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The paper discusses the deformation of the instantaneous frequency of signals with
linear and jump frequency changes propagating in a room. The instantaneous frequency
deformation in a room has been compared on the basis of theoretical and experimental data.
It was found out that deformation of the instantaneous frequency for linear and jump
frequency changes reached extreme value at the minima of the amplitude of the resultant
signal. For linear frequency changes the deformation is proportional to the rate of frequency
changes, and to the delay time of the reflected wave. In turn, for jump frequency changes, the
deformation increase with an increase in the jump value. The instantaneous frequency
reaches final value after a time equal to the reverbation time of a room.

1. Introduction

An acoustic signal propagating in a room is deformed both in the amplitude and
frequency domains. Sound deformations in a room in the amplitude domain has been
discussed in the literature [2, 3, 4, 6]. Results of the investigations led to the
development of an objective method of speech intelligibility in a room, called the
RASTI method [4]. This method is based on the concept of the Modulation Transfer
Function (MTF) adopted to the room acoustics [3]. The (MTF) represents the
modulation depth reduction as a function of modulation frequency. So far much less
attention has been devoted to signal distortion by the acoustical parameters of a room
in the frequency domain. The problem is important with reference to the propagation
in a room of real sounds such as speech and music which are characterized by
a considerable variability in the frequency domain. Our first approach to the problem
[8, 9, 10, 12, 14] indicated the existence of a number of interesing effects. The basic
issue when evaluating effects connected with sound deformation in a room is to get
quantitative relations between the transmitted sound and the sound received in
a certain points of a room. A preliminary analysis of the problem has been discussed
in paper [7]. In the theoretical part of the paper general dependencies between the
transmitted and received sound in the aspect of a spectral-correlational analysis were
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given. In the experimental part, changes in the spectral structure of complex sounds,
propagating in selected rooms (models), with different spatial configuration and
different reverberation times were determined. It has been found out that the value of
changes is different in growth, steady state and decay process of a signal and depends
on the location of the measurement point and the type of analysed sounds.

Sound deformation in a room was also discussed in the aspect of the mu-
Iti-dimensional space theory [8, 9]. Assuming that the space of acoustic states of
a room affects the signal space, producing as a result its deformation, relations
between elements of these spaces were analyzed. We were also considering the
possibilities of determining acoustic states of a room on the basis of the classification
of sound deformation states.

Another interesting aspect of the frequency sound structure deformation in
a room is the problem of changes in the so-called sound instantaneous frequency in
the process of the growth and decay of signal [10, 14]. Generally, the resultant
acoustic pressure in the sound growth or decay in a room can be treated as the signal
of an amplitude and phase changeable time, which approximately can be expressed as
follows:

p(8)=p(t) cos o(1), (1.1)

where: p(f) — acoustic pressure amplitude, ¢(f) — instantaneous phase of acoustic
pressure.
The instantaneous phase ¢(f) of the resultant signal can be expressed as:

p(t)=wt+ 1), (1.2)

where: w, — frequency of the signal transmitted into the room, f{f) — the function
,;modulating” the phase of the signal transmitted into the room.
Function f{f) represents jump changes of the phase of the resultant signal, resulting
from the summation of the direct sound and successive reflections with different
phase shifts. These jump phase changes cause a change in the time interval between
successive zero crossings of the resultant signal.

On setting the instantaneous phase derivative in relation to time we get a value
which characterizes the rate of changes of that phase, this being called instantaneous
frequency:

_do(t) _d SOV )
ﬂ)(f)—T—-dt ﬂ)of‘f‘ﬂt)]——wu'f'—dft_, (13)
or otherwise 1 do(r)
A=5~ar

More details on the instantaneous frequency and its measurability are given in
papers [1, 10]. It is interesting to note that in the literature [13] one may also find
another definition of instantaneous frequency, based on the analysis of the number of
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zero crossings of the real signal investigated. In this case instantaneous frequency is
defined as the ratio of the number of zero crossings of this signal, determined over
some time interval Az, and the value of this interval. This ratio corresponds to the
mean density of zeros of the signal over this interval and is sometimes called Rice

frequency (f3):

. N

T—ew

where N is the number of ,,positive” or ,,negative” zero crossings of the signal and At
is the averaging time interval.

According to (1.3), the sound instantaneous frequency, measured in the growth or
decay process, is not equal to the frequency generated into the room but varies
(fluctuates) around that value in agreement with the derivative of df{r)/d. Quantity
w(?) as defined by expression (1.3) is thus a theoretical one, as it determines the value
of the instantaneous frequency at a given time ¢, which cannot be implementend in
experimental conditions. In these conditions, in expression (1.3) the differential
quantities were replaced by the difference ones, i.e.

4o
w(dt)= yTh (1.4)

In keeping with expression (1.4), the measure of the instantaneous frequency of
the signal is the ratio of its phase change 4¢, occurring in the time interval 4¢, over
the duration of this interval. It has been generally stated that observed changes in the
instantaneous frequency in a room have a random character and are within the range
of several Hz. In a few special cases they can reach much greater values [10, 14].

2. Signal with linearly changing frequency

Let us consider a case when a sinusoidal signal, whose frequency is increasing
linearly, is transmitted into the room, i.e.

o(f)=w,+ at, (2.5)

where: w, — initial frequency, & — rate of frequency changes.

Let us assume that at a measuring point of the room there is a superposition of the
direct wave and the first reflected wave which will reach the measuring point with
a certain delay 4t (Fig.1).

Let us notice that as soon as the reflected wave reaches the measuring point, at any
time ¢ (e.g. 500 or 800 ms cf. Fig.1) there is a constant frequency difference between
the direct and reflected waves, equal 4f=10 Hz. In this case an effect similar to
beating will occur. However, the effect is more complex because that frequency
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Fig. 1. Changes in instantaneous frequency in time for a direct wave f,(f) and reflected wave f,(¢) (for
clarity, time delay of the reflected wave equals A¢=100 ms).

variations in time are continuous. For the assumed character of frequency changes
the signal can be written as follows:
: ot?
x()=xsin(w t+ @+ 7). (2.6)

In the case of the direct wave and the reflected wave, the linear frequency change
can be expressed as follows:

+ direct wave: w,(f)=w,+af,

» reflected wave: w (f)=w +a(t— A?).
The resultant signal at the measuring point in the room is equal:

Xees(£) = X 810 (1)) + X, 8000, (1)),

where:x ,,x, — amplitudes of the direct and reflected waves, ®4(1),9,(t) — phases of
the direct and reflected waves. '

Phases of the direct and reflected waves, given that the initial phase ¢ =0, can be
expressed as follows:

ot?
Q) =wot+—, 2.7
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ot?

rp,,(t)=coot+-2— — adt t. (2.8)

The output signal resulting from the superposition of the direct and reflected
waves can be written in the following form:

Xees(£) = A(D)sin(w t — B(1)), (2.9)

where: wt — ®(f) = ®:s(f) — phase of the resultant signal.

Considering the amplitudes and phases for the direct and reflected waves,
following trigonometric transformations, we find formulae describing temporal
changes of the instantaneous frequency and amplitude envelope. Changes in the
frequency of the resultant signal:

APee(t) adt(6%+ dcos(aAdtt))

el £) = f— : ;
() = T O T 55 cos(udt) e
Changes in the amplitude envelope:
A(f)=x,,/1+0+25 cos(a4tr), (2.11)

where é — the ratio of amplitudes of the reflected and the direct waves.

It can be seen in expression (2.10) that changes in the instantaneous frequency of
the resultant signal occuring as a result of the superposition of two signals with
linearly growing frequency have a more complex character than in the case with the
elementary effect of beating. The amplitude envelope variation of the resultant signal
is like the beating of two sinusoidal signals with a constant frequency difference.

3. Signal with jump changes of frequency

Let ut consider a case of a sinusiodal signal propagation in a room for which at
a certain time a frequency jump appears. Such a change can be obtained by means of
frequency modulation of the signal by a rectangular wave. The modulated signal x()
has the form:

Tiz i 3
x(t)=xosin[ j’ (m1+Aw1(t))dt]=xosin[ Tf m(:)a'r], (3.1)
=Tf2 +Tfa

where:
o(f)=w,+ dwl(f),

1= 1 for —T/2<t<0
10 for 0<t<T)2 °
do =w,—wo,,

T 1

=f",
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and w, — the initial frequency value (i.e. before the jump), w, — the final frequency
value (after the jump), f,, — frequency of the rectangular modulation wave, 4w/2
— frequency deviation.

The conventional value of the carrier frequency of FM signal will be equal to:

dw
UJO = CUI -+ —5-
For relatively low frequency values of the rectangular signal (f,,—0) in the spectrum
of the frequency modulated signal only two components with frequencies o, + dw/2
and w, — Aw/2 can be distinguished. If a sinusoidal signal with a constant amplitude
A and phase ¢ is transmitted into the room, then this signal, in a steady state, for
frequency w, can be represented in the following form:

x()=4 | H(jw)) | sin(w,?), 3.2)
Similary for frequency w, one can write:
y(t)=A4 | H(jw,) | sin(w,?), (3.3)

where: | H(jw) | — the value of amplitude frequency response for frequency w.

Let us further assume that at time /=0 a signal frequency jump from value w, to value
w, occurs. After the frequency jump, given the assumption of an exponential sound
decay, signal amplitude, for frequency w, will decrease in accordance with function:

x()=A4 | H(jw,) | exp(—kf)sin(w,?). (3.4)
In turn, signal amplitude, for frequency w, will increase according to the form:
yH)=4 | H(jo,) | [1—exp(—ki)]sin(w,?), (3.5)

where k=13.8/T,,, T,, — room reverberation time for 60 dB decay. Let us assume
that in the frequency range in question, in which the jump occurs, the dependence of
the reverberation time on frequency is a slow-changing function.

At a certain time after the frequency jump, there will be a superposition of the
decaying signal of frequency w, and the growing signal of frequency w,. The resultant

signal will be
2(f)=X exp(—kt)sin(w,f) + ¥ [1 —exp(—kf)]sin(w,?). (3.7
where X,=4 | H(jw)) | , Y,=4 | H(jw,) |
Next, we transform equation (3.7) to the following form:
2(t) = R(sin(p,(1)),

where R(f) — amplitude envelope of the resultant signal, ¢ (f) — phase of the
resultant signal.
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After trigonometric transformations we get the following formula describing
changes in instantaneous frequency after the frequency jump:

do (1) _
dt

w(t)= w,+ {YEA w(l —exp(—kt)y*+ X Y exp(— ki)

(3.8)

x [ksin(4w?)+ Aw(1 —exp(— kt))COSI(A wt)]} 20

where

R(t)= \/ Xoexp(—2kt)+ Y1 —exp(—ki))*+2X, Y exp(— kt)(1 —exp(— kt))cos(4dwt)

— amplitude envelope after frequency jump.

On the basis of expression (3.8), calculations of changes of instantaneous
frequency and the amplitude envelope of the signal after the frequency jump were
made. The results of calculations allow to analyze these changes in detail with respect
to such parameters as: the range of frequency jump Af, room reverberation time
T and quantity 6= | H(jw,) | / | H(jo,) | .

4. Results of calculations and experiment for linear frequency changes

In order to check the machanism of the instantaneous frequency changes for
linear FM, computer calculations were performed. For clarity of interpretation we
took into account the superposition of direct and reflected waves. The aim of the
calculations was to show how the rate of frequency changes, amplitude and time
relations influence the resultant signal of instantaneous frequency changes.

Figures 2 and 3 show changes in frequency and the amplitude envelope for the ratio
of amplitudes of the reflected wave to the direct wave 6 =0.85, delay of the reflected wave
At=20ms and the rate of frequency changes a, respectively 250Hz/s and — 250Hz/s.

Characteristic deflections of instantaneous frequency from the linear dependence,
indicated in Fig.2 and 3 by a dotted line, can be observed. Minima of the amplitude
envelope correspond to extreme frequency deflections, irrespective of their direction.

It was interesting to find out to what extent the instantaneous frequency changes
depend on such parameters: « — rate of frequency changes, & — the ratio of the
amplitudes of the reflected wave to the direct wave, At — time delay of the reflected
wave. For this purpose, computer calculations were made whose results are shown in
Fig. 4—6. The results, for clarity of the drawings, only refer to the deformation
introduced as a result of the superposition which in reality occurs at the background
of the linear frequency (cf. Fig. 2—3).

Analyzing the data shown in Fig. 2, 3 and 8 one can generally say that the minima
of the amplitude envelope correspond to considerable deflections of the signal
instantaneous frequency. The value of the deflection (Fig. 4 —8) depends on the rate
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Fig. 2. Computer calculations of changes in instantaneous frequency and amplitude for a signal with
a linearly growing frequency, for =250 Hz/s, =0.85 and 4¢=20 ms.

of frequency changes, delay time of the reflected wave and the ratio of the amplitudes of
the reflected wave to the directed wave. The frequency for which extreme deflection of
frequency occurs depends linearly on the product of the rate of frequency changes « and
time dealy A1; this frequency corresponds to the frequency of changes in the amplitude
envelope (Fig. 2— 3). Furthermore, one can notice that with the increase in the amplitude
ratio & (Fig.5), deflections of instantaneous frequency lose their quasi-sinusoidal
character and for large values of § assume the form of short, one-sided deflections of high
value. The direction of extreme frequency changes depends on the direction of frequency
changes in the direct signal (sign at &) and whether coefficient 6 is smaller or greater than
1. The time interval in which single frequency deflection occurs is inversely proportional
to the rate of frequency changes, echo delay time, and the amplitude ratio 4.

The above results pertaining to instantaneous frequency changes refer to
a relatively simple case of the superposition of a direct wave with one reflected wave.
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Fig. 3. Computer calculations of changes in instantaneous frequency and amplitude for a signal with
a linearly growing frequency, for a= —250 Hz/s, §=0.85 and A41=20 ms.

Nevertheless, they permit an initial qualitative and quantitative analysis of deforma-
tion in the signal in the frequency domain. Computer analysis of frequency changes
for a larger number of reflections is much more complex and does not permit a clear
interpretation of these changes due to the growing number of signal parameters.

At the next stage of investigations, measurements of instantaneous frequency
changes for a real room, i.e. under conditions in which a large number of reflections
exist, were performed.

The measuring setup used in the investigations consisted of two sets — the
transmitting set and the receiving set. The transmitting set consisted of computer
(IBM PC486) which generated FM signals (linear or jump frequency changes)
through 16 bit digital to analog converter, at sampling rate of 48.1 kHz and low pass
filter at 8 kHz cut-off frequency. The signals were next supplied to the power
amplifier and loudspeaker. The receiving set which consisted of two microphones
with preamplifiers was connected to frequency demodulators and 16 bit analog to
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Fig. 7. llustration of changes in instantaneous frequency of a sound in a room for a signal with linearly

growing frequency at the rate of 50 Hz/s, for a few measurement points P1, P2, P3.

digital converter with a computer. The control microphone was placed near the
loudspeaker. The distorted FM signal was received by the next microphone placed in
the selected measurement point.
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Exemplary results of these investigations, for the rate of frequency changes 50
Hz/s and the initial frequency 650 Hz are shown in Fig.7.

The following figures show results obtained at three measurement points P1, P2,
and P3, localized in the diffuse field. One notices some short, often considerable,
deflections of frequency at the background of linearly growing frequency of the signal
trasmitted into the room. The deflections occur both in the direction of higher and
lower frequencies with respect to linear frequency changes of the input signal.

Figure 8 shows both changes of the instantaneous frequency and amplitude
envelope of the resultant signal. A comparison of the above changes indicates
a synchronous character of the occurrence of minima of the amplitude envelope and
the corresponding extrema of deflections of instantaneous frequency. Unlike the
results of computer calculations, instantaneous frequency changes in the room do not
have a regular character, mainly because of the random-like delay times [5, 15] and
the amplitude ratios of the successive reflections.

o5 [ T T T T T
‘N
& a = 50 Hz/s
20 %
>_
S >
& 15
a
w10 —
o
L
2 5 i
'_
2 ofF i
£ Sttt
- a = 50 Hz/s
o 150
L
Ll
% 00
L|_l1
Z s
=
<C
0 { | I | I | 1 I | i
0 100 200 300 400 500

TIME [ms]

Fig. 8. lllustration of changes in instantaneous frequency and amplitude envelope recorded in a room for
a=50 Hz/s.
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5. Results of calculations and experiment for jump
frequency changes

The formula (3.8) was used to the numerical calculations of the instantaneous
frequency and envelope changes which appear after the frequency jump in the
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Fig. 9. Computer calculations of changes in instantaneous frequency of a signal, due to a frequency jump,
for selected values of coefficient §.(4f=50 Hz; T=1s).
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room. The only difference between presented calculations and results for the real room
is an assumption that the room decay process is an exponential one. Calculations were
performed for selected signal parameters (range and direction of frequency jump) and
room dependent parameters (amplitude ratio and reverberation time).

I I I I T [ I I I

a0 Af=10 Hz

20 -

—
e

100 + =

100 |- l | | | | | | l | H

200
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| I L 1 1 r | 1
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Fig. 10. Computer calculations of changes in instantaneous frequency of a signal, due to a frequency jump,
for selected values of frequency jump Af.(6=0.1; T=2s).
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Exemplary results of the calculations are shown in Figs. 9—12.

The moment at which signal frequency jump occurs corresponds to the zero value
on the time axis. At successive time moments we observe characteristic fluctuations of
instantaneous frequency nad then a fixed frequency value which corresponds to the

I | I ! I I I T 33)
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Fig. 11. Computer calculations of changes in instantaneous frequency of a signal, due to a frequency jump,
for selected values of reverbation time 7.(4f=50 Hz; § =0.6).
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Fig. 12. Computer calculations of changes in instantaneous frequency and amplitude envelope of a signal
after a frequency jump. (4f=40 Hz; 6=1.0; T=2s).

final frequency of the frequency jump. For simplification we adopted the initial
frequency value equal zero (in reality it is the value of the initial frequency of the
jump). Furthermore, Fig.12 shows both changes in the frequency and amplitude of
the signal after the frequency jump. Analysis of the calculation results has pointed out
the following facts:

« the transition from the initial frequency value to the final value has an
oscillating character; at the initial phase, the oscillation is non-symmetrical around
the initial frequency value and then, starting at the moment at which the values of the
amplitudes of the growth and decay signals are equal, the oscillation is
non-symmetrical around the final frequency value, '

+ the final frequency value occurs after the time equal to the room reverberation
time T,

« the oscillation frequency of the instantaneous frequency and amplitude en-
velope is equal to the value of the frequency jump,
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+ for the value of coefficient 4> 1 the oscillation time around the initial frequency
value is shortened,

* changes in time of the amplitude envelope have an oscillatory character,
however without the change in the oscillation direction, which is characteristic of
changes in instantaneous frequency.

Analyzing the data in Fig.12 one can state that extreme fluctuations of instan-
taneous frequency correspond to the minima of signal amplitude. Fig.13 shows
a case of the frequency jump of a high value 199 Hz with respect the amplitudes
ratio =2.2 and reverberation time T=1.4s (top figure) and the jump in the
opposite direction (bottom figure) — the value of coefficient 6 is equal to
1/2.220.45.

Like in this case of linear frequency changes, experimental investigations were
performed in accordance with the methodology developed before, this time for jump
frequency changes of the signal.
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Fig. 13. Computer calculations of changes in instantaneous frequency of a signal after a frequency jump, for
jump values Af=199 Hz in the positive and negative directions. (T'=1.4 s).
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Fig. 14. Changes in instantaneous frequency, measured in a room after a frequency jump, for jump values
Af=30 Hz in the negative and positive directions.

Figure 14 — 16 show exemplary results of instantaneous frequency changes for two
measurement points, localized in the sound reverberant field of a room. It should be
noted that in the case of a real room the sound growth and decay process is irregular
and is only similar to the exponential character. This is seen in the figures where one
notices irregular oscillations compared with the oscillations obtained as a result of
computer calculations. Generally, one can say that the character of changes of the
instantaneous frequency observed for a room is to a large extent similar to that
obtained by computer calculations. A comparison of the data in Fig.13 and 16 gives
us the extent to which the results of experimental investigations and computer
simulation results are comparable. ;
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Fig. 15. Changes in instantaneous frequency, measured in a room after a frequency jump, for jump values
Af=100 Hz in the positive and negative directions
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6. Discussion

On the basis of the investigation results, obtained both by computer calculations
and experimental investigations one can say that the instantaneous frequency can
undergo considerable deformation in a room. The degree and complexity of the
deformation depend closely on signal parameters, the character of frequency changes
and acoustic parameters of the room.

It was found that even in the case of relatively simple linear frequency changes in
time, deflections of instantaneous frequency of the signal measured in the room with
relation to frequency changes of the transmitted signal are possible. The existence of
time delays of reflected waves in relation to the direct wave has a decisive influence.
Because of the time delays, reflected waves whose instantaneous frequencies are
different reach the measurement point at a specific moment. The amplitude ratio of
successive reflected waves are also different. As a result of the superposition of these
waves, and additionally of the direct wave the phase change of the resultant signal
takes place. Hence, the rate of phase changes in time (instantaneous frequency) of the
resultant signal can be different from that which is emitted by the source.

A specific character of frequency deformation is obtained when a signal with
a constant amplitude and jump frequency changes is emitted into the room. The basic
role in this case is played by the reverberant properties of the room in the amplitude
domain. Because of these properties after the frequency jump from f| to f, a signal
with frequency f, will continu to exist at the measurement point and only its
amplitude will decrease. At the same time a signal with frequency f, will appear whose
amplitude will increase. Thus, one can say that at a certain interval at the measured
point there will be signals with two different frequencies. Because of the frequency
difference also in this case there will be a phase ,modulation” of both signals,
producing in its effect a frequency changeable in time. It is important in this case that
practically for the time equal the reverberation time, the value of the jump final
frequency f, will be reached. Hence, the so-called inertia of the room in terms of
reverberation in the amplitude domain is, among other things, the cause of inertia in
the frequency-time domain. It is worth stressing, that the results of the frequency
jump investigations are directly related to one of the basic parameters of a room, i.e.
the reverberation time.

A certain common feature of deformations in the frequency-time structure of the
signal is the appearance of extreme frequency deflections in determined time intervals.
For a linear frequency change, the frequency of occurrences of the deflection is equal
to the product of the rate of frequency change and delay time of the reflected wave
adt, whereas for a jump change it is equal to the value of frequency jump Af.

The value of an extreme frequency deflection for a linear frequency change
depends considerably on the value of coefficient . An increase in the value of the
coefficient causes an increase of the deflections value (cf. Fig.5). A similar relation
was not found for the frequency jump.

Irrespective of the type of frequency change used, the extrema of instantaneous
frequency deflection correspond to the minima of the amplitude envelope of the
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resultant signal. For a minimum of the amplitude envelope, deflection in the negative
direction (in phase with envelope changes) or in the positive direction (in opposite
phases) can occur. It should be added that the results of calculations and results of
measurements obtained in a room are not always fully comparable, which indicates
a considerably greater complexity of effects occuring in a real conditions.

7. Conclusions

The instantaneous frequency structure of signals propagating in a room can
undergo considerable deformation under specific conditions. The value of the
deformation depends both on acoustic parameters of the room and the paramters of
the signal under analysis.

+ Signals with linearly changing frequency exhibit considerable instantaneous
frequency deflections in a room, occurring at the minima of the amplitude of the
resultant signal. The value of the deflection is proportional to the rate of frequency
changes and to the delay time of the reflected wave.

» Signal characterized by a jump frequency change exhibit, in the jump range,
fluctuations of instantaneous frequency in a room. The frequency of the fluctuations
increases with an increase in the jump value. Their character, on the other hand,
depends on the ratio of the amplitudes of a signal with final and initial frequencies of
the jump. Extreme values of frequency deflection correspond to the amplitude
minima of the resultant signal. The final, fixed frequency after jump occurs after
a time equal to the reverberation time.
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SURFACE ACOUSTIC WAVE SPECTROSCOPY INVESTIGATION OF ELECTRICAL
PROPERTIES OF THE NEAR-SURFACE REGION GaAs CRYSTALS

T. PUSTELNY

Institute of Physics Silesian University of Technology
(44 — 100 Gliwice ul. Krzywoustego 2)

The possibility of the appyling the surface acoustic wave of Rayleigh type to
semiconductor investigations is described. The transverse acoustoelectric effect has been
used to study the real surfaces of GaAs:Cd (111) and GaAs:Si (110) single crystals. The
semiconductor surface in the layered structure: piezoelectric wave guide-semiconductor were
performed. These investigations for different surface acoustic wave (SAW) frequencies were
carried out. The values of the electric surface potentional @, the carrier density ng as well as
the effective life time 7, of the minority carriers were obtained. The investigations were
performed in a 50200 MHz frequence range. The dynamic values of these semiconductor
surface parameters in a high frequency acoustic wave range were presented. The results have
shown that the electrical and electron surface parameters may be various for different
frequencies.

PACS: 43.35, 73.20, 72.50
KEY WORDS: acoustoelectric effects, semiconductor surface potential

1. Introduction

The electrical and electronic properties of the near-surface semiconductors region
are completely different then its volumetric ones. Very often this region decides about
the possibility of semiconductor crystal applications in technology of electronic
devices and of their applications as the sensing elements for variety sensors techniques
[1,2].

The semiconductor surface properties may be determined by means of the
electrical sufrace potential @4 carrier density ng and life time 7, of minority carriers in
the near surface region [1].

For the technology of electronic devices more and more often the 11l -V group
semiconductors are used. In this group the GaAs crystal is a very important target
material, first of all for its interesting optical properties. This semiconductor is used
among other things technology of laser diodes and non coherent light sources, as well
as for very high frequency amplifiers and for different senors construction [3].
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The maximum of the work temperature for GaAs is twice as large as for Si and it
is about 200 °C. The maximum of the work frequency of electronic GaAs devices may
be even five times as large as of Si ones.

The development of the solid state spectroscopy causes the interest of using the
acoustic methods in the semiconductor surface investigations. The surface acoustic
wave methods seem to be a good tool for the semiconductor surface experimental
investigations in high and very high frequency ranges.

When the surface acoustic wave (SAW) propagates in the piezoelectric-semicon-
ductor structure, then the electric field, which accompanies this wave, penetrates the
near-surface region of this semiconductor. (The penetration depth of the electric field
inside the semiconductor is of the order of the extrinsic Debye lenght or the acoustic
wavelenght, whichever is shorter). This electric field changes the free carrier
concentration in the semiconductor near-surface region and causes drift of these
carriers. There are plenty of aspects of the interaction between surface acoustic wave
and charge carriers [4]. Among others, the difference of electrical potentional between
the semiconductor surface and its bulk (i.e. transverse acoustoelectric voltage TAV)
may be observed [5].

The transverse acoustoelectric method is very useful and attractive one for
determination of semiconductor surface parameters. This method is non destructive
one, it does not require ohmic contacts and give the dynamic values of investigated
parameters.

The influence of the electron and electrical surface parameters on the character of
transverse acoustoelectric effect (the amplitude of TAV and its time shape) were already
earlier observed. In [6] it was shown that the monitoring of the acoustoelectric voltage or
SAW attenuation while varying the conductivity by external means (e.g by temperature)
can yield information about the density of the surface and impurity states in the
semiconductor. By observing the optical wavelength dependence of the acoustoelectric
voltage developed across the semiconductor one may have the information about
energy profile of the states in the band gap. The transverse acoustoelectric voltage has
been measured as a function of incident photon energy in InAs on LINbO, SAW delay
line structure in [7]. From the experimental results the energy band gap in InAs was
determined. In [8] the transverse acoustoelectric voltage spectroscopy for the GaAs:Cr
samples was performed. The samples were illuminated by two monochromatic beams.
The characteristic exciton peak was observed at temperature below 200 K. Using two
beam light illumination of the investigated semiconductor sample, one could determine
the presence of donor and acceptor levels in the band gap of the GaAs:Cr sample. The
similar technique of TAV used together with the illumination and temperature changes
of GaP and InAs samples was presented in [9]. The deep levels in band gap of the
investigated semiconductor samples were presented. This kind of investigations of the
energy levels in the near-surface region in a semiinsulating GaAs was also reported in
[10]. The acustoelectric measurements allow a precise determination of surface trap level
distribution in the silicon band gap at the Si/SiO, interfaces [16]. Two kinds of
experiments were presented there: the effect of an uniaxial compression and the effect of
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HCI annealing are monitored by transverse acoustoelectric voltage versus voltage.
The results indicate the presence of three energy levels in the energy midgap.

In the paper [11] we applied the longitudinal and transverse acoustoelectric effects
to determine the surface potential in Si nad GaAs crystals. The results of the
theoretical analysis of both acoustoelectric effects were described. The new acous-
toelectric method of the surface potential determination was also presented. For the
high resistivity GaAs: Te samples the values of surface potential were nearly — 0.4
[V]. The experimental results have shown that the acoustoelectric effects, particulary
the transverse acoustoelectric effect, may be used for investigations of semiconductor
surface properties. In [12, 13] the transverse acoustoelectric effect and the surface
photo-voltage effect have been applied to the study of the GaP real surfaces. The
values of the effective life time of minority carriers after different surface and their
diffusion length have been presented.

The works mentioned above are not the only ones of these kind, of course. We
think that the cited papers are important in the domain of application of surface
acoustic waves and transverse acoustoelectric effect to semiconductor surface
investigations.

In this paper the transverse acoustoelectric effect has been used to study the real
GaAs:Cd (111) and GaAs:Si (110) surfaces. The real surface of a semiconductor
means the surface obtained after cutting, polishing and standard chemical etching of
the crystal. Such surfaces appear at different steps of the semiconductor surface
preparation for devices technology. In this paper the investigations of the surface
potential ®g, the carriers density ng as well as the effective life time 7, of the minority
carriers in the near-surface GaAs regions have been presented.

2. Theoretical model

The transverse acoustoelectric voltage has been described by the following
theoretical formulas [11,13]

LJ’
WPy — Himy + nfz(#.%G,, —§3G,)
Uyp=K 5 R. (2.1
u,mﬂmﬁmf(uﬁp—#ﬁu)
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where: p,, u, mobilities of electrons and holes, respectively, in the near surface region
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n,, p, concentrations of electrons and holes in the bulk of the semi-
conductor,

n; electron concentration in the intrinsic semiconductor,

n, p concentrations of electrons and holes (n=n,e"; p=pye")
L,, L intrinsic and effective Debye lenght, respectively
G, G, Kingston functions of the second type for electrons and holes [15]
@ electric potential in semiconductor [1, 2, 15]
@ electric surface potential (at the sufrace @ =dy)
@, electric potential inside the semiconductor (in the bulk ¢=&,,)
&, & dielectric constants of the piezoelectric and semiconductor
@ acoustic wave circular frequency
g electron charge

The Kingston Functions G,, G, carrier mobilities y,, u,, as well as concentrations
of electrons and holes #n, p, are complicated functions of the surface potential &g and
electron concentration ng in the near-surface region. (The nonelementar Kingston
functions: G,, G, may be numerically calculated: they are presented in the graph and
in the graph and in the tables [1, 15].)

The theoretical analysis of the acoustoelectric effects were presented in [11, 13].
The teoretical results of this analysis are used for the determination of the electron
concentration ng and the surface potential @ in the next part of this paper.

The surface theoretical and experimental investigation results presented here were
obtained for the samples with the following bulk parameters:

i) GaAs:Si (110)
n-type electrical conductivity
* carrier mobilities:u, =8200 [cm?/V*s], u, =410 [cm?/V*s]
« permittivity: e=10.4
* band gap: E,=148 eV
« electron concentration: n=1.2*¥10"{cm 7]
« resistivity: p=23.6%10° [Q2cm]

ii) GaAs:Cd (111)

+ n-type electrical conductivity
» carrier mobilities: p,=8600[cm?/V*s], u,=400[cm?/V*s]
+ permittivity: £=9.8
+ band gap: E,=1.44 eV
« electron concentration: n=1.2*¥10"cm 7]
« resistivity: p=23.0*105{2cm]

In Fig. 1. the theoretical function of the amplitude U,y versus carrier density ng in
the surface region for GaAs:Si (110) is presented. This function was calculated using
the theoretical results which we presented in [15]. For the GaAs:Cd (111) sample, the
theoretical function U,;=f{(n,) was very similar to this one presented in Fig. 1.

For very high carrier concentrations, near the intrinsic region, the interactions
between the electric field (from SAW in piezoelectric) and carriers in the near surface
region are very small. The TAV voltage, as the results of this interactions, are very
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small, too. In the opposite case, when the carrier concentration in semiconductor is
large, the electric field of the wave is practically completely screened in semiconductor
by these carriers. Then the TAV amplitudes are very small, too.

In Fig. 2. it is presented the theoretical function U, = f{®s) obtained for the same
GaAs:Si crystal. The surface potential has resulted from the surface-space charge
neutralising the charge trapped in the surface states. For this reason explantation of
the shape of the U,g=/f(®) relation is identical as for the U,;=f(ng) function.

3. Experimental

The layered structure: piezoelectric wave guide and investigated semicoductor
sample is presented Fig. 3.

Fig. 3. The scheme of the layered structure: piezoelectric wave guide and investigated semiconductor.

The set-up for the surface semiconductor investigation by means of the transverse
acoustoelectric method is shown in Fig. 4. The investigations were performed for the
four frequencies: 52, 74, 132, and 194 MHz. The about 2 ps duration r.f. pulse was
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Fig.4. The experimental set-up for the semiconductor surface investigation by TAV method.
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applied to the input transducer on LiNbO, wave guide. The amplitudes of the r.f.
pulse 3.5 [V] for all used frequencies. The semiconductor sample was placed at the
piezoelectric delay line by two isolating distance bars for the assuring the non acoustic
contact between the semiconductor and piezoelectric wave guide. The transverse
acoustoelectric signal across the semiconductor is detected by placing the Al plate on
the back surface of the semiconductor and another one under the sample placed on
the acoustic wave guide. Using the results of the theoretical analysis [11], Egs. (2.1),
(2.2), (2.3), as well the results of the experimental investigation one may determine the
surface potential and carrier density on the surface.

In the semiconductor samples the electrical and electronic surface may be changed
by [11]:
i) illumination of the investigated semiconductor surface
ii) external electrical field on the direction perpendicular to this surface
iii) temperature of the semiconductor sample

In Fig. 5. the TAV amplitude versus the external U,, obtained for the GaAs:Si (110)
and GaAs:Cd (111) samples and for the 194 MHz SAW frequency, is shown. (The
theoretical function of the acoustoelectric voltage versus the eletrical surface potential
for this GaAs:Si (110) sample is presented in Fig. 2). The study of the acoustoelectric
effects versus the external voltage U, were cared out for four surface wave frequencies
(52,74, 132, 194 MHz). For higher frequency the U, amplitude was larger. Frist of all,
these effects result from the fact that for higher SAW frequency its wave length is
smaller and the interaction distance between acoustic wave and charge carriers in
semiconductor is effectively longer. The same semiconductor length contains larger
number of the acoustic wave length for a higher frequency. For this reason we relate the
transverse acoustoelectric voltage to the length of the acoustic wave.
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Fig.5. The experimental dependencies of U, on external U, for GaAs:Si (110) and GaAs:Cd (111).
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In Fig.6 we present the dependence of the TAV amplitude referred to the wave
length wersus the SAW frequency: U,g/A= F(w). The values of U,/A are presented in
arbitrary units and the value U,g/A=1 is related to the 52 MHz frequency. This
relation seems to proof that higher frequency the trapping of carries by energetic
surface states are strong — plenty of carriers interact with these states, there are
located in band gap and smaller part of carriers interact with SAW and TAV
amplitude U,g/A are smaller for higher frequency.
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Fig.6. The amplitude of transverse acoustoelectric related to SAW wavelength as the frequency function:
Upe/A=F(D).

Using the theoretical functions U,z =/{ns) and U,g=f(Ps) (Figs. 1 and 2) as well
as the experimental relation U,;=/(U,) (Fig. 5) one can obtain, for the investigated
GaAs:Cd and GaAs:Si their density ng in the near-surface region and electric
potential & on their surfaces. In all theoretical relations the transver acustoelectrical
voltage U, is calculed with the arbitrary multiplicity constant K accuracy. Also the
experimeental U,; amplitude is presented in arbitrary units because the Ujg
amplitude values depend on the experimental conditions (e.g. intensity of SAW,
geometrical dimensions of wave guide and the semiconductor sample amplification of
TAV signal, ...). The U,z=1 amplitude value can be taken in the case when external
electrical voltage U,=1. The constant K can have this value for which the maximum
U,z on the theoretical relations U, =/(ns) and U, =/(®g) and the maximum on the
theoretical relation U,z =/{U,) have the same values. Then U,p=1 on the theoretical
characteristics corresponds to the values of the surface carriers concentration and the
surface potential in the investigated semiconductor.
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For the higher frequency the surface potential have the smaller values. The
frequency dependencies of the carrier concentration in the near surface region for
GaAs:Si (110) and GaAs:Cd (111) are show in Fig.7. In Fig. 8 the surface potential
versus frequency is presentéd. One may see that electric field from SAW in
piezoelectric wave guide changes the carrier concentration in the conducting band.
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Fig.7. The frequency dependence of carriers concentration in near surface region in GaAs crystal ng= F(f).
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For our high resistivity GaAs:Cd and GaAs:Si samples with higher frequency the
carrier concentration ng was lower.

The surface states acting as recombination centres or as traps evoking the surface
potential barriers can be produced by lattice defects, chemical contaminations (e.g.
oxygen, carbon dioxide and hydrogen adsorption), oxidation or complexes formed
from Ga, As vacancies and other foreign atoms [19].

The existe of surface states in the semiconductor in its band gap causes among
others that the effective life time 7, of minority carriers in the near surface region
differs from the life time in the bulk. In the work [4, 12] it has been shown that the
time dependence (time shape) of the transverse acoustoelectric voltage u,(f) may be
described by the following empirical formula:

t = _
uAE(t)=uAE_T|:e "Ta—e th:e}

TB e

where
U,z transverse acoustoelectric amplitude,
t, time constant of the experimental set up,
17, effective life time of the minority carriers.

The time constants of the growth of u,g(7) is practically equal to the effective life
time of the minority carriers 7, (for the conduction: 7,> >1,).

The determined by this method 7, results for both GaAs crystals are presented in
Fig. 9. In Fig. 9. the life time of minority carriers versus the SAW frequency is
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Fig.9. The life time of minority carriers versus of frequency: 7, = F(/).
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presented. In [12] it was used this 7, determination method for GaP samples. The
values of effective life time of minority carriers 7, obtained TAV method were verified
by the surface photo-voltage method. The results of 7, determined by both these
methods (TAV and photo-voltage) were similar with good accuracy (about ten
procent). In the work [19], the life time 7, for Si samples was obtained by means
acoustic method based on the measurements of critical drift field in the acoustoelect-
ric structure. That method was experimentally difficult and dangerous because it
needed the electrical voltage connected to investigated samples of about 2+3 kV.

4. Conclusions

From the presented results it follows that this acoustoelectric method is a useful
tool in the study of some electrical and electronic surface properties of GaAs single
crystals. The TAV method, at is has been shown earlier has very high sensitivity in the
study of high resistivity materials. For low resistivity samples or rather for high
carrier concentration materials the interaction between SAW and the charge carriers
is weak because the electric field in the semiconductors is screened. The acoustoelect-
ric voltages as a result of these interactions are small, too. The precision of the surface
parameters determinations, obtained by the TAV method is bad high and for very
low semiconductor resistivity crystal.

From these measurements it follows that the changes of SAW frequency may
change the carrier concentration in the near-surface region. The electric field from
the surface acoustic wave in piezoelectric delay line changed the occupation of
surface energetic states by electric carriers and it caused, as a result, the change in
the surface potential. The electric field changes the concentration of free carriers
in conducting band, too. In our experiments, the surface potential change A®g
and the carrier concentration change 4ng were about some tens of procent. These
results are import because they have shown that the values of surface parameters
may be various for different frequencies. The TAV method allows to determine
the dynamic values of the investigated parameters in high and very high frequency
ranges.

One ought to explicitly pointed out that the real GaAs surface were investigated
after alumina powder grinding and then diamond paste polishing. After this surface
treatment the tested surface were not procent the atmosphere acting. The life time
1, of minority carriers was practically constant in all frequency range. The para-
meters investigated by TAV method were checked by another electrical and photo
spectroscopy method, too. The results were similarly with good (same procent)
accuracy.

A very important aspect of the surface acoustic wave technique is that it is non
destructive one. This TAV method does not require the ohmic contacs to the
semiconductor sample. For this reason, the surface parameters were not changed by
difficult technology procces of the ohmic contact preparation.
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This paper containes a detailed analysis of the conditions of acoustic wave excitation in
retrant-type, microwave cavities, obtained by means of the methods field. Dependence of the
resonance frequency on the resonator parameters and the material constants of a piezoelect-
ric sample placed in the resonator is given. Construction of the resonators investigated and
the experimental data concerning their parameters in the 0.210 GHz frequency range are
presented. Results of attenuation measurements of waves in lithium niobate and bis-
muth-germanium oxide crystals obtained by applying the resonators described are also
shown.

1. Introduction

Present ultrasonic technology and physics need acoustic sources with higher
frequencies. Piezoelectric plate transducers traditionally used for the ultrasound
generation become useless, first — from technological reasons (breaking of thin plates),
and moreover troublesome because efficiency of transformation of the electric energy
into the acoustic one (for harmonic frequencies) is low (losses are proportional to the
square of frequency). Therofore, at the end of the fifties BAraxski [1] and BéMMEL and
DransrLED [2, 3] proposed the method of existing the acoustic wave in a piezoelectric
rod (quartz), one end of which was placed in a microwave resonator. Detection of the
generated acoustic waves was done by the Bragg-type light diffraction measurement.
Those methods were applied in solid body investigations at frequencies of 0.3 — 3 GHz.
Investigations of the liquids were initiated by Lezunev [4]. Measurements in a higher
frequency range were also made [5, 6]. In this paper the results of investigations, which
represent an extension of the above mentioned method, togehter with a precise analysis
of generation and detection conditions of hypersonic waves in the gigacycle frequency
range, are presented. Dependence of the resonance frequency on the cavity parameters
is determined. The resonators and the measurement setup made in IFTR for acoustic
measurements in the gigacycle frequency range are described.
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2. Excitation of hypersonic vibrations in resonator cavity

Generation of hypersounds by means of a cavity consists in the non-resonance
surface layer excitation of vibrations of a pizoelectric rod, which is placed in a strong
electric field of a microwave resonator. The excited hypersonic pulse on the surface
layer of this rod, propagates as a consequence of the piezoelectric effect, along the
rod, is reflected and returns to the origin of this rod. As a result of the inverse
piezoelectric effect, it produces a new electromagnetic pulse, recorded by a microwave
detection setup. In the rod with low acoustic losses, this pulse can be reflected many
times and produces the subsequent echoes (Fig. 1).

Fig.1. Sequence of electric echoes produced in the resonator as a result of repeated reflections of the
hypersonic pulse in piezoelectric rod (frequency 600 MHz, room temperature).

In order to describe the generation phenomenon more precisely, the following

assumptions are made: the piezoelectric rod.is X-out, the one surfaces of it is placed at

x,=0, and the hypersonic wave propagates along the x, — axis of the rod (Fig. 2)

: )

b ]
P

Fig.2. Parameters of the coaxial resonator.
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A high-frequency electric filed E (7) is also applied in this direction. In quartz with the
density p, the mechanical stress ¢, is determined by the expression:

o,=c,&—e,E (), (2.1)

where ¢, and e, are the elasticity and piezoelectric constants, respectivelly, and &, is
the relative deformation. The equation for the displaced is obtained from the
equation of motion

0%u, da, e, 0
—W—a_xl_ena_xl e a—xl(euEl), (2.2)
or
Pu, Lo, 9y 2.3)
s g AR Ox e, ;

where (c,,/p)'? is the velocity of lingitudional wave propagation along x-axis the
quartz. From Eq. (2.3) one can see that gradient of the electric field is the source of
hypersonic waves. This gradient is large only on the surface of the piezoelectric rod,
because inside the rod the electric filed gradully decreases with the distance.
Supposing the solutions of that equation to have the harmonic form:

E,=F3 ¢ 'O,/ yomul TR, (24)
Eq. (2.3) becomes
gi);+ kzui'=ail (Z?:E?), @.5)
where k?=g2/v.
Since the Green functions
G(x,.x;) =i[2k exp (ik | x-x"| ) (2.6)
are the solution of a homogenous equation
0%G|ox3+ k*G+ 6(x;—x,) 2.7
one can obtain
1 i a0 f ey
u‘l‘(xl)=j2—k exp (lk | x—x; | e (c—u E‘}) dx,. (2.8)

The largest spatial changes of the electric field occur at the boundary, therefore
one can approximate the term corresponding to the source by a 6 — function. The
vaves which propagate in the x — direction are reflected from the free boundary. The
boundary condition can be fulfilled by introducing the second apparent source at
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x,=x,, and by extending the rod to infinity. Next, two sources are transformed to
a single one by passing to the limit for x,=0. This gives

= mdbeC 1
ud(x,)= lim =2 [ exp(ik | x,—x; | & (x]—xg)+8(x; +xa)]dxi=%exp(ikxl)
- o2kc,, ke
2.9)
for x>0

Since the displacement is a real quantity, one takes only the real part of this
expression,

o= 55 sin(wt—kx,). (2.10)
o

Now it is possible to find the acoustic energy flux and the efficiency of transfor-
mation. The density of the acoustic energy R in the rod equals

R=1/2 ¢, (£ (2.11)

This energy propagates with velocity v, from the surface 4. According to (2.10), the
deformation equals

e
0x, 1

E} cos(wt—kx,), (2.12)

£

and consequently, the amplitude of deformation is equal to e,,E}/c,,. In this case, the
acoustic power obtained is given by

S=1/2 e4(E)Av/c,,. (2.13)

To determine the efficiency coefficient, this power must be compared with the
electric power P deliveerd to the cavity. This power equals

P=gl/2 % (E)V, (2.14)

where Q,V and x are the quality factor of the resonator, its volume and the dielectric
permeability of the rod, respectively.
Then

ey Av,Q

xcy,

S/ P= =k} AvjoV, (2.15)
where k,,=(e?/xc,,)V? is the electromechanical coupling coefficient.

The resonance frequency of the resonator, presented in literature [7], is described
by following formula:
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¢’ [elc? —z2

where ¢’ is the light velocity -and ¢ is the dielectric constant. The dependence of
frequency f,, on the resonator parameters, calculated from this formula, is shown in
Fig. 3. The dependence was obtained on the assumption that the piezoelectric rod was
in contact with the resonator pivot. The case of a gap between the rod and pivot was
examined by Carr [8] and, for different resonator shapes, by Fuisava[9]. However,
the theoretical results obtained by them did not coincide with the experiments in
a satisfactory manner. Furthermore, our experimental investigations showed that in
some cases, particulary the case of samples with large dielectric constants, it was not
possible to tune the cavity resonator up. Different unexpected effects were observed
which made it imposible to tune the resonator described below indicates the reasons
for these difficulties and enables us to make the resonator possess the required
features.

f
r £=4
[GHz] £=16
nr
£=35
10 F
_9 L
0 05 10 15 dIlmm]l

Fig.3. Resonance frequencies for the resonator with parameters 2a=11 mm, 2b=2.5 mm and 1=3 mm,
calculated from Eq. (16).

The Eq. (2.16) was obtained by means of the circuit methods. Namely, the
resonator has been described as a set consisting of both an inductance created by the
short section of the concentric line, and a capacitance between the central line and the
internal surface of the resonator. The coaxial resonator described is the so-called
capacitance shortened resonator [10, 11]. This resonator is made from an ordinary
resonator by forming an air gap in the inner line of the resonator. In this manner,
a new space with a homogeneus electric field is created and that produces the
additional capacitance.
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Introduction of the dielectric sample with a high value of the dielectric constant (for
instance lithium niobate) to the describe by the circuit methods. Another difficulty in
applying these method is due to fact that the part of the resonator in which the sample
is placed, has not a strictly capacitive character, because in this space the magnetic filed
energy is also accumulated. In particular the value of permeability of the sample, it is
possible to obtain the resonance at the distance which corresponds to the depth of the
sample immersed in the resonator in the considered space. The field distrribution in
this resonator is, of course, unfavourable for the excitation of the hypersonic wave in
the sample. These considerations concern the case when the resonance frequency in
constant. This case corresponds to the situation in our experiment, when the
magnetron generator (from radar emitter) is applied. For these reasons, it is necessary
to use the methods for the description of the resonator in our configuration.

In this case the resonance state is obtained in the following manner [11, 12]:

a) The inside of the resonator is divied into space by planes (Fig. 4), in which the

Helmholtz solution can be found analytically.
2a

't-\_,_——
(2]

m

E

I
‘Id Z

Fig4. Setup of the theoretical model of the resonator.

N ——t+—F+——
™

b

b) Appyling the equivalent principle, each space is considered separately by
introducing imaginary surface magnetic flows j,,=iE,(r, h) on the planes of separation.

¢) Treating the flows j,, as sources, the magnetic field distribution H in the divided
space is found by the Green function method.

d) Imposing the condition of continuity of the field H on the separation
boundaries, the resonance condition is found in the form of the equation, which
combines the resonance frequency with the material parameters of the sample and the
dimensions of the resonator.

3. Model of an ideal resonator and parameters of the real one
First, according to the aformetioned procedure, one considers the particular case

h=d, i.e. the situation when the dielectric contacts with the central line of the
resonator. This case has an accurate solution.
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The resonance condition has the form of a condition of continuity on the
boundary z=h

Hi(r, H—H""(r, h)=0, (3.1)
where the magnetic fields in all spaces are expressed by the flows Jm and the proper
Green functions

H(r, 2)=iwe[GXr, r’, z, K)E(r’, h)dr’, (3.2)
H"(r, z)=—iwe[G™(r, r’, z, h)E/r’, h)ar.

Functions G' and G™ can be found by the methods described by Friepman [12] and
Jaworski [13].
Introducing the symbol of integral operator

qu(r, h)=iwe[G(r, r’, z, H)P(r’, h)dr, (3.3)

one obtains the resonance equation in the from
RE(r, h)+ RE(r, h)=0, (34)

This equation must be fulfiled in every point r € (¢, a). To solve Eq. (3.4), one uses the
methods similar to the momentum method. The distribution of the field E,(r, /) can
be expressed by an expansion into a series of the complete and orthogonal set of
functions in the interval (c, a) related to base (p,),

E(r, h)y=Za,p,(r). (3.5

Next, Eq. (3.4), which is valid for any r, can be replaced by an infinite series, where ¢,
is a base identical with {y,}. Inserting (3.5) into (3.4), multiplying the results by
and integrating, one obtains the homogeneus set of linear equations with respect to
the unknow expansion coefficients a,:

Za,,{:(wm, Ro)+,, Rmcp,,)] =0, m=0,1,23.... (3.6)

where (, Ry) denotes the scalar product [y R¢ dr.
The set of equations (3.7) has a solution, when its characteristic determinant
equals zero.

dct{(ll!m, RIfP,.)+!lfm,Rm%}=0- (3.7

Since both base sets, {¢,} and {y,}, are infinite, the exact solution can be only
obtained as a limiting case when m, n—oo. In practice, finite values m, n<M are
assumed but the approximate solution converges to the exact one when M is assumed
to be sufficiently large. First of all, the rate of convergence to the exact solution
depends on the choice the base functions ¢,, and V. It will assumed below that
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Qo=WV,=1/In(a/c)r, n=0,
eo=V,=Z@nN|INI| n=123., (3.8)

where N denotes the normalization factor, «, are the subsequent solutions of the
equation Z (a, ¢)=0, nad I, and N, denote the Bessel and Neumann functions of order
p respectively. Set { ¢,} ={@,,} is complete and orthonormal with r in the interval (¢, a).

It appears that function ¢, =y ,=1/In (g, c)r reproduces quite well the distribution
of the field E/(r, k) and, due to that, further calculations may be confined to the
zero-order approximation of Eq. (3.7). Inserting ¢, ¥, to (3.7) and integrating, one
obtains the equation for the resonance frequency in the from:

1 1 T
ktgk(—h) | kig(kh) 2hln(a/c)
ub ]
b [ule(ub)Zo(vb)—;Jn(ub)Zl(vb)Zo(vc)] i
Lz B b —=0,
n=o vz[vle(ub)Zu(vb)——--Jo(ub)Jl(vb)]
&
f-‘ il
mml] 1-h :3_ — ";4’5
I5r 2a=11mm
2b=25mm
2c =30mm
L =94 GHz
10+ e v
|- h:j:_,.— — -
5 Esl'
pne =T
7 T I I

Fig.5. Dependence of the resonator length on the heigth of the piezoelectric rod from parameters
2a=11 mm, 2b=2.5 mm, 2¢=3.0 mm, =94 GHz.
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where:
Z p(vr)_ =N(ve)J (vr)—J(ve)N (vr), p=1.2,

w?=k?—(nn/h)?
v=k*—(nnfh)?, n=0,1,2,..,
k=2mn/A

u denotes the so-called Hankel coefficient: u=1 1 for n=0, and u=2, for n= 1,2,.....

If #? or v? have negative values, then the function J, and N, must be replaced by
the modified Bessel functions. Examples of the results of calculations for &,=4 and
¢, =45 are presented in Fig. 5. These calculation were carried out to determine / as
a function of 4 for the following parameters: a=5.5 mm, b=1.25 mm, c=1.5 mm,
/;=9.4 GHz. It should be noticed that for ¢, =45 the lenght of the coaxial part of the
resonator is 4/4 <1— h<1/2. This means that space / lies above the self-resonance and
has an inducative character. As it has been mentioned before, this effect indicates that
the space / can be replaced by a supplementary capacitance. This means that the
circuit methods are useless in the description of such resonators.

Generalization of the applied method to the case of three spaces, i.e. h>d (Fig. 4),
is connected with considerable calculation difficulties. One of the possible methods of
solution of this problem is based on the assumption of two unknown distributions of
the field E,(r) on the boundaries z=d and z= h, calculation of the field H, in a manner
similar to that described above, and next, on the introduction of two conditions of
continuity at the boundaries of the spaces. As a results, one obtains a double set of
linear equations with respect to the unkown coefficients of the expansion of fields
E(r, d) and E(r, h) into the series of phase functions. As before, vanishing of the
characteristic determinant of the set of equations is the resonance conditions.
Application of this method gives potentially very accurate results, but it requires the
solution of a large set of equations. Confining the considerations to the zero-order
approximation, we observe that the results, in the limiting case d=A, lead to errors
larger then before. Another possibility is to treat the space I and II toghether and
adjust the solutions is to the boundary z=h. This approch is simpler because it consist
in adjusting the solutions in two, not three, spaces. However, it decreases the accuracy
of the analysis.

In such a case the aproximate resonance equation has the following form:

1/[k tg k(I— )]+ A/(k 2 — k?)+ B=0. (3.10)

At the zero approximation the coefficients 4 and B can be considered as constants.
They can be determined from two resonance states, d=0 and d=h, calculated by
means of the described method. In turn, k2 can be calculated by an analysis of the
homogeneus space I+II or estimated by interpelation between the resonance
frequencies of the space I+ II, calculated d=0 and d=h. In Fig. 6 some results of
calculations of &k, are presented, corresponnding to the linear interpolation and the
case when d<h. The calculations were carried out for ¢,=4 and &,=45 to determine
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Fig.6. Dependence of the resonator length on the width of the gap.

[ as a function of the width of the air gap (h— p), other parameters being constant:
a=5.5 mm, b=1.25 mm, c=1.5 mm, d=2 mm, f,=94 GHz. For ¢,=4 one can
observe the monotonic dependence of / on (h— d). When the width of the gap increase,
then the resultant capacitance of the space I+ II decreases, and so the length of the
coaxial part (/=h) increase. The dependence for &,=45 is more interesting when the
space I+ II is of an inductive character for a small width of the gap and, as in the
previous case, the length of coaxial part lies in the range 1/4</—h<A/2. For
h—d=0.6 the selft-resonance of the space /—II is obtained. It corresponds to the
short-circuit in the plane z=h i.e. [—h=0 or /[—h=4/2. Further increase of the gap
width leads to the situation similar to the case &,=4, i.e. the space I+1I is of
a capacitive character and the length of the coaxial part lies in the range 0 </—h< A4

Comparison of the results of the presented above with experimental data
necessitates to account for the following facts:

« the resonator presented in Fig.2 is an idealized model of the real system, in
which many simplifying assumptions have been made,

« in the nature of things, the method of calculation applied is an approximate one.

In what follows, these two factors will be discused. One of the fundamental
simplifications consists in the assumption that the resonator has no hole in the place,
where the dielectric sample should be put. Thus the sample is placed directly on the
bottom of the resonator. This simplification resulted from numerical estimation of
the lowest frequency of propagation of cylindrical modes in the dielectric sample with
the largest assumed permeability &,=45.These calculations indicated that the
resonance frequency was higher than the assumed 9.4 GHz, at which the resonator
would be excited. Consequently, the cylindrical modes would be attenuated in the
dielectric very quickly and the microwave energy would not be emitted outside the
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resonator. For this reason it could be expected that the error caused by the existence
of a hole in the real resonator would not have any significant influence on the value of
the calculated resonance frequency. The experimental measurements have supported
this assumption. Changes of the resonance frequency were unnoticeable after
elimination of the hole. Influence of the hole on the quality factor of that resonator is
more difficult to estimate, because the depth of the penetration depends on the
sample.

The analyzed resonator is a system which is lossless and isolated from sur-
roudings, but in the reality the system is coupled with the surroundings and energy
losses occur in the walls and the dielectric material. The influence of the elements,
which are coupled with the wave-guide line, is difficult to estimate. It is known,
however, that this influence on the resonance frequency can be neglected when
coupling with the wave-guide is sufficiently small.

The effect of radiation into surroundings from the dielectric rod, transmitted
through the hole placed in the bottom of the resonator, is easier to estimate.
With the assumptions that the diameter of the rod is equal to 2.5 mm and
the frequency f,=9.4 GHz, this rod becomes a section of the subcritical wave-guide,
fulfilled by the dielectric and excited in the TM_, type. For instance, the depth
of penetration of the electromagnetic field energy along the rod axis is ap-
proximately equal to 0.35 mm for &,=45. This means that the field energy,
which is accumulated inside the rod below the bottom of the resonator, can
be neglected, and replacement of the hole in the resonator bottom by a plane
of perfect conductivity is possible for the values of 4 and h assumed in these
considerations.

In relation to the energy losses and the corresponding finite quality factor the
losses in the walls and in the coupling elements are small under typical conditions, and
they can be estimated by measurements of the quality factor of the resonator without
the sample. On the other hand, the energy losses in the piezoelectric sample depend on
the dielectric and acoustic (attenuation) parameters and its volume. The calculations
have been made under the assumption of a losseless (real) dielectric, but the
calculation formulas are vaild also for a complex one. In particular, it is possible to
assume that the energy lost in the dielectric depends approximately on the dimension
d, the other dimensions of the resonator being fixed. As a result, the quality factor of
the resonator is, approximately, inversely proportional to the height of the sample,
d and a reasonable compromise is needed between the requirements of effective
coupling of the electromagnetic field with the sample (large d), and the large quality
factor of the system (small d)

Estimation of the quality of the investigated resonator by means of numerical
methods is extremely complicated and it could not be done with a sufficient accuracy.
Thus, the measurements of this factor were carried out experimentally for several
samples. From these measurements it follows that this factor is not very large and is
of the order of several hundred. Moreover, the quality factor depends at least on two
factors, which are difficult to control. They are: uncertain contact in the inner line of
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the resonator at the entrance to the resonator cavity, and the position of the coupling
antenna inside the resonator. Significant differences in the quality factor measure-
ments were observed even for small displacements of these elements. In the case
when the measurements were performed in a stable range, the dependence of the
quality factor and the resonance frequency upon the position of the samples and the
position of the microwave short-circuit element are similar to those presented in
Fig.7 and 8.

Independently of that, the calculations performed are of an approximate
character.

Ql

400
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Fig.7. Dependence of the quality factor of the resonator on the inner line position.
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Fig.8. Dependence of the resonance frequency on the position of the microwave short-circuit element (from
experiments) a) subcritical coupling b) supercritical coupling.
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Typical starting data have been assumed to estimate the dimensions of the
construction.

The results of calculations concerning the influence of the sample position and of
the gap h—d on the resonator length, are shown in Fig.9 and 10. The discontinuity of
the resonator length / is of particular interest for ¢, =40. One can notice that only for
the sample with & ,=3.38 (quartz) it is posible to get the contact of the sample with the
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Fig.10. Dependence of the resonator length on the gap between the sample and central line.
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inner line of the resonator. For &,=15 and 40 it cannot be done in a continuous
manner because of a step change of the resonance length. In both the figures dashed
lines mark the actual resonator length of about 2.5 mm. This length from the
existence of the exciting antenna in the real resonator. One of the ways to shif the
limit, at which the step change of the resonator length occurs, towards smaller values
of h—d (this gives, practically, the possibility of getting the tuning continuity in the
range of small gaps between the inner line and the sample), is reduction of the
diameter of the sample.

The characteristics of sensitivity of the resonator tuning (Figs.11, 12) are very
important for practical tuning-up of the system. Variation of the resonance length of
the resonator influences the frequency in a similar manner, independently of the
parameter &, of the sample. This tuning is not so rapid and, in practice, it is easy to
control. On the other hand, the change of the gap between the sample and the inner
line is a critical parameter. The change of about 0.1 mm causes a shift in the resonator

f d=1mm
[GHz]

{ =3

961 36 mm
2a=25mm
£ =40

94+

92

90

1 1 1
075 080 h-d [mm1] 085

Fig.11. Dependence of the resonance frequency on the gap between the sample and central line.

f
[(GHz]
98
\ £240 \ £=15 \'6:4
QAS - . .
LR | Y
94 \ \-\ X
d=05mm \ h \
\ A
g2 h-d=08mm \ : \.
2a=25mm \.\ \-\ : \
9'03 a: _Sl [ {mm]

Fig.12. Dependence of the resonance frequency on the resonance length for different samples.
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tuning-up frequency by about 500 MHz. For this reason, the micrometric screw was
used in the resonator model to displace the inner line.

4. Results of measurements

On the basis of such considerations, the resonator have been made in the
IFTR. They are presented in Fig.13—15. In Fig. 13 the resonator, which works
in the range 0.2—1 GHz; is shown and it represents an improved version of
the LEzHNEV resonator [4].
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Fig.13. The resonator for the frequency range 0.2—1 GHz.

o

Sede e

T

e
G
G

The resonance cavity is a coaxial construction. The tested sample is placed in the
hole in the upper part of the cavity. The electromagnetic energy supplies the
coupling antenna through the concentric cable from the emitter. The cavity could
be tuned up precisely by applying a worm gear. The second worm gear is used for
precise displacement of the inner pivot. The cavity is covered by silver to increase
the quality factor. A complete set of the replaceable inserts allows us to test the rods
of different diameters. These resonators are used in the IFTR in the our Laboratory
of Acoustoelectronic for testing the acoustics properties of solid bodies, and also in
the Physical Acoustics Department for testing the properties of liquids. Several
resonators of that type made in the laboratory are used in other research centers in
Poland. These resonators are easy to excite thus enabling the generation of acoustic
waves. The ,,Matec” setup is especially suitable for cooperation with such resona-
tors.




Fig.14. The resonator for the frequency range 3—4 GHz.
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Fig.15. The resonator for the frequency range 9—11 GHz.
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The resonator, presented in Fig.14, works in the 3—4 GHz frequency range.
Those presented in Fig.15 were made in the IFTR for the 9—11 GHz frequency
range. One of them has the displeceable diaphragm a, and the second one — an inner
pivot which can be displaced by the micrometer screw b. These resonators were used
in the setup made in the IFTR [14].

Construction of the cavity resonator is schematically presented in Fig.16. The
resonator connected to the section of the wave-guide with the microwave short-circuit
element (3). Copuling of the cavity with the wave-guide occurs by the antenna (2).
The cavity is tuned by means of the pivot (5), attached to the diaphragm (). The
piezoelectric rod (/) is inserted into the cavity. In the course of tuning one can change,
by turning, the piezoelectric rod plunge L in the antenna cavity in relation to the
cavity. During the experiment, from outside of the cryostat, it is possible to change,
by rotary motion, the values of the plunge L and the position D of the antenna, with
respect to the cavity by changing of the rod position and the distance C between the
antenna and the microwave short-circuit element. The dependence of the resonance
frequency of the cavity on the parameters C, D, and L has been estabilished in the

course of experiments.
L

.
SE ki

I 5
R [ X
2 [
3

U
Pl
—c ]

Fig.16. Construction of the reentrant type cavity. I-piezoelectric rod, 2-antenna, 3-microwave short-circuit
element, 4-diaphragm, 5-pivot.

In Fig.17 and 18 the results of measurements of the acoustic wave attenuation in
crystal, performed by means of the above described resonators, are presented. These
measurements were made at cryogenic temperature. The variation of attenuation for
the bismuth-germanium oxide (Bi,, GeO,,) in the 100 direction and the lithium
niobate (NbLiO,) crystals, are shown in Fig. 17 and 18, respectively. In the former
dependence (Fig.17) one can notice two ranges of temperature, above and below 100
K. In the former one the attenuation of acoustic wave is connected with scattering of
the wave on thermic phonones.
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ol
(dB1

I

0 100 200 300 TIKJ

Fig.17. Dependence of the attenuation of the longitudinal acoustic wave on temperature in Bi jGeO,,
crystal at 0.6 GHz frequency.

[dB]

40

1 1 1 —
a 100 200 300 TIKI

Fig.18. Dependence of the attenuation of the longitudinal acoustic wave on temperature in NbLiO, crystal
0.6 GHz frequency.

A significant increase of attenuation near the temperature of 90 K is connected
with the relaxation processes of non-stoichiometric additions. Below the temperature
of 50 K the attenuation decrease, what is connected with reduction of the amount of
termic phonones when the temperature decreases [15].
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ONSPURIOUS BULK WAVE EXCITATION IN SAW GRATING REFLECTORS ON GaAs (001) (110)

E. DANICKI* and W. D. HUNT**

*Institute of Fundamental Technological Research
Polish Academy of Sciences
(00— 049 Warszawa, Swietokrzyska 21)
**Georgia Institute of Technology
Atlanta, Georgia, USA

Reflection of SAW from groove gratings on cubic crystal is analyzed numerically on the
basis of perturbation theory. It is shown that for certain angles of incidence, the conversion
of SAW into bulk waves vanishes. This reduces the SAW reflection loss from grating.

1. Introduction

As known, GaAs is a piezoelectric cubic crystal that posesses also interesting
semiconducting properties. This makes possible to place both surface (SAW) devices
like SAW resonators, filters and delay lines, and electronic circuitry to drive them
(switches, amplifiers and other active elements) on the same chip.

In some applications, for example in filter banks, it is necesary to reflect SAW in
perpendicular direction. It happens however, that the reflection losses are high for
SAW propagating along (110) direction on (001) cut GaAs, which orientation is
prefered in applications. This is because of part conversion of SAW into bulk waves
that takes place in such oriented cubic crystal with grooves in it. In this particular
direction of SAW propagation, and in its vicinity (and in direction 90° degrees from
these, due to the crystal symmetry), SAW wave-number is lower than cut-off
wave-number of shear wave polarized horizontally. Thus any surface perturbation
that results in horizontal surface traction matched to these bulk waves will excite
them in expense of the SAW power, thus resulting in the reflection loss.

The idea is to find such reflection angle, that is to determine the groove grating
orientation on the crystal, that minimizes the induced surface horizontal traction. In
fact this is required for all groove gratings necessary to make SAW circulating on the
crystal as discussed above, however with the reflection angles not necessarily being
right angles.

This is analyzed in next section, where we propose appyling three subsequent
Bragg reflections, as depiced in Fig.1 presenting the SAW propagation path on the
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SAW K
k‘

—=(001)(110) Y K.y,

k- K, 1 Fig.1. SAW path in the set of three grating reflectors with

different grating periods and orientations on the crystal.

crystal. The symetric pattern includes one parameter, angles of the first and the last
reflection 0 that will be optimized with respect to bulk wave excitation. The Bragg
reflective gratings will be characterized by their wave-numbers K, =K, and K, and
relative reflection coefficients from strip y, =y, and y,.

2. Theory of groove-grating reflector

Below, the perturbation theory is applied presented in [1,2]. In the theory, we
replace groove grating by sinusoidal corrugation including the lowest Fourier
components of the surface profile, that is (x=(x,, x,), z=x,)

z=zg=hexp(—jKx)+cc., K=2n/A.

If grooves width is halft their period A, and they are H deep, h=H/n.
The wave-field on the medium plane z=0 is expanded into

[w, TI" () =[ui, T5]" exp(—k* x)+[u7, Ty]" exp(—jkx),
where time-dependence exp (jw?) has been dropped, and

Fig.2. Geometrical relationships between SAW and grating wave vectors, Poynting vectors and SAW
beam-widths.
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k*+k~ =K @2.1)

is the Bragg condition. Other wave-files components are neglected [1]. The discussed
wave-components are shown in Fig. 2, where the beam-steering effects is accounted
for (angles * between wave-vectors k* and corresponding Poynting vectors IT*); W+
are the SAW beam-widths.

The theory results in following relations for a tracting arrising on the medium
crystal surface when SAW propagates under periodic shallow grooves (n, m=1, 2)

Ty = — pwX(z5u,) — (25T ) sms Ts3= — por*zsit,.
Expilicitly, for grooved grating reflectors we get
Tsn=— pw*hity — h(— jk p) Tprns
Ta= —pw?h*uy —h*(— k) Tm, (2.2)
Ty3=—pw*hu’y, Ty= —pw?h*u;,

where p is the mass density of the substrate and A characterizes the perturbation
introduced by shallow grooves into the system. In the above relations, the left-hand
sides represents the response of the grating which is the first-order quantity with respect
to A, to the incident wave-field characterized by u and T appearing in the right-hand
sides (the zero-order quantities, T can be evaluated as depedent on u [3]). The
perturbation traction is responsible for synchronous generation of SAW in the new
direction satisfying the Bragg condition, Eq. (2.1), that is for reflection. As shown in [1],
the reflection coefficient can be evaluated with help of reciprocity relationship [4].

3. Bragg reflection at arbitrary angle
Let us consider the case of incident wave having wave-number k, (Fig.3), its

wave-field includes all particle displacement components, u; on the substrate surface.
Let the Bragg reflection structure is chosen with such a wave-vector K,, that the

ks k- 0] k* ks

Fig.3. Wave-vectors of SAWs involved in subsequent reflections from gratings, and their relation to cut-off
wave-numbers od bulk waves.
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reflected SAW wave-number k* =(k, 0). Thus the reflected SAW propagates in
x,=(110) direction, and its surface wave-motion includes u? and u? [4].

One easily notices from Egs. (2.2) that the traction T, resulting from the incident
SAW includes all three components, which will eventually excite SAW in k*
direction. But the traction T, is not involved in this SAW excitation because there is
not u’; component in the wave-motion of this wave.

The stress T';, however, will excite a bulk wave, which cut-off wave vector is higher
than k*. There indeed is the horizontally polarized shear bulk wave with wa-
ve-motion u, on the crystal surface, which is in synchronism with the traction T, As

1
known [5], the power delivered to this wave by the traction is 3 Re{ (jou,)*T,,}, the

lack of which power in the reflected SAW amounts to the SAW reflection loss.
Numerical evaluation of T, for different incident wave propagation direction
0 (Fig.3) shows, that there are two cases where T5,=0: for 0~51.5°, and for 0~ 160°,
thus there are not bulk wave excitation when SAW is reflected from grooves. The
second case however (0= 160°), is not convenient for applications because the SAW
wave-vector is close to bulk-wave cut-off wave-vector (the point marked by X in Fig.3),
and slight missorientation of the substrate can disturb the reflector performance.

4. Properties of a set of Bragg reflectors

To obtain the SAW propagation path shown in Fig.1, another reflections are
necessary, involving the grating wave-vector K, shown in Fig.3. The reflections k * <k,
and an analogous k™ <>k, have been discussed above that helped us to evaluate 6.

What concern the reflection k, <>k, involving the grating with wave-vector K,, this
is an ordinary SAW reflection, in which case the corresponding bulk-wave cut-off
wave-number k; is smaller than the Rayleigh wave-number, and the grating does not
excite bulk waves.

In Table 1, one can find parameters describing all three grating reflectors and
corresponding SAWs involved in Bragg reflections (the last rows concern the case of

Table 1. Characterization of SAWs and gratings involved in reflection shown in Fig. 3, and resulting
relative reflection coeffcients from strips.

orient. beam k, reflection parameters

k{1 /mm] (110)+ steer. © [1/mm] 0 v [H/A] A [mm]
k* =.349407 o 0° 404094 51.5° 421 20.161
k,=.367020 51.5° 1713* .324430 e 1.19 13.750
k,=.367020 128.5° —1.713° 324430 51.5° 421 20.161
k™ =.349707 180° 0° 404094 160° . .55 8.953
k;=.363252 20° 8.513° 356637 140° Al 9.204
k;=.363252 160° —8.513° .356637 o=10%%"1
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#~160°). Note that some SAWSs are subjected to beam steering. Each grating
reflector should have shape of parallelogram OFPE shown in Fig.2, with grooves in
direction OP and period A, Because of different velocities of incident and reflected
SAWs, the incident and the reflected SAW beam-widths (W) are generally different.
The SAW reflection per strip evaluated by interpretation of SAW decaying
coefficient x on the path D* along the propagation direction between subsequent
grooves, the decaying taking place doe to the reflection from grooves [1, 2]. The
relative reflection coefficient y (relative to H/A, here we consider case of groove width
A/2), is evaluated as square-root of the ratio of the reflected SAW transmitted
through aperture width W™, to the input SAW power flowing through W*.

5. Conclusion

Let us stress that we applied perturbation theory that neglects higher field
harmonics induced in the gratings. This can bring certain discrepancies in evalution of
optimal 6. Experimental investigations are recommended to get its correct value, and
lowest SAW reflection loss possible in the proposed tripple grating reflector structure.

It should also be noted that the reflected SAW is no langer plane SAW, even if the
incident SAW is plane [6, 7], and the subsequently reflected SAWSs will also be
nonplanar. In conclusion, we must not attempt to obtain full reflection to avoid
seriously nonplaner SAW at the output of the set of reflectors discussed above. That
is, some reflection losses are not avoidable, depending on admitted loss of uniformity
of the SAW beam, SAW diffraction etc.
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GENERATION OF ELASTIC WAVES IN A PIEZOELECTRIC PLATE
BY INTERDIGITAL TRANSDUCERS

D. BOGUCKI and E. DANICKI

Institute of Fundamental Technological Research
Polish Academy of Sciences
(00— 049 Warszawa, Swigtokrzyska 21)

Piezoelectric plate with periodic metal strips on both sides is considered. Propagation
and Bragg scattering of plate modes and associated made conversion are analyzed.
Excitation of acoustic plate modes by interdigital transducers is investigated and results are
compared with experimental data.

1. Introduction

Excitation of surface acoustic waves (SAWs) in the piezoelectric halfspace by
interdigital transducers (IDTs) was analysed in details in numerous papers [1 —4]. In
recent years, there is growing interest in applying of acoustic plate modes (APMs)
instead of SAW in piezoelectric sensor and filters [S—8]. Theory of APM generation
by IDT can be considered more difficult than that of Rayleigh waves [9]. It is caused
mainly by

» multimodal propagation of APM, a number of different modes can propagate
at the same frequency with different velocities,

» Bragg reflection of APM from transducers fingers can be accompanied with
modes conversion,

« generation of APMs by a pair of IDts deposited on both surfaces of
piezoelectric plate is unique problem for plates.

In this paper, a theory of generation of APM by such pair of IDTs is devoloped,
using Blotekjaer’s method of analysis of waves propagating in the periodic system of
metal strips [10].

In next section, we analyze electric properties of piezoelectric plate, with electric
charge applied to its both surfaces. The immitance relation is derived which is the
planar Green’s function for piezelectric plate in spectral domain [9, 12]. The relation is
a generalization of effective surafce permittivity, introduced in [12], to the case of
piezoelectric plate.
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In the following section, propagation of APM in the piezoelectric plate with
electrodes deposited on both sides of plate is analyzed. Dispersion relations for most
important cases, open and short-circuited strips on both sides of plate are discussed.
Numerical results are presented for plates made of some known piezoelectric
materials (quartz and LiNbO,)

In Section 3, a theory of APM excitation by IDTs deposited on both sides of plate
is presented. The corresponding inhomogenous problem is solved using method
proposed in [2, 3, 10]. Numerical results are compared with experimental data
presented in [13].

2. Immitance relations

Let us consider an infinite piezoelectric plate bounded by planes x,= +d/2 (Fig.1)
and made of material characterized by mass density p and material constants ¢, e,
Cijpg- Vacuum () is outside the plate. We consider harmonic waves propagating
along x,, that is exp(jwt— jkx,), where k is wavenumber and w is angular frequency.

r'y:.'ll-z
Kl 1
_ - _
Ty i % 2
Cw DB :

€& 0 s

] : : A

€qijs Cijpg — DN — e
d

o Iv; Ll  mowoio
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Fig. 1. Piezoelectric plate covered by periodic metal strips.

In the piezoelectric material, the coupled acoustic wave equations are
axiis :
= POU=Cijpgthp, jg t €qijP i

0=e.
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where u, is particle displacement component and ¢ is electric potential, both inside
the plate. Electric potential outside the plate (in vacuum, D7 = — ¢ ") satisfy Laplace
equation

D{=0. (2.2)
Certain electric and mechanical conditions must be satisfied on both surfaces
T,=0 at x,=+dJ2, (2.3)
and
o=¢", D,—D,=A4D.,at x,=d|2, (24)
o=¢", D,—D}= ADL, at x,=—d/2,

where AD1 and ADL are electric charges induced on uper and bottom surfaces of the
plate, respectivelly. Solving the corresponding boundary problem in the way
presented in {14], we obtain a set of immitance relations for piezoelectric plate. This
set is a generalization to effective electric surface permittivity introduced in [12] that
involves that electric charges, and electric fields at both sides of the plate
E, =jko(x,=d|2), and E| =jko(x,= —d|2)

Ey=jS, XAD1 + jSkX’ADi (for x,=d/2),
Ej=—jS,X'AD1—jS,XAD] (for x,= —d|2), (2.5)

where X and X are functions of k, and
1 fork>=0,
= .6
» {—1 fork<0. G-6

In the above equations, we accounted for the symmetry relations {14, 15]
(rotation of a plate by 180° does not change its equations, but note that 4D, and
AD| include vector components differently oriented with respect to the plate).
Generally, the matrix elements of immitance relations (2.5) which can also be
considered as a surface Green’s matrix function in spectral domain k, can be
evaluated only numerically. The matrix elements are singular at k being the wave
numbers of plate modes.

An asymptotic behaviour of X( | k | ) and X’( | k) for | k| —co are following

X-X _, X-0, 2.7
Q0
which shows that the system of Egs. (2.5) separates at large | k | . This is because of

fast decaying of the wave-field in depth of the plate if the applied electric charge to the
plate has large | k| .
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3. A plate covered by periodic electrodes

3.1. Eigenvalue boundary problem

We consider infinite piezoelectric plate of thickness d. The plate surfaces are
covered by periodic systems of weightless, ideally conducting metal strips (Fig. 1)
which period A is the same on both plate sides but the electrode widths can be
different, w and w’ at x,=y=4d/2 and —d)2, correspondingly (in what follows, all
quantities at y= —d/2 will be marked by ‘prime’). The considered problem is
2-dimensional, waves in the system are assumed propagating in z=x, direction
perpendicular to strips.

There are mixed electric boundary conditions on both surfaces

E,=0, E;=0, on electrodes,

(3.1)
4D, =0, A4D[=0, between electodes,

where E| and 4D, are defined as in previous Section.

Accordingly to the Floquet theorem [17], a solution to the eigenvalue boundary
problem stated by Egs. (2.5), (3.1) is searched in form (K=2n/A is the wave-number
of periodic strips)

[+ o]
Ey= } Ee”+0,
n=—-ow

(3.2)
AD, = Y D e+

at the upper plate surface, and similarly at the bottom surface, where E, E, and
AD,, D, should be replaced by corresponding ‘primed’ quantities. The time
dependence exp(jw?) is dropped thoughout the paper. There is certain ambiguity
concerning spectral parameter s, in what follows we will assume its value in the
domain (0,K).

Taking into account Egs. (2.5) we obtain following relations for amplitudes of
Bloch waves included in the above solution

E,=jS,X,D,+jS,X3Dn,
(3.3)
E:l a _.]San’an +.]SanD:| 3
where X, =X(s+nK), and X, =X"(s4nK), similarly S,= S nx-
Asymptotic properties of X and X" (Egs. (7)) allow us to find such integer numbers
N, i N,, that Egs. (3.3) become separated if n¢[N,, N,

E,=jS,X.D,, Ei,=—jS,X,D,. (3.4)
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This will be exploited below in expanding the Bloch amplitudes into another series
which, according to the method presented in [10], make the solution (3.2) to satisfy
the boundary conditions (3.1). The expansion is following

M, ]
E= ) ) 8P~ fcosd),
m=M,
(3.5)

M,
Dn= Z ﬁmPu—m(COSA)s
m=M,
and similarly for ‘primed’ amplitudes in which relations a’ and b’ substitute @ and S,
and A'=nw’/A substitutes A=nw/A in corresponding arguments of Legendre
polynomials P,. Taking into account Egs. (3.4), we obtain that

U =JX s %= —JX o Bm- (3.6)

Following the method [10], we apply sufficiently large summation limits in
expansions (3.5), M,=M,=N,, and M,=M,=N,+1. The solution given in Egs.
(3.2), (3.5) satisfies the boundary conditions (3.1) and Eqgs. (3.3), but only at
n¢[N I,Nz] so that we must still consider Egs. (3.3) which are explicitly

0, (S—m— Sy Z )P — m(cOSA) — 001S , Zp Py — m(cosA) =0,
3.7)
- amSnZ;Pn s m(COSA )+ ar;:(Sn -m— SuZﬂ)Pﬂ = m(COSA’) =0,

at ne[N,, N,], in order to satisfy Eqs. (3.3) for any ne(— o0, o). The above set of
equations, where Z,=X,/X_ and Z,=X,/X_ including 2N linear equations for
2N+2 unknowns «,,, &,, N=N,—N, +1, can be solved for any given a  and «,

Oy = Ao+ D, Oy =0y + bty (3.8)
where a,=1, b,=0 and ay=0, by=1. The efficients a,, b,, an, b, are evaluated
numerically from Eq. (3.7).

Integrating electric field £ and Ej, represented by Eqs. (3.2), (3.5), over the

domain between strips, we obtain relations for electric potential of electrodes on the
upper (P(s)), and bottom (V(s)) sides of the plate at z=0

m’

P0)= sty Codin + %o
(3.9)

g aniahy ;
V)= sty @+ 3oz,

Analogously, integrating electric charge over strips placed on the plate surfaces at
z=0, we obtain currents flowing to strips on upper (/(s)) and bottom (/'(s)) sides
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f(s): 2n K}(i (otgB1;+2pBy5),
(3.10)
F(5)= —2n - @B+ 4B,

where 4;; and B;; are defined as follows (v=s/K, summation sumbols over m dropped
to shorten notations)

A,=(-D"a,Ppyiy-(—cosd), B, =a,Pn,.,_(cosd),
Ay, =(—1Y"b,Pp+y-(—cosd), B,,=b,P,., (cosd),
A, =(—1D)"apPpiy-(—cosd"), B, =auP,., (cosd’),
Ay =(—1)"bpPysy—(—c084’), Byy=0bgyP,., 1(cosd’),

(3.11)

3.2. Dispersion relations

Equations (3.9), (3.10) are sufficient for analysis of propagation of APM in
piezoelectric plate covered by strips on both sides. Generally, there are four
possibilities

«all electrodes connected to ground, ¥=0 and P'=0,

- open electrodes on both surfaces, /=0 and ['=0,

«short-circuited strips on one side, and open strips on the other side of the plate,

V=0 and ['=0,
«and vice-versa, /=0 and V’'=0.
Corresponding dispersive relations resulting from Egs. (3.9), (3.10) are

Ay Ay — A4, =0,

BuBzz % BIZ‘BZI =0,
(3.12)
B, A5, — B;A4;,=0,

A4,,B,, _AuBm =0,

which should be solved for s at given w. Generally, it can be done only
numerically. The most interesting feature of the solution for s is the existence,
at certain frequency domain called a stopband, of complex s. The imaginary
value of s makes the wave-field decaying along its propagation path. The
reason of this decaying, which is generally faster for stronger piezoelectrics,
is the Bragg reflection of APMs from strips which bring periodic electric
perturbation into the elastic waveguide. Similar phenomenon, but caused by
mechanical perturbation of plate by shallow grooves, was discussed in [16],
for instance.
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4. Excitation of APM by a pair of IDTs

4.1. Imhomogeneous problem for metal strips

In Eqgs. (3.9) and (3.10), there are two arbitrary constants, a, and a, which are, in
fact, functions of spectral variable s. Evaluation of these functions is the subject of
inhomogeneous problem considered below.

In the considered inhomogeneous problem (Fig. 1), two electrodes, one on upper
and the second on the bottom side of plate, have given voltages ¥V, and
Va correspondingly, and the others are grounded. We will evaluate the transadmit-
tance relations for strips,

i =YimVm+ OimVm,
4.1)
i;=v?me+y¢me,; )

which describe signal transmission between strips by both means of electric interac-
tion [11], and APMs. The evaluation of transadmittance will be carried out on the
way similar to that applied in [2—4] for Rayleigh waves.

The given strip voltages V, and V,, are following inverse Fourier transforms
defined for discrete functions over periodic strips

1K ) .
Vo= He s, Vimg [ Vet “2)

where V(s) and V'(s) are as given in Egs. (3.9). To satisfy the above relations, we must
apply that

Ky gl = m}'{SI;—KS'/K'( (S)A 1 +o($)4,,),

(4.3)
—jr

jsmA __
Ve’ ~ Ksinns/K

(otg(5) A, + ()4 5,),
which can be solved for unknown a(s) and o(s)

K . V
e s wa
12423

(4.4)
—Vud

oK, VaAd iy
o(8)=j—sin ny——"——"_21 glsmd
%) 'l S A Ay —A,4,,

The currents I flowing to upper electrodes, and I’ flowing to bottom ones can be
evaluated by applying similar inverse Fourier transforms to Egs. (3.10)
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318y v, b5 i
I= ¥ { I(s)e™4ds, I =E£ I'(s)e™ 74 ds, 4.5)
which, applying solutions (4.4) yield (v,,=v},=—0v}, on the principle of virtual
works)
B, A;,— B4

K p
I 127 12 sin wve U-m4 dg |
0 IIAZZ AIZAZI

y;‘m=KX

ac

2o X B,,A,,— B, A, . js(i—m)A
Vi = sin wve MM dy =
KX I AnAzz_Aqui .

< 0

2o % By 4,,— B4y, sin mye—U-mA gg (4.6)
KXco 0 AIIA AIZAZI

o= — 2w ]-{ ByAy—Bydy,
KX Aquz—Ale.u

o 0

sin e ™A dy

4.2. Radiation admittances
Integrals in Eqs. (4.6) have following general form

20
ijf  R(s)sin es/ Ke-mds @.7)

o 0

Yim=

where function R(s) which is different for different yj,, but in all cases the
denominator is the same in Eqgs. (4.6), as singular at single poles for s being the
solutions of dispersion equation for short-circuited strips. R(s), and Y can be
decomposed as follows

R(S)=R()+ R (), Yin=Yin+ Yin, 4.8)

where R(s)=R(s)— R'(s) is assumed regular function of s, thus the corresponding
integral for Y* can be easily evaluated numerically. It describes mutual capacitance of
electrodes / and m, placed on the same or different sides of the plate [11].

The function R'(s) that includes all singularities, is defined as follows

b, b,
()= : 49
) zi:s-s+zi“s-K+si’ “9)

i

where we accounted for that both s, and K—s, are solutions to dispersion equations in
the considered system, s;— K being the wave-number of APM propagating backward.
Corresponding integrals can be evaluated approximately by expanding the integ-
ration path to infinity on the complex plane s, and thus applying Jordan’s lemma and
residual theorem (see [3], for instance). We obtain
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oA &)/
Vimity, 207
(4.10)
A .
Y,,’,,=2c;)—Zbie”"”’”"Asinnsi/K, for [#m.

This is similar equation to that presented in [2, 3] for Rayleigh waves. The main

difference is in the number of propagating modes generated in plate which contribute
to the strip radiation admittance.

5. Some numerical and experimental results

Typical interdigital transducers are composed of a number of metal strips
connected to transducers bar-buses [1], which buses are connected to external
voltage sources, in generating IDT, or to loading impedance, in receiving IDT. In
piezoelectric plate covered by strips on both its sides, there is interesting possibility
of APM excitation by a pair of transducers having their fingers on different sides of
the plate.

In [13], an experiment is described where a pair of IDTs were placed face-to face
on two sides of YX quartz, 64 um thick plate. Both IDTs had 40 pairs of split Al
fingers (strip period A=40 pm and w=w'=20 pm). There are measurements
presented for IDTs connected in parallel and antiparallel, which means that
corresponding strips on two sides of plate had the same, or oposite electric potentials.
The measurements have not been interpreted as concern waves excited by transducers
in the measured frequency band (10— 100 MHz). This will be provided below, by
comparison with numerical results. Let us note that the discussed plate is relatively
thick as compared to the strip period, its normalized thickness is Kd=10.035, thus
several modes can be observed in the measured frequency band. The numerical
calculations presented here will include 4, SH,, S, and SH, modes only.

We introduce notations 4, B for IDT bus-bars on the upper side, and A’, B"— for
corresponding bus-bars of IDT on the bottom surface of the plate. The voltages of
these bus-bars will be noted V,, V, V,,=V4, Vi.=Vp, and similarly for currents.
Egs. (4.6) results in following relations for the discussed IDTs

B0 80

IL,=W z Z W WiV o+ w1 —w, )y Ve+

m=1il=1
W WiV a4+ w1l —w, )0 Vs,
(5.1

80 80

L=W 3 ¥ (A=ww,yinV+ 1 —=w)1—w,)yimVp+

m=1l=1
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(A=w)w, i Va+ A —w, )1 —w)ok, V3,

and similarly for 7 and Ip, with w, defined as follows

1 if electrode k is connected to 4 or 4’ bus-bars,
Wy = (5:2)

0 elsewhere, and W is IDT aperture width,

In the analyzed configurations, we have
*in symmetric configuration, I=((I,+1I A—Up+1p))/2, and V, =Vi=V]2,
Ve=Vp=—V]2,
* in antisymmetric configuration, I=((I,+ Iy)— (I, p+1p)/2, and V, =Vp=V]2,
Ve=Vi=—V]/2,
and the measured admitance of transducer pairs is

Y=IIV (5.3

Its values are computed in following frequency bands: 13—16 MHz, 32—34 MHz,
and 54— 58 MHz, and presented in Figs. 2, 3.
In conclusion, we recognize that the measured radiation conductances result from
excitation of following APMs
* Lamb 4 mode for f~14.5 MHz, in antisymmetric configuration,
« transvers SH mode for f~33.4 MHz, in symmetric configuration,
* Lamb S, mode for f~56 MHz, in both configurations, but in antisymmetric
case more efficiently,
* transverse SH, mode for f~54.5 MHz, in both configurations but for
symmetric case more efficiently, and modes S oand SH, overlap in this case what
makes the measured conductance of IDT highly distorted.

6. Conclusions
An analysis of propagation of plate modes in piezoelectric plate covered by
periodic strips is presented. Bragg reflection and mode conversion is discussed.
Inhomogeneous problem of generation of plate modes is solved and experimentally
verified. Physical interpretation of measurement is provided.
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NUMERICAL MODEL OF MULTIPLE SOUND SCATTERING FROM GAS BUBBLES
IN THE SEA

J. SZCZUCKA

Institute of Oceanology
Polish Academy of Science
(81-712 Sopot, ul. Powstanicow Warszawy 55)

This paper presents a model of sound scattering on gas bubbles aggregations in water.
Coherence and second order scattering elfects are taken into account for random and regular
3-dimensional distributions of bubbles with different parameters like bubble size, average
separation between scatterers, distance to the receiver, incident sound frequency. Results of
calculations for various sets of parameters are compared. Excess attenuation is also considered.

1. Introduction

Different objects enclosed in the sea water can be detected and counted by the sound
scattering methods. Gas bubbles floating in the upper sea layer are generated mainly by
breaking wind waves and by biological sources (photosynthesis, decaying organic
matter). These bubbles play an important role in the ocean-atmosphere gas exchange.
On the other hand they strongly influence the conditions of sound propagation in the
sea, scattering and absorbing acoustic energy and changing the sound velocity. The
intensity of all these processes depends on the concentration of microbubbles, which can
be measured by means of acoustic methods, similar to fish counting. The majority of
these methods is based on two fundamental assumptions concerning single scattering
— that is equivalent to the noninteraction between scatterers — and incoherent
scattering — the total intensity of backscattered sound is treated as a sum of intensities
originating from the individual centres. If the discrete scatterers are distributed in space
randomly and not too densely, these assumptions can be sufficient for solving the
problem of backscattering, but in some circumstances depending on the wavelength,
distance between scattering centres, distance between receiver and scatterers, they can
oversimplify the real sitaution and lead to significant errors, therefore this problem
should be taken into consideration in each individual case.

Most of scattering models applied to marine inhomogeneities ignore the effects of
coherence and multiple scattering, but these effects were considered by some authors
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using different simplifying assumptions. Kurianov [3] showed analytically, that
coherent scattering of the time-limited acoustic pulse on the set of randomly
distributed objects can be neglected. StanTON [5, 6] evaluated the second order effects
for scattering on clouds of identical randomly distributed isotropic scatterers under
the following assumptions: the average distance between individual objects was much
greater than the acoustic wavelength (the short wavelength limit), the swarm of
scatterers was located in the plane-wave region of the transceiver and absorption was
negligible. Under these conditions, second order scattering was shown to play an
important role, especially in the case of using multibeam sonars. BRuno and Novarin
[1] considered both coherence and interaction effects, but only for 1-dimensional
(linear) distributions of gas-filled bubbles.

In this paper the mathematical model of acoustic backscattering of spherical wave
from the aggregation of gas bubbles in water has been considered. The expressions for
the coherent and incoherent terms of the first and second order of the backscattered
energy have been obtained. The model was used for both random and regular
3-dimensional distributions of gas bubbles with the same radii or with given size
spectrum, for various densities and various distances to the receiver, with the
attenuation included or not.

2. Scattering and attenuation by a single gas bubble

For the acoustic wave of frequency f the function of backscattering ¢; on a gas
bubble with the radius a; is given by [4, 7]:
a.
=, (2.1)
0 Urilf?-1 +19;
where d; is a damping constant of the jth bubble, depending on the bubble size,
incident sound frequency and number of physicochemical parameters of the gas and
sea water, and fg; is its resonant frequency

_\/3Plp
Je= 2na

: (2.2)

where y — the ratio of specific heats of gas, P — hydrostatic pressure at given depth,
p — water density. Taking the complex function ¢; in the form

t;=p;exp (ip;), (2.3)
we get
py= 2] soi) (2.4)
VIrilf = 11+83
61'
tan (sz —m .
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There is the following relationship between the backscattering function and backscat-
tering cross-section of a gas bubble [4, 7]:

, a?
o= |t s @.5)

Extinction cross-section of a gas bubble looks similar:

4na¥(d;/ka; )
e ) 2.6
%= [ — 1P+ 83 (=
At resonance bubble cross-sections are reduced to:
Ops,R= af‘/ 5?
@2:7)

0. r=4ma;/kd;

The dependence of p, ¢ and é on frequency for air bubble with radius 100 pm is
displayed in Fig. 1.
0002 90| 010
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f [kHz) f [kHz] f [(kHz1

Fig. 1. Dependence of the modulus and argument of backscattering function and damping constant on
frequency of incident sound for air bubble with radius a=100 pm located at depth z,=10 m.

3. Scattering model without attenuation

Let us consider the problem of backscattering of the spherical sound wave on the
aggregation of N gas bubbles enclosed in any volume V with the centre at a depth z,
related to the source depth (Fig. 2). The geometry is monostatic — source and
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_—'___""'"'1 fffff iForr Tl

Fig. 2. Scattering geometry

receiver are located at the same point. The hydrophone receives the single scattered
signals (path 0—j—0) and multiple scattered signals (paths 0—j—/-0,
0—j—k—1-0, etc.). If the sound attenuation in the sea water is neglected, the
pressure of the wave returning from the jth scatterer is

t,
pj=Aj;lcxp (ikr)), (3.1)

j
where k — a wave number, r;— a distance between the source and the jth scatterer, ¢;
— a complex backscattering function for the jth bubble, 4; — a sum of complex
amplitudes of the spherical waves coming to the jth scatterer from all other bubbles

N
t k
A;=Ay+ Y A vl exp (iksj). (3.2)
I#£j 2jl

In this formula s; is a distance from the jth to /th scattering object and A; is an
amplitude of the spherical wave coming to the jth scatterer directly from the source

A
A()}:’fexp (ikrj), (3.3)

J
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where A, is an amplitude of the wave emitted from the source.

The expressmn (3.2) is a reccurence formula including scattering effects to all
orders. In the presented model it is assumed 4,=A4y, what is a consequence of
neglecting all the effects over the second order, and for simplicity, 4,=1. According
to the fundamental hypothesis, in practice we measure an incoherent field of single
scattered signals:

L=Y 1512 (34)

but in fact we measure a total field (including coherent terms) of multiple scattered
signals:

N 2
La=|Y, P; (3.5)
=3

The main goal of calculations is a total intensity with taking phase relations into
account, therefore the coherent sum of pressure is needed:

Z py= Z L exp(21kr )+ Z jcxp(akr ) Z —L exp(ikr,) exp(iks;) =

= F=1T3 1#j T8t
N N N
Z BKP(ZIk")+ Z y —-— s + explik (r;+r+sp)] =
J= =1l#j _p it 8i
N N N
3¢ Z 2 ap= Za”+2 Z Z aji - (3.6)
jeai=i =1 i=1l>j

for ¢; in the form (2.3) we get
aﬁ=f—2jexp[f(¢j+2krj)] for j=I,
i

1 ilo, k O for j#l 3.7
aj rj+r[+SﬁcxP{l[‘P1+¢t+ (re+r+splt for j#l, 3.7

The total scattered field is:

Iml‘_'

éP,‘)‘ ip,-)‘= )E iaik'i ia!:n- (3.8)

Jj=1k=1 I=1m=1

N 2
1P| =
i=1

The product of these two sums comprises N(N+1)/2 incoherent terms
agap= | az | 2, where j=I, k=m, and N(N+1)[N(N+1)/2—1]/4 coherent terms
4@+ aj3a;, involving phases. As a result w obtain:

La=10+IQ+1Q+13, (3.9)
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where
N

Q=% la;l?
j=1

N N
=23 % la;llal cos[p;,— ¢, +2k(r;—r)]

j=1l>j
N N
I(i)=4z Z Iajk|2
j=1k>j
N N N
IG=4% Y ¥ | ajll am | cos[o;— @,— @, +kQr;—r,—r,— sim)] +
i=1l=1m>1
N N N N

+82 2 X X | apllam | cosloj+ @p— 0= @t k(rj+retsix—r—rm—sim)}-
j=1k>jl=1m>1
In the case of only coherent scattering of the first order (the phases of echoes from
individual scatterers are equal), for identical objects we have I8 =(N—1)I{) or
La=NK.
 Asit wasmentioned above, N(N+ I)[N(N+1)/2+ 1]/4 terms must be calculated to
obtain the value of [,,. This gives 1540 components for N=10 and 813450 for N=50.
Total backscattering intensity can be greater or smaller than its incoherent part
because echoes from single centers can interfere constructively or destructively
(coherent terms can be positive or negative). For estimation of an error connected
with the assumption of the dominant role of incoherent scattering it is useful to
introduce the following correction coefficient:

Coor = I(R/Imt-

For purely incoherent scattering its value is 1 and it decreases with rising contribution
of coherent effects.

4. Scattering model with attenuation

Attenuation of the running wave takes place only inside the volume V on the way
r; to the individual scatterer and on the way s5; between two consecutive scatterers

(Fig. 2)

r}=rj(zupp_zj)/zj9
where r; — a distance from the source to the jth bubble, z; — its depth and
z,pp — a depth of the upper boundary of the swarm of scatterers. Energetic coefficient

of sound attenuation in bubbly water is expressed in Np/m and for identical bubbles
has a form [7]:
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a=Na,rlV,

where o,  is given by the formula (2.7).
Expressions (3.1)—(3.3) and (3.7) change their appearance:

t.
pi=A jf exp(ikr;) exp(—0.5arj), (3.1);
i
& iy
Aj=A0j+ Z A[—‘ exp (IkSﬂ) Cxp(—O.SCCSJ‘g). (32)'
I#j it
A, , : ,
Ay - exp(ikr;) exp(—0.5arj) (3.3)

J

ajj=%fexp [i(q)j—r?.krj)] exp(—arj) for j=I
Fi
(3.7

aj,=%q—exp{i[cpj+qo,+k(rj+r,+sj,)]}exp[—O.Sa(r}+r;+sﬂ)] for j#I
TS

The effect of sound wave extinction was introduced to the model according to
formulae (3.1)'—(3.7)".

5. Numerical results

The first stage of calculations concerned N identical scatterers distributed both
regularly and randomly in volume V with a given mean distance d between the
neighbouring individuals. Sound attenuation was not included. The volume V was
chosen as a parallelepiped with edges n,d, nd and n,d (n,*n*n,=N). In regular
distributions bubbles were located in the nodes of a network, in random distributions
each coordinate (x, y, z) of a scatterer was a random variable from the interval equal
to the appropriate edge length determined for the regular case. In the random case the
distances s; between all scatterers were tested and values smaller than diameter of
a bubble were eliminated. Obtained values of backscattered field were averaged over
50 realisations.

In the first series of calculations the dependence of the scattered field on
swarm density was investigated. For this purpose the value of d was being
changed from d=1 cm to d=10 cm which resulted in change of total volume
and, in consequence, in the bubble concentration. Various values of bubble
number N (27 or 48), bubble radius a (10, 50, 75 and 100 pm) and swarm
depth z, (1,5 and 10 m) were taken for each numerical calculation. Resonant
frequency of a single bubble was chosen as a frequency of incident sound (f=fg).
Incoherent scattering of the first order practically depends neither on bubble
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concentration nor on character of a distribution. In the random case it dominates for
d>2 cm (Fig. 3). Incoherent term of the second order increases with decreasing
volume for all kinds of distributions. For the densest packing (d=1 cm, i.e.
N/V=10%m?) this term contributed significantly — for random distribution it is even
greater than the first order incoherent part. Regular distributions give the interference
picture of I,,, with oscillations of order 30 dB which are connected with a vertical
network dimension — large maxima occur at half wavelength and smaller — at
quarter wavelength distance between horizontal layers of scatterers. It can be clearly
seen on the diagram with horizontal axis and scale d/A (Fig. 4).
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Fig. 3. Comparison of different order scattering effects for regular (upper) and random (lower) bubble
distributions. N=27, a=100 um, z,=10 m.
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Fig. 4. Total intensity versus d// for regular bubble distribution for different swarm depths (upper) and
different bubble radius (lower). N=27.

The second series of computation concerned the random distributions only.
Values of scattering volume (¥'=0.01 m?), bubble radius (a=100 pm) and swarm
depth (z,=5 m) were fixed and bubble number N was varied. Calculations were
carried out for seven different ratios 4x/4z of scattering volume: from A4x/4z=0.1
— tall and narrow parallelepiped (in practice it is equivalent to narrow beam and long
pulse) to Ax/Az=100 — low and broad (broad beam and short pulse). Fig. 5 shows
the dependence of the total intensity and correction coefficient on number of bubbles
in given volume for three chosen geometries. Apart from an obvious fact that
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Fig. 5. Dependence of total intensity (upper) and correction coefficient (lower) on number of bubbles
enclosed in volume ¥'=0.01 m? for three geometries. Bubbles distributed randomly, averaging over 100
realisations.

intensity increases with increasing number of scatterers, we can see the tendency that
with flattening and broadening of the parallelepiped the total echo rises and
correction coefficient falls. It means that coherent scattering becomes more substan-
tial, what is obvious for 2-dimensional (flat) scattering systems. The shape of these
curves is very uneven despite increasing the number of averaged realisations to 100,

because of large changeability of succesive realisations (see standard deviations in
Fig. 6).
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Fig. 6. Total intensity with standard deviations versus number of scatterers for one of geometries from Fig. 5.

The third series of computations concerned the dependence of the total backscat-
tered signal and its components on frequency of incident sound for two types of
distribution: regular and random (Fig. 7). Bubble number (N =32), its radius (a=100
um), scattering volume (V'=0.01 m?) and swarm depth (z,=5 m) were fixed. The
comparison shows that incoherent terms of the first and second order are almost
identical for both cases, but the shape of I is different. For the random case
I, repeats the form of I, but for the regular one numerous maxima appear. The
largest of them originates from the resonance of single bubble f; (according to
formula (2.2)), others are connected with the vertical dimension Az of the scattering
area. Distances between consecutive peaks are equivalent to Az=1/2 and they change
together with a geometry of the scattering volume V.

Analogous dependence for I, was found for random aggregations of bubbles
with various radii. For this purpose three different types of bubble size spectra were
chosen: Gauss distributions with maximum at 150 pm, a hypothetical power law
distribution with a maximum at 50 pm and the distribution of KoLosaev and
DexTeREV [2] describing natural marine population of gas bubbles:

(1) n(a)~exp[—(a—a)*/2¢?] a=150 pm (Gauss),

a for a<50 pm
(2) n(a) {a'3 B g (power law),
(3) n(a)~a 3exp(—3ala) =15 pm (KorLosaev and DEkTEREV [2]).

All these distributions were normalized to give N,,=50. Fig. 8 illustrates the
dependence I,,,(f) (upper part) for particular distributions (lower part). It can be seen
that for aggregation of bubbles with different radii the resonant maximum of I is
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Fig. 7. Frequency dependence of the total backscattering energy and its components for regular (upper)
and random (lower) bubble distributions. N=32, a=100 pm, z,=5 m, ¥'=0.01 m?, 4x/4z=1.56.

broadened in comparison with the case of bubbles with the same radii (see Fig. 7) and
the shift of maximum in size spectrum causes the shift of resonant peak of
backscattered intensity according to reverse proportionality of fand ag. Additionally,
the bigger bubbles dominate in the aggregation, the higher is the level of I, in the
nonresonant area (large frequencies). :

The dependence of the calculated backscattered intensity without and with
attenuation on the linear dimension of swarm is shown in Fig. 9. For very small
volumes ¥ (i.e. huge bubble densities N/V) the attenuated field is about tens of dB
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Fig. 8. Frequency dependence of the total backscattering energy (upper) for different kinds of bubble size
spectra (lower).

smaller than the unattenuated one. A comparison of this diagram with the
dependence of the first and second order terms of backscattered energy on the linear
size of aggregation (Fig. 10) shows that the range of large attenuation is the same as
the range of domination of the second order scattering. Therefore we can conclude
that strong attenuation eliminates the second order effects. On the other hand, in the
range of moderate bubble densities (under 104/m?), the role of both attenuation and
interaction diminishes and these effects become negligible.
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Fig. 9. Dependence of the total intensity on parameter d with attenuation included or not. Random
distribution with N=27, a=100 pum, z,=10 m.
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Fig. 10. Relative contribution of the first and second order scattering effects to total intensity for random set
of bubbles. N=27, a=100 pm, Z,=10 m.

6. Summary

On the basis of numerical model describing the total field of signals backscattered
on the collection of isotropic scatterers an attempt of verification of two fundamental
assumptions of echosounding was made. Free gas bubbles were chosen as modelled
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Fig. 9. Dependence of the total intensity on parameter d with attenuation included or not. Random
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Fig. 10. Relative contribution of the first and second order scattering effects to total intensity for random set
of bubbles. N=27, a=100 um, z,=10 m.

6. Summary

On the basis of numerical model describing the total field of signals backscattered
on the collection of isotropic scatterers an attempt of verification of two fundamental
assumptions of echosounding was made. Free gas bubbles were chosen as modelled
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scattering objects. They can be treated as an approximation for marine biological
objects like plankton or fish (often with swimbladders). It has been shown that terms
of the second order scattering are important for very large concentrations of the order
10%/m?3, but they are compensated by the effects of attenuation (very strong in that
area). Coherence is substantial for regular distributions of scatterers and for
aggregations close to 2-dimensional ones. The dependence of backscattered signal on
frequency is dominated by the distinct maximum at the resonant frequency of the
single or prevailing bubble size and regular distributions give the characteristic
oscillations determined by the scattering geometry. To sum up we can state that
commonly assumed simplifications used for estimation of the number of intrusions in
the sea water are justifable, at least in case of gas bubbles. Their natural populations
are randomly spaced and are small enough (excluding extremal wind conditions) to
neglect multiple scattering and coherent effects.
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98TH AES CONVENTION — 25—28.02.1995 — PARIS
POLISH AES SECTION REPORT

Audio Engineering Society Conventions became traditional world meeatings of
all scientist, engineers, industry managers, producers, dealers and even fanciers
interested in the domain of sound and vision system, equipments, facilities, com-
ponent, hard — and software computer elements etc. Such meetings take place twice
a year: Spring in Europe (denoted with consecutive even numbers), and Fall
Convention in the USA (denoted with odd ones).

The latest European Conventions: the 94" in Berlin, the 96" in Amsterdam, and
the 98™ one in Paris, reported herewith, were marked with parcitipation of several
newly organized AES Sections from countries of former Eastern socialist block of
states. Among te members to those Sections, the most numerous participation was of
the Polish Section. Since the Berlin Convention, the Polish AES Section has
organized, for the third time already, inexpensive coach expeditions for their
members, mostly student-members, to participate in Conventions. Such parcipation
is highly valubale, especially for young adepts of acoustics, sound engineering and
related topics who otherwise would be unable to cover all costs of participation,
accomodation, transport etc. In appreciation of those numerous participations and of
other initiatives, as well as assessing the whole scientific activity of the Polish Section,
the Vice-President for Europe AES Region, Mr Dan Popescu, during the special
Convention meeting in Paris, highly estimated its achievements in 1994, calling the
Polish Section ,,the best of all Europe Sections™.

Among Polish participants of the 98" AES Convention, heeld in Paris, at Palais de
Congrés, were numerous authors and coauthors who read their papers and took part
in discussion during the debates within the scientifical Convention program. The
debates were grouped in the sixteen sessions: Audio Data Reduction I & IT (A & C),
Architectural Acoustics I & II(B & D), Electronic Music and Musical Instrument
Acoustics (E), Sound Reinforcement 1 & I (F & H), Audio Electronics (G), Audio
Signal Processing I & II (I & K), Transducers I & II (J & L), Measurement (M),
Psychoacoustics I & I (N & P), Networks and Interfacing (O).

All the eighty five Convention papers were supported by a preprint. The Polish
presentation included the following ones (in brackets — preprint no. and in
parentheses — session no.): A. Czyzewski, B. Kostex, S. ZieLiNski, New Approach to
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the Synthesis of Organ Pipe Sound [3957] (E2); B. Z6rT0GORSKI, Inverse Radiation
Problem — capabilities and Limitations, [3981] (J1); D. Ruser, H. Ruser, 4An
Elementary High Resolution Microphone System Jor Localization of Sound Source in
Air, [4002] (M1); M. Niewiarowicz, Directional Proporties of sound Sources During
Transients, [4004] (M3);B. Kostek, Statistical versus Artificial Inteligence Based
Processing of Subjective Test Results [4018] (P3); M. Kin, J. Renowski, The Influence of
Spectrum on Perception of Differential Pitch Sensitivity for Short Waves, [4020] (P5).

Moreover, Polish AES Section members, in particular the young stu-
dent-members, have taken an active participation in the, so called, workshop sessions.
Those were devoted to the following technical aspects: Preservation of and Access to
Audio and Video Carriers; New Digital media Developments; Wave Front Sculpture
for Sound Reinforcement; Premastering for the New CD Formats; The Interaction of
the Visual and Auditory Senses: ,,How Does One Measure It”; Current Trends of
Research in Musical Instruments Acoustics: Musical nad Non-M usical Application;
Digital Audio broadcasting.

Aparat from the scientific activities, the parcipants got an enormous quantity of
information concerning the most recent audio systems and equipments presented
during a large exhibition, accompanying traditionally the Convention. The exhibition
was held inside the Convention site, at the Palais de Congreés, on three levels, however,
being easy acessible to all participants. more than three hundred enterprises, from all
over the world, displayed their best products in richly outfitted demonstration stands,
giving a visitor a unique possibility to keep track of the development trends in the
whole domain of audio engineering. Broadly disseminated leaflets, prospects,
technical data lists, system descriptions, records, even manuals, etc. will provide
valuable information and reference source for participants at their professioanl
practice.

Immediate press assessments, which appeared still before closing of the Conven-
tions debates, have stated that the greatest interest of industry representatives
concentrated on problems connected with the digital sound processing and the
reinforcement systems. The latter ones were often entitled as room acoustics or
building acoustics problems, however, only sound reinforcement techniques were
treated thereby, withouth any reference to proper desing, measurement and acous-
tical correction or adaptation of rooms. At any rate, those were discussed during
session debates devoted to Architectural Acoustics.

Generally, the scientific part of the Paris Convention was not so largely filled as
e.g. the 94™ one, held in Berlin. The number of papers was almost halved in
comparison to Berlin record. However, may be, it was intended by Paris Convention
Committe, which probably dismissed a part of the submmitted papers in order not ot
exaggerate the numbers of parallel sessions, necessary otherwise. So, the more
important is the number of Polish Section presentations, which amounted 7% of the
total number papers.

It may be interesting to compare the share of authors’ contribitions from
particular countries. The most numerous were twelve papers from the U.S.A. Next in
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number were papers from Germany and from the United Kingdom, ten papers from
each country. Nine papers were presented by French authors. Eight ones by Dutch
authors. Poland and Russia presented six papers each. Denish authors presented four
papers. Finnland and Hong-Kong presented three papers each. Two papers came
from authors from Greece, Ireland, Portugal and Switzerland. One paper was
presented by authors from Australia, Austria, Italy, Japan, Spain and Sweden. Thus,
it was a really international contribution to audio engineering scientific progress.

Such yearly repeated contact with the international progress in the audio
angineering domain is, without a doubt, a very useful event for the Polish AES
Section members and for their entire scientific and professional surrounding. Thus,
a continuation of similar contacts in the future seems to bee highly desirable. In this
context, it has to be added here, that the 100" AES Convention, the jubilee one, will
be held in Copenhagen, at Bella Center, on May 11— 14, next year, 1996.

Marianna Sankiewicz
(Chairman of the Polish AES Section)

Information about CIB W—51 Acoustics Metting
in Warsaw, 25—27 May 1994

The Information Council for Bilding Research Studies and Documentation is an
international organization concerned with studies, research and documentation in the
building industry. It unites 70 countries. It has over 500 collective and individual
mem bers.

Over 70 International Commitees and Working Groups operate within CIB. One
of them is the W—51 Acoustics Committee. The Committee is heated by Prof. A.
Cops and Prof. G. Vermieir from the Catholic University in Leuven.

The W—51 Acoustics Committee consists of the representatives of Research
Centers, dealing with building acoustics, requiring more in-depth theoretical and
experimental examination, are discussed during these meetings. Discussion are held
on the chosen scientific issues, study and measurement methods, and the results of
studies obtained in the lest several years in the various Institutes are analyzed.

Scientific presentations are prepared for the Committee meetings and these are
later presented and discussed at the seminar. Later on these papers are prepared
— according to the publisher’s requirements — for publication in Applied Acoustics.

A collective publication is prepared from each seminar, which includes the written
and presented papers. This publication includes the papers presented at the meeting
of the CIB W —51 Acoustics Committee on May 25—27, 1994 in Warsaw.

The seminar in Warsaw was devoted to two very significant groups of topics,
namely: .

I. Experimental study and modeling of sound insulation in construction building
joints in buildings.
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I1. Sound absorption, shape and indicator of reference curve, measurement and
desing.
A total of 21 papers were announced 11 — in Section I, 10 — in Section II; 18 papers
were presented. From which 16 were delivered in the from 16 were delivered in the
from of xerox-copied publications the remaining 2 due to research being in progress,
were only presented, and will published at a later date in Applied Acoustics. Three
papers were not sent in their authors were also absent.

A list of the presented papers, according to the program of the meeting, is given.

Participation in the CIB W—51 Acoustics Committee meeting undoubtedly
allowed its participants to confront the progress of studies conducted on similar
topics in the various countries, as well as facilitated better planning in the area of
building acoustics studies to be carrier out in the forthcoming years.

Prof. André Cops
Laboratory for Acoustic and Thermal Physics
Catholic University of Leuven, Belgium

Prof. Gerrit Vermeir
Laboratory for Building Physics
Catholic University of Luven, Belgium

Prof. Jerzy Sadowski
Zaklad Akustyki Instytutu Techniki
Budowlane;.

Presented papers

Theme 1 — JUNCTION DAMPING: modeling, experiments
1. Bosmans 1., MEgs., Vermeir G. (Belgium),
Structure-borne sound transmission between thin ortotropic plates: analytical solution.
2. Crax R. (England), Osipow A. (Russia),
The use elastic interlayers at joints to reduce structure-borne sound transmission.
3. VLot M., Jean P. (France),
Structure-borne sound transmission though a pillar-beam-floor system. Case of
bulidings constructed on top of covered raliways.
4. Pepersen D.B. (Denmark),
Estimation of vibration attenuation trough junctions of building structures.
5. GerretseN E. (The Netherlands),
Junction transmission with double-leaf building elements.

Theme 2 — JUNCTION DAMPING: examples, applications

1. NigutingaLe T. (Canada),
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4.

Application of the CEN draft building acoustics prediction model to a lightweight
double leaf construction.

MarTiNn H.J., MoorLacH M.F.C. (The Netherlands),

Sound transmission and junction damping in sheet steel dwellings.

. Szubrowicz B., Izewska A. (Poland),

Simplified evaluation of flanking transmission based on the mean mass and mean
area of flanking elements.

Pietrzyk A., Krorr W., Kinman T. (Sweden), Numerical simulation of low
frequency air-borne sound transmission in buildings.

Theme 3 — SOUND ABSORBTION: reference artefacts, measurement, design

1

VorLANDER M. (Germany),

Reverbation room measurements and preparations of round robin tests on the sound
absorption coeffcient of reference artefacts.

Kristiansen U.R., Vigran T.E. (Norway),

On the design resonant absorbers.

CHyra A., Czvzewski K., Nurzynski J. (Poland),

Reverberation time: comparison of measurement results obtained in the laboratory
using different methods and instrumentation.

4 Mirowska M. (Poland),

Sound absorption of spatial acoustics absorbers, laboratory measurements, repeatibi-
lity, reproducibility.

Theme 4 — SOUND ABSORPTION MEASUREMENT: simulation, experiments,
in-situ mesurement

1.

2

Mees P., VermeIrR G. (Belgium),

Numerical simulation of sound absorption in reverbation rooms.

Cops A., VanHaEcHT J., LeEppEns K. (Belgium),

Sound absorbtion in a reverbation room: causes of discrepancies on measurement
results.

Mommertz E. (Gremany),

Angle-dependent in situ measurements of the complex reflection coefficient using
a subtraction technique.

Maparik L. (Estonia),

Measurements and computer simulation of sound field of the St. Charles’ Church in
Tailin.
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Erratum

ENHANCED BANDWIDTH MULTILAYER TRANSDUCERS FOR
IMAGING APPLICATIONS
Q. ZHANG AND P. LEWIN

VA cosh(yd) Zgsinh(yd) 0 Z,sinh()
o
U, 73 sinh(yd) cosh(yd) 0 cosh(*%) i
Z @
v cosh(d  Z sinh(d (4.11 p. 88)
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