output etc., or comparison with the experimental data possible.

To deal with these drawbacks the model composed of two assumptions [21] is pro-
posed

— the total energy is shared in equal parts between all excited modes,

~— phases are independent random variables with the uniform distribution in the
range [0, 27].

The first assumption, often called “equal energy per mode” has been successfully
applied by many authors [1, 14, 19, 21|, the second assumption seems to be well physically
justified — if there is no knowledge what exactly the phases are the best solution is to
assume them being random [21].

2. Analysis technique and results

2.1. Mathematical background. Solution of the wave equation for the single tone
excitation

Mathematical tools applied to obtain a solution of the problem are rather compli-
cated and include the theory of two-valued analytical functions, application of the Green
function in the cylindrical coordinates, the solution of the Wiener - Hopf integral equa-
tions by means of the factorisation method, the saddle point method etc., so there will
be reminded only in short.

Consider the wave equation for the acoustic potential A®(r,t) = ¢c~20,%(r,t), with
adequate boundary condition given on the duct surface (Fig.1) vy = —9y®|s = 0, and
assume an axisymmetrical harmonic excitation of given frequency w.

First, the solution of the wave equation for a single [ mode propagating towards the
outlet will be reminded - in cylindrical coordinates g, ¢, z, for inside of the duct [26]

JO()'J'IQ/a e—imz 4 Z L . i JD P‘ﬂg/a') eitnz| —iwt (2_1)

b (w,0,2,t) = Rl
1w, 0,2,1) Jo () Jo(ftn)
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R=0.35m
= ANNNNN— 2
Fig. 1. Geometry of the problem.
and in spherical coordinates R, 1, ¢, in the far field outside the duct [17]
pilkR—wt)
Sﬁ(w,R,‘ﬁ,t) = d:('t?) R (2.2)
The incident wave, [ radial mode, described by the first factor in (2.1), propagates
with the radial wave number vy, = /(ka)? — u?/a, where ; is the I-th zero of the

Bessel function J;. Terms under the summation sign represent waves appearing due
to diffraction at the outlet, where R;, is the reflection/transformation coefficient. The
number of admissible modes depends on the dimensionless parameter ka, called also the
non-dimensional wavenumber. The index of the highest mode, which propagates without
attenuation fulfils the condition uy < ka < pn41. For a duct of radius a the cut-on
frequencies w; are equal to w; = couy/a, where ¢g is the sound speed.

In the far field outside the duct the incident [th mode propagates as a spherical wave
modified by the directivity function d;, which in general is a function of R, 9. In the
following we will concentrate on the infinite distance approximation (kR — c0), when
the directivity function, derived by means of the saddle point method, is a function of
only the angle 9 [17] (Fig. 1)

di(9) = —;—ka sindJ; (ka sin 9) F, (ka cos ). (2.3)

The method itself, successfully applied to many acoustical problems, is described
n [12]. Mathematical considerations leading to (2.3), reported in [17, 22], especially
deriving the Fj(w) function, which in fact is the Fourier transform of the discontinuity
of potential ®(p, 2)|,—a+ — ®(0, 2)|p—a— at the duct wall, are rather complicated.
Assuming a unit amplitude of the incident wave we obtain [17]

Li(m)

= @)

(2.4)
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while L (w) are functions which are solutions of the Wiener - Hopf equation [12]‘

e 1/2
Li(w) = (k £ w) [HD (va)Jy (va) ] LEL | eds), (2.5)
i Tw
and
1 f (v
X(w) = ReS(w) = —P f ,(” L (2.6)
m w' —w
Zk
9 i00 ( , )
- _ 2w w(v'a o A
Y(w) = ImS(w) = = /—wz—w’zdw + tw(va)signw. (2.7)
0

P in (2.6) stands for the principal value, w? + v® = k?, while the second term in (2.5)
comes from circuiting the singular point w’ = +w on a semicircle. Functions £2(va) and
w(va) are equal to

2(va) = arg HY (va) + /2, (2.8)
w(va) = 2(va) = 2(pn),  pn <va < pingy . (2.9)
The L (w) function for w = 7, exists only as a limited value for w — +, and is
equal to
( 1/2
ok [ T REE)  edsw, 1=0,
2 i=1 Vi~ k
Li(m) = 4 E 1/2 (2.10)
Uetywe [ i %t n | gsew g,
Hi A, BN
L il

where v = k.

Because of mathematical complexity of the problem a set of numerical programs
has been derived, which enables us to present the reflection coefficients, the directivity
functions etc. graphically and to carry out a thorough analysis of the sound field of
interest.

Previously we assumed a unit amplitude incident wave. As was mentioned before,
the theory foresees and the experiments, in which the power spectra density [1] and the
directivity characteristics [21] were measured, confirm excitation of all admissible modes.
If N indicates the highest Bessel mode and A; is a complex amplitude, we can write the
potential in the form

N
=1 AP . (2.11)
=0
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2.2. The white noise excitation

Basing on the results obtained for excitation with a fixed frequency [21] we will
extend the formulae for the potential, the mean pressure and the intensity on the case
of continues spectrum of frequencies.

For the white noise we obtain

o7 1) = f B(w, 7 1) o(w) dw (2.12)
wEB

where g(w) is the spectral density of energy and B is the band width. In the following
we assume constant spectral density p(w) = 1.
Thus, the acoustic pressure, p = pod;®, can be expressed as

lE ) L f oo 7 B, (2.13)
wEeB
where
gilkR—wt—m/2)
p(w, R,9,1t) —QowIZA w)d;(w, R ﬂ)T
’ N
= Y P(w,R,0)e' vt | (2.14)
=0

is an extension of the formula for a single tone excitation [21].
The pressure real amplitude P, and phase 6, were expressed by the modulus and
phase of the complex amplitude A; = |A4;|ei?t:

Pi(w, R, 9) = Lw|A)(w)|di(w, R,9), 6 =kR+¢ — /2. (2.15)

According to the first assumption, for each frequency w the modulae of amplitudes
are related as follows

Ay(w) Ym (W)

According to the second assumption, for each frequency, phases are stochastically
independent random variables.

Below presented formulae are valid in an infinite distance approximation (kR — 00).

To indicate this the variable R is omitted and we write, for example, I(9) instead of
I(R,9)

y N(w) N(w)
= — PP - . 2.17
10)=5— > F+2 3 APncos(or— dm)| do (2.17)
wEB =0 l<m

Note that the intensity depends on the phase differences between modes of the same
frequency w.
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Note that the same results can be achieved exchanging operation of summation over
some discrete frequencies [20] for integration over a certain frequency band.

For constant power spectral density, choosing the amplitude of the principal mode
(plane wave, m = 0) at the mid-frequency wy as the reference amplitude we obtain

N(\’JJQ) +1

|A0(w)!2_ N( )+1

(£2)" 1 40(wo) . (2.18)

As was mentioned before, the second assumption on the random phase results in
the necessity of carrying out the field analysis by means of the expected value E(),
the standard deviation £() etc. Below, their final formulae for the intensity I(d), the
intensity directivity function s’(9) and the power output P, calculated basing on the
results obtained for multifrequency excitation [20] are presented.

The expected value and the variance [10] of the sound intensity are equal to, respec-
tively

N(w)
E(I(0)) = 2906 f tzgp, (2.19)
weB
and
{ N(w)
war(I(9)) = 5= f S (P P)? do. (2.20)
weB zrér?n

Theoretical results were compared with experimental data for the one third octave
(tierce) white noise with the mid-frequencies fy = 8 kHz and fo = 10kHz.

B
7.08 8.0 8.91 f(kHz)
4 »
] I I
p = 3.83 5.18 5.86 6.52 p2=7.02 ka

Fig. 2. Third-octave passband in the first experiment. Note constant density of energy distribution.

The first band, Fig.2, covers the range of frequencies from 7.08kHz to 8.91kHz,
which for considered duct 0.04 m in radius corresponds to the values of the dimensionless
wavenumber ka from 5.18 to 6.52, so the number of modes remains constant, N(w) = 2,
in the whole band. The second band, Fig.3, lowest and uppest frequencies are equal
to 8.91kHz and 11.2kHz, so the ka parameter changes within the range [6.52 + 8.22],
crossing the third root, us = 7.02, of he Bessel function J;. Thus, the number of modes
excited in the duct changes within the band being equal N(w) = 2 for ka < p» and
N(w) = 3 for ka > ps.
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B
8.91 10 11.2 f(kHz)
EY »
T T T T
py = 3.83 6.52 K2 7.32 8.22 H3 ka

Fig. 3. Third-octave passband in the second experiment.

3. Physical quantities describing the far field

3.1. The intensity and the pressure directivity characteristics

The relative intensity directivity function was defined [20] as the intensity in a given
direction referred to its expected value on the axis (the forward radiation) s’(d9) =
1(9)/ E(I(m)).

The next two formulae present its expected value and the standard deviation [10, 21]

N{w)

> P(w,9)dw

E(s'(9)) = Egg;; el ;,(::) , (3.1)
Y. Pl(wm)dw
wep =0
N(w)

2[ > (P Pn)?dw
e(s'(9) = YRIUW) _ N “CP iim . (3.2)

E(I(9)) N(w)
> P

wEB =0

Defining the pressure directivity function as the pressure in a given direction referred to
its expected value on the axis (the forward radiation) s?(9) = ppms(9)/ E(prms(m)), and
basing on considerations enclosed in [21] we obtain

E(sP(9)) = /E(s'(9)), (3.3)

e(s?(9))

14

%6(31(19)). (3.4)

Theoretical results, calculated with the help of the presented model assuming addi-
tionally equipartition of energy between the modes composing the incident wave, and
their phases constituting, for each frequency, a set of mutually independent random
variables, compared with experimental data are presented on graphs.

Analysing Figs.4—7 one sees that the accordance between theory and experiment is
quite good for the forward radiation, when rays bent from the axis of no more than 30 deg
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E(s"(9))(1 + €), (dashed lines) & being the standard deviation. Stars indicate the experimental data
and bars the measurement errors.
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Fig. 5. Same as Fig. 4, but for centre frequency fo = 10kHz.

are considered (range 150—-180deg on drawings, note that angle 180 deg corresponds to
the forward radiation) and deteriorates for smaller angles. The last effect is especially
visible on Figs.5 and 7, that is for the band with the centre frequency equal to 10kHz,
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theoretical predictions exceeding experimental data. It may stem from the tendency of
the physical system to occupy the state of the lowest possible energy and the fact, that
the directivity characteristic representing the most probable state lies below the line of
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the expected value [24]. Besides all that, the agreement achieved assuming the random
phase is much better than the one applying all-modes-in-phase model, for which the
theoretical values are even bigger. It is evident as the expression in bracket in Eq. (2.17)
Nw) 1°
takes then the form | 55 B
1=0

The inconvenience of applying the methods of the theory of probability results in
better agreement between the theory and experiment.

3.2. The power radiated outside and its space distribution

There are at least three different methods of evaluating the power radiated outside:
integrating the normal component of the intensity over the duct outlet or over a sphere in
the far field outside or integrating as before, but the mean square pressure p?, , divided
by the specific impedance of the environment ggc.

A certain procedure of carrying out experiments corresponds to each theoretical
method. In the first and second we measure the axial I, and radial I components of
the intensity on the duct outlet and on the sphere, respectively, while in the third we
measure the mean pressure p,,,s on the sphere in the far field.

Because of assumed random phases we should compare the experimental data with
the expected value of the power output and the measurement error with the standard
deviation.

In the following we will largely refer to our two previous papers [19, 20] in which the-
oretical and experimental results for the power output for the single tone and multitone
excitations were presented and which contain the detailed description of the three meth-
ods of evaluating the power, the experimental conditions and the discussion of measuring
eITors.

In short, the power radiated outside was derived from the data of

~ the intensity measured on the duct cross-section — Py,

— the intensity measured in the far field outside the duct — Py,

— the mean square pressure measured as previously — P;r;.

In [20] the formulae for the expected value of the power output corresponding to
these three methods were presented. They can be easily extended on the case of the
white noise excitation applying the formulae for the expected value of the pressure (3.3)
and the intensity (3.1) directivity functions and substituting

Pi(w, R,9) = £22 ((ﬁ((;";’fl)lf:’c di(w, ), (35)

calculated from (2.15)-(2.16), (2.18) for |Ag(wo)| = 1.
Focusing on methods applying the far-field relations, which are of our main interest,
two formulae for deriving the power output will be reminded

E(P11) = 2wR:E(I(m)) f E(sD(9))sind d9, (3.6)
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27 R
E(Prp) = gﬂ PE1ms(T)) f 2 sind do. (3.7)

The standard deviation is calculated according to formula ¢(P) = v/'varP/E(P), where

N(w) 2

var(P) = E(P?) — EX(P) = ('”Rz) /Z /Pngsinﬂdﬁ . (3.8)

OoC

exchanging in the expression for the variance [20] summation for integration over fre-
quencies.

Another difficulty which arises when comparing theory with experiment comes from
the fact that the assumptions of the model allow only for determining the relative am-
plitudes of modes and thus we have to incorporate one experimental data into the the-
oretical formulae to derive the so-called scale factor. In the presented analysis a point
on the axis (9 = 180°) served as a scaling point, so we substituted theoretical value
E(I(r)) by I(r) and E(p?,,,(m)) by pZ,,.(m). Tilde over a symbol means, in this paper,
the experimental value.

Discussion of errors carried in [19, 20], which results are valid also in the considered
case, led to expressions for the measuring error and the method uncertainty (the last
stemmed from the assumption on random phase) and allowed for deriving a criterion of
correctness of the proposed model [19]

ALp < Ls, (3.9)

where ALp = |10 log E ('P’)/§| is the method uncertainty, while the total error of the

experiment, in decibels, is equal to Ls = —10log(1 — § — das/1 + ep + &), where E(P')
denotes the expected value of the power obtained by replacing the theoretical value
E(I(w)) by the adequate experimental data I (), P denotes measured power, § — error
in the intensity or the mean square pressure data, while dos denotes error in surface
estimation when approximating the integral by a finite sum. The relative error in the
pressure and the intensity measuring data is assumed to be the same in all measuring
data, not exceeding 0.2, same as the maximum of the surface error.

The experimental results for the power radiated outside, for the third-octave white
noiseband with nominal centre frequency fo = 8kHz and fo = 10kHz, obtained by
means of three methods are depicted in Table 1.

Table 1. Values of the sound power level Lp measured by means of the three methods, estimated
from the theory L E(P') the uncertainty ALy resulting from the applied theoretical model
and the measuring error L.

nominal centre frequency experimental theoretical uncertainty error
fo Lpp | Lepp | Leppy | Leee! ) E(‘P”I) ALppy | ALppyp | Lépppar
(kHz) (dB) | (dB) | (dB) (dB) (dB) (dB) (dB) (dB)
8.0 78.9 | 80.0 | 77.6 80.1 77.2 0.1 0.4 4.1
10.0 81.0 | 80.1 | T76.7 83.5 80.2 34 3.5 4.0
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The Table includes only the method uncertainty ALp and the measuring error Ls
for measurements taken in the far field because the upper frequencies became too big for
the used microphone probe (the two 1/2 inches microphone sound intensity probe type
face to face with the 6 mm spacer in between) what affected the experimental error.

From the results presented in the above table we conclude that the relation ALp < L;
is fulfilled for both tierces and for all measuring methods. As the experimental data
fulfil the criterion of correctness we can say that at least they do not contradict the
assumptions. Similar results were obtained for the single tone [19] and the multitone
[20] excitation.

Many applications demand the knowledge of the space distributions of the energy
radiated from the duct outlet, which is described by the power-gain function, G(9, ¢),
referring the amount of energy radiated into a certain solid angle to the total energy
radiated outside.

For axisymmetrical excitation, according to the definition, we obtain

I(9)

- 2
g(ﬂ) = 47TR ’p_(raE)—' (310)

Experimental results versus the angle 9 are presented in Table 2, pointing at a strong
radiation in the vicinity of the axis.

Table 2. Experimental results for the power-gain function versus angle ¥ on a front hemisphere,
as data for backward radiation were negligible small.

angle | nominal centre frequency | nominal centre frequency
deg fo = 8kHz fo =10kHz
J G g
90 0.50 0.26
95 0.43 0.15
100 0.81 0.18
105 0.81 0.17
110 0.96 0.17
115 1.08 0.24
120 1.38 0.38
125 L7 0.49
130 2.15 0.96
135 1.54 1.01
140 1.23 0.80
145 1.43 0.81
150 1.78 1.34
155 4.23 3.36
160 7.84 8.67
165 10.22 15.06
170 13.95 30.86
175 16.19 43.41
180 18.59 49.84

i

The integrand of G(«, ¢) over the entire solid angle is equal to 4, so the integrand
of (3.7) over the angle 9 is equal to 2. The results obtained from the experimental data,
when replacing integration by summation, are presented in Table 3 and show very good
agreement with the theory. If the experimental data fulfil this condition we can say that
they do not contradict the assumptions.
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Table 3. Experimental results for the power-gain function,
when the theory predicts the value equal to 2.

nominal centre frequency 3 Gi(9)sin9 A9
fo [kHz]
8.0 1.983
10.0 1.953

4. Conclusions and possible applications

The paper presents a certain model for qualitative and also quantitative description
of the narrow band sound field radiated from axially excited cylindrical duct in the ab-
sence of the mean flow. The last two assumptions were set because of some limitations of
the experimental set-up to make comparison with the experiment possible. Nevertheless
the results can be generalised by solving the wave equation with sources. The starting
formulae were derived for the semi-infinite duct and take into account diffraction phe-
nomena at the open end. Thus they are valid for the duct long in comparison to the
wave length and with only one outlet — provided at the other end with sound absorbing
material. These features are found in many duct-like devices, to mention only heating
and ventilation systems, cars and planes exhausts, factory chimneys etc., what makes
investigation on the problem interesting from both, theoretical and practical, points
of view. In the light of the above we expect many potential applications in problems
requiring the knowledge of the directivity characteristics or the power output.

The experimental results presented in the paper show that good agreement between
the theory and experiment has been obtained, what in a way verifies the model we
proposed. Considering the directivity characteristics, the random phase assumption ap-
proaches theoretical predictions to measurement data much better than commonly used
all-modes-in-phase assumption.

Especially good agreement was obtained for the power output, which we found very
promising in applying the circular duct as a reference source. As was shown in Table 1
the power estimated by means of the model and single measurement on the axis in
the far field differs from the one calculated following one of the well known procedures
described above less than the experimental error. There from origins the idea to estimate
the power output basing at only one measurement on the axis.

The paper is considered to be a step forward in deriving a procedure of evaluating, or
at least estimating, the power radiated outside measuring the pressure or the intensity
in only one point. It needs preparation of a set of numerical programs computing the
expected value and the standard deviation along the formulae (3.6), (3.8), (2.15), but
we hope to present it in the next paper.
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PROPAGATION OF SOUND WAVES OF FINITE AMPLITUDE IN A HORN
AT FREQUENCIES BELOW THE CUT-OFF FREQUENCY

T. ZAMORSKI

Institute of Physics, Pedagogical University of Rzeszow,
Department of Acoustics
(35-310 Rzesz6éw, ul. Rejtana 16a, Poland)

An investigation of the wave of finite amplitude in hyperbolic horn with annular cross-
section is described. The fluid in the horn is assumed to be nondissipative. The equation
of the sound wave propagation in the horn is solved for the case of frequencies below the
cut-off frequency. The analysis is given in Lagrangian coordinates.

1. Introduction

The problem of propagation of sound waves with finite amplitude in horns at fre-
quencies above the cut-off frequency was described in the papers [4, 10]. In this work the
case where the input wave has a frequency below the cut-off frequency but her harmonics
have frequencies above that of cut-off is discussed. Harmonics waves are then favoured in
propagation with respect to the fundamental and they can be amplified. This problem is
considered for hyperbolic horns with annular cross-section which are frequently applied
[2, 5-8, 10].

2. Analysis of the propagation equation of wave with finite amplitude for excitation
frequencies below the cut-off frequency

The equation of propagation of a wave with finite amplitude in a horn with arbitrary
shape has the following form [4]:

o [st)
} 2 a |S@)| ¢
T S@) T1+é(’ (21)

sl ororl 5

where £ is the displacement of the acoustic particle, S is the cross-sectional area of the
horn, c is the sound velocity for small amplitudes, a is Lagrangian coordinate, 7 is the
adiabatic exponent, z = a + £ is Eulerian coordinate. Dots and commas in equation
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(2.1) denote differentiation with respect to time and to the coordinate a, respectively.
Equation (2.1) was formulated under the assumption that the horn is filled by a lossless
gaseous medium. In the derivation of equation (2.1) the nonlinearity of the equation of
continuity, Euler’s equation and adiabate equation was taken into account [4].
The following dependence between the cross-sectional area and position of the horn’s
axis determines the family of hyperbolic horns with annular cross-section [8]:
So

S= — cosh(mz +¢), (2.2)

where Sg = wdphg (Fig.1) is the area at the throat, m is the coefficient of flare of the
horn and ¢ is the coefficient of shape of the walls; € € [0, c0).
{

T E

Fig. 1. The longitudinal section of a horn defined by (2.2).

Let us assume that there are no refflection at the mouth of a horn and that a hypo-
thetical annular piston vibrating with harmonical motion is the source of waves at the
throat a = 0:

£(0,t) = k"' Acoswt, (2.3)
where k is the wave number, w is the pulsation and ¢ is time. The dimensionless amplitude
A = 2nM, where M is the Mach acoustic number [11].

It is known [10, 11] that even for relatively high intensity of the sound we have 4 < 1.
Therefore the displacement £ of the acoustic particle has the form of a power series of
the amplitude A:

£(at) =k [A-py(at) + A2 py(at) +...], (2.4)
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where ¢, (a,t), @,(a,t),... corresponds to succesive harmonics. The functions ¢, (a, t),
v, (a,t),... must reduce for a = 0 to

,(0,t) = const,
©5(0,t) = ¢3(0,t) =...=0.

In the case of hyperbolic horns with annular cross-section the functions ¢, (a,t), ¢,(a,t)
fulfil the following equations [10]:

(2.5)

1 =
@] +m[tgh(ma + €)] ¢} + m® [1 — tgh*(ma +¢)] ¢, — A= 0, (2.6)

1 ..
@4 +mltgh(ma + )] @ +m? [1 - tgh’(ma+ )] @o = 56, = $(at),  (27)

where
W(at) = 0,6 Mtgh(ma+5)+@f¢ . Y Piet
’ Y1 e2 171 ge2 k
,m* tgh(ma + €) [1 — tgh®(ma + €)]
+ 7 o
m?2 [1 — tgh®(ma +¢)
— P19 [ % ] (2.8)
Substituting to equation (2.6)
0 (a,t) = ¢1(a)- e (2.9)
we obtain the equation of the first harmonic wave:
2
¢y + mltgh(ma + )] + | —5—— + k*| ¢ = 0. (2.10)
cosh®(ma + ¢€)
For frequencies above the cut-off frequency the solution of this equation is [10]:
b1 (a) By ei-f-{‘(ma-i-e) 3 By e—if(ma+e) , (2_11)
y/cosh(ma + ¢€) v/cosh(ma + ¢)
where B; and B, are constants. K can be presented in the following form:
. 1. @ 1/2
© K= {lczorrf2 ~1 + - [tghe — tgh(ml +5)]} . (2.12)
Here [ is the length of the horn (Fig.1). -
In the case of frequencies below the cut-off frequency K = —ix [9] and the solution
of equation (2.10) can be presented in the form
¢1(a) = ____Bl—ei(maﬂ) + —Bz___e—i(maﬂ’) , (2.13)
cosh(ma + €) cosh(ma +¢€)

where

T PN v
¥ =4 - — - — - : 2.14
X {4 k*m vy [tghe — tgh(ml +s)]} (2.14)
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Subsequently, taking into account the formula (2.9) and considering only the real part
of the solution, the following equation can be obtained for the wave propagating from
the inlet to the outlet:

Bae—X(ma+e) Be—X(ma+e)
wq(a,t) = e e R SO e i, (2.15)

cosh(ma + ¢) y/cosh(ma + €)

The constants Bs and By can be determined from the boundary condition (2.5):
B3 = Vcoshe eX® | By=0 (2.16)

and the formula (2.15) may now be written

coshe .
1) = | ————— e X0, f 217
1(a,) \/ cosh(ma + ¢€) . SHAE (2:30)

With the help of (2.17), the right-hand side of (2.7) can be presented as follows:

¥ = o(a) [l + cos 2wt] , (2.18)
where
e~2Xma cosh e "
o= 4 cosh(ma + ¢) [Dl tgh'(ma-+e)
+ Dy tgh®(ma + €) + D3 tgh(ma + €) + D4] (2.19)
while
15m? 9xm3
i 2T ok
37 _ ao?
s W —mk(y - 2), (2.20)
m’(3x — 2%°)

Dy = 2m~kx + z A
The term v(a, t) is a periodical function of time with pulsation 2w. Therefore the function
,(a,t), as an integral of equation (2.7), has also pulsation 2w. The function ¢,(a,t),
which corresponds to second harmonic is a sum [3]:

@a(a,t) = pqy(a,t) + yp(ast). (2.21)

The component ¢, (a, t) is the general solution of a homogeneous equation coupled with
equation (2.7). In the case where the frequency of the second-order harmonic is above
the cut-off frequency, the function ¢, (a,t) has a form similar to (2.11):

Ci

——cos [2wt — K1(ma +¢€
cosh(ma + ¢€) [ 1 )

P21 =

e A sin 2wt — K1(ma + e)], (2.22)

\/cosh(ma + €)



PROPAGATION OF SOUND WAVES OF FINITE AMPLITUDE 415

where
o 1 1/2
K= {4k2m i [tghs — tgh(ml + 5)]} . (2.23)

The component ¢,,(a,t) is the particula.r squtlon of the equation (2.7) and has a form
similar to the term v (a,t) (2.18):

Pos(a,t) = gla) + f(a) cos 2wt . (2.24)

Introducing (2.24) into equation (2.7) we obtain equations for the functions g(a) and f(a):

m2

9"(a) + m[tgh(ma + €)] g'(a) + gla) = ofa),  (229)

cosh®(ma + ¢)

f"(a) + m[tgh(ma + £)] f'(a) + [ : + 4k2] fa) = o(a). (2.26)

cosh?(ma + ¢)

The solution of the equation (2.25) can be presented in the following form [3]:

g(a) = g2(a) f o(a)da — %gl (a) [o‘(a) - sinh(ma + ¢) da

+ Cg1(a) + C2g2(a),  (227)
where
1
g1(a) = m ) (2.28)
g2(a) = % tgh(ma + ¢). (2.29)

The solution of the equation (2.26) is expressed by
1@ = sa) [ LD da - fy) [ LT da v Oufs(a) + Cafale), (230

where
cos [K1(ma + ¢)]

fila) = ey i (2.31)
]

sin[Ki(ma+e¢

~—

—

fa(a) = /cosh(ma +¢) (2]
Wia) = —2t (2.33)

cosh(ma +¢)
Finally the displacement of the acoustic particle in the hyperbolic horn with annular
cross-section, for frequencies below the cut-off frequency, can be presented as follows:

E(a,t) = k7 Apy(a,1) + k71 A [z (a,) + g(a) + f(a) cos 2], (2.34)

where ¢, (a,t), @4, (a,t), g(a) and f(a) are expressed by formulas (2.17), (2.22), (2.27)
and (2.30), respectively. The constants Ci, C> can be determined from the condi-
tion (2.5).
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3. The exponential horn with annular cross section

In this important particular case ¢ — oo and the formula (2.2) has the following
form:

S = Spe™*. (3.1)
The cut-off frequency for the exponential horn is [4]
mc
o B 3.2
fo= 2 (32)

The solution (2.17) of equation (2.6) for the frequencies below the cut-off frequency is
simplified to the form

my,/m2 2,
@ (a,t)=e (2+ - k) coswt . (3.3)

The equation (2.7) for the second harmonic is
)
Py +mpy — C_2<P2 = Y(a, 1), (3.4)

where the right-hand side of this equation has the following form:

W(a,t) = {N [(7 + 1)k -”;—2] +2 [(5 - T;]} e—(m+zw)a1+cTos2wf, (3.5)

2
N=mlimx=1/> - k2. (3.6)
£—00 4

The particular solution of equation (3.4) can be presented in the following form:

Here

¢22(a,t) = [C + D cos 2wt] e~(m+2N)a (3.7)

The coefficients C' and D can be found by introducing ¢,,(a,t) into equation (3.4):

5 _ 2.2
%N (v + Dw?e — m?*c®] + mc (-—4—’19.)2 - ﬁzli)
2 3.8
¢ 2mwcE N 4+ m2we? — 4w3 ! (3:8)

_ 2.2
—;—N [(y + Dw?c — m?c®] + me (5—4—'}@2 - %)
= . (3.9
b 2mwe? N + m2wc? iy

Note that for a frequency f < f.

m

C>D~——. 3.10

yP (3.10)

In the case where the frequency of the second harmonic is above the cut-off frequency,

the general solution of a homogeneous equation coupled with equation (3.4) has the
following form:

¥a1(a,t) = Pe™™ + Qe ™%/2 cos(2wt — Nya), (3.11)
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where

" m?2
Ni=m lim K; = /4k? — — . (3.12)
£E—00 4

The sum of (3.7) and (3.11) represents a solution of equation (3.4). Next, from the
boundary condition (2.5), the constants P and @ can be found. Thus at a =0

@21 (0,8) + (pg0(0,¢) = P + Q cos2wt + C + D cos 2wt = 0. (3.13)
This condition is fulfiled at all times when
P=-C, Q=-D. (3.14)

Finally, for excitation frequencies below the cut-off frequency, the displacement of the
acoustic particle in the exponential horn takes in the second approximation following
form:

§(a,t) = k-lAe"‘(%q'i'N)ﬂ coswt + ku-lAZ{ce*ma (EAZNG & 1)

— De~7e [cos (2wt — Nya) — e~ (B+2N)2 cog 2wt] } (8.15)

It can be noticed that in above formula the term
k~1A2C e™e (e72Ne — 1) (3.16)

occurs. This term is independent of time and signifies that during the acoustic motion,
a layer of air inside the horn oscillates about a mean position which is not its position
of rest but is displaced in the direction of propagation of the wave.

By differentiating equation (3.15) with respect to time the vibration velocity of a
particle can be obtained. The vibration velocity is a sum of two components: the first
one is the term with pulsation w (first harmonic):

v = —AcelB+N)e sinwt | (3.17)

The second component with pulsation 2w (second harmonic) can be presented as follows:

vy = 2cA’De™ %3¢ [sin(?wt - Nya) - e~ (B+2N)agip 2wt] : (3.18)
‘When the distance from the source at the throat is big enough that
e~(B+2N)a 4 (3.19)

and the only important part of the second harmonic wave in formula (3.18) is
vy ~ 2cA?De™ 7% sin(2wt — Nya). (3.20)

In this case the ratio of the amplitudes of vibration velocities of both harmonics is
equal to
_ 2cA?|D]e~ %o
- Ace—(%‘+N}a
The square of this ratio gives the ratio of the radiated powers.

= 2A|DjeM*. (3.21)
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At the end the exponential horns with the same dimensions of the throat and of the
mouth but with different lengths are taken into account in the numerical example:

— width of the channel at the inlet kg = 1.5-10"% m,

— diameter of the annular channel dy = 107! m,

— width of the channel at the outlet h; = 107! m,

— lengths (coefficients of flare, cut-off frequencies):

1
Iy = 60-10"%m (ml =7=, f, =190Hz),
m

)

l; =42:10%m (m;, 0L, g, =270 Hz),
I = 28-10~?m (m3 =15 )
)

ly =21-10"2m (m4 =20

ls = 15-10~2m (ms =B, fo= 760Hz).

For the acoustic particles at the mouth of the horn the termin the formula (3.19) can
be written as follows:

§ = e (B+2N) (3.22)

In Fig.2 ¢ as a function of frequency for expotential horns with the above dimensions is
shown. We can see that practically § < 1. Thus, the ratio of the amplitudes of vibration
velocities of both harmonics can be calculated from formula (3.21) which can now be
presented in the form

n = 4rM|D|eNt. (3.23)

The relation between the ratio n and the vibration frequency of the piston at the
throat, in the range of frequency %fc < f < f, for the horn with length / = 0.6m is
presented in Fig. 3. The five curves in Fig. 3 correspond to five values of the Mach number,
from M = 0.002 (intensity of sound level at the throat Jy = 156dB) to M = 0.015
(Jo = 173dB). The relation n = n(f) for the horn with length | = 0.15m is presented
in Fig. 4. The graphs of the functions n = n(f) for horns with another lengths resemble
the graphs in Fig.3 and Fig. 4, and therefore they are not presented here.

It is shown in Fig.3 and Fig.4 that, for frequencies below the cut-off frequency, the
amplitude of vibration velocity of the second harmonic increases in comparison with that
of the first one when the frequency decreases. This increase is faster when the amplitude
of the piston which initiates the wave is greater.

It can be seen comparing these results with the results of the [10], that for frequencies
below the cut-off frequency the second harmonic is more amplified than for the frequen-
cies above the cut-off. Assume e.q. that the length of the horn is 0.15m (f, = 760 Hz)
and Mach acoustic number is 0.01 (Jo = 170dB). In this case for frequency f = % T
from the (Fig.4) we obtain n ~ 60%, but for frequency f = 2f. we have n ~ 5% (see

(10]).
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Fig. 3. The ratio of the vibration velocity amplitudes of the second harmonic to the first one
for the acoustic particles at the horn mouth. The length of the horn I = 0.6 m.
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Fig. 4. The ratio of the vibration velocity amplitudes of the second harmonic to the first one
for the acoustic particles at the horn mouth. The length of the horn / = 0.15 m.

4. Conclusions

In the acoustic waveguide the waves with frequencies below the cut-off frequency,
once they reach a certain level, are easily replaced by their harmonics which are strongly
amplified. This effect can be evaluated for hyperbolic horns with annular cross-section
on the basis of the results of this paper in case where the horn dimensions and amplitude
at the throat of the waveguide are known.
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The oblate spheroidal coordinate system was used for calculation of the acoustic power
radiated by a thin circular plate located in a finite baffle. It was assumed that the plate
was clamped at the circumference of the planar limited baffle and radiated into lossless
homogeneous liquid medium. The vibrations of the plate were forced by time harmonic
external pressure. The damping effects caused by internal friction in the plate material as
well as dynamic influence of the waves emitted by the plate were taken into considera-
tion. The formula for the acoustic power was derived by the application of properties of

ACOUSTIC POWER OF FLUID-LOADED CIRCULAR PLATE

LOCATED IN FINITE BAFFLE

L. LENIOWSKA

Institute of Technology, Pedagogical University
(35-310 Rzeszéw, ul. Rejtana 16a, Poland)

eigenfunctions of plate equation of motion.

Notations

plate radius,

expansion coefficients,

bending stiffness,

baffle radius,

propagation velocity of a wave in fluid,
expansion coefficients,

Young’s modulus,

surface density of the force exciting vibrations,
expansion coeflicients,

time dependent surface density of the force exciting vibrations,
time independent constant,

components of measurement tensor,

acoustic parameter, h = koa(b/a),

plate thickness,

m-order Bessel functions,

m-order modified Bessel functions,

wave number,

structural wavenumber,

mass of the plate per surface unit,

normal component,

acoustic power radiated by the plate,
normalised acoustic power radiated by the plate,
norm factor,

Flammer norm factor,

sound presure,

radial variable in polar coordinates,

coefficient of internal damping,
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Wi

radial spheroidal function of the third kind, l-order,

angular spheroidal function of the first kind, I-order,

Poisson’s ratio,

normal component of the vibration velocity of points on the surface of the plate,
vibration velocity of points on the surface of the plate for mode (0,n),
normalised coefficient of the vibration velocity,

transverse dislocation of points on the surface of the plate,

time dependent transverse dislocation of points on the surface of the plate,
characteristic function,

fluid-loading parameter,

parameter of the plate damping,

= kna is solution of the homogeneous plate equation of motion,

mutual impedance,

spheroidal coordinate,

length of acoustic wave in fluid,
area of the plate with baffle,
spheroidal coordinate,

mutual impedance,

acoustic potential,

time dependent acoustic potential,
angular frequency of the force exciting vibrations,
density of the plate material,

oo density of the fluid.

Cm

N E eI Mg > X

1. Introduction

The problem of radiation of acoustic waves by circular planar sources located in a
limited baffle caught the attention of acoustic researches in the thirties [3]. It is well
known that for waves longer than the dimensions of the considered sources the obtained
results do not fully tally with characteristics calculated for the sources with infinite baffle
and Huygens- Rayleigh integral applied [1, 2, 4]. Detailed analytical investigations have
been made for the piston with uniform and parabolic velocity distribution [1,2,11 ] and
also for a freely vibrating membrane [12].

Most papers dealing with the influence of a finite baffle apply properties of the oblate
spheroidal coordinates system [1-4, 11]. Interest in acoustic radiation from sources on
oblate spheroidal baffles results primarily from the reparability of the scalar wave equa-
tion in coordinates in question and the wide variety of useful shapes that are natural to
this systems. For a circular plate supplied with a finite rigid baffle the oblate spheroid
is also particularly suited to the study of sound radiation, so the basic quantities that
characterise an acoustic field were calculated by the author in a similar way [6, 7, 8].
Spheroidal geometry offers a convenient system in which the curvature of the radiating
surface may be varied and the relative size of the vibrating surface to the baffle surface
may be changed. Of particular interest is the case in which the spheroid reduces to a
flat circular source (plate) in the zy plane. In this way the sound field around the plate
in question can be obtained by solving the separable Helmholtz wave equation in the
oblate spheroidal coordinates with Neuman’s boundary condition.

Properties of the oblate spheroidal coordinate system have been used to calculate the
acoustic pressure for the freely vibrating plate [8] and for the fluid-loaded plate excited
harmonically at low frequencies [7]. This paper gives formulae for the acoustic power
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of the plate clamped at a finite baffle and excited to vibrate by an external force. The
mathematical model of the plate includes internal dissipation and interaction with fluid.

2. Assumption of the analysis

Consider the fluid-plate configuration as illustrated in Fig. 1.

N\

v~

Fig. 1. A circular plate in a rigid baffle with radius b.

A circular thin plate with radius a and thickness H is surrounded by an ideal liquid
medium with the static density go. It is assumed that the plate is made of a homogeneous
isotropic material with density o, Poisson’s ratio v, Young’s modulus E. The plate is
clamped in a flat, rigid and finite baffle with radius b and is excited to vibration by an
external time-harmonic force:

F(r,¢,t) = f(r,¢)e™ ™t = Foe™ ™, (2.1)
where Fy = const for 0 < r < a.

Taking into account only linear, harmonic and axially-symmetric vibrations of the
plate in a steady state, as well as the influence of a radiated wave on vibrations of the
plate and an internal damping inside the plate’s material, the plate differential equation
of motion can be described as follows [5, 9, 10]:

O°W (r, ¢, 1) 7]

+ R— [V*W(r, ¢,1)]

4
BV*W (r,¢,t) + m FTE 5

'
= R(r¢t) = 906—(7";!&,

where B = EH3/12(1—1?) is the bending stiffness, W (r, ¢, 1) = w(r, ¢)e™*“* — transverse
dislocation of points on the surface of the plate, m — mass of the plate per surface unit,
R - coefficient of internal damping, ¥ (r, ¢, 0,t) — acoustic potential on the surface of the
plate, related to the acoustic pressure p in the fluid by the equation [15]

p= "Qo"iwg’('r, QS: Z) (23)
and satisfies the Helmholtz equation

(V2+ k) =0, (2.4)

(2.2)
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with the condition
ov

on|,_,

= —v(r, ¢) = iww(r, @), (2.5)

ko denotes the acoustic wavenumber at the frequency w, v(r, ¢) — amplitude of surface
velocity distribution on the plate.

Using well-known formulae appropriate for harmonic phenomena and taking into
account only axially-symmetric modes of the plate, the equation (2.2) can be expressed
as [5, 9, 10]:

(k;'*V“ = 1) v(r) — e1kot(r,0) = —u%f(r). (2.6)

The parameter ¢, representing the influence of the wave radiated by the plate on its
vibration (fluid-loading parameter) can be described as [5, 7):

€1 = poc/mw . (2.7)

In the equation (2.6) the function of transverse dislocation of the plate w(r) has been
replaced by wanted surface distribution of the normal velocity v(r). The structural
wavenumber k;, in the vacuum at frequency w is defined by

ki = mw?/B, (2.8)
where B is the complex rigidity
B =B —iwR = B(1 —is,) (2.9)
and parameter &5
&2 =wR/B (2.10)

is a measure of the plate damping.

3. Solution of the Helmholtz equation

For the plate located in a finite baffle, the problem of determining the far-field acous-
tic pressure cannot be treated with the well known Rayleigh’s formula. In this paper the
solution of Eq. (2.4) in conjunction with (2.5) has been obtain by the use of the method
of separation of variables in the oblate spheroidal coordinate system (OSCS) [6]. Due to
symmetry of radiated waves with respect to z axis, the following equation for outgoing
waves has been obtained [14]:

Y, &) = ASS) (~ih,n) RS (~ih, ig), (3.1)
1

where S({,Il)(—ih, n) denotes angular spheroidal function of the first kind, R[(]?)(—z‘h,ig) =
radial spheroidal function of the third kind, h = kob and A4; - the expansion coefficients.
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The coefficients can be derived from Neuman’s boundary condition (2.5) which in oblate
spheroidal system has the form

a!p 1 a!p_ _U(Eﬂsn)s Tlo S n S 11
B R BE| = 0, Mo >n2>-no, (3.2)
S v(éo,m), —1<np<-n.

Applying the orthogonal property of angular spheroidal functions [14], we finally ob-
tain [8]:

bW,
| = g —— | (3.3)
ORG) (<ih,i0) |
o¢ ;
where N; denotes the norm factor [14] and
1
Wo = [ v(m)Sou(=it (34)

To

is the characteristic function in OSCS. The vibration velocity distribution in the oblate
spheroidal coordinate system v(n) is an unknown function. It will be determined by
applying the orthogonal series method.

4. Solution of the plate equation of motion

By applying the well known eigenfunction expansion theorem, one can derive the
solution of Eq. (2.7). In order to do it the vibration velocity distribution v(r) and the
external force f(r) will be expressed as the infinite series of eigenfunctions of the homo-
geneous plate equation

<

N
=

=
I

> enva(r), (4.1)

fr) =) fava(r). (4.2)

The quantity c,, denotes unknown expansion coefficients, while f,, can be determined by
means of the orthonormal property

f(r) :/f(r)u;(r)r dr. (4.3)

For the clamped circular plate the eigenfunctions v, (r) take the form [5, 9]:

it [Jo("fnf/a) 3 —%’;‘;10 (w/cn], (4.4)
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where v, = kna is solution of the equation Jo(yn )1 (¥n) + J1(Vn)lo(mm) =0,n=1,2, ...
and have an orthonormal property if

von = 1/ (aJo(kna)) . (4.5)
Regarding the following equation
Vi, (r) = kiv,(r) (4.6)
as a result we obtain

> e (k7 *kh — 1) va(r) — e1kotp(r, 0) ¥—anvn(r (4.7)

The equation (4.7) is now expressed in the oblate spheroidal coordinate system
(OSCS) with the use of the following transformation [14]

r=b[(1-n?)(&+1)] (4.8)

Using properties of OSCS and assuming & = 0, 7 = b(1 — n?), the obtained expressions
become appropriate for the plate in the finite baffle. The eigenfunctions are

on() =0 10 (V=) - T (5,2 T=F) | (e

Io(vn)

1/2

and they remain orthonormal if
von = b/(aJo(kna)). (4.10)

In turn, Eq. (4.7) is multiplied by the orthonormal function v}, (£y,n) and integrated on
the surface of the spheroid. Denoting the components of the left side of Eq. (4.7) as L,
and L, and its right side as L3, the following integrals are obtained:

I = [ / 5 cn k58 = 1) oo )5 6o
—e1ko f [ vco,moneo,m o, (4.11)

Ly = == f/ 5 oo o) do

In order to find the solutions of the above integrals we must take into account that the
element of spheroid surface do is equal to

do = hyhy dndyp, (4.12)

L,

where h,, h, denotes the scaling factors (components of measurement tensor) [14]:

E+n
hy = .‘/10_

by/ (1= n?)(1 + &)

(4.13)

=
€
Il
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As a result of this calculation, the previous equation (4.7) turns into a system of linear
algebraic equations [7, 9]

4 o0
(% — 1) — & Zi(mncn = i (4.14)

where )
2

vaHFgale('ym) (415)

fmz_

is the expansion coefficient of the external excitation into the Fourier series which has
been obtained according to expression (4.3) and quantity

T3 I
Wt ., Rop’ (=i, i0)
G —§j i o (4.16)
! N " BRD (Zihi0)/0€

means normalised impedance of the plate [7].

The solution of the system (4.14) is possible with the application of numerical meth-
ods. In order to determine expansion coefficients c,, the system (4.14) has been solved
using Crout algorithm, which enables us to find the velocity distribution on the surface
of the plate, in accordance with the analysed case.

5. Calculation of the acoustic power
The total acoustic power of the vibrating plate is calculated according to the defini-
tion [15]

= %[ pv* do, (5.1)
a
where p is the acoustic pressure and v* denotes the amplitude of vibration velocity
distribution, which is coupled with the velocity of the considered source.
In the case of flat circular sources vibrating in a finite baffle, the total acoustic power
can be calculated by the application of Eq. (5.1) in oblate spheroidal coordinate. In this
case the surrounded spheroidal surface ¢ = oo becomes the surface of a considered

vibrator system, including the baffle. In the oblate spheroidal coordinate system the
definition (5.1) can be expressed as

1
N = [ p0,my" (. (5.2
-1
The quantities that appear in the integrand function can be described as follows:

v*(n) =Y chua(n). (5.3)

where c;, denotes complex coefficients coupled with c, obtained above.
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Basing our calculations on the relation (2.3) and expression (2.6) together with (2.7)
and (2.8), the formula of the acoustic pressure of the circular plate with the finite baffle
takes the form [7]

oo o0

0,7) = —2igoh T L Soi(—ih, h,i0 5.4
»(0,7) i0o C,;CENBRU?)( S ((—ih, m)RS) (—ih,i0).  (5.4)

Symbol “/” in the second sum is associated with the manner in which the waves are
emitted by a system with the plate as a vibration source. In our analysis the acoustic
field is radiated by both upper and lower surfaces of the plate, so in the expression (5.4)
only odd index of | can be taken into account.

Introducing the transfer impedance [11]

e R (—ih, i0)

xi(—ih) = ’
( R (~ih,i0)

(5.5)

where R‘g?)/ (—ih,i0) denotes BR{{j)(—ih, i0) /¢, the acoustic pressure takes the simpler

form
0 7?) - QQOCZCnZ/

In order to obtain the pattern for the acoustic power radiated by a plate let us replace
the above quantities into definition (5.2)

(—th, m)xi(~ih). (5.6)

n=1

b &
N = 2nb anzcnz/—)a (ih) [ " ()Sou(ih, . (5.7)

Regarding expression (5.3), we obtain

1

W, i |
N = 27rb290c2cn2/—‘—x: —ih) Zcmfvm(n)Sm(—zh,n)ndn- (5.8)

ot -1

The integral that appears in the above relation can be separated into two parts, according
to the boundary condition (3.2)

= 27rb290c2 & Z/—x; (—ih) Zc:n
n=1 m

% [ f Vm (7)) Sor(—ih, m)n dn + f U (1) Sor (—th, n)n dn] (5.9)

-1 Mo

which leads to the change of integration limits after applying the following property of
angle oblate spheroidal functions [14]

Sou(—ih, ) = (~1)Soy(—ih, —1). (5.10)
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The calculations explained above result in:

[=.+] oo oo
W,
N =2mbgc Y Zc:ncnz ”’ ™ xi(~ih). (5.11)

n=1lm=l =1

In this way the final formula for the total acoustic power radiated by the plate located
in a finite baffle has been derived. It can easily be separated into real and imaginary
part because there is only one complex quantity x;(—:h) inside:

Re(N) = 2nb? OCZ Z ch an/Wnth: Re[xi(—ih)],

n=1m=1 =1

(5.12)

Im(N) = 27rb290c22c an/W"‘Wm‘ b (=ih)],

n=1m=1
where
1
Re[xi(—ih)] = ,
I [Rgi’/(—ih,iO)]2+[ R®/ (—ih, 10)]

(5.13)

R®) (<ih,i0)RZ) (~ih, i0)
2
(&S} (-z‘h,w)] + [R$ (=ini0)]

Im[x;(—ih)]

6. Figures and conclusions

It is convenient for calculations to introduce the normalised factor N, described as
the acoustic resistance when wavenumber kg — 0o [13]

o
N® = lim N = 27rbzgchcnc;. (6.1)

ko —+00

Then the normalised acoustic power can be calculated as follows:

Z Zc an/WnIWml (k)

NI = _]\]r__\_:: = n=1 m=1 . (6-2)
Z Crlri
n=1

On the basis of the above formula the real and imaginary part of the total acoustic
power radiated by the plate in question has been calculated. Since the series in the
formula (6.2) are infinite, the number of terms ensuring adequate accuracy of results
have been numerically determined.

The largest considered value of h was 15, for which it was found that the series
with index [ converged in approximately 30 terms. The number of terms required for
convergence of this series was always greater for the real part than for the imaginary
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part of acoustic power and increased when h = koa(b/a), the acoustic size parameter
increased.

The double series with indexes m and n converged very quickly. The expansion
coefficients c,,, c,, were computed with the aid of Crout procedure suited for algebraic
equations system like (4.14) and it was enough to take only the first few terms in practical
calculations. '

The validity of the obtained solution has been checked by comparing the no-baffle
case (the ratio a/b of the plate radius to the baffle size is equal 1) with plots given for the
plate located in the infinite baffle [9, 10], (Fig. 2), and it can be stated that for sufficiently
high frequencies the influence of the finite baffle on the acoustic field around the planar
sources can be neglected. It can be noticed easily (Fig.2) that for the parameters h > 10
obtained characteristics for both baffled and unbaffled plates (a/b = 1) are the same.

The effect of a flat circular finite baffle upon acoustic power radiated by the plate
has been illustrated by a family of curves in the Fig. 3. It demonstrates that the real and
imaginary part of N’ are strongly dependent upon the baffle size when the acoustic size
parameter h < 7. The curves have been calculated assuming that the ratio A/b of the
wavelength to the baffle radius was constant for changing values of the parameter a/b.
For h = 6 (Fig. 3), the local additional maximum appearing on each curve is caused by
diffraction on the edge of the baffle. It indicates that the finite baffle strongly influences
the radiated acoustic power in this range of frequencies. As h increases the Re(N') goes
to unity and the Im(N') goes to zero because of the chosen normalisation of N’ given
by (6.1).

Analysing the influence of “width” of the baffle, it can be seen that for the constant
ratio A/b, the acoustic power maximums for different values of the parameter a/b have
been moved towards higher frequencies in comparison with the plate vibrating in the
infinite baffle.

References

(1] R.V. BAIER, Acoustic radiation impedance of caps and rings on oblate spheroidal baffles, JASA,
51, 5, 1705-1716 (1972).

(2] R.V. DE VORE, D.B. HOoDGE, R.G. KOUYOUMJIAN, Radiation by finite circular pistons imbedded
in a rigid circular baffle, JASA, 48, 5, 1128-1134 (1970).

[3] L.J. GuTIN, On sound field of pistons sources [in Russian], Russian Journal of Tech. Physics, 7,
10, 1096-1106 (1937).

(4] G.C. LAUCHLE, Radiation of sound from a small loudspeaker located in a circular baffle, JASA,
57, 3, 543-549 (1975).

[5] H. LEVINE, F.G. LEPPINGTON, A note on the acoustic power output of a circular plate, Journal
of Sound and Vibration, 121, 2, 269-275 (1988).

[6] L. LENIOWSKA, Acoustic power of a circular plate vibrating in a finite baffle, Proc. of XXXIX
Open Seminar on Acoustics, pp. 197-200, Krakéw 1992,

[7] L. LENIOWSKA, Acoustic pressure of a circular plate vibrating in a finite baffle with fluid loading,
Proc. of International Symp. on Hydroacoustics and Ultrasonics, pp. 311-316, Jurata 1977.

[8] L. LENtowskA, W. RDZANEK, Acoustic pressure of a freely vibrating circular plate without a baffie,
Archives of Acoustics, 17, 3, 413-432 (1992).



ACOUSTIC POWER OF FLUID-LOADED CIRCULAR PLATE 435

[9] W. RDZANEK, Acoustic radiation of circular plate including the attenuation effect and influence
of surroundings, Archives of Acoustic, 16, 3-4, 581-590 (1991).

[10] W. RDZANEK, Acoustic power of radiation of a circular plate fized on the rim and vibrating under
external pressure, Archives of Acoustics, 17, 2, 321-333 (1992).

[11] A. SILBIGER, Radiation from circular pistons of elliptical profile, JASA, 33, 11, 1515-1522 (1961).

[12] E.L. SzENDEROW, Radiation of sound by oscillating disk without a baffle, Russian Journal of
Acoustics, 34, 2, 326-335 (1988).

[13] R. WYRZYKOWSKI et al., Chosen issues of the theory of acoustic field [in Polish], FOSZE, Rzeszow
1994.

[14] C. FLAMMER, Spheroidal wave functions, Stanford University Press, 1957.
[15] E. SKUDRZYK, The foundations of acoustics, Springer-Verlag, Wien 1971.



ARCHIVES OF ACOUSTICS
22, 4, 437-444 (1997)

ON THE RELATION BETWEEN THE INERTIAL COAGULATION
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The phenomenon of drift of small particles suspended in a gaseous medium in which the
acoustic wave propagates, is known since long. In the present work, which refers to [7], we
present an outline of a theory allowing for full interrelation of all quantities characterizing
the particle, the medium and the acoustic field.

1. Introduction

In the paper published in 1963 by ROMAN WYRZYKOWSKI [7] there is at the be-
ginning a serious printing fault, which spuriously could missinterprete the results. The
theory of sound coagulations of aerosols, formulated by Roman Wyrzykowski allows to
obtain formulae, which give mutual dependance between the acoustical data and the
data of the aerosol. In this paper we present this theory in new shape, of course with
the assistance of the author.

The coagulating action of the acoustic wave on aerosols is known since long [1], as
well as theories explaining partially this phenomenon [2-5].

We will assume in the following that the coagulation occurs always in the polydis-
persion aerosols, as even monodispersion aerosols become polydispersional as a result of
heat motions. Particles of greater dimensions vibrate in the acoustic field with smaller
amplitudes, while smaller particles amplitudes are greater. As a result, relative velocities
occur which in turn result in collision of particles (if only the amplitude of vibration is
sufficiently great; a problem which will be discussed in the following) and in the so-called
inertial sedimentation (coagulation) of small particles on bigger ones.

In practice, sedimentation of aerosols takes place in a settling tank, which is a tower
long enough to assure that the dusted gas, turning round along helical lines, spends
necessarily long time (3 to 5 seconds) in the acoustic field, produced by a generator
located at the top of the purifier [6, 8].



438 H. CZYZ

2. The amplitude effect, or proper acoustic coagulation

In the present section we will deal with the problem of selection of acoustic field
parameters such that for a given aerosol one would obtain amplitude of vibration great
enough for occurrence of the acoustic coagulation.

The average distance between aerosol particles may be estimated temporarily as

1
3no ’
where ng is the number of particles in 1 cubic centimeter of the gas.
In reality, we deal with some statistical distribution in both mutual distances and

velocities of particles. We assume that in unit volume of the gas, the number of particles
which are able to get in contact with each other is expressed by the integral

lo = (2.1)

A
fnmdh (2.2)
0

where n(l) is the distribution function, and A is the amplitude of particle vibrations:

(= <]

/n(l) dl =ny. (2.3)

0

The aerosols conform themselves in general to the Gauss type distribution, therefore
we apply
I-1p\2
n(l) = 'nme_(—rn) ] (2.4)

The efficiency of the dust removal process as an result of what we call here the
amplitude effect, may be described as

A
f n(l) dl
A = e (2.5)
[ n(l) di
0
By substitution of Eq. (2.4) into (2.5), the constant n,, is being reduced, and the L

constant will be determined from experimental data.
Making use of definition of the error function:

Erf(z) = w% [e_tz dt (2.6)
0

we may write
lo lo
il el 1
Erf(L)+Erf [L(i,/) )]

nA: l )
Eﬂ(%)—l




ON THE RELATION BETWEEN THE INERTIAL COAGULATION ... 439

where 1) denotes the relative amplitude of particle vibrations:
A
Y= = (2.8)
0
We calculate the value of the L constant by means of the following consideration: it is
known from experiment [6, 7] that even at ¢ = 1.5, the efficiency of acoustic purification
is very high. Therefore, adopting arbitrarily the value n4 = 0.99 we obtain, by means of
numerical solution of Eq. (2.7),
lo
— =33 2.
; (2.9)
and i
na=3 {1+ Erf[3.3(¢ — 1)]}. (2.10)
Equation (2.10) is an estimation formula, but one thing is for sure: the efficiency
of acoustic dedusting depends on relative amplitude (2.8), therefore it is worthwhile to
calculate this quantity here.
The vibration maximum velocity amplitude of an aerosol particle in the acoustic
field vg is expressed with the so-called drag coefficient ;1 and with the vibration velocity
amplitude of the medium Uy by means of a simple formula [5]:

Vg = ,U.Ug, (2.11)

where
1

"= V14 (wr)?
w is the angular frequency of vibrations, 7 is the particle relaxation time given by
(assumed applicability of the Stokes law):

(2.12)

2
T (2.13)
9n
0p is the density of the aerosol particle, being r its radius and 7 the medium viscosity.
In dust removing devices we use in practice the plane wave, the intensity I of which
is expressed by means of the formula [3]:

I= %QQCQU(?, (2.14)

where po is the rest density of the medium, ¢o is the acoustic wave velocity in this
medium. Therefore, assuming that in practice the wave intensity is given, we have for
the value of the medium vibration velocity amplitude:

et g (2.15)
O0Co

By Egs. (2.11) and (2.15), the maximum amplitude of particle vibration is:

2
Aot ET, (2.16)
w \l @oCo
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and the dimensionless relative maximum amplitude ¢ (2.11), (2.8):

=22 . (2.17)

In practice, we define usually the mass concentration of an aerosol s as the mass of
dust particles contained in unit volume. We have obviously

3 s
473,

(2.18)

Substituting (2.18) to (2.17), we obtain the relative amplitude in its final form:

L2 2 o) 3o (2.19)
oco \[ 4mop

During the process of dust removal, the above value should remain constant. For
given acoustic wave, parameters u and w are defined, therefore we have a condition:

I-5*/* = const. (2.20)

Thus, greater concentrations require smaller intensities and vice versa, which was
confirmed by numerous experiments [7]. On the other hand, establishing all parameters
except for the angular frequency w, or frequency of vibrations v, substituting Eq. (2.19)
into (2.10) we obtain the dependence na(v).

Mmv)
1.0
0.8
0.6
0.4

0.2
\Y kHz

1 L 1 |

0 1 2 3 4 'S5 6 7 8 9 10

Fig. 1. An example of dependence 14 (v) for conditions typical for acoustic dust removal process,
described in the legend of the graph.

1 ! Il ! 1

Figure 1 represents an example of this dependence for conditions typical for acoustic
dust removal process, described in the legend of the graph. One can see that 14 is prac-
tically equal to unity up to several kHz and then rapidly falls to zero. This phenomenon
is also well known from experiment [7]. From Egs. (2.19) and (2.10), we may calculate a
maximum value of the wave frequency which gives the value of n4 yet close to unity.
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3. The inertial coagulation

Presently we proceed with consideration concerning the second factor influencing
the overall efficiency of the acoustic coagulation the efficiency of the process of inertial
sedimentation of smaller particles on bigger ones. Denoting this efficiency by n; we may
write the overall efficiency of the process n as

n=1ni-na- (3.1)

Numerous examinations show [1] that the quantity 7; is a function of the so called Stokes
number, which for bigger particle of radius R is given by

Tl
I 2
nsg = °R 3 (3 )

where 7 is the relaxation time of the settled (smaller) particle, v,, being the maximum
amplitude of relative velocity of particles.

The problem of the n;(ns¢) dependence has been discussed in numerous experimen-
tal and theoretical papers, based on assumption of potential flow-around and viscous
flow-around [5]. In any case, this is a function growing from 0 to 1, however it reaches
the upper value for ns; & 1 according to experimental data, and 2-3 at theoretical
curves. Therefore, in practice the problem is reduced to the value of the Stokes number,
Eq. (3.2). We start form an analysis of relative velocity amplitude v,, as a function of
angular frequency w. From Eqgs. (2.11) and (2.12) we see instantly that the function has
to have a maximum — for w = 0 any particle, small or big, has the same velocity ampli-
tude Up, while the relative velocity is zero. At w — oo, the velocities of both particles
tend to zero, and therefore the relative velocity is equal to zero also in this case.

For simplification of the following calculations, we assume that the relaxation time
of the bigger particle is expressed by:

Ty =T (3.3)

where obviously a > 1.
Based on Eq.(3.4), we write formula for vibration velocity amplitude of the bigger

particle:
Uy

T UTrerarr? (3.4)
and of the smaller one:
Ha (3.5)

= VI+wir?

The amplitude vo; is shifted in phase with respect to Uy by an angle ¢, defined by
equation:

@1 = tan"}(wart) (3.6)

and amplitude vgs is shifted by an angle

2 = tan" ! (wT). (3.7)



442 H. CZYZ

Obviously, the relative velocity of both particles is shifted in phase by an angle ¢:

e B (3.8)
or by an angle, tangent of which is equal to:
wr(a —1)
t e 2
any = 7 T oirial (3.9)

The velocities vg; and vgy should be subtracted geometrically (because of the phase
shift), therefore, introducing the relative drag coefficient .,

U
= — 3.10
Hw Uo ( )

we may calculate it out from equation

2 _ 1 5 1 2cosp
Fo = T¥ e T 140~ /11 Patrivl £ oir?

(3.11)

pw(wT) has, as one can easily prove, a maximum for the same value for which the function
tan p(wr) has its maximum, which makes the following calculations much easier. Namely,
we have a condition:

1 2.2 b 2.2 T |
Ltantpz(a 1)(1 + w?r?a) - 2wra(a ):0, (3.12)

d(wT) (14 w?r?a)?
or, after performing elementary calculations, we have from (2.13)
1 r
== 3.13
wT =y (3.13)
This value of wT refers to
la-1
= — 14
(tan ) max 2 Ja (3.14)
2/a
= 3.15
(08 ) max at+1l’ ( )
and a5 iy
Hw max = N (3.16)
For value wr given by Eq. (3.13) we have the Stokes number equal to (3.13):
TU()
= 3.17
nst S f(a)a ( )
where o1
= -(3.18
fa) = =g (3.18)

Figure 2 represents the dependence 74 (v). The function has a maximum, which we
presently calculate form the condition

=0, (3.19)
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Fig. 2. The dependence f(a).

or

1
(a+1)va - (a—1)va—(a-1)a+1)5=
Vo _
PESIER =0. (3.20)
We adopt here
Qextr = 2+ V5 = 4.236 (3.21)

as the other solution would be negative, which makes no sense. Therefore, the maximum
value of frax(a) is equal to (3.18):

Fmax(c) = 0.305 (3.22)

and the respective value wr (3.13), referring to the maximum of relative velocity, is

i e (S (3.23)

V2+5
and
fiw max = 0.618. (3.24)

Taking into account that the real processes are realized statistically, one should assume
that the inertial coagulation o < crexer (3.21) is very little probable. At the value of cextr
we have an optimum course of the process. At a > Qextr, as can be seen from Fig. 2,
function f(a) decreases very slowly. The condition ngy > 1 now takes the form:

TU{)

—0.305 > 1. (3.25)
2r
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The condition (3.25) includes the wave intensity, as by Eq. (2.15) we have

T 21
; ——>1 :
0.305 57\ 2oc > 1, (3.26)

or, by raising both sides of Eq. (2.2) to second power,

2

I
0.465 - — > 10. (3.27)
r< opC

Finally, we obtain a condition for the wave intensity in the form:

,r2

I>2L5-—ooc. (3.28)
T

For average industrial aerosols we have the following values: 7 ~ 10~® [cm?] and
72 ~ 107% [s?] [7], which give, by adaptation of value of goc = 42 [g/cm?s] (corre-
sponding to the air in normal conditions):
W
3100 £ =107 =, (3.29)
cmes cm
The calculated intensity value is tens thousand times weaker than the intensity required
for occurrence of proper acoustical coagulation, i.e. related to the amplitude effect.

4. Conclusions

The described phenomenon is fully “responsible” for coagulating action of the acous-
tic field, and provides, with great excess, conditions in which the efficiency of the inertial
coagulation may be considered as equal to unity.
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This paper comprise the results of theoretical analysis of the problem of the forces
influencing the gas bubbles in a liquid in a stationary wave field. The problem of the
motion of small particles suspended in the gaseous medium (aerosols and fumes) has been
studied intensively starting from the forties of our century in connection with the technical
application of the acoustic coagulation for the precipitation of gases. This paper considers
the equation of the motion of a gas bubble in a standing wave field under the influence
of the drift and the resistance forces in the Stokes and Oseen approximation. We take
into account the drift related to the radiation pressure, periodic viscosity changes and the
asymmetry of motion of gas bubble vibrating in a standing wave field. This study considers
an estimation of the intensity of the drift forces of types R, L and A as a function of the
bubble radius at 10-100 kHz frequency of the wave. We give the general properties of
the solutions of the motion equation of the gas bubble in the case of large attenuation
constants, corresponding for typical values of the drift forces.

Notations

Fp - drift force,

Ap - drift intensity amplitude,

mp — gas bubble mass,

- gas bubble radius,

— gas bubble flow-around coefficient,
— gas bubble entrainment coefficient,
— acoustic wave energy density,

— wave number,

- gas bubble position,

— medium viscosity,

- angular frequency,

- frequency,

- time,

— medium density,

— gas bubble density.

@ w3y rET & 4

S
b}

1. Introduction

The drift forces, a consequence of interaction between the gas bubble and the vibrat-
ing medium, result from such phenomena as the radiation pressures, the asymmetric
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vibration motion of the gas bubble or periodic changes in the viscosity of the liquid. The
first mechanism of the drift has been presented by KING [6] and is called the radiation
drift, the R — type drift in short. It is connected with the radiation pressure acting on
the gas bubble as the result of momentum carried out by acoustic wave diffracted on
the particle. This type of drift is important for large gas bubbles.

For small gas bubbles of radii of order of microns, authors introduced different mech-
anisms [7]. The most important models concern the effect of variations of viscosity in the
wave field caused by local changes of the temperature during periodical compressions
and decompressions of the medium [7]. This type of drift is called the viscosity drift,
and the L — type drift in short.

Another type of drift is characteristics only of a standing wave. It results from the
fact that in such a wave the vibration amplitude of the medium depends on position
being greater in the area of loops. In view of their inertia, gas bubbles do not keep pace
with the motion of the medium and are affected by variable forces over the time of their
oscillation. Asymmetry drift is the most natural one and its mechanism is physically the
most fundamental, it is called the A — type drift in short [2].

Different kinds of drift have a common property: the forces applied on the gas bubble
depend in the same way on its position with respect to the loops and nodes of the
standing wave and are proportional to the density of the wave energy. The drift forces
depend strongly on the gas bubble size [4]. Below, consideration is given only to the
problem of the motion of a single gas bubble. This means that the effect of interaction
of gas bubbles is neglected, i.e., the process leading to augmentation itself, namely the
fact that smaller gas bubbles link to form larger aggregates. Causing gas bubbles to
gather near points of stable equilibrium (minima of the potential of the drift forces), the
phenomena caused by the drift forces assist in a way the elementary acts of augmentation
by increasing the concentration of gas bubbles near the nodes or loops of the standing
wave,

2. Analysis of the equation of motion

It appears that, irrespective of the mechanism of the occurrence of drift forces, they
can be described by the formula [1]

Fp(z) = Fysin(2kz), (2.1)

where Fg‘, constant, denotes the value of the drift force amplitude. The forces of this
type are called the drift forces. The position of the potential minima

Up(z) = Fy(2k) ™! cos(2kz) + const (2.2)

depends on the sign of the constant describing the maximum value of drift force. It is
clear, that the sign of the constant has no effect on the kinetics of the process of gas
bubble transport.
The equation of motion of the average position of the gas bubble is [1]
d*z dz |dz

dz
Mg = O ~Cog 1w

= + Fysin(2kz) (2.3)
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or
Lz _ o8 9 2 do|de
MegE T T g T a %P | de
The first term on the right side of the equation represents the Stokes force, the second
one represents the nonlinear Oseen correction which is significant for large Reynolds
numbers. This equation is nonlinear in view of the last two terms. The above simple
differential equation has no elementary solution. To estimate on the character of the
solution, let us reduce to a minimum the number of constants in the equation (2.5) by

replacing the position and time by the nondimensional variables

y=m—2kz 6 = (2kAp)'/?, (2.5)

B | 5 sin(2ks). (2.4)

where the quantity Ap = Fy/m, which by analogy to other interactions, can be called
the intensity of the drift force field.
On the basis of the formulae for the radiation drift [2]

Fr= gﬂkra,u;E sin(2kz) (2.6)
the asymmetry drift (2]
1 - :
Fy= ~5Mpl lk,u.g sin(2kz) (2.7)
and the viscosity drift [2]
Fr =3n(k - 3)rp§n(ggc)"1Esin(2km) (2.8)

we obtain the amplitudes of the drift intensity Apr, Apa, Apr (the symbols R, L, A
distinguish the considered types of the drift).

_ -1 2
lnc.
Apa = *599110#?,}3, (2.10)
9 _ _
Apr = (k= 3)1r2(ep0ec) " g B- (2.11)

The amplitudes of the drift intensity are proportional to the wave number £ and to
the wave energy density E.

In calculating the numerical values it is assumed that the density of acoustic wave
E = 100 J/m? ¢ = 1500 m/s, g, = 1.249.10° kg/m3, o, = 1000 kg/m? n =
1.8-107% Ns/m?.

Figures 1a, b, ¢, d, e, f show plots of the intensity of the field of the drift forces of
types R, L and A as a function of the gas bubble radius. The horizontal dashed line
represents the acceleration of gravity. The plots made on a double logarithmic scale.
This makes it easy to read the values of intensity for a density of the wave energy other
than the given one, since the quantities represented in plots depend on E in a linear
way and an increase or decrease in this value by one order of magnitude causes the same
change in the value of the intensity drift fields.

Analysis of the plots indicates that particular kinds of drift dominate various intervals
of variation of the particle radius.
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Fig. 1. Plots of the intensity of the field of the drift forces a) of type — R, b) of type — L,
c) of type — A, as a function of the gas bubble radius, at 20 kHz, 50 kHz, 100 kHz, and of types R, L
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dashed line represents the acceleration of gravity.
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The equation of motion becomes

dzy

" 5

+sin(y) = 0,

where the following was introduced

a = 77} (2kAp)'7,
_ 27g,
© 32krop

(2.12)

(2.13)
(2.14)

The equation of motion in this form (2.12) contains only two constant, whereas the
initial equation (2.3) contained four of them (including the wavenumber). The gas bubble
mass, the drift force and the wavelength, are normalized in a way in this equation making
it easier to analyze the effect of the two dissipation terms on the solution. The constants
o and (8 depend on the parameters characterizing the gas bubble and the wave. The
constant o depends on the intensity of the drift force field, and on the kind of drift.

Assuming that same numerical values which were used in calculating the quantity Ap,
one can estimate the constants a and 3, and, thus, evaluate the two terms representing
friction in the equation of motion.

Figures 2a, b, ¢ show plots of the constants o and 3 of equation (2.12) as a functions
of the gas bubble and frequency. The symbols R, L and A distinguish the considered

types of drift.
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Figures 3a, b show of the constants a and 3 of the equation (2.12) as a function of
gas bubble radius and frequency of the wave for the R - type drift.

Analysis of these plots (Figs.2 and 3) indicates that the nonlinear friction term,
represented by the constant 3 (the Ossen correction) can play a role in this motion. It
gives the general properties of solutions of motion equations for considerable attenuation
and formulates the applicability of approximation.

3. Conclusion

Equation (2.12) of the motion of the gas bubble in the acoustic standing wave field
of great intensity does not have an elementary solution. Analysis of the solution type,
carried out by means of graphical and numerical methods in the paper [1] allowed for
finding the relation between the constants of equation (2.12). The motion of gas bubbles
in acoustic standing field consists in monotonically approaching the stable equilibrium
point or quasi-periodical vibration with amplitude damping. The drift forces directing
gas bubbles to nodes or antinodes of a standing wave [8, 9]. The concentration of gas
bubbles increases around the equilibrium position and decreases in the region between
a node and antinode.

The transport phenomenon which causes gas bubbles concentration in the neighbor-
hood of the minimum of the drift force potential significantly supports augmentation
microprocesses by reducing the distances between gas bubbles.
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The real part of the acoustic power radiated by a planar annular membrane is considered
for axially-symmetric free vibrations. The membrane is located in a planar, rigid baffle and
radiate acoustic wave into a lossless and homogeneous fluid medium. Sinusoidal in time
processes are examined. The real power is obtained as elementary form for high-frequency
radiated waves.

Notations

¢ propagation velocity of an acoustic wave in a fluid medium of density go,
Jm(z) Bessel function of the m-th order,

k =ra/r,
kn =wn+/0/T,
ko =2m/A,

N acoustic power radiated by the membrane (3.1),
N' normalised power radiated by the membrane,
Nm(z) Neumann function of the m-th order,
p acoustic pressure,
r radial variable,
r1,r2 radii of the annular membrane,

S =mx(r-r?),

T stretching force of the membrane, referred to unit length,

t time,

v normal component of vibration velocity of points of the membrane surface,
vn vibration velocity of points on the surface of the membrane for mode (0,n),
W characteristic function of planar annular source for (0,n) vibration mode (6'),
T, n-th root of the equation (2.2),
an = Jo(zn)/Jo(kzn),

B = kori,

n =2zn/B,
1 transverse displacement of points of the membrane surface,
A wavelength in a fluid medium,

oo density of a fluid medium,

o surface density of the membrane,
wy, angular frequency of free vibrations, corresponding to mode (0, n).
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1. Introduction

Planar vibrating sources are important for problems of generation and propagation of
acoustic waves in a fluid medium. Most of research concentrates on analyse of rectangular
and axially-symmetric sources. Extensive universal research of axially-symmetric sources
are realised on acoustic wave radiation by: vibrating circular pistons (e.g. PRITCHARD
(5], PORTER [4]), planar angular pistons (e.g. THOMPSON [8], MERRIWEATHER [3]) and
membranes and circular plates (e.g. LEVINE and LEPPINGTON (2], RDZANEK [6] and
[7]). Those papers, concerning membranes and circular plates, includes problems: the
energetic aspect of radiating sources, acoustic interactions of particular elements of the
source surface, constituent elements of sources array, vibration form influence on the
resultant field radiated by vibrating array.

Up to now there were no elementary equations of acoustic power radiated by the
planar annular vibrating membrane.

The classical mathematical method was used and the equation of the form of the
Bouwkamp’s integral [8] for the real part of acoustic power radiated by a planar annular
membrane in case of axially-symmetric free vibrations. The considered processes were
varying sinusoidally with time. Use of LEVIN and LEPINGTON’S mathematical method [2]
based on Cauchy’s theorem of residua allowed the derivation of the equation of real part
of acoustic power of elementary form in special case for high-frequency waves’ radiation.
Frequency characteristics of described acoustic power are also presented graphically.

2. The annular membrane’s free vibrations

The membrane is tight on two circles with radii r; and 79, and r; < ro. We consider
axially-symmetric free vibrations sinusoidal in time. The transverse deflection of points
of the membrane surface n(r,t) = 7(r) exp(iwt) with boundary conditions 7(rs,t) =
n(ry,t) = 0 is represented by the n-th radial form of free vibrations

M)/ An = o (305 ) = e No (a0 ), (.)

~ No(zn) 1

where Jy, Np are cylindrical functions of null order correspondingly Bessel’s and Neu-
mann’s. The value z,, = k,r; is the n-th frequency equation’s root

Jo(kz,)  No(kz,)
Jo(zn) B No(zn) ’

where k = ry/ry > 1 and k,, = wp+/0/T, wy, is n-th free frequency, o is surface density
of the membrane, T is the stretching force of the membrane. The Table 1 includes some
values of the frequency equation’s roots (2.2) (compare [1]).

We calculate the constant A,, from the normalisation condition

(2.2)

T2

[rawrar =

T1

(r2 —-rd). (2.3)

B =
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Table 1. Roots z, of equation Jo(zn)No(kzn) — Jo(kzn)No(zn) = 0.

k
n 1 1.2 15 2 3 5
1 31.412314 | 15.701344 6.270239 3.123029 | 1.548459 | 0.7631913
2 62.830045 | 31.412615 | 12.559773 6.273438 | 3.129084 | 1.5571072
3 94246574 | 47.121681 | 18.845157 9.418203 | 4.703797 | 2.3464207
4 | 125.662802 | 62.830196 | 25.129431 | 12.561424 | 6.276664 | 3.1340324
5 | 157.078909 | 78.538490 | 31.413277 | 15.703999 | 7.848734 | 3.9208424
6 | 188.494956 | 94.246675 | 37.696903 | 18.846253 | 9.420391 | 4.7072157
We get than

Ap = Sz, (k2 - 1)1/2 d e ot }_1/2 (2.3")
WS g NZ(kzn)  N2(zn) : '

3. An integrai form of the acoustic power

Let the source of surface S of the normal component of the vibration velocity v

1
radiate acoustic pressure p. Than N = 2 / pv* dS is the acoustic power radiated by the

5
source. v* is here a value conjugate with a complex value v.
We calculate the acoustic power of the source of the axial symmetry on the basis of
the integral equation (compare the Bouwkap’s integral [8] and the paper [6])
m/2—ioco
N = moock? f W2(9)sind dd, (3.1)
0
where c is the velocity of propagation of the wave in a fluid medium of density in rest
stage oo, ko = 2m/) is a wave number, )\ is wavelength and
T2
W) = ['U(?‘)Jo(ko?" sind)rdr (3.2)
T1
is the characteristic function of planar annular sound source, constraints radii of which
are r; and 73, Un(r) = —iwpny(r) is the normal component of vibration velocity in the
case of (0,n) vibration mode. The integral (3.1) is calculated in the plane of the complex
variable ¥ = 9’ + 19", :
If kg — oo then p(r) = gocu(r), N(®) = Eggc/vz dS and than it is comfortable to

s
use for calculations the normalised radiation power N/N (%),
Inserting the characteristic function
Wa(9) 2 rd 1

= Wk 2 p2 s No(on) {anJo(kBsind) — Jo(Bsind)}, (3.3)
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calculated on the basis of equations (3.2) and (2.1), into the equation (3.1), we get
N 082 w/2—ico . . 2
R = [ {anJo(kﬁsmﬁ) - Jo(ﬁ31n19)} sind do,

N T a2 -1 sin? 9 — 32

(3.4)
0
where 6, = z,/8, B = kor1, an = Jo(z,)/Jo(kzn).
If we confine integration in equation (3.4) to real values 0 < Re(¥) < 7/2 and
substitute sin?’ = z, then we get integral equation

1
N = 262 / anJo(kBz) — Jo(Bz))® zdz (3.4
L 2% — 52 Vi-z2' '
0
where N] = Re{Nn/fo")} is the real component of the normalised acoustic power
radiated by the n-th axially-symmetric mode of the planar annular membrane.

4. The membrane’s radiation for the high frequency range

If 6, < 1 (62 < 1) then analysing equation (3.4') is much more easy. We use the
mathematical method of LEVIN and LEPPINGTON [2] and we introduce a function of a
complex variable

F(2) = {02 Jo(kBz) — 20 Jo(B2)} HY (kB2) + Jo(B2) HLY (B2) (4.1)

such that
Re F(2) = {anJo(kBx) — Jo(Bz)}?, (4.1)

where z is a real variable, H(gl) is the Hankel’s function of 1-st kind and null order.
The base of analysis is the equation which left side is the contour integral

z2F(z)dz 4
J V1= 7%(22 - §2)2

calculated for contour C' (Fig. 1) inside which the integrand is single-valued and regular
(comp. [9]). There are no contributions during integration both over a big circle when its
radius increases infinitely and over arcs of small circles around the points of branching
(z = 0, z = 1), when their radii decreases tending to null. At the point z = §, the
integrand (4.2) has a pole of 2-nd order.

On applying the Cauchy’s theorem concerning residua, we get the integral (4.2) of
the form

1 0o
zF(z)dz - zF(z)dz
Pb[ T _5) - miF'(8n) +_1[

(4.2)
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0 o\ Fak e

n
Fig. 1. The integration contour C for pattern (4.2) (comp. the paper [2]).

where the auxiliary function is introduced
2F(2)

) = e T ha)

and the integral P / is interpreted as a principal value. We take into account that

0
Re F(iy) = 0, then

1 1
(z) dz [ [ ando(kBz) — Jo(Bz)\® zdz
o[ [

] an No(kBz) [anJo(kBz) — 2Jo(Bz)] + Jo(Br)No(Bz) zdx
0

(o2 —42)2 z? -1

+ Re{mi F'(6,)} (4.4)
We also take into account that F(8,) = 0, Re F'(6,) =0, Im F'(8,) =
finally

in(l a?) and

aZ -1

.. $ik (4.5)
2624/1-62

Now we calculate the integral (4.4) inside of interval [1, co), applying the asymptotic
expressions

Re{mi F'(6,)} =

Jo(az)No(bz) ~ :r:\/_ {sin(b — a)z — cos(b + a)z}, (4.6)

[=e]

s = e {u-areo(5) e a
e Y
1
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In this way, we obtain instead of equation (3.4")

n = = o al T
M= i BB e - 0 {k e cos (246+ )

% cos(2ﬁ+£~)+2\/gan (sin((k~1)ﬁ+§) B cos((k+1)ﬂ+%))} (4.3)

k-1 vE+1

with error o(42373/2).

This equation is of an elementary form — convenient for calculations of the real power
of the annular membrane for high frequency of radiated waves if the membrane vibrates
with n-th axially-symmetric mode.

5. Concluding remarks

As result of theoretical analysis of the problem of radiation of a planar annular
membrane the elementary expression was derived for normalised real acoustic power
of axially-symmetric modes of free vibrations. This expression can be used for digital
calculations only if the condition z,, < 8 = kor; is satisfied.

There were given proper components which have essentially an “oscillating” character
of changes of the real component of power of annular membrane (Fig.2 and Fig. 3).

In case when the condition z,, < kgr; is not satisfied or when we need high accuracy of
results, one should perform numerical calculations based on the integral equation (3.4').

N,'(B) ; 5
| | .nnn..ﬂf

2 i }W oy,
f

80 B 120

Fig. 2. Normalised real component of acoustic power radiated by the planar annular membrane
versus [ for modes (0,n) and k = 1.2.
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Fig. 3. Normalised real component of acoustic power radiated by the planar annular membrane
versus [ for different k and mode (0,1).
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Fig. 4. Normalised real component of acoustic power radiated by the planar annular membrane
versus 3 for the mode (0,4) and k = 1.2 — obtained from the formula (3.4') (the solid line).
The curve obtained from the formula (4.8) is dashed.
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Equations (3.4') and (4.8), which have been derived for normalised real radiation

power of axially-symmetric modes of vibrations of annular membrane, can be used for
analysis of more complicated problems of radiation.

The example of their application is the analysis of the phenomenon of radiation of

an annular membrane with modification of the force exciting the vibrations.

(1]
(2]
(3]
(4]
(5]
(6]
(7
(8]
(9]
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THE MUTUAL IMPEDANCE OF TWO CIRCULAR PLATES
FOR HIGH FREQUENCY WAVE RADIATION

P. WITKOWSKI

Institute of Physics, Pedagogical University of Rzeszéw
(34-310 Rzeszéw, Rejtana 16a, Poland)

In this paper the mutual impedance of two thin circular plates with non-axisymmetric,
time-harmonic free vibrations is analyzed. It is assumed that plates clamped at the cir-
cumference are placed in a rigid, planar baffle and radiate into a lossless and homogeneous
fluid medium. Damping in plates is ignored.

Using the Cauchy theorem on residues and asymptotic formulae for the Bessel functions,
an approximate expression is derived for a normalized mutual resistance and reactance for
high frequencies.

1. Introduction

The practical application of a system of two plates as a sound transmitter or receiver
of acoustic waves requires the knowledge of frequency characteristics of its acoustic
parameters. One of them is the mutual impedance describing the influence of the plates
vibrations on each other. In general case the vibrations of plates are non-axisymmetric
so the mutual impedance concerns non-axisymmetric modes.

Hitherto the problem of interactions of non-axisymmetric modes was considered only
for one plate [4, 8].

The problem of the mutual impedance of two elastic circular pistons was investigated
in 1964 by PORTER (5] and CHAN [1] in 1967. They expressed an axially symmetric dis-
tribution of velocity in terms of the radial variable by a power series. In the paper [6],
the mutual impedance of two circular co-planar sources with nonuniform velocity dis-
tributions: gaussian, parabolic and bessel has been considered. In paper [2], expressions
were presented for acoustic power of two sources with parabolic velocity distribution for
high frequencies.

The present paper deals with the mutual impedance of circular plates supporting
non-axisymmetric free vibrations. By using the LEVINE and LEPPINGTON’S method [3],
which is based on the Cauchy theorem, an elementary formula is derived for a normalized
mutual impedance.
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2. Mutual impedance of two circular plates

An acoustic radiator vibrating in an elastic medium encounters a counteraction of
the medium. The measure of the source loading is the acoustic impedance defined as

follows:
1

Zo= oo [ p(r, @) v* (1, 0) do (2.1)
where ;

%) = 7 [ vlr ) v (r0) do (22)
a
is the mean value of the second power of the normal velocity of points on the source
surface 0. Values p(r, ), v(r, ) stand for the surface distribution of pressure and normal
velocity, respectively, r, ¢ denote the radial and angular coordinates of a point of the
source with respect to the polar reference system. Now we find the analytical form of
the definition (2.1) for two plates on which the distribution of velocity is defined as a
superposition of free vibrations.
Let us consider two thin plates of the radii a;, ag, fixed on the rim in a rigid and
flat acoustic baffle. The plates radiate into lossless and homogeneous fluid medium. The
distance between the centres of the plates is denoted by [ (Fig.1).

L

i

Fig. 1. The geometry of plates.

The normal velocity of the first plate is given in the form of a double, infinite sum:
V(r,p) = Z Z 1) 4 (1) ) (r, ), (2.3)
m=0 n=1

where c( ), is an expansion coefficient of velocity in a series of eigenfunctions for the first
plate and v,(nL(r, ) are the normal velocity mode functions

200 =V 0 Y [ (o) - ot (e ] 20

where J,,(+) denotes the Bessel function of the m-th order, I,,( ) is the modified Bessel
function of the m-th order, vm, stands for the roots of the characteristic equation
Jm('Tmn)I:-n(’}'mn) = Im(’Ymn)J;n(’Ymn) =0.
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In general case, the expansion coefficients of velocity in a series of eigenfunctions are
complex, e.g. when we take into account the losses into material of the plates or the
influence of radiated wave on the vibrations of the plates. The normalization factors

Y= Vm o i (2.5)
27a1 I (Ymn) 2, m>1,

are chosen such that the eigenfunctions are orthonormal.

Each of the normal velocity modes “u of the second plate gives rise to an extra
acoustic pressure on the surface of the first plate, p}}. The total such a pressure is equal
to an infinite sum of particular pressures pﬁ

P (r,¢) Zcﬁj’ P (r,0), (2.6)

where cﬁ) is an expansion coefficient of the velocity on the second plate. Substituting
the velocity (2.3) and the pressure (2.6) into the definition (2.1), we get:

(2.7)

where

Z% = -“_——[PH (r, ) viak (r, ) do, (2.8)

1)2 2)2
oy (R e o
g =Tai1a3, 01 = Tfa.%.

The quantity Z2}, is the mutual impedance of two circular plates excited with radi-

ating non-axisymmetric modes.
The pressure p?} is calculated with using the Huygens-Rayleigh formula [6]. It has
the following integral form:

T
T 00 21

Pﬂ i (P) s koQt;‘-;(i)k [ / Wk(:f) (ﬂ)eikursin 9 cos(p—)
0

o} N otsinoconr Gng g ay,  (29)
cos(kv)

where

az
. r " f r
w? ) = v [ (Kot sin ) [Jk (ma—";) - _—I:((”:::))Ik (ma—";)] rodra,  (2.10)
0

ko denotes the wave number in the gaseous medium, go is the equilibrium density of the
gaseous medium, w stands for the angular frequency of the v1brat10ns

Upon performing the integration in (2.8) with pi and oS replaced by (2.9) and
(2.4), respectively, and referring the impedance Z2L, to the specific resistance of a fluid

mn
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medium pgcp, the normalized mutual impedance between (k,l) and (m,n) modes is
obtained as follows

i . koay sind )
CZ]_ B \fém?kgamz( l)k %/mamn.]m(koal SlIlT.?) = %Jm+l(kga1 SlIl'L?)
o YmnYkl ( koaq sim?) ’
0 U s o S
Tmn
k in 9
aqu(koag sin 19) b Ua:i&.]k+1(koaz sin 19)
ki
1 (koaz sim9)4
TYmn
X [(=1)"Ji—m(kolsin®d) £ Jgim (kol sind)] sind dd, (2.11)
where amn = Jmt1(Ymn)/Jm(Ymn). The signs plus and minus in the last term corrre-

spond to the choice of the cosine and sine functions, respectively, in the normal velocity
distribution function (2.4).

This solution (2.11) is a generalization of the pattern obtained in [7] where k = m =0,
a; = ag.

3. Acoustic resistance for high frequencies

The normalized mutual impedance (2.11) has no exact analytical solution. But there
is a possibility to calculate its value using an approximate method.

As shown below, one can obtain an approximate representation for the mutual re-
sistance by replacing the Bessel functions with their asymptotic expansions and then
making use of the method of stationary phase.

19/1‘

o [\pl;‘

Fig. 2. The integration contour in the complex plate ¥ = ¢’ + 9"

In order to separate the mutual resistance from impedance (2.11) let us substitute
¥ = 9’ +49" and consider the integral along the segment (0, 7/2) of the real axis (Fig. 2).
Let us substitute z = sin®’ and use the abbreviations: s = a;/as, p = l/a1, B8 = koa1,
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Smn = Ymn/koa1, 8kt = Yki/koa1. Then we get the expression:
1

: Qm d n, ;6?1: —zdn (ﬁ.’L‘)
0
B\ _ B
sagOpr Ji (S:c zJpp1 3° s

X

[(_l)m']k—-m()ﬁpx) = Jk+m(ﬁp$)] (31)

3'54 ey (S(SH)4

Let us introduce the function of a complex variable z [3]
F(z) = [@mnbmnIm(B2) — 2Jm41(Bz)] [sauészk (gZ) - zJks1 (gzn

x [(~)mHY,, (Bp2) £ B (Bp2)] . (32)

Now, let us consider the complex integral:

Vi—z2

F(z)zdz
c/ V=22 2% = 54,] (2 = (s8)"] 48]

The contour (Fig.3) by-passes singular points of the integrand d,nn, 58k, i16mn, 150k
and branch point at z = 0 (of the Hankel function H,E,;zm(-) = Jrgm() + iNgtm(+)).
Part of the contour follows the upper side of the branch cut between z =1 and z = oo

(of the function V1 — 22).

3

(D)

>
5'{”.‘”. 8 61.‘ [ 1

g -~ o

(4) (B)

(T P ZiZz

Fig. 3. The integration contour C.

The Cauchy theorem implies that the following is true for the integrals:

pf+/+ f +pf :‘}TiZIESf(Zj), (3.4)
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where p [ denotes the principal value of an integral, f(z) is equal to the integrand in
(3.3), zj = bmn, 10mn, 50k, i50) are the first order poles.

The integral along a large circle vanish with increasing its radius. Also, integrals
along small circles around the points z = 0 and z = 1 vanish when their radii tend to
Zero.

Then it remains:

80/1 (z)z dz + T (:c)a:da:
J V1-z?[z 4zt — (s6r2)Y] —ivz? — 1[z* — 82, ] [z — (s6k)?]

F(iy)iy d(iy)
f \/1 T 0 = 5 1 — (sdn)® =i Z resf(z;). (3.5)

Taking the real part of the left-hand side of (3.5), we arrive at the integral (3.1)

jamn mndm (ﬁ-’”) — 2Jm+1(8z)
=iy
0

(1) o (2
2% — (s0m)" (=)™ k- (BPE) + Jitm(Bp2)] —mes

X

JIm(Bz) — zJmt1(Bz)

4
- 6mn

I
HL“‘%S
Q
3
3
O

o8] ()
x zt — (s6)* [(=1)™Ni—m (Bpz) £ Niym(Bpz)] = \/— (3.6)

The sum of residues in the right-hand side of (3.5) is equal zero, what is a consequence of
F(6mn) = F(80mn) = F(i6mn) = F(i80;mn) = 0. Also the real part of the third integral
in the left-hand side of Eq. (3.5) is equal 0, what results from relation ReF(iy) = 0. To
prove this, we use the properties: Jy, (iy) = I (y)i™, H (iy) = Ez'“('"‘“}Km(y), where
K., (y) is the cylindrical MacDonald function of the m-th order.w

So, the integral (3.1) is transformed into other one with limits of integration from 1
to infinity, for which the integrand is determind.

All cylindrical functions in the integrand on the right-hand side of (3.6) we expand
asymptotically [4] as z tends to infinity

cos (:c i 1'rr),
4

(3.7)

=
3
3]
S
12
8w 3w
w
m,
=
FTTTN
|
[
3
+
—_
.
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After computing the integral on the right-hand side of (3.6) by using the method of
stationary-phase, we get finally:

352 £2
s 6ki5mn

mB2 /P (1 - 85n) [1 — (s6k)]

sing(ps ~8 +1)

21
e Kl = 2V5k5m
mn

. B
5 i
k+msm - (ps +s—1)

A -1
% vps—s+1 +1) vps+s—1
B g
Zps—s+1 i ~1
- cos s(ps s+1) L e <% S(ps—}— s—1)
ps—s+1 vVps+s—1
cosg(ps+s+1) cosg(ps—s—l)
-C (_l)m S _l)k S
vps+s+1 ps — s — 1
sing(ps+s+1) ksing(ps—s—l)
D™ -1 i 3.8
i (=1) vVps+s+1 ) Vps—s—1 34

where

= (saklamnékiémn + 1)1

(saki0x — Amndmn), 3.9)

(sakt amnék! 6mn - 1) )

9o & x
Il

(saki0k1 + Amndmn).

4. Acoustic reactance for high frequencies

Acoustic reactance, which is the imaginary part of impedance (2.11), has the form:

21 2,/€k£mk§a1a2 k
X = ——(-1)
mn Ymn Ykl

. koay coshd”

% Xy Jm (koay cosh9") Jm+1(koay cosh9")

x /‘ mn 1
i (kgal cosh " )

0
TYmn

k ho" ,
ki Ji(koas cosh9") — i“—"‘-f/oS—JkH (koas cosh9")
ki
X
Yiae (koaz COSh 9" ) 1
Tkl

 [(=1)™J—m (Kol cosh®") £ Jiym (kol cosh9")] coshd” dd”.  (4.1)
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By substituting z = cosh?” and using the same notations as for resistance, we get
the expression:

X = 2v/EkEm s205,02,.(-1)F

o f amﬂéanm(ﬁm) — TJm41(Bx) $daiady (;m) g (;m)

J zt — 54 zt — (s0p1)*
(D)™ (Bp0) £ Jeam(Bpo)] s (42)

The calculation of this integral is much easier then that of the resistance because
we do not have to change the limits of integrations. We can immediately change all
cylindrical functions in (4.2) by inserting their asymptotic forms (3.7) and using the
stationary phase method. In this way we arrive at the following equation:

21 2\/? ss‘siléfnn
G B /B — 8l [1— (s8k)]
Cosé(ps—s-{-l) cosg(ps'l"s"l)
s L] o (_1 k+m S8
Vps—s+1 vps+s—1
sing(ps—s+1) Sing(ps"'s"l)
+B 8 )2
Vps—s+1 vps+s—1
siné(ps+s+1) Sing(Ps—s—l)
+c | (-)m—= = af—
Vost+s+1 vVps—s—1
cosg(ps+s+1) kcosg(ps—s—l)
L m —1 ¥ 4'3
R T Y et )
where
A = (sarimndridmn + 1),
B = (sak;5k1 . amnémn): (4_4)
C = (s0kmnOridmn — 1),
D = (sapdi + @mnbmn).

5. Conclusions

The theoretical analysis makes it possible to obtain an integral formula for normalized
mutual impedance with non-axisymmetric modes of free vibrations. It can be calculated
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for short acoustic waves with approximate methods. The obtained formulae for acoustic
resistance (3.8) and reactance (4.3) are similar to each other in the form and have
“oscillatory” character of variations.

The expression obtained for normalized impedance (2.11) can be used in the anal-

ysis of more complicated vibrations, e.g. with taking into account losses in the plate
material [3].

(1]
(2]

(3]
4]
(5]
(6]
(7]
8l
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2-nd meeting on Advances in Acousto-Optics
St. Petersburg, Russia, June 24-25, 1997

After the successful 1-st meeting on AA-0’96 started as the 10-th Topical Meeting
(1st one of the European Acousto-Optic Club) of the European Optical Society organized
by Dr J. Sapriel (CNET - Bagneux) in Paris, the second meeting of that kind (AA-097)
took place in St. Petersburg on 24 —25-th June, 1997. It was organized by the European
Optical Society, the St. Petersburg State Academy of Aerospace Instrumentation and the
Institute of Radio Engineering and Electronics of Russian Academy of Science, Russia.

The Organizing Committee consisted of:

The Conference Co-Chairs: Prof. Yuri Gulayev (Institute of Radio Engineering and
Electronics RAS, Russia and Prof. Jacques Sapriel (Centre National d’Etudes des Tele-
communications, France).

The Executive Committee:
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Dr V.V. Molotok
both from the St. Petersburg State Academy of Aerospace Instrumentation, Russia and
the Programme Committee:

Valery V. Proklov (Institute of Radio Engineering and Electronics RAS, Russia)

Vladislav I.Pustovoit (Institute of Radio Engineering and Electronics RAS, Russia)

Oswald Leroy (Katholieke Universiteit Leuven, Belgium)

Antoni Sliwiniski (University of Gdansk, Poland)

Mario Armenise (Politecnico di Bari, Italy)

Jean P. Huignard (Thomson, LCR, France)

Daniel Dolfi (Thomson, LCR, France)

Erik Blomme (Vrije Hogeschool voor Technologie en Informatica, Belgium)

Rudy Briers (Katholieke Universiteit Leuven, Belgium)

Victor V. Molotok (St. Petersburg State Academy of Aerospace Instrumentation,
Russia).

The AA-O’97 Conference was sponsored by the Russian Fund of Fundamental Re-
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More than 60 participants from 6 countries of Europe gathered in the Hotel for
Tourisme nearby the building of the State Academy of Aerospace Instrumentation for
very topical conference on interaction of light and ultrasonics (including theoretical
developments treated for a wide range of applications.

There were 7 oral sessions and 1 poster session in which 37 papers were presented.

Several papers were related to different problems of ultrasonic light diffraction tak-
ing into account many aspects of the phenomenon including mechanisms of light and
ultrasonics interaction, polarization effects, interferometric measurements.

Papers grouped around application of acousto-optical devices to signal processing
covered theoretical basis for the problem as well as many practical solutions for acousto-
optical processors like analysers, filters, modulators etc.

Another group of papers concern application perspectives of acousto-optical devices
in optical communication systems.

Some papers were devoted to holographic 3D image display or to recording and
reproducing of wideband RF signals.

Also, there were papers on properties of acousto-optical materials and on acousto-op-
tical devices metrology.

Most of the presentations were very interesting and of high level what was reflected in
professional discussion after presentations as well as during the final discussion predicted
in the programme.

During the meeting there was also discussion about some formal rules for the EAOC
(European Acousto-Optic Club). Dr Molotok presented a proposal prepared by
Dr E. Blomme (Belgium) and a kind of a by — law of the EAAC reflecting the main ob-
jectives and purposes of the every year 2 days meeting of the A.O. community of Europe
has been accepted. The role of the European Optical Society as the main sponsor and
initiator of the meetings was evidently stressed. Also relations between AA-O’s meetings
and the every 3 years Spring Schools on Acoustooptics was discussed.

The participants decided that the next AA-O’98 and the 7th International Spring
School on Acoustooptics will be organized as a joint meeting in Gdansk - Jurata, May
18-22, 1998.

Antoni Sliwiniski



CHRONICLE 475

WORLD CONGRESS ON ULTRASONICS’97

Jokohama, Japan, 24-27 August 1997

The WCU-97 was the second world meeting of ultrasonics community following the
1-st WCU-95 congress started in Berlin 2 years ago.

The International Steering Committee for the Congress representing different coun-
tries and acoustical societies has been following:

Chairman: Noriyoshi Chubachi, JAPAN

A. Alippi ITALY 0. Leroy BELGIUM
E. Benes AUSTRIA T.J. Mason UK

L. Bj¢rng DENMARK W.G. Mayer USA
L. Crum vusa W.G. Pace UK

M. Deschamps FRANCE R. Reibold GERMANY
J.A. Gallego-Juarez SPAIN  A. Sliwiniski POLAND

J. Herbertz GERMANY S. Ueha JAPAN

H. Jones CANADA A. Zarembowitch FRANCE

The Chairman of the Organizing Committee was Prof. N. CHUBACHI from Tohoku
Gakuin University, the V-ce Chairman: Prof. K. YAMANONCHI, Tohoku University and
the Secretary: Prof. S. UEHA, Tokyo Institute of Technology, the President of the Acous-
tical Society of Japan. Prof. K. TAKAGI, University of Tokyo was the Chairman of the
Program and the Editor of the Proceedings of WCU 97. The whole local Organizing
Committee contained 109 members in 70% from universities and technological institutes
and 30% from industrial companies.

The Congress was sponsored by Science and Technology Agency, Kanagawa Prefec-
ture and City of Yokohama and financially supported by the City of Yokohama, by 4
science and technological foundations and 62 industrial corporations and companies.

More than 360 participants from 22 countries gathered at the Pacifico Yokohama
congress centre situated at the Yokohama Bay for presentation of contributions and
common discussion on advanced topics of ultrasonic science and technology. 260 original
contribution papers, 4 invited papers and 1 plenary lecture were presented. Among the
contribution papers 115 were oral presentations (20 minutes) in special fields sessions
and 145 were short (about 2 minutes) - for oral presentations correlated with the poster
sessions. In this way everyone of poster papers could be shortly introduced by their
authors.

The papers covered the whole field of ultrasonics and were grouped in eleven fol-
lowing sessions: Basic Ultrasound (2 sessions), Ultrasonic Transduction and Materials
(1 session), Photoacoustics and acousto-optics (2 sessions), Ultrasonic Measurement (2
sessions), Physical and Molecular Acoustics (2 sessions), Devices (3 sessions), Power Ul-
trasonic and Maters (4 sessions), Non-destructive Evaluation (1 session), Sonochemistry
(2 sessions), Medical Ultrasonics (3 sessions) and Underwater Acoustics (2 sessions).
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The only one plenary invited paper on “Safety of Medical Ultrasound” was presented
by Professor J. HERBERTZ of Gerhard-Mercator Universitit, Duisburg, Germany. The
author presented his “perspective on safety issues of ultrasound in the field of therapy and
surgery and in the fields of medical diagnosis and his vision of establishing a trustworthy
safety classification for ultrasonic diagnostic equipment”.

Three other invited papers were correlated with topical sessions.

Professor K. YAMANOUCH! of Tohoku University, Japan, spoke on “Future trend
of acoustic wave devices”. He described several hot topics of acoustic wave technology
important to investigate facing the coming 21 century requirements.

The main items to develope are:

1) high performore and high quality acoustic devices,

2) development and research of new piezoelectric materials and new theoretical anal-
ysis,

3) analysis of linear and non-linear propagation characteristics and new devices using
new fundamental operation mechanism,

4) evaluation of materials using ultrasonic microscope,

5) ultrasonic motors and actuators,

6) high performance SAW devices in mobile communication,

7) piezoelectric gyroscope and SAW sensors,

8) high precise and high performance and high frequency ultrasonic medical diagnosis,

9) high precise time standard using ultrasonics.

Most of these items were examplified by up to date achievements in ultrasonic,
acousto-electronic and acousto-optic technologies and in acoustic measurements and ap-
plications.

Professor R. APFEL of Yale University, USA talked about “Super oscillations of
drops and surfactant studies in microgravity”. He presented results of a wide programme
which combined experimental work performed both on the ground and in space and
theoretical and numerical modeling of the drop behaviour oscilations and the influence
of the surfactant on them. There has been possible to establish idealized conditions for
surface behaviour studies by levitating a drop of liquid in air, away from interacting
of container wall surfaces, and manipulating the drop with acoustic radiation forces.
Different free oscillations of initially deformed drops were studied and the influence of
surfactants on these oscilations reflected in dynamic surface tension and the surface
viscosities (shear and dilatational) were observed and determined.

The next invited paper was presented by Professor J.A. GALLEGO-JUARES of Con-
sejo Superior de Investigationes Cientificas, Spain, on “Power ultrasonic technologies
for industrial applications”. He described the structure and performance of the new
sonic/ultrasonic power generator constituted by a transducer with a flexural-vibrating
plate radiator and an electronic unit for driving the transducer. The prototypes of gener-
ators were developed for the frequency range 10—40 kHz and power capacities between
100 W and 1 kW. 3 kW new model of 1 meter radiating plate is being constructed,
presently. Several examples of industrial applications like fine particle removal from in-
dustrial fumes, defoaning, food dehydration and cleaning of textiles were described.
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It is impossible to talk over many very interesting contributed and poster papers
among those presented in the congress. The majority of papers presented have a good
level and illustrated topical achievements of ultrasonics in science technology medicine
and industry.

In parallel to sessions the ultrasonic equipment exhibition of 12 exhibitors mainly
from Japan was very succeded.

During the Congress there was a special competition on the best poster evaluation
organized. Participants voted (using the ballot box) and 5 posters were selected and
awarded by the Organizing Committee. Among them one Polish poster presented by E.
Kotlicka from the Technical University of Warsaw was distinguished.

The participants as well as accompanied persons had many opportunities for sightsee-
ing and experiencing the Japanese customs and culture. A special events were prepared
nearby the lecture rooms: the flower arrangement (Ikebana), Kimono (Japanese tradi-
tional clothes), tea ceremony (Cha) and Koto music, calligraphy (Shodo) and colored
paper folding (Origami) in which taking part one can enjoy very much.

The participants had opportunity to attend interesting post Congress technical tours.
One of them was the tour to the Seidensha Electronics Co., Ltd. and the Tokyo Institute
of Technology Lab. in which the undersigned below took part. There was a possibility
to visit the factory producing ultrasonic and electromagnetic welding equipment of wide
field of applications. In the Tokyo Institute of Technology, in the Precision and Intelli-
gence Laboratory, the group was hosted by Professor Sadayuki Ueha, the head of the
Applied Acoustic Devices Section. Many interesting experiments are curried on in this
Laboratory. The current topics are: fundamentals of ultrasonics applied in various en-
gineering fields, ultrasonic actuators and motors and ultrasonic measurements. Several
kinds of hybrid transducer tipe ultrasonic motors, the noncontact transportation sys-
tem using acoustic radiation pressure, ultrasonic diagnosis of osteoporosis system and
others, were demonstrated to the visitors. At the end of the visit a very warm reception
(barbecue party) took place.

The undersigned below having the opportunity to write this report wants to express
his cordial thanks to Professor S. Ueha for his kind invitation to Japan and the essential
support enabling him to participate the Congress.

The 2-nd World Congress on Ultrasonics in Jokohama, similarly as the 1st one in
Berlin has occured very succesfull and fruitful. The Steering Committee of WCU'’s during
its meeting in Jokohama declined with thanks to the Organizers for their great efforts
and the excellent organization. Also, the Steering Committee discussed and accepted the
By-Law for World Congress on Ultrasonics. It has been decided that the next WCU-99
meeting joint with Ultrasonic International 99 Conference will take place in Copenhagen,
Denmark and will be organized by Prof. L. Bjgrng.

Antoni Sliwiriski



478 CHRONICLE

103rd AES Convention, New York

26-29 September 1997

This Convention was a Jubilee of fifty years unbroken tradition of AES Conventions.
“AES goes gold” - this sentence was visible from numerous green posters, which marked
organizers’ stands in the huge indoor volume of the New York Javits Center, where the
103rd Convention was located. The Javits Center, stretches along the Hudson River on
Manhattans west-side, near to the entrance to the famous Lincoln Tunnel, linking Man-
hattan with New Jersey. The Center is very large, one can say, too large in comparison
with other convention sites. It is enough to say that the building contains over 167000
square meter (1.8 million square feet) of floor space, thus walking among various stands,
lecture halls, meeting rooms and hundreds of exhibition booths was somewhat tiring.

The opening ceremony was devoted to celebrate and emphasize the AES Gold Jubilee.
Traditional AES awards were presented during the special ceremony, to acknowledge the
contributions of those individuals who have furthered the advancement of the audio do-
main and the development of the Society. This year the awards were more numerous than
previously due to the Jubilee occasion. An informal reception with a buffet completed
the opening ceremony creating for the recipients of awards together with all invited
guests, a relaxed atmosphere and an opportunity for individual meetings and exchange
of ideas.

The scientific part of the Convention consisted, first of all, of the 16 paper sessions,
each of them devoted to a specific domain of audio engineering. 142 papers were presented
by 270 authors and co-authors from 18 countries (USA — 96, UK - 50, Japan - 27,
Germany - 19, Finland — 11, Italy — 11, The Netherlands — 11, France - 10, Canada - 7,
Denmark — 6, Austria— 5, Korea — 4, Russia — 3, Urugway — 3, Israel - 2, Poland - 2, Spain
— 2, Switzerland — 1). Besides of the paper sessions mentioned, the 16 workshop sessions,
devoted to most actual topics, were organized and held parallel to paper sessions.

As usual, most of the papers were edited as Preprints prior to the debates, which
helped presentations and efficient discussions after presentations. Moreover, this year,
for the first time, all Preprints have been edited as a set in the form of a CD-ROM-disc,
sold to attendees.

It is difficult to compare the scientific achievements presented during this Convention
with those of previous ones. It is easier to assess its commercial impact. The approximate
number of 18000 visitors to the exhibition area means an undoubted advertising success
of all the 348 companies of the audio industry all over the world, participating in this
gigantic fair. '

Besides the scientific and industrial importance, the Convention played a significant
organizational role. The Board of Governors meeting, held traditionally the day after
the closing of the Convention, was, as usual, an important event of the entire AES
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annual activity. The meeting preceeded the date of 6 October, being the terminal point
of passing organizational functions from those ending their term to those elected for
the next term. The actual President, Elizabeth Cohen, presided the meeting for the last
time, thus future meetings will be presided by the President-elect Subir Pramanik. Other
AES officers will also be changed according to bylaws. Among other things I delivered
the final report of my activities as Vice-President for the Central Europe Region.

In my report I quoted as main achievements the six new AES Sections which I success-
fully coorganized within the Region: Lithuanian, Russian-St.Petersburg, Russian-Baltic
State Technical University—Student, Gdansk Technical University—Student, Ukrainian,
Byelorussian. Thus the total number of Sections within the CE Region increased to
seventeen, while above three hundred new members entered into AES community. This
creates a new organizational situation in Central and Eastern Europe facilitating profes-
sional contacts among sound engineers working in the neighbouring countries. Regional
AES meetings become desirable and just such initiative was undertaken, proposed to
the Board of Governors and preliminarily accepted. The initiative was undertaken by
the St. Petersburg Section which will organize a regional conference in 1999.

Other decisions were also undertaken by the BoG meeting, namely, those concerning
future AES Conventions. The nearest one, the 104th, will take place in Amsterdam,
from May 16-19,1998, and the next one, the 105th, in San Francisco, from September
26-29, 1998.

From my experience during functioning as AES officer, I would like to formulate a
final concise conclusion and advice. The national AES Sections, especially in the coun-
tries undergoing transformation from centrally controlled to the democratic system of
social life, are of great value as a substantial relief and help for introducing acousticians,
sound engineers and other related professional local communities into a world wide area,
of scientific, professional and commercial contacts. Those possibilities, offered to local
Sections by the AES must not be overlooked. Now, the future activities of the AES
Central Region will be coordinated by the new Vice-President for the CE Region, Dr
Karl-Otto Baeder from Switzerland. I wish him the most successful term leading to the
further fruitful development of our Region.

I think, moreover, that the above mentioned Sections of Central and Eastern Europe
should be grateful to those long-sighted AES officers, who seven years ago decided to
extend the Europe AES Region to the East and offer substantial help in organizing new
Sections. The Audio Engineering Society may be proud of the fulfilment of one of its
major aims.

Marianna Sankiewicz
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DISSERTATION

“Investigations of inclusion complexes of organic ions with a- and 3-cyclodextrin by
means of ultrasonic spectroscopy methods” Andrzej Balcerzak, Institute of Fundamental
Technological Research, Polish Academy of Sciences, Warsaw. Ph.D. Thesis in material
science, supervised by Associate Professor Adam Juszkiewicz.

The aim of the Thesis was to obtain thermodynamic and kinetic characteristics of
complexation process, information about its mechanism, and to determine the influence
of different parameters (sterical, chemical) on this process.

Measurements of the absorption of ultrasonic waves in the frequency range 1 —
150 MHz were carried out for aqueous solutions of a- and 3-cyclodextrin with surfac-
tants which were the source of organic ions. The additional measurements of velocity
of the acoustical wave and density were also made. All these measurements were made
for the equimolar solutions of cyclodextrin + surfactant at 15, 25, 35 and 45° C. The
concentrations were equal to 0.01 — 0.04 M and 0.01 M for solutions with a-cyclodextrin
and [-cyclodextrin (due to its low solubility), respectively.

The measurements were made by means of the resonator (1 — 10 MHz) and pulse
(10 — 150 MHz) methods.

The most important results:

— there are ultrasonic relaxation processes in the aqueous solutions of a- and
B-cyclodextrin with surfactants; these processes can be described by one or two re-
laxation times,

— each of these processes fulfils the scheme of first-order or pseudo-first-order reac-
tion,

— the calculated kinetic and thermodynamic parameters enable to attribute molec-
ular phenomena to the observed relaxation processes,

— the low-frequency process is connected with the exchange of water molecules in
hydratation shell of cyclodextrin, '

— the high-frequency process, which occurs for organic ions with long alkyl chains, is
connected with penetration of the chain of the organic ion to the cavity of cyclodextrin,

— a kind of the hydrophilic group of the surfactant has diminutive influence on this
penetration,

— the experimental results are explained by the proposed three-step kinetic model
of complexation.



