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The aim of this study was to examine whether loudness estimates of music are per-
formed according to the same principles as loudness judgements of non-musical sounds. For
this purpose loudness estimates of short musical passages were compared with those of noise
signals. Spectral energy distribution of noise was matched to that of music. The results show
that loudness judgements of music and noise agree reasonably well. This finding suggests
that loudness of musical tones may also be determined by means of objective methods for
loudness calculation, which are employed in measurements of non-musical sounds.

1. Introduction

Variations of loudness in music are indicated by dynamic marks or levels (pianis-
simo, piano, mezzoforte, forte etc.). It has been demonstrated in a number of studies that,
in most instruments, tones played at different dynamic levels — from “very soft” to “very
loud” — differ not only in sound pressure, but also in spectral envelope [1, 2, 6, 8, 11].
When a tone is played louder, the amplitude of its higher-frequency partials increases
relative to that of the lower frequency partials. Changes of the spectral envelope due to
dynamic gradations are greatest in woodwinds and brass instruments. An example of
sound spectra measured at different playing levels is given in Fig. 1. The higher har-
monics of a French horn tone played pianissimo are very weak. As the dynamic level
increases, so too does the sound level of the higher harmonics relative to that of the
fundamental.

The musical dynamic marks do not specify loudness directly as a psychoacoustical
magnitude. In common usage, pianissimo means “very soft”, piano “soft”, mezzoforte
“moderately loud”, and so on. In fact, the level of loudness corresponding to a given
dynamic mark varies with respect to the instrument played [9, 10].

ReINECKE [11] pointed out that spectral changes of sound associated with changes in
playing level provide a cue for recognizing the dynamic level at which music is per-
formed. This may be easily demonstrated by means of musical recordings. A musically
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Fig. 1. Sound spectra of a horn at different playing levels, played note: F4, (from [8]).

competent listener is able to recognize the dynamic levels of music regardless the loud-
ness level at which a recording is played back.

A great deal of research work has been carried out to examine the relationship be-
tween physical characteristics of sound and the magnitude of loudness. Investigations of
loudness published so far have been carried out with non-musical stimuli. In the case of
musical sounds, uncertainty arises as to whether loudness estimates of musical tones
follow the same principles as loudness judgements of non-musical sounds. The dif-
ference between loudness evaluation of musical and non-musical sounds might be cog-
nitive in origin, connected with the specific way in which the dynamic relations of music
are perceived. When a musician is asked to judge the loudness of a passage of music, his
responses might be influenced not only by the one-dimensional sensation of loudness,
but also by implied musical dynamic levels.

The present experiment was conducted to examine whether any systematic differen-
ces occur between loudness judgments of musical and non-musical sounds. For this pur-
pose loudness estimates of short musical passages were compared with loudness es-
timates of noise stimuli.

Loudness may be estimated from physical sound parameters. The validity of loud-
ness calculation methods has not yet been tested for musical sounds. The present study
provides data on the question of whether, or to what extent, methods for determining the
loudness of noise may be applied to the tones of musical instruments.

2. Experimental procedure

Thirty music students estimated the loudness of short musical passages, wide-band
noise with various spectral envelopes, and 1/3-octave band noise centered at 1 kHz. All
stimuli were recorded on tape.

The musical passages were scale segments (see Table 1) played in various pitch
registers on a viola, a clarinet and a trumpet. Three dynamic marks were used: pianis-
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Table 1. Sound pressure levels of musical passages played back through a loudspeaker in the listening
room.
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simo, mezzoforte and fortissimo. Recordings of musical examples were made in a live
studio (reverberation time: 0.9-1.1 s in the range 250-4000 Hz), with a Studer A 810
tape machine. The cardioid condenser microphone (Neumann KM 84) used for record-
ing was placed at a distance of 1.5 m from the performer.

The spectral energy distribution of the musical signals was analysed by means of
apparatus shown in Fig. 2. The analysis involved measuring the sound pressure levels in
1/3—octave bands.

Next, wide-band noises were recorded, whose spectral energy distribution (sound
pressure level in 1/3 octave bands) was matched to that of musical stimuli. A Briiel &
Kjaer 5537 spectrum shaper was used for this purpose. Each noise matched one of the
musical examples. The corresponding musical and noise signals had the same duration
(approximately 4 seconds).

The experiment was carried out in individual listening sessions, by 30 subjects. The
listeners judged loudness by the method of absolute magnitude estimation [4, 16], as-
signing to each of the stimuli a number which indicated the subjective magnitude of
loudness. There was no limitation on the range of numbers: any positive number that
seemed to be appropriate could be used. Subjects were told to concentrate on each judg-
ment individually and not to be concerned with numbers assigned to preceding tones.
Listeners had only 5 seconds between trials during which they wrote down the number
on a prepared form. A relatively short time was chosen to minimize the probability of
listeners judging stimuli relative to each other.

The stimuli were played back through a loudspeaker in a listening room. At the
beginning of each listening session, prior to the main experiment, a preliminary test was
presented in order to investigate whether the listeners performed loudness judgments in
a similar way as reported in the literature. The test comprised eleven 1-second stimuli
(1/3—octave band noises centered at 1 kHz), presented at sound pressure levels covering
the range 50-90 dB SPL in 4-dB steps. The sequence of sound pressure levels was ran-
dom and different for each listener.
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Fig. 2. Block diagram of apparatus used for measuring sound spectra of musical recordings.

The main test consisted of 3 series (viola, clarinet and trumpet) of 12 scale segments
(4 pitch registers at 3 dynamic levels) and 3 series of the corresponding noise signals.
The order of scale segments in each musical series was random (different for each lis-
tener) as was the order of series in each listening session.

It has been demonstrated in the literature that loudness estimates are susceptible to
serial effects [e.g. 3, 5, 15]. In order to eliminate this source of bias, the sequence of noise
signals within a series always replicated that of the corresponding musical stimuli. The
whole test was presented to subjects only once and a listening session lasted about 25
minutes.

Table 1 specifies the sound pressure levels of stimuli presented in all six series. The
sound pressure levels measured in 1/3-octave bands are shown in Figs. 3-5.
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Fig. 3a. Sound pressure levels of scale segments D3 played on a viola, measured in 1/3—octave bands.
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Fig. 3b. Sound pressure levels of scale segments A played on a viola, measured in 1/3—octave bands,
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Fig. 3c. Sound pressure levels of scale scgments D4 played on a viola, measured in 1/3—octave bands.
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Fig. 3d. Sound pressure levels of scale segments A4 played on a viola, measured in 1/3-octave bands.
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Fig. 4a. Sound pressure levels of scale segments D4 played on a clarinet, measured in 1/3—octave bands.
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Fig. 4b. Sound pressure levels of scale segments A4 played on a viola, measured in 1/3—octave bands.
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Fig. 4c. Sound pressure levels of scale Ds played on a clairnet, measured in 1/3—octave bands.
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Fig. 4d. Sound pressure levels of scale segments played on a clairnet, measured in 1/3—octave bands.
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Fig. 5a. Sound pressure levels of scale A3 played on a trumpet, measured in 1/3-octave bands.
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Fig. 5b. Sound pressure levels of scale D4 played on a trumpet, measured in 1/3-octave bands.
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Fig. 5c. Sound pressure levels of scale segments A4 played on a trumpet, measured in 1/3-octave bands.
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Fig. 5d. Sound pressure levels of scale segments Ds played on a trumpet, measured in 1/3-octave bands.
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3. Results and discussion

The results for the 1/3-octave noise are shown in Fig. 6. As recommended in the
literature [e.g. 13}, the data of different observers have been combined by computing the
geometric mean of numerical responses at each stimulus value. The straight line is a least
squares fit to the geometric means. The exponent of the loudness function obtained in the
preliminary test was 0.44. Exponents from results averaged over several observers for a
1 kHz tone range from 0.43 to 0.55 (see [7] for a review of experiments). Loudness
functions of a tone and a 1/3-octave band noise centered at the tones frequency agree
closely [14]. This suggests that participants in the present experiment assigned numbers
to loudness in a similar way as reported in the literature.

Loudness judgments of musical stimuli and noise are compared in Figs. 7-9. Each
point represents the geometric mean of 30 judgments of a given stimulus.

The data for music and noises show general convergence, however there are certain
discrepancies. In the case of the clarinet and the trumpet, loudness estimates of music
and noise agree fairly well (Figs. 8 and 9). The data for the viola and for noise are less
convergent (Fig. 7).

In order to examine whether discrepancies between loudness estimates of music and
noise are systematic and statistically significant, a t-est analysis was carried out. The
geometric means of loudness estimates for each of the 12 musical passages played on a
given instrument were compared with the values for the loudness of the corresponding
noise.

For the purpose of statistical analysis, a logarithmic transformation was applied to
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Fig. 6. Loudness of the 1/3—octave noise centered at 1000 Hz. Geometric means of 30 estimates.
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the data. This made the distribution of numerical judgments approximately normal. The
t-values were then computed on the transformed variable.

In case of viola and clarinet, the discrepancies between loudness estimates of music
and noise were not statistically significant (p < 0.25). In case of the trumpet, most of the
12 noise signals were judged louder than the musical passages. The differences between
loudness judgments of trumpet and noise were significant at a level of p < 0.01. The
discrepancies between loudness estimates of trumpet and noise were nevertheless very
small in magnitude (Fig. 9).

Differences between loudness estimates of music and noise were larger for some
pairs of stimuli than for others. It may be assumed that those discrepancies result from
differences in spectral structure between particular music and noise stimuli. Equally loud
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Fig. 7. Loudness of musical passages played on a viola and loudness of corresponding wide-band noise
signals. Geometric means of 30 estimates.
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Fig. 9. Loudness of musical passages played on a trumpet and loudness of corresponding wide-band noise
signals. Geometric means of 30 estimates.

sounds having different spectral structure differ in other subjective attributes. As a result,
subjects’ responses may be biased by other perceptual dimensions [12].

4, Conclusions

The results show that loudness estimates of music and noise agree reasonably well.
This finding suggests that the principles of loudness judgment derived from non-musical
stimuli also apply to the tones of musical instruments. In some cases the discrepancies
between loudness estimates of music and noise are greater. This appears to depend on
spectral structure. Further investigation is required to explain such differences.

The general convergence of loudness estimates of musical and noise stimuli
demonstrates that methods used for noise measurements may give a reasonable ap-
proximation of loudness in music. However it should be kept in mind that the musical
stimuli in the present study were not longer than a few seconds. Experiments with more
complex musical stimuli will be necessary before a general conclusion can be drawn.
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Since the early 1960’s speech sounds have been described at three levels of abstraction:
intrinsic-allophonic, extrinsic-allophonic and phonemic. The acoustic features of Polish
vowels have been investigated at the first and the last of these levels by acoustic-phonetic
personally techniques, but extrinsic allophony has so far been largely ignored. Phonemic
distinctions have been investigated in terms of format frequencies and it has been found that
Fy and F; are sufficient to distinguish between all the 7 Polish vowel phonems. They are also
distinctive, though less strongly both in isolation and in running speech. In the latter case the
formant frequencies vary with time even within a single vocalic segment, but advanced
statistical methods permit their identification on the basis of trajectories in an F| — F3 plane.
There are interactions between segmental and suprasegmental factors. Thus, speech tempo
affects the formant trajectories. Otherwise, such interactions have not been extensively
studied and one of the open problems is the effect of F on the vowel formants. Studies of the
relations between vowel-formant frequencies and speaker gender and age have, in the case of
Polish speech, only just been started.

1. The acoustic and the linguistic descriptions. Allophony.

The fundamental and the most general difference between an acoustic-phonetic and
a linguistic-phonetic description of a sample of spoken language is that the former is
quantitative whilst the latter is (essentially) qualitative. The collection and the repre-
sentation of speech data in an acoustical analysis is determined by the methodology of
the exact and the technological sciences. It is therefore based on measurements. The
methods of collecting and representing linguistic-phonetic data are quite far from being
unambiguously defined.

Within a unified theory of scientific observation, acoustic-phonetic data may be
described as extending on a ratio and/or difference scale whilst linguistic-phonetic data
lie on a rank and/or nominal scale (AsHBY [1]). It may be assumed that the distinct lin-
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guistic-phonetic categories refer to intersubjective prototypes (ibid.). But the criteria for
the distinction of the prototypes are unclear.

Untill about 1880 the phonetic description —so far only linguistic —was given on one
level. For each of the different languages, a finite number of categorial elements called
“speech sounds” (French sons de la parole, German Sprachlaute) was postulated, and
every different “sound” was graphically represented by one character. A speech sample
was recorded as a sequence of such distinctive characters, and the sequence was termed
phonetic transcription.

Since about 1880, the linguistic-phonetic description began to appear at two levels.
Now, a distinction was made between a “narrow” and a “broad” transcription (French
transcription étroite and transcription large; German enge Umschrift and weite
Umschrift). This distinction, observed even today, is related to the introduction into lin-
guistics of the notion of the phoneme as a higher-order unit, more abstractional and, in
some sense, more general than the “speech sound”. The literature on the subject of the
nature of the phoneme and its relation to the lower-order phonetic unit (whatever it is
called) is very rich. The relevant information may be found in monographs like JONES
[26], KRAMSKY [29] or FISCHER-JGRGENSEN [6]. In connection with research into the na-
ture of the phoneme, the terms phone and allophone were introduced in the 1940’ to
replace the former poorly defined “speech sound”™.

Rather than engaging into a discussion of the details of the relations (allo)phone:
phoneme (but see, e.g., Jassem [14], p. 70 ff., Jassem [16], Jassem & DEMENKO [20]), we
shall here limit ourselves to the observation that the theoretical and methodological bases
of an allophonic transcription have yet to be formulated. In the individual languages
some phonemes are described as including some “allophonic variants”, i.c. as aggregates
of (normally just a few) allophones, whilst other phonemes are represented as including
no allophones. For example, the (British) English phoneme /a/ is described as compris-
ing no (qualitative) allophones whilst two or more allophones are distinguished within
other monophthongs (see, e.g. RoacH [43], Gimson [9]). In the phonology of Polish, /a/
and /e/ are described as subject to more allophonic variation than /i/ or A/ (see, e.g.,
WiIERZCHOWSKA [50], [51]; STEFFEN-BATOGOWA [47]).

Even today there is a marked weaknes of theoretical footing for the differentiation of
allophones. For instance, in Spanish, the phoneme /a/ is represented by only one phone
according to DALBOR [51]), two allophones according to NAVARRO-TOMAS [38]) or four
allophones according to BazyLko [2]), and the same sources describe Spanish /o/ as
including, respectively, one, two or three (allo)phone(s).

LADEFOGED (e.g. [32]) is one of the very few specialists who attempt to formulate a
criterion for allophonic distinctiveness. It is based on the possibility of differentiating
languages: “... all and only the features which mark the sounds as being different from
the sounds of other languages” (LADEFOGED [32], p. 9). This criterion is too general and
not sufficiently precise, however. It does not break the circularity pointed out, ¢.g., by
LiNDBLOM, [33]. Languages are different phonetically because they use different phones.
So, as emphasized by LiNDBLOM (ibid.), the classification of and, concomitantly, the dif-
ferentiation between (allo)phones must be based on some independent criteria. It should
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be noted that LADEFOGED is not unaware that his premises may not be fully adequate (op.
cit.).

Linguistic-phonetic research in the field of non-regional “standard” Polish has most
aptly been summarized by STEFFEN-BATOGOWA [47]). No substantively new finding has
since been made in this area. STEFFEN-BATOGOWA (ibid.) presents a list of phonemes in
Standard Polish together with the allophones of each (pp. 46-47), which is in keeping
with the position taken by the majority of Polish phonologists. The number of
(allo)phones per phoneme varies here between one, e.g. for /j/, /¢/, and cight in the single
cases of /n/. This is an analysis of the south-western variety of Standard Polish, in which
only three nasal consonantal phonemes are posited: /m, n/ and /n/. In the north-eastern
Standard there is also /g/, and then some of the allophones of south-western /n/ have to
be assigned to /1. Apart from this case, the maximum number of allophones per
phoneme in Steffen-Batogowa is four. Just as anywhere else, we are not told why the
particular number of variants have been distinguished. Assuming some non-arbitrary
phonemic system for a specified language, even a not-particularly-accurate recording-
and-measurement device like the now outdated (but extremely useful in its time) analog
Sona-Graph was quite able to show that the variability among the representations of a
given phoneme is very considerably greater than an allophonic differentiation would
suggest, and that much of this variability is quite systematic. We shall have more to say
about the systematic sources of variability further on but at this point we should like
briefly to consider one, viz. coarticulation.

The problem of coarticulation is inherently bound to the apparent double paradox
which arises when an acoustic description of the speech signal is confronted with its
linguistic interpretation, viz. that of continuity vs. discreteness and that of variability vs.
invariance. This paradox has recently been pointed out by many authors, and an ap-
proach to its solution has been suggested in Jassem [19], where it is maintained that the
speech signal is segmentable in character, i.e., that it can be presented by technical
methods as a linear sequence of acoustic-phonetic elements. Such segmental elements
stand in a simple numerical relation to the respective linguistic-phonetic elements, such
as allophones and/or phonemes in this sense, that every successive acoustic-phonetic
segment is assigned to exactly one successive allophone (or phoneme) taken from a
finite ensemble of allophones (or phonemes) posited for the given language. Various
technical methods for the segmentation of the speech signal have been developed (the
most recent description of one of them is RoacH ef al. [44]) though the problem of
variability vs. invariance still remains largely unresolved. An important step on the way
toa solution is the introduction of a differentiation at another level of observation, related
lo the distinction between inirinsic and extrinsic allophones. According to FISCHER-
JoRGENSEN ([6], p. 216), the distinction was first submitted in 1961. It is very largely a
result of spectrographic visualization of the speech signal and phonetic investigations
using the speech spectrograph.

When a given acoustic-phonetic segment has been assigned to a linguistically
specified allophone or phoneme, its acoustic features predominantly reflect that par-
ticular allophone or phoneme, but, to a certain (probably lesser) extent it also reflects the
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neighbouring allophones (or phonemes), the effect being strongest with respect to the
immediate neighbourhood. This interaction has varying degrees of strength and gradual-
.y fades out with increasing distance between the interacting segments, usually becom-
ing insignificant, or indiscernible, in the second-next or third-next segment. This effect
of coarticulation is largely due to physiological constraints, such as inertia of the speech
organs. Neuro-psychological origins of coarticulation have also been studied recently
(e.g. Whalen [49]). There is a large measure of agreement between specialists that intrin-
sic allophony is due to coarticulation whilst extrinsic allophony is conventional in nature
(see, e.g. KeLLy & LocaL [27], OnALA [39], BLADON & ALBAMERNI [3], ScuHouTEN and
PoLs [46]). A slightly different description of intrinsic and extrinsic allophony is given
by WELLs [48], p. 41-44. That source of acoustic-phonetic variability which is due to
intrinsic allophony is universal, whilst extrinsic allophony is language-specific. Typical
examples of intrinsic allophony are formant transitions in the initial and final fragments
of vocalic segments due to interactions with neighbouring consonants. Examples of ex-
trinsic allophony are the two main varieties of English lateral consonats —the “clear” and
the “dark” /I/, [K] and [X] representing the French phoneme /t/, or Polish [e] in, €.g., wies
as compared with [sTa] in wesz (both representing the phoneme /e/). Note that intrinsic as
well as extrinsic allophony represent contextual effects, i.¢. both reflect interdependen-
ces between neighbouring segments.

The present-day knowledge of intrinsic and extrinsic allophony is far from complete
and urgently requires further study. A general, strongly suggestive hypothesis that is
worth testing is that differences between intrinsic allophones of a phoneme are not per-
ceptible in normal conditions of listening to speech whilst extrinsic allophones are, or
may be, perceptible in such conditions given the necessary attention. If extrinsic al-
lophony is by definition conventional, then it must have been learned in the early stages
of first-language acquisition. Also, if extrinsic allophony is perceptible, it should be
taught and learned in second-language acquisition.

A “narrow” phonetic transcription reflects extrinsic allophony. This kind of
transcription is now generally termed allophonic transcription.

Both extrinsic and intrinsic allophony is a matter of no little import in synchronic and
diachronic phonology (see, €.g., OHALA [39]) as well as in the practical area of foreign
language teaching. But it is also crucial for the solution of the apparent variability:in-
variance paradox and, consequently, for bridging the still existing, though evidently nar-
rowing gap between acoustic and linguistic phonetics. In speech technology it has con-
siderable significance for electronic speech synthesis. The principles of intrinsic al-
lophony could be contained in the general (universal) part of the software, whilst extrin-
sic allophony could be taken care of in the specific part of the program provided for the
individual language.

Thus, at the present moment, it is desirable or, in some cases, quite necessary to
produce phonetic descriptions of the acoustic speech signal at three levels: (a) intrinsic-
allophonic, (b) extrinsic-allophonic, and (c) phonemic.

There are at present many different methods of processing the acoustical speech sig-
nal, some of them disregarding phonetic segmentation and others including it in the
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analysis (see, e.g. SAITO & NAKATA [45], chaps. 1-8; O’SHAUGHNESSY [40] chaps. 6-8).
Many of these methods extract from the signal certain parameters representable as slow-
varying time functions which stand in relatively simple relations to the speech produc-
tion process (articulation), such as the frequencies of the local maxima in the dynamic
spectrum, i.e., the time-varying formant frequencies.

The material presented below is an overview of the research into the variability of
Polish vowels in terms of their acoustic parameters, especially their formant frequencies,
performed to date. It has been based on measurements carried out by means of
spectrographic and oscillographic analysis, as well as (to a limited extent) on perceptual
experimentation with synthetic material. One of the motives for undertaking such a
review is the transition, in recent years, from analog to digital analysis methods. It seems
to us that the planning of further research in the field of acoustic phonetics and speech
technology, with entirely new facilities, requires a summary of past experience in this
specific area.

2. Classification of the variability sources

The description of vowels refers principally to their spectral features and — in the
case of actual utterances — 1o their duration. Since, in normal Polish speech (i.e. exclud-
ing whisper and some pathological cases) Polish vowels are voiced and are represented
acoustically by quasi-periodic events, fundamental frequency is a third descriptive
parameter. Differences in the temporal amplitude envelope between vocalic segments
are of minor importance for the fundamental problems of acoustic phonetics.

From another viewpoint, differences between concrete vocalic segments or their
classes may be linguistic, paralinguistic or extralinguistic. The first ones belong to the
phonetic, phonological and phonotactic specification of the given language. The second
ones fulfill certain semantic functions, but are not systemic. For instance, to eXpress cer-
tain attitudinal or emotional states, a sequence of segments in an utterance, or a whole
utierance, may be spoken with some lip-rounding so that all the vowels within that (part
of an) utterance are labialized, which is reflected in specific formant frequencies. Some
of the most important extralinguistic distinctions reflect differences between voices.

From yet another standpoint, differences between vowels may be segmental or
suprasegmental. The domain of the former are individual vocalic segments in the speech
chain. That of the latter includes fragments of utterances of at least syllabic extent. Most-
ly, such fragments are accentual units — rhythmical or tonal — or intonational units.

The most serious methodological difficulties in acoustic-phonetic investigations
stem from the simultaneous effect — the interaction — of those various variability sources
in actual, natural utterances, some or most of such effects being a priori unknown. This
necessitates an initial selection of experimental material and a simplification of ex-
perimental design which would permit an exclusion, or at least a minimization of (some
of) the unknown effects.

The research reviewed below was carried out using relatively modern analog
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Jaboratory equipment. Its inception dates back to about 1965. We shall therefore take no
account of earlier work though (like, e.g., Jassem [11]) it may be regarded as the founda-
tion of later studies.

The Polish language does not make use of duration as a phonemically distinctive
attribute of vowels (as does, e.g., Czech or, partiaily, German) or nasalization (as does,
e.g., French). Further, Polish vowels are only minimally constrained phonotactically (un-
like, e.g., English vowels). All Polish vowels may be naturally used in isolation, which
they actually are, as names of the six letters of the alphabet, i.e., i, , ¢, @, 0, u. These were
favourable conditions for the basic acoustic analyses.

3. Phonemic and inter-speaker variability

Jassem’s paper [12] presents the formant frequencies of the Polish vowels spoken
five times each by 10 subjects — 8 male and 2 female (the latter with a rather low voice
register), as the result of analyses performed with the Sona-Graph. In this experiment,
only two systematic variability sources were active, viz. the phonemic distinctness and
individual voice features. In this simple design, it was possible to examine both effects.
The proper object of this investigation was actually the interpersonal effect. But the
presentation of the frequencies of all the four formants for all the vowels (with justa few
missing data) was, at the time, the fullest account of the acoustical properties of Polish
vowels. Table 1 below sums up the detailed data presented in that paper. It only contains
the rounded figures for the two lowest formants.

Table 1.
vowel F F
i 190 ....... 270 2100 % 0 2200
t 2600 ....... 370 1700 ..... 2300
e S20 . i g 630 1600 i 2200
a 630 . . 1000 1100 ..... 1600
0 490 . ...... 680 TO0 oo s 1100
u 7.7 | ) R 340 SO0 5 sl 780

The data in Table 1 permit, on the basis of known general relations between F and
F,on the one hand and the articulatory-perceptual linguistic description on the other, the
following classification of the Polish phonemes:

front central back
close i i u

open £ Bt 0
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Close vowels have a low value of F,, whilst open vowels have a high F,. Front,
central and back vowels have respectively high, mid and low values of F».

In terms of binary distinctive features, the results lead to the following classification
of the Polish vowel phonemes (cf. also JasseM [14], 134-139):

compact acute low-tone
/if 0 1
A 0 0 0
le/ 1 1
fa/ 1 0
fof 1 0
f/ 0 0

It was shown in the Jassem [12] paper that the values of F; and F, are also quite
effective in differentiating voices. The tables of Mahalanobis distances obtained for all
voices separately for every phoneme, were, in a vast majority of cases, significant at
a = .05. The paper also presents the measured values of F3 and F, but only those for F,
and F, were treated statistically (i.e. the sample spaces were two-dimensional).

CaviNski, JasseM & KAcZMAREK [4] is an extension of the paper reviewed above. It
took into account the values of all four formant frequencies in a tetravalued analysis of
variance, with principal components using Wilks’ criterion. The inclusion of F3 and F,
resulted in a distinct improvement in the discrimination of voices. For the four variables,
most of the values of the F test were significant at the & = .001 level. An examination of
the relative contribution of the formants to speaker identification showed that F, and F,
are more strongly discriminant than F, whilst F; is the weakest.

The interphonemic variability of Polish vowels was studied in Jassem, Krzy$ko &
Dyczrowsk, [22], where three statistical models, viz. the Bayesian, the minimax and the
sequential model. The training set included isolated vowels spoken five times by each of
16 subjects (all male). The test set consisted of 10 replications of each phoneme spoken
ata later date by two of voices in the training set. The possibility of identifying the vowel
token as representing one of the six Polish vocalic phonemes /i, 1, €, a, 0, u/ with 2, 3 and
4 variables — again the formant frequencies — were investigated, within each of the three
models. The combination of F, and F, turned out — not unexpectedly — to be the most
strongly discriminant. In the minimax method the inclusion of all four formants lead to
100-% correct identification.

From a linguistic point of view, the study of the statistical distances between the
phonemes was of special interest. In a 2-D space with F; and F>, the following diagram
of minimal statistical distances was obtained:

[ € P i €<—Pp C<— P a€&—»0<c<—PplU
3.4 5.6 T2 b)) 5.9

and in the 4-D space, with Fy, F,, F3 and Fy:
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e » i¢c—Pp ec—P a<—p0<—plU
32 5.0 6.9 51 5.9

The above diagrams show that the effect of including F3 and Fy is negligible. An
intriguing feature of the above diagrams is the sequence of the vowels. It reflects perfect-
ly their placement on the articulatory-perceptual vowel quadrilateral proceeding an-
ticlockwise from the upper-left to the upper-right (see, e.g. Jassem [13]). It is also
noteworthy that the minimal-distance relations correspond ideally to the results obtained
in a totally independent and methodologically entirely different perceptual experiment
performed by £oBacz & DEMENKO [36)]).

Steady-state vowels were also studied for their phonemic distinctiveness using syn-
thetic speech. The earliest experiments were carried out by Masewskl & HoLLIEN [37],
who used 69 different stimuli with variable formant frequency values, with 14 listeners.
Similar experiments were subsequently conducted by KuDELA [30, 31] with 1702 dif-
ferent stimuli and 20 listeners. Kudela’s studies also contain statistical analyses of the
experimental results. The optimal values for the representations of the individual
phonemes are, according to KunELA-DOBROGOWSKA [31] as follows (all values in Hz):

F1 F? F3 Fa
i 240 2280 2420 3250
i 350 1560 2420 3250
€ 570 1560 2200 3250
a 840 1170 2660 3500
0 570 800 2200 3250
u 320 600 2660 3500

The above values may perhaps be regarded as something like a neutral standard for
a male voice.

Inter-speaker differences are particularly striking when three general classes of
voices are compared, viz. male, female and children’s. These differences have engaged
the efforts of a number of speech specialists, and most of the data available in the litera-
ture are concerned with the English language. Without entering into details, we will here
limit ourselves to the general statement that typical formant frequency values for female
voices cannot be obtained from those for male voices by applying a simple ratio factor.
Data for female voices are scarce in the case of Polish, and those for childrens’ voices are
probably non-existent.

Further studies on the phonemic variability of Polish vowels were concerned with
their tokens in utterances of the extent of complete sentences. Fy and F; values were read
from sonagrams at time intervals of A = 20 ms. As vowel segments in natural phonetic
contexts usually are not stationary events, they may be mapped as trajectories in an (F,
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F>) classification plane divided into subplanes corresponding to the individual phonemes
by quadratic or linear discriminant functions. In the analyses reported in JASSEM,
Dyczkowskl & SzyBIsTA[21] 11 male voices were involved.

The classification of the trajectories was based on the observation of how the trajec-
tories passed through the individual subplanes. In the first experiment, the subspaces
were determined from pooled data coming from 10 voices different from the one under
the identification test. In the second experiment, the phonemic subspaces were deter-
mined separately for each of two voices under the test. The joint experiment therefore
simulates two situations: an identification of the vowels with and without tuning to the
speaker’s voice. The difference due to the application of two statistical models (quadratic
and linear discriminant functions, DFs) was not very striking. The accuracy of identify-
ing the individual vowel tokens as representing particular phonemes varied between
60% for /e/ and 88% for /i/ with quadratic DFs and between 64% for /i/ and 97% for /i/
with linear DFs. These figures refer to the “no tuning” case. That part of the experiment
which simulated identification “with tuning” yielded distinctly better results: /i, i, a, u/
were 100% correctly identified with quadratic DFs. Linear DFs gave 100% accuracy for
/i/ and /u/. Tokens representing /e/ were the most difficult to identify. In part 2 of the
experiment, /e/ was identified correctly 78% and 86% of the time with linear and quad-
ratic DFs respectively.

It is noteworthy that the trajectory identification algorithm permitted an accurate
identification (i.e. the assignment to the expected phoneme) even if the trajectory passed
through two or three different subspaces, which was indeed the case in by far most of the
cases. The intrinsic-allophonic variability resulting from the various phonetic contexts is
such that within some time intervals the spectrum of a given vowel may be characteristic
for a different phoneme from the one the vowel is representing.

In the above experiment, which concerned vowels in natural context, an important
simplification was made. It was assumed that the dispersion of the two-element vectors
representing a phoneme is random and is distributed normally. The experiment did not
take account of the systematic variation due to intrinsic or extrinsic allophony.

In Jassem [15], a classification of Polish fricatives was performed using features of
the energy spectrum. We mention this paper here only because it contained results of two
designs of classification: The same material was classified once with the assumption of
phonemic classes, and then according to intrinsic allophones. The classification results
were significantly better when intrinsic allophones were taken account of. This strongly
suggests that an investigation of allophonic variation of the Polish vowels, both intrinsic
and extrinsic, is now an urgent task.

As previously indicated, the actual vowel formant frequencies result from the simul-
taneous operation of at least two variability sources: phonemic and interpersonal. The
interaction of those two variability sources was studied by Jassem [18]. The methodolo-
gical novelty of this study was the introduction of discriminant variables. The two-ele-
ment vectors, originally expressed by the F; and F> values were now situated in a new
plane whose co-ordinates, the discriminant variables, were decorrelated with within-
class covariance matrices transformed to unit matrices. This is achieved by linear trans-
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formation of the relations between the original variables. The distances between the mean
vectors in the new feature space are true statistical distances between the mean vectors.

For the six Polish vowel phonemes /i, 4, ¢, a, 0, v/ (i = 1,..., 6) and four male voices:
AM, WJ, PD, RC (j = 1,..., 4) the following null hypotheses were formulated:

Hj = Hoj = Py = Haj = Hsj = Uej 6y
Hi. = fo. = [3. = s = Us. = Us, )]
i1 = Uip = Uiz = Ui (3)
Ri=U2=U3= U4 4)

The experimental material in this study consisted of 40 different real or pseudo CVC
words. Within phonotactic constraints, the numerical distribution of the contextual con-
sonant phonemes was approximately equal. Each word was spoken once by each of the
four subjects. Again, F; and F, were measured at A = 20 ms intervals. On the basis of
these measurements, all the mean vectors in the expressions (1)...(4) above were calcu-
lated, their positions in the discriminant-variables plane were defined within all designs,
and the statistical significance of all the distances between the means in all designs was
determined.

- As in the other studies in which the vowels were investigated in utterances of at least
syllabic extension, intrinsic allophonic variation was ignored and a simplifying assump-
tion was made that the joint dispersion of the variables was normal. Each vowel was
represented by one extrinsic allophone, viz. the most context-independent one.

The most essential results of this study may be summarized as follows:

(1) When each of the four voices was considered separately, all the statistical distan-
ces between all the six mean vectors for the 6 phonemes were significant at @ = 0.05 in
WIJ and AM. In RC and PD one of the 15 distances, viz. D(/#, e/) did not reach that level.

(2) When the data were collapsed for all the four voices, separately for each
phoneme, six mean vectors were obtained, each representing one phoneme. In this case,
again only one of the 15 distances, viz. D(/i, e/) was below the a = 0.5 level.

(3) Within each phoneme, the significance of the 6 statistical distances between the
four voices was as follows: for /i, 1, 0, u/ all the distances were significant at ¢ = 0.05. For
/e/ and /a/ one of the six distances was not significant.

(4) When all the data were pooled over all the six phonemes, separately for each
speaker, four mean vectors were obtained with 6 distances between them. Out of these,
two, viz. d (AM,W1J) and d (RC,WJ) were below the a = 0.05 significance level.

Detailed results of the statistical analysis of the data in this experiment are given in
Jassem, Krzysko & StoLarski [23], but one observation of a general character should be
made here: Overall, the differences between the voices were smaller than those between
the phonemes. But, in any case, the study showed that when the Polish vowels are char-
acterized by no more than two quantitative features, it is possible to classify them both
from a linguistic, viz. a phonemic point of view and from one paralinguistic standpoint,
viz. that of speaker specification, at least when the number of speakers is small.
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4. Intrinsic contextual allophony

The only study of the effect of intrinsic allophony on the acoustical variability of
vowels in Polish published to date is FRaAckowiak-RicHTER [7], which deals with the time
courses of the vowel formant frequences as affected by all the phonotactically admis-
sible neighbouring plosives, especially their place of articulation. The formant which is
the most strongly affected is F,. Vis-a-vis the “locus” and the “substrate” theories
prevalent at that time, an explanation in terms of “locus frequency ranges” is offered.
“The Locus Frequency Range can...be described as follows: The upper limit of the LFR
is the highest frequency which, in the vicinity of the given consonant, any neighbouring
vowel’s positive transition reaches as its terminal frequency. The lower limit of the LFR
is the lowest frequency which, in the vicinity of the given consonant, any neighbouring
vowel’s negative transition reaches as its terminal frequency.” (loc. cit. p. 99). In accord
with the terminology prevalent at that time, a transition is termed “negative” if the target
frequency of the formant in the vowel is lower than its frequency at the border with the
consonant and “positive” if the target frequency is higher. The F; locus frequency ranges
for the different Polish stop consonants order themselves, from low to high, as follows:
/p,b/, /k.g/, 1td/, /e, §/ (ibid. p. 107). The concrete figures are given in Tables, but they are
based on just two voices. Since the vowel formant frequencies vary individual voices, it
can safely be assumed that there is also speaker-dependency in the case of the absolute
values of the LFRs.

5. Durational intrinsic-allophonic variation. Interaction between the duration
and the spectral features of vowels

Durational differences between vocalic segments in natural utterances may be due to
the following variability sources:

(1) Phonemic (e.g. in Czech and, partially, in German).

(2) Quasi-phonemic (e.g., in English).

(3) Non-distinctive, related to the degree of openness.

(4) Contextual extrinsic (e.g. in English and Present-Day French).

(5) Contextual intrinsic (e.g. in Polish)

(6) Accentual (e.g. in Russian).

(7) Rhythmical (e.g. in English and — more weakly — in Polish)

(8) Tempo-induced (universal).

So far as is known at present, Polish exhibits durational variations of the type (3), (5),
(7) and (8). The first three have been investigates by Richter.

In Frackowiak-RICHTER [8], the following effects are studied: (1) the vowel’s ar-
ticulation, (2) voicedness vs. voicelessness in the following consonant, (3) the duration
of the rhythm unit (only partially), (4) the “place of articulation” of the following con-
sonant, (5) the distinctive feature of the following consonant traditionally (though im-
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properly) called “manner of articulation”. A detailed Analysis of Variance was per-
formed, followed by numerous Student’s and Duncan’s tests. Mono- and disyllabic non-
sense words were analyzed, spoken by 10 subjects.

The most significant results of this study are as follows:

The effect of the presence/absence of the quasi-periodic component in the following
consonantal segment was studied separately in the monosyllables and disyllables.

Both in the monosyllabic and the disyllabic “words”, the relations obtained were:
t(i) < t(3) < t(e) < t(a) > t(0) > t(u) (¢ denoting duration). For the monosyllables, the
mean lables, the ¢ values were smaller by about 20...40 ms. These relations ideally reflect
the description of Polish vowels in terms of relative openess. A two-way Analysis of
Variance gave:

for the vocalic phONEMES . ...........covivieiinern.e. F(545)= 1774
e N e LU R LAE B ) LT AT St F(9,45) = 54.537.

Both the differences between the vowel phonemes and the voices were, thus, very
highly significant.

Taking the mean duration before a phonologically (distinctively) voiced consonant
as unity, the relative duration of the vowels before the corresponding voiceless con-
sonant was, in the individual consonant pairs.

B0 oy 0.908 Wk e O 0.817
et s vnninn 0.851 LB e v i 0.813
JG ;5 0.881 . <1 0.756
gk...... 0.796 AT AP | 11
dz:ts ....0.841
dz:te ... 0871

In a two-way Analysis of Variance (with speaker as the other factor) the durational
differences were found to be significant at « = 0.001 in the pairs /g:k, v:f, s:z, {3, 2/
and /dz:ts/, at a=0.01 in the pairs /d:t, c:}, dz ‘tg/, and at a = 0.05 in /b:p/. Thus, all
differences were statistically significant, most of them (very) highly significant.

The effects of the “place” and the “manner” of articulation of the following con-
sonant on the duration of the vowels were also studied, but were found to be weak or
negligible, so we shall not consider them here. We also leave out other, detailed results
obtained in the study.

The variability of vocalic duration due to the placement of accent and rhythm were
studied by Richter in her papers [41] and [42]. In the former, a model was tested which
is defined by the following expression:

D

Vs—(.ml—l)a, (5)
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where V is the duration of the vowel, D the maximum duration of the vowel in the given
text, n is the number of syllables in the rhythm unit and m is the number of syllables
including the accented syllable and the remaining following syllables in the rhythm unit.
« is an empirical value which is constant for the given text (assuming constant tempo).
The data were found to fit the model satisfactorily.
In the other study, several regressive models were tested. Of these, the most detailed
one is of the form
O R

p p
where d is the cumulated duration of all segments in the rhythm unit, # is the number of

+c(n-n), (6)

segments in the rhythm unit, and p = -g

The absolute duration of the vowels is given by the regression equation and a Table
of intrinsic durations of classes of phonemes. The regressive model was also found to be
highly explanatory.

Several works by LoBacz were devoted to the interaction between vocalic duration
and the vowel spectrum, ¢.g., [34] and [35]. In the earlier, the author investigated the
effect of speech tempo expressed as the number of syllables per minute on the time cour-
ses of Fy, F> and F3 in the vowels /e, a, o/ in the bilateral context of the palatal consonant
/e/. The time course of the formant frequency curves was divided into subsegments
having definite direction of change. Using a correlation-and-regression analysis, the ef-
fect of tempo on the frequencies of the formants at subsegment boundaries was studied.
The main results of this investigation were as follows:

(1) The frequencies of all formants, especially those of F», in the final spectrum of
the vowel are only negligibly dependent on the duration of the vowel, whilst strongly
correlating with the target frequencies of the vowel and the formant frequencies of the
neighbouring constant.

(2) The temporal changes of F> in the initial part of the vowel depend on the
spectrum of the precesing consonant, the target frequency of the vowel and the vowel
duration.

(3) The temporal changes of F3 can be relatively simply expressed by the effect of
the total vowel duration on the number of subsegments.

(4) The effect of duration is particularly strong and consistent in the case of Fi,, i.c.,
the target frequencies of the vowel (denoted by the index m), particularly F,,.

(5) Up to a critical value of about 250 ms, the total duration of the vowel has a strong
effect on the durations of the subsegments. Above that value, the duration and the time
courses of the formant frequencies in the initial and final fragments of the vowel become
stable whilst the duration of the steady-state vowel target systematically increases.

(6) The temporal changes of F, and F’s strongly tend to be speaker-dependent.

In [35] LoBsacz investigated the effect of speech tempo on the dynamic spectrum of
the Polish vowels. The experimental material included complete utterances of the extent
of sentences produced by 3 male voices. The formant frequencies were measured at
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At = 20 ms. Using the statistical methods applied by JasseMm et al. in the works reviewed
above, the (Fy, F>) plane was divided into identification subplanes by second-order cur-
ves for each of the six phonemes, separately for slow, normal and fast speech. Traces of
the two-element vectors in the respective planes were drawn through the subplanes and,
using a simple recognition algorithm, were identified as representing the individual
phonemes. The shapes and the positions of the subplanes as well as the locations and
courses of the traces very strongly depended on the tempo. The overall accuracy of
recognition was 98% for slow, 95% for normal and 90% for fast speech. It should be
emphasized that this relatively high accuracy was due to the definition of separate iden-
tification spaces for each tempo. The duration of the vowel naturally depended on the
tempo. The experiment can thus be scen as one form of a description of the effect of
suprasegmental vowel duration on the temporal changes of the vowel spectrum.

6. Interaction between Fo and the spectral features of vowels

It is generally assumed in audioacoustics that the quality of a (quasi) periodic sound
depends on its energy-spectrum envelope and is (at least in the first approximation) in-
dependent of the fundamental frequency. The sounds of speech are, however, perceived
by humans in a specific way in connection with interpersonal differences between voices
and the interrelations of these differences with the frequency of the excitation source.

KosieL [28] calculated the correlation coefficients between Fy and Fy, F,, F5and F,.
The experimental material included all the Polish vowel phonemes spoken in isolation
by 10 voices on four different pitches, the distance between Fomin and Fy . being ap-
prox. one octave. Student’s ¢ test was used to test the null hypothesis of no correlation
between the respective pairs of variables (Fo and F, F and F5, etc.). Only in a few
isolated cases did the value of ¢ exceed the critical value for a = 0.05. Though the experi-
ment was somewhat tentative, it gave no grounds for rejecting the traditional view that
the speaker’s control of the supraglottal organs responsible for the vowel resonances is
independent from his control of Fo.

On the other hand, there is rich literature, mainly relating to the English language,
devoted to the effect of differences between male, female and childrens’ voices on for-
mant frequencies. It is common knowledge that these broad classes of voices mainly
differ with respect to fundamental frequency. Two of the most recent papers dealing with
this problem are JOHNSON [24] and [25]. For Polish, the problem has recently been at-
tacked by Imiorczyk [10]. On the basis of perceptual experiments with synthetic steady-
state vowels, IMiorczyk found that lacking any other cues, the listener judges the sex and
age of the speaker from fundamental frequency, but for an impression of optimal linguis-
tic vowel quality for a given phoneme, the formant frequencies have to be modified
according as the voice is perceived as one of a woman, a man or a child.

Among the many problems concerning the variability of vowels in general, and the
Polish vowels in particular, that require further research is that of the relation between
Fy and the features of the power spectrum.
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7. Concluding remarks

The acoustic variability of Polish vowels has, over the last twenty five years or so,
been the object of a fair number of studies, the most significant of which have been
reviewed here. Though the accumulated knowledge is substantial, several aspects of the
problem have not been investigated at all or require further study, such as intrinsic and
extrinsic allophony or the relation between fundamental frequency and formant frequen-
cy. Such additional knowledge is urgently needed for automatic recognition and high-
quality digital synthesis of Polish speech.
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A METHOD FOR CONNECTED WORD RECOGNITION
S. GROCHOLEWSKI

Institute of Computing Science
Technical University of Poznan
(60-965 Poznan, Piotrowo 3a)

In this paper, the description of the method for connected word recognition derived from
the algorithm introduced by VINTSYUK is illustrated by means of a hypothetical example.
Such a detailed presentation of the method should be useful from the practical point of view.
The cited results of the real experiments confirm the ability of the method to perform reliable
connected word recognition.

1. Introduction

Automatic speech recognition systems have initially been limited to the recognition
of isolated speech consisting of a restricted set of vocabulary items. Among these early
methods the so-called “global” approach, which requires that the incoming utterances be
compared with template words, has been most popular. However, this approach fails
when the utterance is composed of an unknown number of words and does not contain
the pauses in between them.

During the early seventies a number of different solutions to this problem were con-
sidered in the USSR [10], Japan [7] and, subsequently, in the USA [5]. During the early
cighties the approach introduced by ViNtsyuk [10] which was unknown in the USA and
Japan (his paper was not cited in [5], [7]), was adopted in a modified form by BRIpLE and
Brown [1] and NEy [6].

All the above solutions were discussed and compared in [4]. Their common feature
is that they use a dynamic programming technique which serves to match optimally an
unknown utterance with the “super” reference pattern [6] obtained by concatenation of
single word templates.

A specific method used to find the optimally “super” reference pattern will be pre-
sented and illustrated by means of hypothetical data. This method is based on the ap-
proach introduced by ViNTsyuk which was chosen because of the advantages pointed out
in [4].
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2. Dynamic programming in connected word recognition

At the beginning the reasons for which the dynamic programming technique is used
in isolated word recognition systems [8], [3], with the global approach will be briefly
reviewed.

This approach requires that the unknown utterance to be compared with each of the
reference words from a lexicon. Two of many more possible time alignments between
the utterance X and the reference word W(n) are presented as paths f; and f> in Fig. 1. In
the case of f; the unknown word was uttered exactly in the same manner as the cor-
responding reference word. In the case of f, the temporal relations between the parts of
the words X and W(n) are different. If we assume that the path f; is the set of points
representing the optimal relation between the successive vectors in the utterance X and
the reference word, and if we assign for each point (i, j) the distance d(i, j) between the
vectors, then the sum of distances corresponding to all points of the path gives the total
distance D(X, W(n)) between the words X and W(n).

J(n)-1

TR

-

Win)

0 X I-1

FIG. 1. Two time alignments represented by path f1 and f2 between the utterance X and reference
word W(n).

Since in practice the optimal warping function never coincides with the diagonal as
in the case of f> in Fig. 1, it is necessary to determine it. The problem of determining the
optimal warping function i.c., the optimal temporal relations between two words can be
solved with the aid of the dynamic programming (DP) technique [8], [3], which allows
for the assignement of the optimal path from point (0, 0) to point (/- 1,J - 1) through
the use of the following equations:

D(0,0)=4d(0,0),

D(i-1,))
D(i,j))=d(i,j)+min { D(i-1,j-1) (1)
D(ij-1)

where D(i, j) — the minimal accumulated distance calculated from the point 0, 0 to the
point i, j.
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The use of the term “optimal path” signifies that the sum D(/ - 1,J - 1) of the local
distances d(i, j) along this path attains its minimum value.

Let us consider a more difficult case, where an utterance consists of several words
uttered without the pause in between. The number of words is not specified, it is only
known that they all belong to a limited vocabulary set consisting of single word utteran-
ces (templates) that were spoken in isolation during the learning phase.

The above problem can be solved by decomposing the matching procedure into two
levels: a single template matching level and a word string construction level [5], [7] or
by treating the matching procedure as a one-stage procedure [6]. Figure 2 presents a
synopsis of this second approach.

Let us consider the plane where an unknown utterance (composed of the words:
C,A, D, B, A) is presented along the abscissa, and all the templates along the ordinate. In
the second approach the matching procedure is the same as in the case of isolated word
recognition, i.e., the goal is to find the best matching patch representing the optimal
temporal relations between the parts (words) of the utterance and the templates from the
vocabulary set.

The problem presented in Figs. 1 and 2 differ as follows:

the initial point of the path from Fig 2 is unknown; we only know that it coincides
with the beginning of any template,

the terminal point of the path from Fig. 2 is also unknown; we only know that it
coincides with the end of any template,

the path in Fig. 2 possesses some (generally unknown number) points of discon-
tinuity corresponding to the transitions between the templates,

the minimal accumulated distance D*(1 - 1,J - 1) is sufficient to recognize the un-

( ' *

templates

R et —f = -=-F--—#duij)

Al

x| M, S T,

c A D
unknown utterance
O - the nitial point of the template
* — the terminal point of the template

B A

FIG. 2. Synopsis of the oné-slage recognition procedure
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known word in Fig. 1, whereas D'( - 1,J - 1) for the optimal path in Fig. 2 gives no
information about the unknown sequence of words.

The one common element in both problems (from Figs. 1 and 2) is that the global
distance (i.. the sum of the local distances along the path) is the criterion for the match-
ing procedure. From the optimal path the searched sequence of templates can be unique-
ly recovered (see Fig. 2).

The method to be described will be illustrated by means of a hypothetical example
presented in Fig. 3a. Let us consider the vocabulary set composed of three words:
A=(ass),B=(bas),C=/(coo),where for the sake of simplicity letter notations are
used with reference to the sequence of vectors describing the speech. In the example
each of the words consists of three vectors (letters), whereas in reality one vector cor-
responds to the 10-20 ms. of speech making the words more cumbersome. For the same

a)
(14 Fx
TO 3l-|2]-(3|71]1]|3]|3
template C ol 3| -|2|-|3|r|1]|3]3
L ¢ borofiBi] 2 1 3 dicBaled 4ol of 1
*
s|l1l3l2]3|-1313|[-]"*
template By g | 3| 1|2 |1 |3|-|-|3]|3
k bt di2ebmtid k2.2 3 2 4i?
*
sl 3l23|-33]-1|-
t‘emp.’afeA 5 1 3 2 3 - 3 3 - -
al 37|27 ]3|-|-]13]|3
L5
[ oy s a'sa s’ s

N

unknown utterance

b)
a'-j o b g8 | ¢
a l 1 2 I3
0 7 - 2 3|3
b 2 2 = 212
s 23 2 = 1
c 3 3 2 1 -

F16. 3. Hypothetical example with an unknown utterance X = (c'o'b'o’s'a'a's's") and reference words:
A, B, C. Local distances between the vectors are presented in Fig. b.
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reason, the unknown utterance X is also presented in the simplified form, i.e.
X=(c" o b os'aass').

Following the calculation of all necessary local distances involved according to the
data in Fig. 3b where, for example, the distance between the vowels /a/ and /o/ equals 1,
the problem can now be formulated as follows: how to use the dynamic programming
technique in order to find such a path connecting one of the initial points (marked by o)
with one of the terminal points (marked by #), for which the sum of local distances along
this path attains its minimal value.

In order to use the DP technique, it is necessary to supplement the DP equations (1)
for the parts corresponding to the transition from the end of one template to the begin-
ning of the next one. It is evident that the path may attain the point (i, j) (except the
initial ones) from the following points: (i - 1,j), (i-1,j-1), (i, j- 1) (see Fig. 4a).
The initial points (see Fig. 2) can be reached from the point (i - 1, j), or, which is the
above mentioned supplement, from the terminal point of any template including the sa-
me template (Fig. 4b). In these cases Eq. (1) must be supplemented with the following

.equations which applies to the initial points

D(i-1,j)
D(i-1,jk1)
D(i,j)=d(i,j) + min | | )
D(i-1,ji.)
D(i-1,jew)

where j; ., indicates the terminal point of the w-th template.

a) b)
I‘

\ ~
~
~

it ad \ boundaries
/ \ between the

1 !eme!ares
it hin 4

I i

FIG. 4. Tllustration of kxq. (1) for noninitial points (Lig. a) and Eq. (2) - for initial ones (Fig. b).
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i=0 1=l izl i=2
o' | 6 6 @ @
template C3 o 3 3| - \
; \
l c - —3 s 3 IH-2
r ',’
s | 6 6 | 6 \
/
template Bﬂ a 5 51 3 \
| \
—{-4 204 4-\-=
’b 2 s v B
l
s @ 5\/ Bl d \
temp!ateA‘ 5 & ; 4 6 \
\
N 1
al| 3 3—+4 3| 4 4-1-2
D,i0)=5 Oin(1)=0
a) b) c) d)

I1G. 5. Some initial steps of the calculations for the example from Lig. 3a.

Figure 5 presents some initial steps of calculations, for the example from Fig. 3a. All
the calculations, except the column indexed as i = 0, are realized according to Egs. (1)
and (2). For i = 0, due to the fact that the optimal path reaches the point (0, j) always from
the point 0, j — 1, except for j = ji,, ., Which is treated as initial for the path, the minimal
accumulated distances D(i, j) are calculated as follows:

D(0,j) =, d(0,n) (3)

n=jpw

where j,, . indicates the beginning of the w-th template.

Figure 5a presents all the accumulated distances for the first vector (i =0) of the
incoming speech.

For all other vectors, i.e., for i = 0, the D(, j) distances are calculated in two steps:

at first (Fig. 5b), the calculations are made for all the initial points according to Eq.
(2). Note that instead of calculating for each initial point the minimum from all
D(i -1, ji.») for each initial point, it is only worthwhile to make it after the calculations
for the preceding column have been finished, and store this minimum value as
Dmin (i - 1) —see Fig. 5a,

in the second step (Fig. 5¢) the remaining values of D(i, j) are calculated according
t0 Eq. (1). Among all d(i, ji, ) values the minimum value is stored as Dmin 1.

Figure 6 presents the D( i, j) values calculated for all vectors of unknown utterances.
The circled numbers in the last column are the minimum accumulated distances from the
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template AT o | 3| - | 2|2 |5| 45| 8|5

c|-|13|2|5[|3|4|7]|6]|2

s|6|6 |44 |1 |4]6]|33)

template B q | 5 | 3| 2|1 ¢ 3|3 k66

bl21 14| -1214% F|SF?7 |3

s|s|7|6f7|3ls|7]|1|®

template A” ¢ £ 6 | 4 513 4 4 1 1

s 34| 2|3 |51 |1 |4]4

O 142 .3 4,85 5 2718 i

o'y & 9 st d @ s s
unknown utterance

FI1G. 6. All D(1, ) values Lor all the vectors of an unknown utterance.

———

(G

beginning to the end of the utterance, assuming that the last words in the utterance are:
A, Bor C. It should be noted that D*(X,A) =1, D'(X,B)=3,D(X,C) =8.

Since the minimal accumulated distance applies to the case when the last word is
A(Dmin = 1), it can be recognized as the last word in an unknown sequence. Unfor-
tunately it is impossible to recognize the remaining part of the utterance on the basis of
only the data from Fig. 6. To allow for additional data, let us consider the table in Fig. 7a.
For each point (i, j), besides D({, j), it contains the so-called backpointer i’ (i, j) which
can be defined as the index of the ending vector of the preceding word from which the
optimal path to the point (i, j) has come; therefore it indicates the position of the end of
the preceding word.

The backpointer ' (i, j) is calculated in the following way:

for all the points of the first column, i.e. when i =0, (0, j) = “~". The “~” indicates
— “the preceding word does not exist ”,
for the remaining column:
for points other than the initial ones, i’ equals the value of i from the point which
Eq. (1) gives the minimum accumulated distance,
for the initial points (j = j, )
— if the optimal path comes to the point (i, j, ) from the point (i - 1, j, . ), the
i'( 'i’ jp,w) eq“als |'!"( i 1’ jp,w)s
— if the optimal path comes to the point (i, j, ) from one of the terminal points
(i-1,jew)the i’ =i-1.

For example, the notation i° = 1 (see the point marked by the asterisk in Fig. 7a) indi-

cates that the last precedent terminal point on the optimal path which comes to the
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a) .
6 | - 2 2 5 1.5 B | B I T
ol . ;i 5 f=1 ] iel i'=3 8
O /== i'=- i'=- | i'=- i'=- i'=3 Y §'=3 =4 | .12
o 3 - 2 a2y 5 4 5 8 5
-g ol ) =y 14 i'=3'] i'= 7
£ i'== | == | if=- | == | it=- | =3 =4 | =4 | i'=7
& 2 5 3 4 7 2
¢y i . 42 L | 4 6
/'=- f'=- i'=1 {'=2 i‘=3 i'=4 i'=5 i'=6 i’=7
6 4 4 ! 4 6 3 3
ST 5
@ i'== | #=- 4 i'=] | i'=t =1 i'=t < '] = i'=4
@ 5 2 1 4 3 3 6
B4 I 4
E‘ == i'=- i'=! i'=1 i'=1 i'=4 | i'=4 | i'=4 i'=7
2 2 4 - 4 3 5 7 3
b ! =3 i'=6 3
I'=- i'=- j'=1 i’=1 =t i'=¢. | i'=4 | I'={ | I'=7
5 6 7 7 1
s izl =] 2 2
< i'=- i'=- i’=1 i'=1 j'=2 =2 i'=4 i'=4 i'=4
%" 4 6 5 3 4 1 1
Qs i'=1 !
€7 [Litz= | it== | it | it | =2 | =4 | i=4 | i'=4 | i%=4
= 3 4 2 3 5 ] 4 4
a j'=2 0
J'=- j'=- i'=l i'=1 i'=3 i’'=4 =4 i'=4 =7
0 1) 2 3 4 5 7 8 i
c' o b o' s' a' a' g s’
b)
T A G C € B B (5 A A
L L
A hY
i=l ) )
TF he - = Toe f=3 =7 fizl3 i=4 f=4

0 1 2 3 4 5 6 7 8

FIG. 7. Tabic ot D (1, ) values supplemented by the backpointers ¢ (4, ) - big. a. Tables 17 and TF for the
above example - Fig. b.

marked point had appeared in the first (i = 1) column. In Fig. 7a the optimal path comes
to the point (2, 6) from the terminal point of the template of the word C for which the
accumulated distance is minimum.

The point marked by a double asterisk presents the situation when two different
backpointers must be stored.

Figure 7b presents two additional tables: 7T and TF. Each time after the calculations
for the i-th vector have been finished, it may be assumed that this is the last vector of the
utterance. In the i-th position of the table 77, i.e., TT(i), the number of this template for
which the terminal point attains minimum is stored; 77() indicates the last most likely
word in the incoming speech which terminates with the current vector.

In the TF(i) the value of the i’ from the terminal point which has the minimum
D(i, ji, ) should be rewritten.
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The pair {T7(i), TF(i)} indicates which word ends the utterance, assuming that the
i-th vector is the last one, and which vector was the last in the precedent word.

After both tables are completed, the recognition process is trivial. In the example
from Fig. 7 the position TF(8) indicates the word A as the last word in the utterance. The
TF(8) indicates the last vector of the precedent word, which was the 4-th vector. It ended
the word B because T7(4) contains the code of the word B. The TF(4) indicates the
ending vector (TF(4) = 1) for the third word from the end of the utterance. It is evident
that it was the word C, and that no other word preceded the word C (TF(1) =“«-").

Hence the sequence of the templates {C BA} is most likely to be unknown ut-
terance. The accumulated distance Dmin = 1 results from the incorrect analysis of the
word “bas” which has been identified as “bos”. Note that in Fig. 3bthe d(a, 0) = 1.

It should be noted that on the basis of the data in the tables 7T and TF more than one
decision can be made. Let us suppose that the 4-th vector of the speech agrees with the
end of the utterance. From the 7F(3) it results that the word C is the last word in the
sequence and that:

— the precedent word does not exist - it applies to the case when TF(3) = ”-”, or

— the precedent word exists and ends with the second vector TF(3) = 1. From the
TT(1) it results that it is also the word C.

These decisions can be interpreted as follows: it was the word C with the drawled out
vowel /o/ (“cooo”), or there were two words: CC (“co co”). In both cases illustrated in
Fig. 8 Dmin = 2 because of d(b, 0) =2 (in the first case) or d(b, ¢) =2 (in the second
one).

| first case (i'=-) | second case (i'=1) |
utterance LI o b o " " 0 o7
decision il o 0 o™ . c 0 % e o "
drb,o)=1 d(b,c)=1

FIG. 8. Illustration of two possible optimal decisions.

3. Some aspects of the method

Let us note that for the vocabulary set composed of 64 templates, when each tem-
plate is the sequence of 32 vectors, the table in Fig. 7a must have 64 (templates) x 32
(vectors per template) x 250 (number of vectors in the utterance of 5 s. duration) x 2
(parameters: D(4, j), i') = ca 1 MB storage locations.

It is easy to mention that the calculations connected with the i-th vector require only
the data from the column i - 1. It decreases considerably the storage requirements but
only on condition that all the calculations are finished before the vector i + 1 comes.
Most frequently it is maximum 20 ms. For the data as above (64 templates, 32 vectors
per template) the time required for d(i, j), D(i, ), i'(i, j) calculations is about 10 ps.
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The number of 2048 d(i, j) calculations (64 x 32) can be considerably reduced after
the vector quantization (VQ) procedure [2]. The use of rather “economical” 8-bit VQ
yielded, for example, in [9] only 0,4% of the recognition quality deterioration. Note that
8-bit VQ implies 8 times fewer d(i, j) calculations - 256 instead of 2048.

The next practical aspect concerns the following theorem: if for the i-th column it
occurs that i’ = ¢ for all j (see Fig. 7a), then the c-th vector of an utterance is the ending
vector of some word in this utterance. The proof is very simple; the identical value of ¢
signifies that independently of the point through which the optimal path crosses the i-th
column, the previous word ends with the c-th vector.

The above theorem allows to recognize the word before the end of the whole ut-
terance.

4. Experiments and results

Figure 9 presents a block diagram of the experimental system. This system is based
on the IBM PC/AT microcomputer with additional blocks connected to the AT bus:

analog/digital converter ADC,

spectrum analyzer FFT,

specialized block MPD for some DP calculations introduced in order to perform real
time recognition for a 10—word vocabulary set.

12 kHz T=20ms
@:»—-[ ADC |—+ FFT_|—+ 4
; 18M PC/AT
MPD U
s

FIG. 9. Block diagram of the experimental system.

The speech signal is sampled at a 12 kHz rate with a 12 bit code, and the FFT is
carried out every 20 ms. The output of the FFT is transformed into an 8 channel spectrum
in the frequency range 200 Hz + 6 kHz.

In the learning phase (see Fig. 10) the isolated words are stored in memory. After all
the words are completed, which implies several hundreds of speech vectors, the 64
cluster search procedure and vector quantization (VQ) procedure are initialized.

In the result, the description of word templates is 8 times reduced; 8 bytes of each
spectrum is replaced by a 6-bit number (index) of the ncarest cluster obtained by averag-
ing all of the vectors (spectrums) belonging to this cluster.

After the VQ procedure and lincar normalization to the length of N numbers
(N = 16+32), the word templates are stored in MPD block. Another advantage from the
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vector quantization templates
templates and linear time with reduced
isolated normalization size
words

o learning

T recognition

connected speech

1

searching procedure of
the best “super reference"

F1G. 10. Functional block-diagram of the experimental system.

VQ procedure is that instead of calculating 160 to 320 local distances between the cur-
rent vector of incoming speech and all vectors creating word templates (16 to 32 spec-
trums for each template) only 64 distances should be calculated. These 64 local distances
form the table of local distances. The values of d(i, j) in Eq. (1) are taken from the table
according to the vector’s index in the template.

In our experiment the number of 64 clusters was sufficient from the point of view of
the recognition score and was found to be maximum to recognize the connected word in
real time.

In the real time systems the recognition procedure starts after the first vector of an
utterance is obtained. All the necessary calculations must be finished before the next
incoming vector, i.e., in 20 ms. These calculations include:

calculations of 64 local distances,

calculations of 10 accumulated distances D(i, j) and 10 backpointers i'(i, j) for the
initial points according to (2),

calculations of 150-310 accumulated distances D(i, j) and 150-310 backpointers
for all other points according to (1),

calculation of TT(i) and TF(i).

The calculations of D(, j) according to (1) were performed by the hardware, rea-
lized by a specialized circuit on the MPD block in one instruction cycle of the microcom-
puter. This was possible because the memory for accumulated distances and back-
pointers was also situated on the MPD block.

The first experiments demonstrated the need to introduce the template of pause for
two reasons:

the recognized utterance can include some short pauses between words,

if a vocabulary set contains words beginning with affricates, the short pause charac-
teristic of such a consonant can appear, which does not exist in other templates. As the
example of such a case, Fig. 11 presents the simplified (i.e., containing only the initial
and terminal points for each template) table with the D(i, j) values for several vectors of
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FIG. 11. Part of the table containing L) (/, j ) values for the utterance m.roij‘i/ and the optimal warping
function. The template of the word /t i/ uncrcd in isolation in the learning phase does not contain the
pause.

a real utterance “zerotfii”. The optimal path contains the part (vectors 14+16) corres-
ponding to the 60 ms of the pause made by stopping the air completely at the beginning
of the affricate /tf/. In Fig. 11 only the templates for the pause, and the words “zero”,
“tf” are shown. Since the subject of our experiments was the presented method, and not
the parametrization level, only three words were chosen to create the 10 word
vocabulary set. It contains the template of pause, and three repetition of these three
words: “zero”, “tfi”, “tfteri”.

The recognized set contained all (81) combinations in four-word utterances repeated
twice by the same speaker.

The results of the recognition of 162 sentences are presented in Table 1.

In the first experiment the normalized length of each template was equal to 32 vec-
tors, and the “block city” metric was used to calculate the distance between either two
vectors. In this experiment 10 words were deleted.

The detailed analysis has shown that these deletions occur when the word uttered in
a phrase is much shorter than its templates. Figure 12 presents an example when a part
of the phrase contains two of the same words, but the first one was uttered in avery fast
manner. A much smaller number of local distances on the path d; towards the path dy,
can result in D1 < DN, and in effect the optimal path runs along the path marked by the
solid line rather than along the dashed line. The first word will be deleted because the
backpointer in the point (1, i + 1) will be different from i.
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FIG. 12. Simplified figure for a word deletion mechanism.

The above case was caused by the parametrization level (8 digital filters), for which
the average distances between the vectors belonging to different phonetic classes were
insufficiently greater than the distances between the vectors belonging to the same pho-
netic class.

In order to confirm this fact in the second experiment the nonlinear “city” metric was
used. The distances smaller than a certain threshold was replaced by zero. The threshold
was chosen as the average distance between the vectors belonging to the same phonetic
class. The above nonlinearity diminished the number of deletions to 4 cases.

Another way to solve the problem connected with quickly uttered words consists in
experiments IIT and IV in shortening the length of the templates to 16 vectors instead of
32. In experiment IV with nonlinear “city” metric any deletion was noted. The reco-
gnition score for the phrases was about 99,4% - the word “zero” was misidentified as
“tfterd”.

Table 1. Results of the recognition of 162 four-word sentences

Experiment Ni:::;;md Metric Deleted Misidentified
I 32 lin. 10 -
II 32 nonlin. 4 -
11 16 lin. 3 -
v 16 nonlin. - 1
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The method was also tested at random with phrases containing one to nine words.
These tests have resulted in similar recognition scores.

5. Summary

A connected word recognition method has been described by solving the hypotheti-
cal problem to make the presentation more comprehensible. This paper is a detailed de-
scription of the algorithm IIT from [4]. The results of some experiments confirm the
effectivness of the presented method.

The described method was used in real time recognition system realized under grant
CPBR 7.1.
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ACOUSTIC WAVE DAMPING ANISOTROPY IN NEMATIC LIQUID CRYSTALS
H. HERBA and A. DRZYMALA

Department of Physics, Technical University in Rzeszow
(35-959 Rzeszaw, W. Pola 2)

This paper presents the results of damping and velocity measurements of an ultrasonic
wave with 5 MHz frequency performed in two nematic liquid crystals: pentylcyanobiphenyl
(PCB) and 4-n-methoxybenzoate-4-n-pentylphenyl. Measurements were carried out in
materials oriented with an external magnetic field.

An acoustic wave damping anisotropy was observed. It manifested itself with a depend-
ence between the damping coefficient and angle between the direction of wave propagation
and the direction of the magnetic field which orientates the material.

The obtained results were confronted with the results of rheological measurements car-
ried out for mentioned materials by other authors.

1. Introduction

Theoretical foundations of the rheology of nematic liquid crystals, treated as incom-
pressible liquids, have been formulated by Ericksién and Lesiie [1, 2, 3], as well as
Paropi [4]. Flows of the nematic without the assumption of its incompressibility have
been considered by FosTer and collaborators [5], and HuanG [6]. Foster and his col-
laborators have also introduced a relation describing the behaviour of the ultrasonic wa-
ve damping coefficient in terms of the angle & between the direction of propagation of
the sound wave and the orientation direction of the nematic. This relationship can be
expressed as follows

o
2pc’

a(f) = {[(2v1+ vz-v4+2V5+(ci—ci)’fls+]

W P

v

1% .
_[2(14- V4 + v5)+(c——c—}(x||— Kl)]smth
, fn _

—%(VM V2—2V3)Si[1229} | ()
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Where: v, (i = 1,...5) — coefficients expressed in viscosity units, k, — heat conduction in
a direction perpendicular to the orientation direction of molecules, x — heat conduction
in a direction parallel to the orientation direction of molecules, @ — wave frequency, p —
density of the nematic, c — wave velocity.
Expression (1) changes into a known expression for an isotropic liquid if:
Vi=Va=V3=1],
Vs=V4—- Vo =1,-2/31, 2)
K, = K" = K,

where: 7, — shear viscosity, 7, — volumetric viscosity, k — heat conductivity.
Substituting in the expression (1), we have:

2
A= Ls 3[2v1+v2—V4+2vx+(—clf—i)fq|],

2pc v Cp
2
w 1 1
B=2pc3[2(v1—v4+vs)+(c—v—?p)(xu-xl)], 3)
2
Wil
szpcsa(V1+V2-2'V3).

It is clear that:
a(0)=A, a(Il/2)=A-B,
Aa=a(0) - a(I1/2)=B. 4)

Foster’s theory does not include velocity anisotropy. The occurrence of this phenomenon
for high frequencies (7) can be caused by the fact that the reaction of the material to
compression requires a definite amount of time. If the period during which compression
is applied is short in comparison with this time, then compressibility can be anisotropic.

2. Measuring apparatus

An original ultrasonic system was used to perform measurements. It made possible
damping and velocity measurements of an ultrasonic wave in liquid crystals. An external
magnetic field was applied to orientate the material. The mechanical system including
ultrasonic transducers and measuring vessel is considerably miniatured and the ultra-
sonic wave propagates horizontally. This makes it casier to apply typical electromagnets.
The minimal distance between pole shoes necessary to place the device in the magnetic
field is equal to 80 mm. The block diagram of the system is presented in Fig. 1. This
system was made in the Institute of Fundamental Technological Research of PAS in War-
saw. Temperature stabilization not worse than 0.1°C was archieved by using an ultrather-
mostat. Damping and velocity of the ultrasonic wave were measured with the application
of a magnetic field with induction of 0.7 T.
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FIG. 1. Block diagram of the system for ultrasonic wave damping and velocity in liquid crystals.

3. Characteristic of tested liquid crystals

Measurements were performed for two nematic liquid crystals: p-pentyl-p’-cyano-
biphenyl (PCB) and 4-n-methoxybenzoate 4-n-pentylphenyl (MBPP). Structural formu-
lae and phase transition of tested materials are given in Table 1.

Table 1.
Phase trans. temperature
. [C]
Material Method
solid state nematic
nematic isotropic
p—pentyl-p’—cyanobiphenyl Microscopic 18.9 139
observation (cooling) ! d
CsHii-<0>-<0>-CN DSC (heating) o 35,0
4-n-methoxybenzoate—4n-pentylophenyl Microscopic 251 40.4
observation (cooling) L2 3
CsHyi-<0>~C00-<0>-0CHS; DSC (heating) it 413
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4. Ultrasonic wave damping and velocity measurements

Damping and velocity were measured for an ultrasonic wave with 5 MHz frequency
in terms of temperature and angle between the direction of wave propagation and direc-
tion of orientating magnetic field. Their relation (1) was matched using the method of
least squares with results achieved at a given temperature and quantities A, B and C were
determined (Formula (3)). Measurement results for PCB and 4-n-methoxybenzoate 4-n-
pentylphenyl are presented in Figs. 2 and 3, respectively. Full curves in Figs. 2 and 3 are
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FIG. 3. Results of damping measurements Lor an ultrasonic wave with 5 MHz frequency in
4-n-methoxybenzoate-4-n-pentylphenyl.

described with Eq. (1). The determined quantities A and B have a simple physical sense.
Quantity A corresponds with the value of ultrasonic wave damping for angle 6= 0°,
while value A — B with this value for angle 8 = 90°. The B/A ratio defines damping aniso-
tropy. The values A, (A — B) and B/A in terms of temperature is shown in Figs. 4 and 5
for PCB and Figs. 6 and 7 for 4-n-methoxybenzoate-4-n-pentylphenyl. Standard devia-
tion of A and A - B quantities, calculated on the basis of matching the expression (1) and
experimental data with the method of least squares are marked in Figs. 4 and 6.

Once the quantities A and B are known, the coefficients of volumetric viscosity, v,
and vs, can be calculated. However, this requires knowledge of the coefficients for shear
viscosity, v, v2 vs, and the coefficients of heat conductivity, x, and xj. In the case of
most liquids the contribution of heat conductivity in ultrasonic wave damping is small in
comparison with the contributions of shear viscosity and volumetric viscosity.

The estimation of the influence of heat conductivity was impossible because of the
lack of complete data for tested materials. Such an estimation can be carried out for
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nematic MBBA on the basis of data from papers [7, 8]. For this material at 30°C the
temperature of heat conductivity is equal to 0.32% in quality B.

As for volumetric viscosities, the presented contributions of heat conductivity are

many times smaller. For this reason we can accept that the influence of heat conductivity
for tested materials is negligibly small as for MBBA and most liquids. The authors have
determined the coefficients of shear viscosity for PCB and 4-n-methoxybenzoate-4-pen-
tylphenyl by testing the flow of the material oriented with a magnetic field through a
capillary with a rectangular section [9]. Taking the coefficients of shear viscosity given
in [9] into consideration, the quantities v4 and vs were calculated.

The velocity of an ultrasonic wave necessary to determine v4 and vs was measured
using the pulse-phase method with the application of the previously described system.
The results of velocity measurements are presented in Figs. 8 and 9. The temperature
dependence of volumetric viscosity is illustrated in Figs. 10 and 11. Quantity C (Expres-
sion (3)) depends only on the coefficients of shear viscosity. Adequate comparisons were
made using the quantities given in the paper. The results of these comparisons are shown
in Figs. 12 and 13. Also measuring errors are included in these figures.
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5. Conclusions

The presented measurements prove a consistency of the hydrodynamic theory of
Foster and co-author [5]; and HuaNG [6] with experiment. This is indicated by the
quality of matching of theoretical curves and experimental data. The anisotropy of the
damping coefficient of ultrasonic waves for tested materials in experimental conditions
5 MHz is caused mainly by the anisotropy of volumetric viscosities which are many
times greater than shear viscosities. The determination of volumetric viscosities is im-
portant [10] for further research of acoustic absorption and relaxation processes in the

presented materials.

(1]
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ACOUSTICAL PROPERTIES OF POROUS LAYER - UNDEFORMABLE HALFSPACE
SYSTEM AT NORMAL INCIDENCE OF HARMONIC WAVE

M. CIESZKO

Department of Mechanics of Porous Media
Institute of Fundamental Technological Research
Polish Academy of Sciences
(61-725 Poznan, Mielzynskiego 27/29)

The acoustical properties of a system composed of a porous layer and an undeformable
solid halfspace, immersed in a barotropic fluid, are analyzed for the case of normal incidence
of a harmonic wave. The explicit forms of expressions of the wave absorption coefficients
were obtained for different particular configurations of the system. This allowed us to discuss
the dependence of the absorption coefficient on the dissipative properties of a fluid and on
the parameters characterizing the pore structure of a porous layer, in a wide range of frequen-
cies of the incident wave. It was shown that the dissipative properties of the fluid do not
considerably change the value of resonance frequencies. However, these propetties as well as
the parameters of the skeleton pore structure strongly influence the coefficient of wave ab-
sorption.

1. Introduction

The determination of acoustical properties of systems composed of porous elements
is of great importance in many technical problems occurring, for example, in aircraft and
machinery noise control or in architectural acoustics. In these systems the porous mater-
ial in the form of layers, plates or halfspaces (ground), immersed in a fluid, strongly
interacts with waves propagating in the fluid in a wide range of frequencies.

The complexity of a theoretical investigation of the properties of such systems is
connected with the variety of transfer ways of acoustic energy. In the general case of a
deformable skeleton of porous material the acoustic waves are transmitted both by the
skeleton and by the fluid filling its pores, and also by vibrational movement of particular
elements of the system.

In the majority of papers devoted to the interaction of waves with porous material
(e-g. [1], [7], [11], [13], [16]) and to the investigation of its properties (e.g. [2], [14],
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[15]), the authors exploit the analogy between the propagation of plane waves in the
absorbant media and the propagation of electric disturbances in the loss lines. They char-
acterize the acoustical properties of a porous medium by two quantities: the propagation
constant of a wave and the wave impedance. They also formulate the boundary condi-
tions at the surface of a porous medium by means of the surface impedance. Some au-
thors (e.g. [1], [16]) use at the same time the existing equations of the dynamics of po-
rous media to determine the relations between the quantities and the parameters charac-
terizing a porous medium filled with a fluid. Such a characteristic, although sufficient for
the media which can be modelled as a modified fluid (the skeleton being undeformable),
needs to be extended by other quantities in the case of a deformable skeleton [16].

The other approach, rarely presented in the papers on this subject, consists in solving
the boundary problem formulated strictly within mechanical notions.

In spite of a great variety of papers concerning the interaction of acoustic waves with
porous materials and with their systems in the literature, there is a lack of theoretical
papers devoted to the analysis of the influence of the parameters characterizing the pro-
perties of porous media and the geometry of the system on its acoustical properties.

The main purpose of this paper is to analyze the acoustical properties of a system
consisting of a rigid immovable porous layer and undeformable solid halfspace, immers-
ed in a fluid, at the normal incidence of a harmonic wave.

The starting point for the description of the dynamics of a fluid in pores of a rigid
skeleton are the equations of the two-parameter theory of deformable porous media fill-
ed with a fluid ([5], [6], [8-10]), in which the skeleton pore structure is characterized by
two parameters: volume porosity and structural permeability parameter. These parame-
ters are explicitly present in the continuity and motion equations of the fluid as well as in
the boundary conditions representing the continuity of the fluid mass flux and its effec-
tive pressure at both surfaces of a porous layer.

Solving the boundary problem resulted in obtaining the explicit forms of the absorp-
tion, reflection and transmission coefficients of waves for different configurations of the
system. This enabled us to discuss the dependence of these coefficients on the dissipative
properties of the fluid filling the pores of the layer, on the pore structure parameters and
the geometry of the system in a wide frequency range of the incident wave.

2. Interaction of a plane acoustic wave with the porous layer-undeformable
halfspace system

Formulation of the problem.

We analyze the acoustical properties of the system consisting of a rigid immovable
porous layer of thickness b immersed in a fluid at distance-d from the underformable
solid halfspace. We consider the case when a plane harmonic wave of frequency
f(@=2f) and of amplitude A ;, propagating in a fluid, falls normally at the surface of
the porous layer (Fig. 1.). We assume that the fluid is barotropic, i.., the effective pres-
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0 b b:d X

FIG. 1. Scheme of wave interaction with a system composed of a porous layer and undeformable solid
halfspace.

sure pis in one to one relation with its effective mass density p’ (p’ = p’(p’)), and that
the viscosity of the fluid does not influence its macroscopic state of stress (the deviators
of the stress tensors in the bulk fluid and in the fluid filling porous medium are omitted)
but it is taken into account in the interface interaction force with the porous skeleton.

At the above assumptions the propagation of disturbances with small amplitude in
halfspace x < 0 (region I) and in the layer of the fluid (region III) is described by a linear
wave equation for the barotropic fluid

pe;
ox?

where v is the velocity of fluid particles and
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is the velocity of wave propagation in the bulk fluid, whereas p{] stands for its mass
density in the undisturbed state of medium.

The description of fluid motion in the pores of an undeformable porous layer (re-
gion IT) is based on the two-parameter theory of deformable porous medium filled with
a fluid ([5], [6], [8-10]) in which the skeleton pore structure is characterized by two
macroparameters: the volume porosity f, and structural permeability parameter
A (4 =f,). The problem of fluid motion in pores of an undeformable skeleton is then the
particular case of this theory, and the equation describing the propagation of waves with
small amplitude takes the form [3]

Fv 1 (621; - @)

at? MY
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ox Co

k=k'/(Aph)

(2.2)
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where k' is the coefficient in the linear law of the diffusive drag force while ¢, is the
velocity of wave front propagation in such a medium. This velocity is related to the
velocity a, in the bulk fluid (no skeleton) by the expression

co=Vray, K=Alfs (23)

Acoustic fields in the particular regions of the system are coupled via the compatibi-
lity conditions at their contact surfaces. For small disturbances of the medium these con-
ditions are: the continuity of the effective fluid pressure and the continuity of its mass
fluxes at both boundaries of the porous layer.” We obtain, [3]

v' =", (2.9)
vt "
e &
for x = 0, and
Avt =", (2.6)
av[l avlll
ax | ox ke

for x = b, where v*(a =11, 1II) is the resultant velocity field in the region « of the
system.
An additional limitation for the velocity field v™ in the layer of the bulk fluid is the
boundary condition at the surface x = b + d. Due to the underformability of halfspace
x> b +d, we have

v =0. (2.8)

Equation (2.1) and (2.2) together with the conditions (2.4)—(2.8) describe the dyna-
mic behaviour of the fluid in the system shown in Fig. 1. It is evident that apart from the
parameters b, d and k which characterize the geometry of the system and the dissipative
properties of the fluid in its viscous interaction with the pores of the layer, the real in-
fluence on the acoustical properties of the system is exerted by the pore structure para-
meters of the porous layer. These parameters are explicitly present both in the motion
equation (2.2) and compatibility conditions (2.4)~(2.7).

Solution of the problem

The resultant acoustic field in each region of the system consists of two waves pro-
pagating in opposite directions (Fig. 1). These waves are the superposition of all elemen-
tary waves with proper directions resulting from the subsequent reflection and transmis-
sion of the incident wave at the boundaries of the particular regions.

* Continuity conditions of this kind are analogical to the conditions imposed at places of a rapid change
of the cross-section in the analysis of wave propagation in wave guides of stepwise-changing cross-sec-
tions [13].
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The acoustic fields in regions I and III, being the solution of equation (2.1), may be
represented by the functions

iy 1 (Aleime-zm'ix) _Re (Dleiwrezmh)_ 2.9)

u™ = Re (Ase™e 2 - Re (Dseierermit), (2.10)
respectively, and such a field for the region II, satisfying Eq. (2.2), takes the form

v" =Re (Agei“"e'2"ik") - Re (Dze‘“"e“”"’). (2.11)
where A o, D, (=1, 2, 3) are amplitudes of waves, and Re (*) stands for the real part of
a complex expression. The wave numbers & and k' satisfy the following relations:

k=flao, k?*=k*(1-ikolk) (2.12)
where
k=flco, ko=k/(2mco). (2.13)

The expressions (2.9)-(2.11) involve five unknown amplitudes of waves. To deter-
mine them, we have five boundary conditions (2.4)—(2.8). Introducing Egs. (2.9)(2.11)
into the proper boundary conditions (2.4)—(2.8), we obtain the following algebraic sys-
tem of equations

A1 -Di=A(A2- D),
A1 +.D1 =\/EK(A2+D2),
A(Aze—Zmr,vK_Dze2nir;K) =A3e—2J’ﬂ-’/;?? _D3621ﬂ\/;'r]’ (2'14)

ﬁK(AzeanK*‘DzeZmnK) =A36—2zn’Eq+D362m\/}n,

Ds =A38—4m'\/Er;(1+s)

where
K=k'ik, n=bk, £=d/b. (215)

The above equations allow us to determine the ratios of wave amplitudes propagating in
the system to the amplitude of the incident wave as the explicit functions of the quantities
characterizing the pore structure of a porous layer, the dissipative properties of the fluid
and the macroscopic geometry of the system, for various frequencies of the incident
wave. In particular, they allow us to determine the absorption coefficient « defined as the
ratio of energy absorbed by the system to the energy of the incident wave. This coeffi-
cient takes the form

a=1-|Di/A\|*=fi(n, 5o, & fo &) . (2.16)
where |- | stands for the absolute value of a complex number, and
Mo =bko

is the dimensionless parameter characterizing the dissipative properties of the system.
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The explicit form of the function f; is given in Appendix A.

From the practical point of view, the absorption coefficient @ is the most important
quantity characterizing the global properties of the system under consideration. Further,
we analyze the influence of internal parameters of the system: 7)o, &, fu, K On the absorp-
tion coefficient « for various frequencies of the incident wave and different configura-
tions of the system.

3. Influence of internal parameters of the system on wave absorption coefficient.
Special configuration of the system

3.1. Absorption properties of halfspace of a porous medium immersed in a fluid

The simplest case of a configuration of the system depicted in Fig. 1 is the halfspace
of a porous medium immersed in a fluid (Fig. 2). This case is obtained by increasing the
thickness b of a porous layer to infinity.

—t=

0 x
FIG. 2. Scheme of wave interaction with a halfspace of a porous material.

The absorption coefficient a., of a such a system is given by the expression (2.16) for
b — o (ko= 0) and takes the form

- kf,P
 (Vxf,+P)*+ Q2

(3.1)

o0

where

P=RC(K)=\/(1+\/1+(knfk)2)/2, 32)
0 =Im(K) =—\/(- 1+ V14 (kotk)? ) 2.

The dependence of the coefficient @ on the dimensionless wave frequency 27f/k for
two different pore structures of a porous medium is depicted in Fig. 3. This figure shows
that the absorption coefficient o for low frequencies of the wave is small and increases
when the frequency increases, approaching asymptotically the value

al = aVkf,/(VKf,+ 1), (3.3)
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F1G. 3. Dependence of the absorption coefticient @ on the dimensionless frequency 2f/% (for an acoustic
plaster filled with air [16]; 2f/k = 1 corresponds to f = 400 Hz).

which is entirely defined by the pore structure parameters. The quantity ao is at the
same time the absorption coefficient of the porous halfspace for the case when the fluid
is inviscid (k= 0). This means that in the range of higher frequencies the pore structure
is the main factor determining the value of the coefficient of wave absorption by the
porous halfspace, whereas in the range of low frequencies the predominant influence is

exerted by the diffusive drag force characterized by the parameter k.

3.2. Absorption properties of a porous layer with an impervious back surface

Let us now analyze the absorptive properties of the considered system in the case
when the porous layer lies on the surface of an underformable solid material (&= 0,
Fig. 4). For such a configuration of the system, the absorption coefficient & given by the
expression (2.16) takes the form

a=[i(m Mo, & for K)o (3.4)
The dependence of the coefficient on the dimensionless wave frequency 7 is shown in
Fig. 5.

An important element in understanding the character of the course of the curves in
Fig. 5 are the notions of (anti) resonance (resonance and/or antiresonance) frequencies of

¥

FIG. 4. Scheme of wave interaction with a porous layer with an impervious back surface.
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FiG. 5. Dependence of the absorption coefficient & on the dimensionless frequency 7 for two different
pore structures of a porous layer and various values of the coefficient 7o (for airand b = .02m; a) 7 =1
corresponds to f ~ 9.8 kHz; b) # = 1 corresponds to f ~ 12 kHz).

the fluid filling the porous layer. These frequencies determine the position of extremal
values of the coefficient o Taking into account the fact that both waves propagating in
the layer form a standing wave, the node of which is placed on the contact surface with
the undeformable halfspace, the (anti) resonance of the fluid in the layer occurs when the
multiple of one fourth of the wave length Ao, propagating in the layer, is equal to the
thickness of the layer, i.e., for

balisia  1e1,20. (3.5)

Then, for an odd number of /, on the front surface of the layer, the loop of a wave
appears and the fluid contained in the layer will behave as a material of great flexibility,
intercepting and dissipating a great part of energy of the incident wave. These are the
resonance frequencies of the layer for which the coefficient & takes maximal values.

In turn, in the case when / is an even number on the front surface of the layer, a node of
wave appears and the fluid contained in the layer will behave as a material with small
flexibility, reflecting a great part of the energy of the incident wave. In this case we deal




M. CIESZKO 269

with antiresonance of the fluid in the layer and the absorption coefficient « takes mini-
mal values.

Taking into account the fact that the phase velocity of a harmonic wave in a fluid
filling pores of a rigid skeleton is given by the expression

Vo=co/V1+(no/2n)?, (3.6)

the condition (3.5) may be transformed to a more convenient form:

mV1+(no/2n,)? =1/4 (3.7)

which allows us to determine the values 17, of dimensionless (anti) resonance frequencies
of the fluid in the layer.

As Fig. 5 shows, the parameter 7)o characterizing the dissipative properties of the
fluid in a porous layer does not influence significantly the position of extremal values of
the coefficient a. This means that in order to determine the (anti) resonance frequencies
and the values of the coefficient a corresponding to them, the approximated form of the
condition (3.7) and of the expression (3.4) may be used.

For 1o/n >> 1, from Eqs. (3.7) and (3.4) we have

=114, (3.8)

K 4V f,th(rn0)
(1 + Vi futh(ano))? - sin?(27n) (1 - xf2)/ch*(wn0)

(3.9)

From Fig. 5 and the expression (3.9) it is evident that both parameters 7o and x
strongly change the form of curves of the coefficient. Moreover, the pore structure para-
meter k influences the position of extremal values of the coefficient c. This parameter is
explicitly present in the expression defining the dimensionless frequency 7 and therefore
its influence, however not evident in Fig. 5, appears as a change of the scale on the axis
of frequency.

The condition (3.8) together with the expression (3.9) are convenient for the calcula-
tion of the parameter x of the pore structure and of the coefficient k' from the experimen-
tal data for the absorption coefficient a.

3.3. The absorption properties of the porous layer — solid halfspace system

In this section of the paper we analyze the absorptive properties of the system shown
in Fig. 1 and described by the expression (2.16). In our considerations we put special
stress on the discussion of the influence of the fluid layer separating both parts of the
system on the wave absorption coefficient a.

Similarly as it was in the case of a porous layer with an impervious back surface,
(anti)resonance frequencies determine the form of curves of the absorption coefficient of
a system of two layers.

The system shown in Fig. 1 has three types of frequencies which determine the positions
of extremal values of the coefficient a. The first type of these frequencies is connected
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with (anti)resonance of the fluid filling porous layer and it appears when the condition
(3.7) or (3.8) is satisfied. The second type od (anti) resonance frequencies results from
anti resonance of the fluid contained between the porous layer and the undeformable
halfspace. They are given by the condition

d=mA¢/4 m=1,273,.,

which, due to constant phase velocity in a bulk fluid, equal to @y, may be expressed in
the form
m 1

e v

The third type of (anti) resonance frequencies of the system results from (anti) resonance
of the fluid contained in both layers as a whole. In this case the condition for the (anti)
resonance frequencies is obtained by requiring the time of transition of the wave through
both layers to be equal to the multiple of one fourth of the wave period.

When the phase velocities of waves in each layer is considered, this condition takes
the form

(3.10)

Ne(V1+(no/2n.)? +VKe)=n/4 n=1,2,3,. (3.11)
or
n 1
M™=41+Vke (312)

for n/no>> 1.

The conditions (3.7), (3.9) and (3.11) or their approximated forms allow one to eva-
luate the influence of particular types of (anti) resonances (parameters of the system) on
the form of the curves of the coefficient a. These conditions determine the exact position
of extremal values of the coefficient @ only in the case when the parameters of the sys-
tem are so chosen that all three conditions are fulfilled at the same time, i.e., when all
three (anti) resonances are present. Then the value of the number »n determines the type
of extremum. For even n there appears a minimum of the coefficient «, and for odd n,
there appears its maximum. In the remaining cases the positions of extrema are deter-
mined by neighbouring (anti) resonance frequencies of different types.

The conditions (3.8), (3.10) and (3.12) provide that for small values of the parameter
&, the (anti) resonance frequencies of the fluid in a porous layer and in both layers as a
whole are close to one another, and the (anti) resonance of the layer of a bulk fluid occurs
at higher frequencies of the wave. This means that for low frequencies and small values
of &, the position of extrema of the coefficient « is determined by the (anti) resonance
frequencies of the fluid in a porous layer and both layers as a whole.

Since the (anti) resonance frequencies given by the formula (3.12) decrease when the
parameter ¢ increases, the extrema of the coefficient e displace in the direction of lower
frequencies (Fig. 6a). From Fig. 6b it is seen that a further increase of the parameter &
does not change significantly the absorption coefficient « for low frequencies but it cau-
ses the appearance of extrema connected with (anti) resonances of the layer of a bulk
fluid.
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FIG. 6. Dependence of the absorption coefficient a on the dimensionless frequency n for two different
pore structures of a porous layer and various values of the coefficient & (for air and b = .02m; ayn=1
corresponds to f~ 9.8 kHz; b) 17 = 1 corresponds to f =~ 12 kHz).
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FIG. 7. Dependence of the absorption coefficient a on the dimensionless frequency 1 (for air and
b=.02m n =1 corresponds to f = 9.8 kHz).
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Figure 7 shows the exemplary curves of the coefficient a for two values of the para-
meter 17, in the case when the interaction of all three types of (anti) resonance frequen-
cies is fully developed.

4. Interaction of a plane acoustic wave with a porous layer

The problem of wave interaction with the system composed of a porous layer and an
undeformable solid halfspace, formulated in Section 2, allows us to approach directly the
problem if wave interaction with only a layer of the porous medium (Fig. 8). Formally,
we obtain this case by removing a solid halfspace x > b + d from the system shown in
Fig. 1. Then the acoustic field in the third region is represented only by the wave leaving
the layer, and the amplitudes of waves in each region are given by the system of equa-
tions (2.14),+2.14), for D3 = 0. 4

I I m

F16. 8. Scheme of wave interaction with a porous layer.

The acoustical properties of a porous layer are characterized by two quantities: the
reflection coefficient Sand the transmission coefficient y. These quantities are defined as
ratios of the energies of the reflected and the transmitted waves, respectively, to the ener-
gy of the wave, incident on the layer. Solving the system of equations (2.14),—(2.14),, for
D5 = 0 we obtain

B=|Di/AN|* = fo (1, N0, four K), (4.1)
y=|As/AL|? = (1, Mo, for ). 42)

The explicit forms of the expressions (4.1) and (4.2) are listed in Appendix B. The (anti)
resonance frequencies of a fluid in the layer are given by the condition (3.8) or (3.9).
In the case of an inviscid fluid (7 = 0) the expressions (4.1) and (4.2) take the forms

1—q2

B y=1-p (4.3)

T 1+q°ctgX(2an)

where

ahy 4xf; .
(xfo+1)°
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FIG. 9. Dependence of the reflection coefficient fa) and the transmission coefficient y b) on the
dimensionless frequency 7 (for air and b = .02 m 7= 1 correspond to  f~ 9.8 kHz).

Figure 9 shows the exemplary curves of dependence of the coefficients §and y on the
dimensionless frequency 7 for various values of the parameter 1), characterizing the
dissipative properties of the fluid in the pores of a layer. This figure shows that for small
values of the parameter 7o, waves with low and resonance frequencies penetrate inten-
sively through the porous layer, and as the value of 17, increases, this penetration de-
creases, and the form of curves for both parameters become uniform in the whole range
of frequencies.

The form of the expressions (4.3) indicate a strong influence of pore structure on the
values of the parameters f§and y.

5. Concluding remarks

In the paper we have considered the problem of wave interaction with a system com-
posed of a porous layer and an undeformable halfspace immersed in a barotropic fluid,
for the case of normal incidence of a harmonic wave. Solving the boundary problem,
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formulated strictly within mechanical notions, resulted in obtaining the ecplicit forms of
expressions of the wave absorption coefficient for various configurations of the system.
This made it possible to discuss the influence of the intrinsic parameters of the system
(b, d, K, f,, k) on the absorption coefficient for a wide range of frequencies of the inci-
dent wave.

The obtained results, independently of their cognitive and practical importance for
designing the acoustic barriers and absorptive lining, are a good basis for the interpreta-
tion of experimental data for porous materials filled with a fluid, the skeleton of which
may be recognized as rigid. Such investigations are often carried out on small samples in
a resonance tube ([14]-{16]) where a sample in the form of a disk is placed either directly
on the undeformable piston closing the tube or some distance from the piston depending
on the method of measurement. These measurements allow one to determine the para-
meters of wave propagation in porous materials, their absorptive properties, and the pa-
rameters characterizing the pore structure of the skeleton.

The above considerations are also a good starting point for further analysis extended
to systems of many layers and systems in which the porous layer is deformable and
movable.

APPENDIX A

The explicit form of expression for the wave absorption coefficient a is:
a=fi(n, no, & fu, k) =
=1 -[(ch(¥) + Pesh(¥)) %~ (sin(X) - Qscos(x))* +
+ Psin*(X) + Qéch*(y) /[ P3sin’(¥) + Qoch*(¥) +

+(ch(¥) + Ppsh(y))? - (sin(X) - Qpcos(¥))?]

where
. Pg +sin(7) [ Ps(PZ + QF - 1)sin(7) + Qs(P§ + Q5 + 1)cos(7) ]
G PS?+Q:2 ]
~Qs +sin(7) [Qs(P§ + Q3 + 1)sin(7) - Ps(P3 + Q5 - 1)cos(7) ]
Qg = T "
PS +Q.f
p, __ Ps+sin([Ps(PS + 0F - 1)sin(7]) - Os(Ps + 05 + 1)cos(7)]
v P +Q? ’
Qs - sin(77) [ Q@s(P§ + Q5 + 1)sin(7) + Ps(Ps + Q5 - 1)cos(7)]
QD= 2 2 »
PS +Qs

and
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X=2anP; y=2anQ;
Ps=P/(Vkf,); Qs=0Q/(Vkf.);

n=2anVxe,
whereas

P=V (1 +V1i+(nom)2,
0=~V (-1+V1+ (noin)?)2.

APPENDIX B

The explicit forms of expressions for the coefficients of wave reflection 8 and of wave
transmission y are:
B=fom, Mo, fn ) = yKo(ch?(¥) - cos*(X))?;
7 =501, M0, for K) =
1
" (ch(¥) + Posh(3))? - (sin(¥) - Qocos (%)) + P3sin*(X) + Q3ch*(y)
where

x {1+ P35+ 08 —4P3

4Pi+03)
PsPi+QF+1 PsPi+Q¢-1
2 PErQE 2 Pl+Q?

and X, y, Ps, Qs are the quantities defined in Appendix A.

Qo=
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FAR FIELD OF A CONCENTRIC RING VIBRATING WITH CONSTANT VELOCITY
ON A RIGID SPHERE

A. BRANSKI and L. LENIOWSKA

Department of Technics, Pedagogical University
(35-310 Rzeszéw, Rejtana 16a)

PART I - THEORY

1. Introduction

The monograph [2] presents the theory of sound radiation from such sources as: a
point on sphere, a spherical cup on a sphere and a pulsating sphere. Every mentioned
source has a separate theory.

In this paper the theory of sound radiation of sources with the geometry mentioned
above and described with spherical coordinates is generalized. A vibrating ring on a
sphere was chosen as the source. The sources under consideration in the monograph [2]
can be obtained from such a source.

Part I of this paper presents the theory of sound radiation from a ring placed on a
sphere. The theory is verified in several numerical examples in Part II. The directivity
function was calculates in terms of the width of the ring its position on the sphere with
constant width and its vibration frequency with fixed position and fixed width.

2. Geometry of the problem

Avibrating ring placed on a rigid sphere (acoustic baffle) symmetrically with respect
to the z-axis (Fig. 1) was chosen as the source (vibrating surface + acoustic baffle). This
ring is cut out from a sphere with radius R by two rotational cones with a common vertex
and with apex angles equal to 26, and 26,. Two cones also cut out a second ring for
z < 0. Only the ring in the top part of the sphere is taken into account.

If we assume that the acoustic parameters on the ring surface are axially symmetri-
cal, then the distribution of the field around the sphere is also axially symmetrical. Only
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z P

FIG. 1. Geometry of the problem.

two parameters in the spherical coordinate system 7, 6, ¢ are sufficient to describe it.
These are radius r and angle €. In Fig. 1 we have S — area of the ring, So — area of the
spherical baffle, S; + S = 47R>.

3. Formulation of the boundary problem

For a steady, time-harmonic state the distribution of the field around the source is the
solution to the boundary problem for a Helmholtz equation ( A + k*)® =0, noted in the
spherical coordinates [2], with the following boundary condition on a sphere with
radius R '

g -1y, €<6, 62>,
an
k4
an =0, 8¢<31, 82>. (1)

where ¥ — velocity potential of acoustic field, n — unit vector of normal to the surface of
the sphere, vy — vibration velocity of the ring. The potential ¥ must be satisfy the Som-
merfeld radiation conditions -

lim=|r¥|<A, A -constant,

=+

1im=(%§+ik.'P)r=0. )

r—o
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For the condition (1) the ring is a time-harmonic pulsating surface radial vibrations. The
following sources can be obtained from a ring: in the form of a spherical cup
(6:=0, 8,E€(0, 7/2)), of a pulsating sphere (6, =0, 6, = and of a point source
(6,=0,6,—0).

4. Solution of the Helmholtz equation in spherical coordinates

Elementary solutions of the Helmholtz equation obtained with the Fourier method
have the following form:

W, =h(kr)PL(cos8)e™?, 3)

where h?(kr) spherical Hankel function of the second kind and order m, Pr(cosf) —

associated Legendre function of the first kind of order m and degree n, k = 27/ A.
Product

Ymn = Ph(cos 8)e™ | ()
is called the surface spherical harmonics. Including Eq. (4) in Eq. (3), we achieve
Wi = WD (kP )Y, (5)
For the axisymmetric problem n = 0 and the function (5) assumes a specific form:
oo = h$? (kr)Po(cos 8) = hwPa(cos ), (6)
where A, = h$?(kr), P,(cos8) = Po(cos ).

5. Solution of the boundary problem

The solution to the problem given in paragraph 3 is picked out in the form of a series

Pe ApWn, 7)
m=0
where ¥, = ¥, — formula (6).
Substituting (6) in (7) we have
W= Amhm(kr)Pn(cos8). 8

m=m

Expansion coefficients A, are calculated on the basis of the fact that the surface har-

monics are orthogonal. To this end Eq. (8) is substitutes in the boundary condition (1).
Thus )

-Ug = iA,,.h,’,, (kR)P,.(cos8), 9

m=0
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where

_9
r=R ar
Then the formula (9) is multiplied by P,,(cos 8) and integrated along the surface of the
sphere. For an arbitrary m we obtain

hiy (KR) = %hm(kr) Rile) (10)

F-R'

~Uy [ Ppi(cos0)do=Anhiy, (kR) [ Po(cos8)P,y(cos8)do, (11)
S s
The integral on the right hand side is
fP,,.( cosB)P,.(cosf)do=
S
2n & 2
= R*[[ [ Pn(cos )P, (cos 8)sin 0d6 | dg = 2R . (12)
e 2m+ 1

The orthogonality relation of the Legendre polynomials [1] was applied to calculate
Eq. (12)

1
JPu(z)Pu(2)dz = ' (13)
=} 0, m =m.

Since v, differs from zero for 8 € < 6,, 8,> only, then the integral on the left hand side
in Eq. (11) can be calculated over the surface S, instead of S.

27R?

0,
) %
me(cosﬁ)da— 27R me(cos6)51n9d8— S T

S, 6,

P.(0y, 62), (14)

where
Pu( 6y, 02) =Py, 1(cos8r) - Pp_1(cosbr) = Pp,i(cosb) + Pp_i(cosBy). (15)

The relationship [1]

22

[Pn(2)dz=

1

1 =2
o[ Prer(@)-Paaa(@)] (16)

was used to calculate the integral (14).
Substituting Eq. (12) and (14) in Eq. (11), we have

WwPn( 6, 62)
"= 3hn (kR) ’ (17)

Therefore the solution of the boundary problem is given by the formula (8) with the
constant A, defined by Eq. (17).
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6. Specific solutions

To check the validity of the solution for a ring, its specific form can be compared
with the solutions given in the monograph [2] for a spherical cup, a point on a sphere and
a vibrating sphere. For example, for a spherical cup 6, =0, 8, € (0, 2/2). From the ex-
pression (17): we have (P,,(1) = 1 for every m)

A ko) )[P,,,H(cosﬂz)—Pm$1(cosl92)]. (18)

- 2h,, (kR
Substituting Eq. (18) in Eq. (8), we obtain the solution to the problem of sound radiation
of a spherical cup. The same solution is given in the monograph [2]. Chapter XX, for-
mulae (22) and (39). The solution (8) described the acoustic field for an arbitrary dis-
tance r > R. The specific form of this solution describes the far field: for r — o in ac-
cordance with [2]

—-i[kr—(m+1)—;£]

hm(kr) =exp pm : (19)
Equations (8) and (17) lead to
= —i[kr-(m+1)%r]
'P=202h:m (eR) &P P Pu( 61, 62)P(cos0) 20)

The formula (20) was used to calculate of numerical examples.

PART II - NUMERICAL CALCULATIONS

7. Frame of numerical calculations

First, verifying calculations were carried out:
— since the series in the formula (8) is infinite, the number of terms ensuring adequate
accuracy of results was numerically determined,
— the distance from the sphere which can be assumed as the approximate boundary of the
far field was estimated also numerically. Furthermore the directivity function was calcu-
lated in terms of:

the width of the ring,

the position of the ring with constant width,

the dimensionless wave number ka for a fixed position of the ring on the sphere and
for a fixed width.

Up to now there are no papers concerning the directivity function of a ring placed on
a sphere. Therefore the validity of the computer programme was checked by comparing
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the directional function calculated for a spherical cup with the characteristic for such a
source given in the monograph [2].

8. Directivity function of a source
This means the far field defined by

|p
D=— 21
Pl (

where: |p| — pressure amplitude measured in an arbitrary direction, | po| — amplitude of
maximal pressure.

The formula (21) express the pressure drop in an arbitrary direction in dimensionless
units. It is convenient to express this drop in dB. Then

|p]
DdB =20 lgm_ (22)
=7 pol
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FIG. 2. Directivity of the source as a function of the terms’ number of the series (8).
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Since p(r) = po %J, then time harmonic radiation the spatial distribution of acoustical

pressure is p = iwpo ¥, where ¥is defined by the formula (8).

9. Examples

9.1. The shape of the far field was investigated as a function of the number of terms
in the sum (8).
A spherical cup defined by angles 6,=0,0,=60 and kR=3, R=0.1, k=30,
f=1600 [Hz] was assumed. The results of calculations are presented in Fig. 2. Line “1”
was plotted for m =2, line “2” for m =3 line “3” for m =5 and line “4” for m = 10.
Examination of Fig. 2 indicates that the difference between the directivity function cal-
culated for m = 5 and m = 10 are small. Calculations were carried out on an IBM PC/AT
computer, so even when much greater values of m were taken into consideration, e.g.
m = 50, the calculating time was not very much longer, m = 10 was accepted for further
calculations.

9.2. The distance from the surface of the sphere which can be assumed as the bound-
ary of the Fraunhofer zone. The following values were assumed: AR =3,R=0.1,

Or \
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FiG. 3. Directivity of the source as a function of the distance r.
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FIG. 4. Directivity of the source as a function of the ring’s width.

6, =30, 6, =60. The distance from the surface of the sphere was changed r = u x R. In
Fig. 3 line “1” is plotted for u = 2, line “2” for u = 5, line “3” for u = 8. As can be seen
from Fig. 3 lines “2” and “3” are close to each other. This means that the shape of the
field does not change. For a chosen, frequency of f= 1600 [Hz] 8 x R = 4 diameters of
the source can be accepted as the boundary of the far field. In the further part of this
paper r = 10 x R was assumed.

9.3. The directivity function was calculated for a variable width of the ring, for
kR = 3. This value was chosen so as to compare the results of calculations for a specific
shape of the ring (spherical cup) with results given by the bibliography. Line “1” in Fig.
4 is plotted for such a case, i.c., 6, =0, 6, = 60. Its shape corresponds with a line which
illustrates the far field for a spherical cup with the same parameters 2], Fig. 20.7. In this
way the validity of the elaborated computer programme was checked. Line “2” is plotted
for 8, =30, 6, = 60, curve “3” for 6, = 45, 8, = 60. As can be seen from Fig. 4 in all
cases the maximal energy is radiated in the direction of the main axis. As the width of the
ring and its position on the sphere change the shape of the directivity function and value
of the acoustical pressure in the main axis in the silence zone change.

9.4. The shape of the directivity function was calculated for a constant width of the
ring and various positions of the ring on the sphere (kR = 3). In Fig. 5 line “1” is for a
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spherical cup with ;=0 and 8, =30, line “2” for a ring with 6, =30 and 6, = 60 and
6, = 90. Examination of Fig. 5 indicates that as the ring moves on the sphere, the third
local maximum moves with it the first, main one is on the axis of the source in the sound
zone. The second one is on the axis of the source in the silence zone.

9.5. The shape of the directivity function was calculated for a constant width of the
ring and constant place of the ring on the sphere ( 6, = 30, 6, = 60) for various frequency
fvalues. In Fig. 6 line “1” is plotted for f = 500 Hz, line “2” for f= 1000 Hz, line “3” for
f=2000 Hz, while line “4” for f=5000 Hz. It should be noted from Fig. 6 that Dgp
strongly depends on f, even within the presented range. It was impossible to calculate
Dy for other f, because of the limitation of argument values of the special function cal-
culated using subroutines from the CERN library.

10. Conclusions

Examples solved in this paper confirm the correctness of the given generalized the-
ory of sound radiation by sources with spherical shape.

The Fourier method was used to reach the solution in the form of a quickly conver-
gent series. [t was proved that is is enough to take only the first few terms in practical
calculations of the directivity function. The shape of the directivity function depends on
the width of the ring, its place on the sphere and also very strongly on the vibration
frequency. It is characteristic of Dgg that it has two constant local maxima; both are on
the main axis of the source-one in the sound zone, the second in the silence zone. The
third local maximum appears depending on the position of the ring on the sphere.

The topic of this paper will be continued in order to find such a source with the most
directive i.e. with a sharp main leat and small side leaves.
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This paper presents a model of the discrete sound induction effect due to a flow over a
deep cavity in the wall of a rectangular duct. Theoretical analysis applies shear layer ap-
proximation with a vortex sheet, with deflection satisfying the Kutta—Zukowski condition,
and an equivalent impedence system of a deep cavity with cavity impedence change in the
presence of the flow included. The applied theoretical method makes it possible to determine
the effect of resonance modes of the cavity on disturbances of the vortex sheet and also to

determine the frequency and relative value of pressure amplitude in the case of a discrete
sound.

1. Introduction

The low Mach number flow over a rectangular cavity is accompanied by a charac-
teristic effect of generation of sound with high intensity in narrow frequency bands. The
predominant character of narrow band components in the generated sound is reflected in
the widely accepted terminology. In accordance with this terminology this type of noise
is defined as a sound with discrete frequency or simply, as a discrete sound. In reality the
sound spectrum is continuous and besides components with considerable intensity in one
or several frequency bands, also a wide-band noise of turbulent origin occurs.

Discrete sound generated by a flow over a rectangular cavity is the effect of an inter-
action between disturbances of the shear layer and acoustic disturbances induced in a
cavity [1, 2]. Several possible variants of flow-acoustic interactions are distinguished in
the course of analysis of this effect. In accordance with the classification presented in the
paper [3] the relation //d > 8 defines a class of closed cavities where the shear layer
adheres to the bottom wall of the cavity (I —dimension of the opening of the cavity in the
direction of flow, d —depth of cavity). Open cavities with //d < 8 are the next group. The
formation of a shear layer in open cavities proceeds very much like in the case of a free
flow. An interaction between the shear layer and trailing edge is an additional source of
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flow disturbance [4, 5]. Open cavities are divided into two categories shallow and deep,
and the condition //d = 1 sets the boundary between them.

In the case of a deep cavity, for which //d < 1 the effect of discrete sound induction
is related with the shear layer instability due to two factors. The influence of resonance
modes of the cavity on disturbances of the shear layer is the first factor, while the second
one is the flow-acoustic interaction at the leading and trailing edges. If only the first
factor occurs in the process of sound generation then the instability of the shear layer can
take place solely for frequencies f close to definite values fm which are determined by the
resonance condition for a quarter-wave resonator [6]

kAd - ctan(kd) =0 (1)
and thus
c(2m-1)
fin= Xd+ Ad)’ =1,23,. 2

where m defines the acoustic mode; k and ¢ are the wave number and sound velocity,
respectively; and Ad is the resonator end correction. In the case in which only the second
factor would occur in the process of sound generation, the following relation between the
dimension [ of the cavity and wave length A for disturbances of the shear layer [7] is the
necessary condition for pulsation induction

U A oy, b by 243, )

where n defines the hydrodynamic mode, while 2,y = const is the phase shift due to the
edge effect. Therefore the instability of the shear layer can only occur for strictly defined
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FIG. 1. Deep cavity as a side branch in a rectangular duct /, s — dimensions of cavity, d — depth of cavity,
h — hight of duct, U - main flow velocity.
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In industrial installations for compressed air transport air discharge channels from
the main channel may be a potential source of sound with discrete frequency [8]. Such a
situation occurs when the discharge channel is closed while air flows in the main chan-
nel. In this paper we analyse the most unfavourable case when the discharge channel
joins the main channel under a right angle and forms a deep rectangular cavity during
cut-off (Fig. 1). An equivalent impedence system of a deep cavity with a gas stream
flowing past it (Subsection 2.1) was used in the presented model and the interaction
between resonance modes of the cavity and flow disturbances near the entry to the cavity
(Subsection 2.2) was also taken into consideration. Calculation results of dimensionless
frequency and values of relative pressure amplitude for discrete sound are compared
with the results of measurements presented in paper [8] (Section 3).

2. Theoretical analysis

The case of a flow past a deep cavity with an opening with the following dimensions
—land s (s - perpendicular to the direction of flow) — located in the wall of a rectangular
channel is analysed here (Fig. 1). Low Mach number flow in the channel characteristized
the main velocity U. Hence, M? << 1, where M = U/c. We assume that the dimension of
the opening of the cavity —/ and s — and the height of the channel — h — are much smaller
than the depth of the cavity — d

l/d<<1, s/d<<], “4)
hid<<1 (5)

and so for frequencies close to the fundamental frequency f; (m =1 in formula (2)) we
obtain: :

kl<<1, ks<<l, (6)

kh <<1, ™

where k = 27f/c. On the basis of the condition (7) we can substitute the shear layer
which forms near the opening of the cavity with a vortex sheet. If the displacement of the
vortex sheet is defined by the function & which is a harmonic function of ¢

E= Ealx1, x3) €7, (8)
where @ = 2xf then the velocity components in the direction normal to the plane of the
opening just above and just below the vortex sheet are as follows:

v(x, t)| Py =(—jw+ U%)éﬁm, 9

v(x, z)] %o w0 = JOE="V,, (10)

where X = (x,, X, x3). The velocity v is discontinuous for x, = 0 only when 0 <x; </,
because the velocities v, and v_ at the leading edge and the trailing edge must be equal
to zero
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V. (x;=0)=v.(x1=0)=0. (11)
The condition (11) leads to the so-called Kutta—Zukowski boundary condition
§(x1=0)=6§/8x1(x1=0)=0, (12)

which says that the vortex sheet can only leave the leading edge tangentially. The condi-
tion (12) has another important consequence — the condition of pressure equality on both
sides of the vortex sheet is transferred to the leading edge. It would be very difficult to
determine the boundary conditions at the trailing edge on the basis of the expression
(11). In real conditions the influence of the trailing edge on the disturbances of the shear
layer is strongly nonlinear. In order to take this nonlinearity into consideration in the
presented linear model, we accepted that the displacement of the vortex sheet undergoes
a jump at the trailing edge

E=0 forx;=|,
E=0 forx;>1L (13)

what means that only the right-hand limit of the function & satisfies the boundary condi-
tion (11) at the trailing edge. The introduction of nonlinearity of the function £ at the
trailing edge is a necessary condition for flow energy transfer to the cavity and for the
induction of self-excited oscillations, as HOWE [9] and KELLER and ESCUDIER [10]
papers have proved. This conclusion also finds confirmation in the analysis of an im-
pedance model of a cavity presented in the following part of this paper.

2.1. Impedance model of a deep cavity

It results from the condition (6) that the dimensions of the cavity —/and s —are much
smaller than the length of an acoustic wave. Thus the system formed by the deep cavity
can be considered as a system with lumped elements. The properties of such a system are
characterized by specific acoustic impedance defined as the ratio of acoustic pressure in
the plane of the opening of the cavity to the acoustic velocity component in the direction
perpendicular to this plane. In the case under analysis, pressure as well as the normal
component of velocity depend on the displacement of the vortex sheet and thus are func-
tions of the coordinates x; and xs. Therefore, in an impedance model of a cavity the
pressure corresponds with the mean value of pressure on the surface of the opening of
the cavity, while the normal component of velocity corresponds with the mean value of
the normal component on this surface. In further parts of this paper these quantities will
be called mean pressure and mean normal velocity.

As it results from Egs. (9) and (10), there is a discontinuity of the normal component
of velocity in the plane of the opening of the cavity. This leads to a discontinuity of the
mean normal velocity. This means, from the acoustic point of view, that the cavity
treated as a system with lumped elements, can be divided into two systems: outer in
which the input signal is determined by the mean normal velocity for x, = + 0, and inner
in which the input signal is determined by the mean normal velocity for xz=-0.
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If these quantities are noted as V', and V5, then on the basis of Eqgs. (9) and (10) we have

g 1 5
1 . 3 U
V;=T§6f5’.(—ja)+ Uaxl)gdxldx3=V2+Isofg(x1=t)dx3 (14)
s I 8
jw
ia=m54!§¢ua} (15)

It results from the conditions of pressure equality on both sides of the vortex sheet that
the mean pressure p; is continuous in the plane of the opening of the cavity. Thus

Vl ” —P:/2'1 ] (16)

Va=ps/za, (17

where z; and z, are specific acoustic impedances of the outer and inner system respec-
tively. The minus sign in the expression (16) includes the fact that the phase shift be-
tween mean pressure and mean normal velocity is equal to xzin the outer system [6]. The
‘formulae (16) and (17) do not characterize the acoustic properties of the whole cavity
because they concern the outer and inner system separately. In order to connect these two

systems into one and thus obtain an impedance model of the whole cavity, Eqgs. (16) and
(17) should be substituted in Eq. (14). After conversions we obtain

Z1Z>
ps = Zi+ 25 VO » (18)
where .
U
V= -l_safg(x1 = l)dxs. (19)

Therefore an equivalent impedance system with a parallel connection of impedances of
the outer and inner system is the model of the whole cavity. In this model the mean
normal velocity V, represents the exciting signal and mean pressure p; is the response to
the excitation. As it results from Eq. (18) p, differs from zero only when Vj = 0. Acoustic
oscillations can only be induced in the cavity when £(x1=[) = O (formula (19)) what is
equivalent to the assumption that the function & which defines the displacement of the
vortex sheet is discontinuous on the trailing edge.

2.1.1. Specific acoustic impedance of the outer system

Impedance z, of the outer system characterizes the process of acoustic energy ex-
change between the oscillating medium in the opening of the cavity and the outer
medium. When there is no flow the real component of this impedance corresponds with
the energy lost in the system (i.e. radiated energy) and the imaginary component cor-
responds with the energy of the medium oscillating with the system (i.e. energy initially
transferred to the medium, but later transferred back to the system due to inertia). In the
presence of a flow the energy transfer between the oscillating medium in the opening of
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the cavity and the outer medium is much more complex. In real conditions this process
determines mutual interactions between acoustic disturbances and the mobile medium.
This causes some acoustic energy transfer to the out side [11]. This effect can be in-
cluded in the analysed flow model which is an idealization of an actual flow, by introduc-
ing a modification of impedance z;. To this end we can take advantage of results of
impedance z; measurements presented in WALKER's and CHARWAT’s paper [12] and the
theoretical model suggested by these authors. This model makes it possible to determine
changes of impedance z, in terms of flow velocity. In accordance with [12], impedance
z1 is the sum of two impedances

Z1=21 +23, (20)
where z| characterizes the process of energy transfer between the oscillating medium in
the opening of the cavity and the outer medium with no flow, while z| defines the in-
fluence of flow on this process

cK(M - jkl/2
_ peK( 21 ), 1)
1+5°/4
where K is an empirical constant, S = !/ U, and p is the density of the medium. Im-

pedance z, corresponds with the radiation impedance of a rectangular piston with dimen-
sions / and 5. Hence, on the basis of [13]

"

Zy

z] =r,+jpckAd, (22)
Pk’ a5
rp="2g ("+5) 23)
is the specific acoustic radiation resistance, and
8(1%+1Is+5%)
i on(l+s) )

is the end correction.

2.1.2. Specific acoustic impedance of the inner system

The impedance of the inner system corresponds with the impedance of a rectangular
cavity with depth d and other dimensions —/ and s, with absorption phenomena included.
The effect of acoustic wave damping is related with the occurrence of a tangent force on
the walls of the cavity and with losses due to heat exchange between condensations and
thinning in the medium. If the depth of the cavity greatly exceeds its other dimensions
then the acoustic wave propagating inside the cavity can be considered to be a damped
plane wave with a wave-front perpendicular to the axis of the cavity. Thus the velocity
potential ¢ in the cavity is as follows

¢ = (Ae”’" + Be'”") i (25)
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where A and B are constant their ratio depends on the boundary condition on the bottom
wall of the cavity (x, = —d), and y= n + jk where n is the attenuation constant [14]

1/2
=195 10“(%) ; (26)

The acoustic pressure p and acoustic velocity v in the cavity can be determined on
the basis of the expression (25)

¢ —jwt
’

p= -p%=jpck(Ae”’+Be"’")e (27)
= a¢' 2 r*z —¥xXy\ L, -jet
v—aTzn—y(Ae Be ) e (28)
Since p; = p(x2=0) and V, = v(x, =0), then
__pc A/B+1
2= plVe= A1 =)

If we accept that all walls of the cavity are perfectly rigid then the A/B ratio can be
determined by applying the condition v(x, = —-d) = 0 in Eq. (28). We obtain

A/B=¢e* (30)
and finally
o 21008
Z2= ik cth(yd). (31)

2.1.3. Average acoustic pressure on the surface of the opening of the cavity

The relationship between the exciting signal represented by the mean normal
velocity Vj and mean pressure p, — the response of the cavity to the excitation —is deter-
mined by the expression (18) in the impedance model of the cavity. In this formula pres-
sure p, remains unknown. It is equivalent to the mean acoustic pressure-p on the surface
of the opening of the cavity

{38}

pe =%Bfafp(xz= 0)dx1dxs. (32)

Pressure p is continuous for x, = 0 because p, can be determined by defining p on the
boundary of the outer area, i.e. for x = + 0. If the function ¢, (X, ¢) defines the velocity
potential for x; > 0, then the derivative ¢, /dx; for x, = + 0 corresponds with the normal
component of velocity v, (formula (9))

39,

6x2 Iz-+0.

V(X X3, 1) = (33)

Applying in Eq. (33) the following identity
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vy x5, 1) = [ [0y ys 1)0(x1 - y1)0(xs - y3)dyidys (34)

and the formula (9) which defines the dependence of the normal component v, on the
displacement of the vortex sheet & we obtain

o

¢+=ff[ (—jw+ U%) Ea(y1,y3)}G(}’2=0)d)’idy3a (35)

where
G(x,y,1), X=(x1,%2,%3), ¥=(y1,¥2y3)h
a Green function which satisfies the following boundary conditions:
G G G

672(x2=h)=673(x3=0)=:3x_3(x3gs)=0’ (36)
G —jwt
672(x2=0)=(5(x1—yl)6(x3—y3)e’ , xE<0, l), (37)
ﬁ(x2=0)=0, x & <0, 1>, (38)
axz

The range of variables y; and ys in the expression (35) can be limited to intervals:
0=y, s, 0=ys;=sby extending the conditions £a(y1, y3) = 0 onto the entire rigid sur-
face limiting the entry to the cavity. This is equivalent to the assumption that the separa-
tion of flow only occurs in the entry to the cavity. Since on the boundary of the outer area

plx2=0)=- p(—fw+ Ua%) $.(x2=0), (39

then, after substituting Eq. (39) in Eq. (32) and including Eq. (35), we obtain

sl s 1
e gff e o)

x G(x2=0, y2=0)dy dysdx,dxs. (40)

Considering Eq. (36) for x, € <0, [>, we can present the function G in the following
form:

o o nmx Aol =
G(xv Y t) 2 2 COS("S—Z") [ Gﬂ(xm ¥ t) * G,,(X[], Yuiyo Zh, 3, t) ]: (41)
n=0

where Xo = (x1, x2). The second expression in square brackets in this formula is an addi-
tional component of the Green function. It results from the reflection of the acoustic
wave from the top wall of the channel x, = h. In cases of low Mach number flow and
x, € <0, [> the function G, has the same form as in a case without flow (see the Appen-
dix)
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£,c0s( ?3)
" -
Gu=j————Hi" [k V(x1-y1)+ (x2-y2) ] &7, (42)
where &, is the Neumann constant and k, = (k> - n#%/s%)"/2.

2.2. Disturbances of the vortex sheet

It results from Eqs. (19) and (40), that two fundamental parameters in the impedance
model of a cavity: mean normal velocity Vo and mean pressure p;, depend on the un-
known function & which defines the displacement of the vortex sheet. In the case under
analysis we can accept that sheet disturbances are two-dimensional [15, 16]

E(x1, 1) = Ea(x1)e ™™, (43)
therefore the expression (9) can be noted in the following form:

v (-jo+ U5 o) 6 ) (44)

As we can see from Eq. (13) the function £ is discontinuous at the trailing edge
(x1=1). Thus, if £&.(x,, t) denotes the displacement function-continuous on this edge —
then on the basis of Eq. (13) we have

§(xy, ) = Ee(xp, ) [1-H(x, = 1) ], (45)
where H(x; - 1) is the unit step function
1, x>,
H(x; =)=
m-n-{ o7 (46)
Substituting Eq. (45) in Eq. (44) we hence achieve
a8

Y 1-H(x,-1)]-UE(])d(x,-1)e ™, (47)

v=(—jw&. + Ua

The introduction of a discontinuity in the function & leads to an additional component on
the right hand side in Eq. (47). It represents the pulse velocity source. This source is a
kind of an external force because, as it was assumed in the theoretical model, the discon-
tinuity function & described the nonlinear effects accompanying the interaction between
the shear layer and the trailing edge. A vortex sheet influenced by such a source exhibits
instability which manifests itself in an amplitude increase of the sheet displacement
when the distance from the source grows. If the motion of a vortex sheet located on the
boundary of a low Mach number flow with velocity U in an unbounded two-dimensional
space (no rigid surfaces) is influenced by a velocity source —U &,(1) 6(x; - I) e, then
the displacement of an unstable xortex sheet is described with the function &, which is a
superposition of Kelvin—Helmholtz waves:

£ = ME(D)] i~ 4 peie -0 ] goior (48)
where &= (1 - j)/U, while € is a quantity conjugate with .



296 M. MEISSNER

In the case if a vortex sheet lics within the area of the opening of the cavity, its
unstable motion is a result of the presence of the pulse velocity source at the trailing edge
and the influence of an acoustic signal induced in the cavity. Since, in accordance with
the condition k! < 1, this signal is approximately a plane wave in the plane of the opening
of the cavity, we accepted in our approximation method of the function & that £is a sum
of the functions (48) in which an unknown quantity & was introduced in the place of the
parameter ¢ and the component Q e where Q denotes the amplitude of a plane wave
acoustic displacement was included. The parameter ¢ was changed into the parameter &
_ an unknown function of @, U, 1, 5, d, h — in order to include in £ mutual interactions
between disturbances of the vortex sheet and acoustic modes of the cavity. Therefore the
following assumption was accepted in the £ approximation: the acoustic signal induced
in the cavity does not change the form of the displacement function in the case of an
unstable vortex sheet, it only modifies this function parameters. Hence the form of the
function & accepted in the theoretical model is as follows:

E=ME,(]) [aej“(x"‘) +bel¥® - ] e+ Qe ™, (49)

where a=a, +ja; and a,>0, a;<0. The displacement of the vortex sheet & must
satisfy the Kutta—Zukowski condition at the leading edge, thus

B pr.ll _ B

&(xy, I)=§a(x1)e'j”'=Q(1-“m:€ B+

e-ﬂ.xlﬂ) e—jwl, (50)
where =jal=p,+jpiand

Br=-ail>0, Bi=a,l>0. (51)
The amplitude Q and parémetcr B in the formula (50) are unknown quantities. Equation
(18) should be used to determine B. This equation defines the relationship between the
mean normal velocity Vo and mean pressure p; in the impedance model of a cavity. Once
we know the form of the function E(xy, t), Vo can be determined on the basis of Eq. (19)

V0=@ b -l + ﬁ.,e*ﬁ'-1 TRl (52)
L \B+p B+B

while Egs. (41) and (42) are included in the expression (40) and is integrated in terms of
x3 and ys, it can be written in the following form:

I I
_jpQU ¢, . 0 B o PR
p="25% Bf(-fw+Uaxl)!(rle + e PP - jS) x
X {H[()l)(klxx -yil) +H.;()1)[k\[(x1—y1)2+ 4n’ ]} e dy dxy, (53)

where 71 = B°(jS - pB)/(B+ B’) and y2= B(jS + BY/(B+ B). Since kl << 1, then the
following approximation of the Hankel function [17] can be applied in the formula (53)

3
HEO(klxy -yil) = (kb = y11/2), (54)
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H[kV(xi=y )+ 40 |~ 3 eal-1) "Hz,,’(zkh)—"j%w ()
n=0

When we substitute Egs. (52) and (53) in the expression (18) and integrate it in terms of
x; and y, we obtain the following equation

L Fy(B)
P=JS+ By

The functions F; and F> which occur in this expression are:

(56)

7

nZ1Z B B
Fl(ﬁ)=—pCM(zllizz)[eﬂ—l+ﬁ ( )]ﬁ+(ﬁ)(ﬁ +jS) x
x{S[jln(k[/Z)—g](e'ﬂ'—1)+%JrSEl+(ﬁ’+jS)[2‘3(~ﬁ‘)+%jﬂ24(—[3')]}+

+sz[%-.ln(k£/2)+jfrog] (1 +£)ﬁ, (57)

Fa(B) = SUin(ktj2) % (1= eP) =2 2S5, + (B jS) [ 55(B) + 3 72 B)] (58)

where X, 35, 35 and X, are series as follows:

o En(=1)"(kl/2)* HS, (2kh)

& ="§] 2n+1)! 2 (59)
o &(=1)"(kl/2)” H5,)(2kh)
= =§0 2n+2)! ’ (60)
33(2) = En;nl,)zl (61)
3(z) = 22( 1)"(kl/2)” HS (2kh) 2 (2n o Zond (62)

n=1

In the case of the accepted particular geometry of the system (h, /, s and d are given) Eq.
(56) can be presented in the following form

Br+jBi=F(f, U, B, p), (63)
where F is the function found on the right hand side in Eq. (56). Thus we have

Br=Re[F(f, U, B Bi) ], (64)

Bi=1m[F(f, U, B, B)). (65)

Since the frequency fand velocity U are independent variables then for f = const and
U = const Egs. (64) and (65) represent a set of equations with two unknown quantities —
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B and B;. A numerical procedure is necessary to solve these equations. Roots sought for
are such values of $,and f; which satisfy the conditions (51).

2.3. Discrete sound frequency

The cavity in experimental studies presented in the paper [8] had the same square
section as the main channel, h = [ = s = 6 cm and depth d = 53 cm. The frequency f, of
the discrete sound was determined on the basis of changes of pressure amplitude po mea-
sured at the bottom wall of the cavity in terms of f.

If we accept x, = -d, the pressure po can be determined from the expression (27).
Hence we have

po=jpck(Ae "+ Be™)e ™, (66)

where A = Be®™ on the basis of Eq. (30). The relationship between po and p; can be
determined on the basis of the fact that p, — the pressure in the plane of the opening of the
cavity—corresponds with the p value from the expression

iv _ Ps

ch(yd)’
where P = | po| and @is the amplitude and phase of pressure po, respectively. Substituting
Eq. (18) and including Eq. (52) in Eq. (67), we obtain

Z1Z7 B g B - _
(zl+zl)ch(7d)[ﬁ+ﬁ’e +ﬁ+ﬁ'e 1)

Since the parameter 8= f3, + j B; is a function of fand U then for fixed values h, /, s and
d Eq. (68) can be presented in the following form:

P(LU)=Q gL U, B, U), Bi(f, U)]}, (69)

where g is the function to be found in square brackets on the right hand side in Eq. (68).
For frequency f = f, amplitude P achieves a maximum in terms of f, so

Pi(U)=P(fo U)={Q g [ £ U, B:(f; U), Bi(f, U) ] }max- (70)
The results of calculations of the parameters 8, and f; (roots of the set of Egs. (64) and
(65)), presented in Fig. 2, illustrate a typical dependence of these quantities on the fre-
quency f for U=const in the case of a cavity with the following dimensions:
h=1=s=6cm and d =53 cm. We can see that the function S,(f) achieves a distinct
maximum for a certain frequency f (Fig. 2a). Also the greatest changes in the parameter
B are observed around this frequency (Fig. 2b). Relative changes of the function g for
quantities 8, and B; determined from Figs. 2a, b are of similar character as changes of
B, in terms of f (Fig. 2c). This indicates that the values of the function g depend on the
real part of S mainly.
As we can see from Fig. 2c, the function g reaches a maximum in a very narrow
frequency frange. This makes this function similar to spectral characteristics typical for

po="Pe (67)

u
!

P-Q

]- (68)
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FIG. 2. a) Parameter By, b) parameter S, ¢) relative value of function g from the expression (69) in terms
of frequency f. Flow velocity U = 19.5 m/s.

discrete sound. Therefore basing on the assumption that the parameter Q influences the
function P in terms of f only slightly, and here

where B (U) = B,(f4 U), ﬁf’ (U) = Bi(fs U). Figure 3 presents calculation results of
the parameters ﬁf’ and B for a range of flow velocity from 15 to 26 m/s. We can ob-
serve that changes of 7 and B which accompany an increase of U are clearly of a
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F1G. 3. a) Parameter B, b) parameter ,b'f in terms of frequency velocity U.

different character. The function which describes ﬁf in terms of U has a maximum
(Fig. 3a) while the value of B¢ always decreases when U grows (Fig. 3b). Since the
value of the function g depends mainly on the parameter ﬁf the function
glfs U, Bi(U), ﬁf’(U )] reaches a maximum within the flow range 15-26 m/s, as it re-
sults from Fig. 3. If we make a hypothesis that the parameter Q also only insignificantly
influences the function P, in terms of U, then relative changes of P, will correspond with
relative changes of the function g. Hence

PiU) __ glfaU BB

(72)
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3. Results and conclusions

Figure 4 presents the results of measurements and calculations of the P 4/ (P 4)max ratio
as well as of the dimensionless frequency St =f;I/U. From Fig. 4a we can see that
P 4/(Pa)max determined theoretically and experimentally are very similar, but the maxi-
mum value of P4/ (P4)max Occurs at a lower flow velocity U = 19.5 m/s.

When we compare experimental data with the calculated results shown in Fig. 4b we
notice that the values of the frequencies f; determined theoretically are always slightly
higher than the measured frequencies f,. For example forP ;/(Pa)max = 1 the theoretically
determined frequency f; is equal to 150.3 Hz, while f; determined from experiment for
P 4/(Pa)max 1s €qual to 145.5 Hz [8]. The fundamental frequently frequency f, is calcu-
lated from the formula (2) for a cavity with depth d = 53 cm and end correction deter-
mined on the basis of Eq. (24) is equal to 154.4 Hz. This means that the maximum gene-
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FIG. 4. a) Ratio P4/(P4)max, b) dimensions frequency St in terms of velocity(---) — calculated values, (...)
— measurement results in accordance with [8].
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ration of discrete sound occurs at a frequency f; slightly lower than the fundamental
frequency f; of the cavity.

The ratio of propagation velocity U, of flow disturbances within the opening of the
cavity and main flow velocity U is a quantity frequently determined theoretically and
experimentally. The velocity U, presented in the theoretically model in Section 2 is equi-
valent to the mean phase velocity Uy for disturbances of the vortex sheet described with
the function (50) for f = f,. In order to determine Uy, Eq. (50) must be converted into the
following form

E(xy, t) = | Ea(x1)] €/ 1V00) ~27at]) (73)
whc}e

d
Y(x1) = arctg{ [ tg(Bixu/l) —%th(ﬁfxlll) l X

r

p -
1 _ﬁ_t d d
x[1_cos(ﬁfx1/1)ch(ﬁfx1ﬂ)+ﬂd tg(ﬁ:xlfl)th(ﬁrxlfl)] ‘ (74)

The velocity Uy defines the propagation velocity of disturbances with constant phase

(%+ Uf%) [ 9(x1) ~27fat ] =0, (75)
and thus - -1
U;=2Jrfd(671i'] : (76)

Since d1/dx, = const, then Uychanges in terms of x,. Therefore U. corresponds with the
mean value Uyin an interval x; € <0, [>. Hence
1

Ue _fa| 20 (39
=T [O(BXl)dxl : (77

The expression in square brackets in Eq. (77) represents the wave length A for disturban-
ces of the vortex sheet within the opening of the cavity. Equation (77) can be the noted
as follows:

E=f.:‘ﬁ=5t(i) : (78)

Figure 5 presents the results of calculations of the ratio // A within the flow velocity
range 15-26 m/s ((91/dx,)”" was integrated numerically). We can see from Fig. 5a that
the ratio //A changes within the limits

086<1/is133, (79)



SOUND INDUCED BY FLOW 303

17X a)

13F T~

12t =

11+ N

10t B

09t v

08 L 1 L L Il

u./u b)
05

I~
-
~—o

041

e ———————
ha e —— ———

a3r

6 8 20 22 Ulm/s]

F1G. 5. a) Ratio I/ A versus U, b) ratio U/ U versus U.

and its value always decreased when U grows. This means that the wave length A in-
creases when flow velocity is increased. For velocity U = 19.5 m/s, when P4/ (P 2)max

I/A=11, (80)

what according to Table 1 is a value close to //A given in the papers [8], [18].
Figure 5b presents U,/ U in terms of U calculated from the formula (78) for values

Table 1. Ratio % for maximum sound generation

authors In
ELDER [6] 0.77
BRUGGEMAN [8] 091
ELDER
FARABEE [18] 1.05
DEMETZ

Stand I/ A from Figs. 4b and 5a. We can see that U,/ U changes are insignificant within
the flow velocity range 15-26 m/s because

0.4 5 U./Us045. (81)
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when Pg/Pamax = 1
U./U =042,

what, according to Table 2, is a value close to U,/ U stated in the papers [6], [8].

Table 2. Ratio U, /U for maximum sound

generation

authors U./U
ELDER [6] 0.46
BRUGGEMAN [8] 0.47
ELDER
FARABEE  [18] 0.35-0.6
DEMETZ

APPENDIX

Calculation of Green function G .
The function G, is a solution of the equation

3°G

> cos(nmxs/s) VG, - ijM@ -M
0 dxy 0x]

= . kia,,) =o(x-y)e?”

(82)

(AD)

where k, = (k% — n>2*/s*)"’% After multiplying A1 by cos (nzx3/s) and integrating it

with respect to x3 within the interval x3 € <0, s>, we obtain

G,,_MzaG

_ kMt
axL

+ G, =

_ Sncos(n’m’:‘}/s) d(x1 _yl) 6(x2_y2)e-jwt-

When we apply the following conversion of variables in Eq. (A2)
xt = fPxn i = 10V, X5 = s, ph = pya € = £+ WM (xi=y1)le,
where u=(1-M* )'% we have ‘
V3G, + k3G, = f(y3) 0(x'1 = y1) O(x'2 - y'2) e,

(A2)

(A3)

(A4)

where f(ys) = u* —gﬂ—w—). Equation (A4) is a inhomogeneous wave equation in

s
two-dimensional space, therefore, when we include the condition (38) we have

1y —jwt
Gn= _Ejf(y3)H6n(kﬂr )CI f,

(AS)
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where r' = [ (x{ =y )*+ (x3 —y3)*]"% Returning to initial variables we obtain

Gom i encos(nxyag’s) HY kut e kM(xi;yl) I .
25(1 - M?) 1-M -M
where 7' = (x;-y1)* + (1 - M*) (x2-y2)* "2
When M? << 1, kl << 1 and x, € <0, I>, y; € <0, [>
Gum = ZEGIIL) D (1) e, (A7)

where r = [(x; -y 12 (Ty— y2)2]u ? 50 the function G, has the same form as it would
have in a case without flow.
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SOUND SOURCES OF HIGH DIRECTIVITY

R. WYRZYKOWSKI

Institute of Physics, Pedagogical College
(35-310 Rzeszow, Rejtana 16a)

The reversibility of Hankel transform suggests the possibility of constructing such a
sound source which radiates only within a certain cone. Both the approximate and accurate
theories of that source are given. It is proved in the paper that the accurate source is better
than the aaproximate one. The source is called the source of high directivity.

Introduction

In paper [7] was suggested the theoretical possibility of constructing a sound source
radiating only within a certain cone. Such a property is exhibited by a baffled piston with

a special distribution of the velocity amplitude, given by the Bessel function J 1(n-;-)

(n will be explained later, “a” — radius of the piston, r — cylindrical coordinate) divided
by the argument. The distribution must be extended theoretically to infinity. Such a
source was called the source of high directivity. In the present paper we consider the case
of the real distribution (only on the piston itself) and we prove that its directivity is better
than the theoretical one.

The author is indebted to prof. dr hab. Marek RyTeL for his interesting and stimu-
lating discussions and suggestions.

1. Theoretical basis
The possibility of realizing the directivity pattern mentioned above is the conclusion
of reversibility of the Hankel transform [1]. That transform of the velocity distribution
u(r) is the main part of the R-directivity index [7]

Ki —ZQi‘ f U(P)To(Rrsiny) rdF: )
0
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where Q is the output of the source, y— the angle between the z — axis perpendicular to
the plane of the piston and the given direction, k — the wave number.
The Hankel transform of zero order is defined by the formula [1]

Ho(p) = [u(r)Jo( pr)rdr, @

where Jo( pr) denotes the Bessel function of zero order. If the amplitude of velocity on
the piston is O for 7 = a and u(r) for r < a, then

Ho(p) = fu(r)Jo(pr)rdr 3)
0
and the directivity index is
= 2% b (ksiny). @)
Q
It is well known that for the constant amplitude uo we have
up r<a,
u=1{ o )
rza,
and the directivity index has the form
Ji(kasiny)
R=2 kasiny ’ ©)

where J,(kasiny) denotes the Bessel function of the order one. One may expect the
velocity amplitude distribution of the form

¥
Jy ("E )
u(r) = 2up——", ™
e
a
to have the directivity index
const ¥S Yiim
R =
O }’ > Yiima

where ¥;i, denotes the so-called limiting angle — the half of the cone angle, in which the
sound is radiated. Of course, the constant in the formula (8) will be normalized to unity.
The directivity (8) can be realized only if the distribution (7) is extended on the-entire
plane of the baffle. We choose the gauge factor # to diminsh the influence of the area
r > a under the integral. Such a method is called the approximate one. In the accurate
method we choose the velocity distribution as follows:

@

!

|
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r<da
u(r)= W 9
0 r=a.

In the present paper both methods were applied and the results compared. One may ex-
pect that the distribution (9) will not give the sharp break-off of the directivity pattern for

Y= Ylim-
2. Approximate method

We choose the distribution of the velocity as in the formula (7). It is evident that the
best option is to accept for r = a u(a) = 0; therefore we must have

Ji(n)=0. (10)
The gauge factor » must be equal to the zeros of the functionJ;(n) denoted as @y,
n=Qu m=1,2,.. (11)
where ao =0, a;; = 3.8317
The formula (7) now takes the form
#
Ji( aim I )
u(r)=2ug—r (12)
Ay —
For r — 0 we have [7]:
5
Jl( Ay ; ) 1
Wiilse— =5 (13)
r—=0 r 2
i —
and
u(0) = u,. (14)

That explains the presence of the factor 2 in the formula (12). Owing to the extension of
the distribution (12) to infinity, the Hankel transform of u(r) is

Ho(ksiny) = 2uo—— [J1( @in =) Jo(krsiny)dr. (15)
(11,,,0 a

The integral in the formula (15) is given in the tables of integrals [1; p. 681]. It has the
value
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2 for ksiny<%

© alm a

r : a . A

P J = i e—
!J;(al a) o(krsiny)dr Y for ksiny 2 (16)

0 for ksiny>%

From the formula (15) we calculate the directivity index (4) in the form

4
( fo for ksin;’<%
2 a
im
o[
dmu o
R= —02 for ksiny=—c£1- (17)
o) Qim 4
a
0 for ksiny>%

The output of the source for the velocity distribution, determined by (7), is
a ¢ r
=4mug— —)d
Q =4mu o !Jl(al,na) " (18)

and solving the elementary integral we get

2
0 = 4mu, ('E:L) . (19)

1m

Substituting (19) into (17) we get

—

for ksin y%‘lﬂ

=
I
l

for ksiny=%. (20)

L 0  for ksiny> %
We see that in our problem does exist a limiting angle

< siuri o
Yiim = SN a’ (21)

above which we have no sound field i.e. no radiation of the sound energy. In the physical
sense only ¥jm < /2 Or siny;, <1 is acceptable. For that reason only for the case
ka > a;,, we have the required source.
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The condition ka > a;,, can be expressed by the corresponding wavelength A

2ma
A< a—lm. (22)
If we take
ka= Ay (23)
then:
2na
lhm = E’;’;’ (24)

In the physical sense y;;, takes its maximum value

4

lim = 2 (25)
Figure 1 represents the values y;;, versus ka for ay;, @;; and aya.
Vim
90°
500 5
L ]
L CL”
¥ @,
L
OQU Ik 1 1 n 5. L A " ' ’b i ‘1 ' 1 1.5 i 1 1 1 2.0 A A ka

HG. 1. Values of piim versus ka for ayy, ajzand a3 .

Further reduction of ka leads us to a undirectional source. Coming now to the calculation
of the specific impedance of our idealised source, we denote by @ its real part and by y
its imaginary part. To find & we will modify the method applied in [6] for the constant
velocity amplitude. For that purpose we introduce in the formula given in [6] a normaliz-
ing coefficient x and we get

Jt.f2

(’“’ f R*(kasiny)sinydy. (26)

0=

It should be remembered that formula (26) for x = 1 was obtained for the constant
amplitude by equating the acoustic power emitted by the source (expressed by 6) to the
power obtained in the farfield by integrating the square of the directivity index. When the
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amplitude is not constant we must remember that the first quantity is proportional to the
mean value of squared velocity amplitude, but the second one is based on the output and
is proportional to the square of the mean value. When we calculate the accurate values
we will demonstrate the method of calculating k. In the present case we can find it simp-
ly by equating the lim & to unity. From (20) and (26) we have

ka— >
Yiim
(ka)® ¢
0=x > afsmydy, (27
from which we directly obtain
k 2
0= x(—;—)( 1 - COSViim) (28)

Substituting (21) for the value of sin yjim, W€ may write

VIS \/ Ay |
COS Yiim = 1 - sin Yiim = 1- E“ (29)

and also
(ka)’ [ oim\’ ]
= - o . 0
0=k > 1 1 T (30)
When ka — o we have:
lim@=+ i lim(ka)*[1-1+ L +..] (31)
ka — o 2 ka— « 2(ka)2 o
Since
limf=1 (32)
ka— =
we obtain
1 K Qin
e = 3
242 ) =
and the normalizing coefficient:
. iy (34)
A im
Substituting (34) into (30) we get:
2(ka)? i)’ ]
0= =) 1- 1—(ka) ; (35)

The formula (35) is valid only when ka = @y
When ka — ¢, We have:

lim 6=2. (36)

ka—= a,
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As it was explained before, the case ka < a,,, does not present any interest. But, to keep
continuity of our reasoning, we can admit that for ka < @y, Jjim remains constant and
equal to /2 in the formula (28), and
2(ka)?
B (37
A

Of course, when ka — 0, the value of #tends to zero. To obtain the imaginary part of the
specific impedance we use the method given by W. RDZANEK in [4], and substitute in the
formula (26), representing the real part, cosh for siny and integrating with respect to
1 from 0 to . We have therefore, due to (34):

8:

2(ka)? ¢
g SR Y J R?(kacoshy)coshypdy:. (38)
Aim
In the considered case R(coshy) is equal to 1 for y ranging from 0 to ym, and O for
7> Vim- It is well known [4] that the application of integral transform (38) gives us the
result to within the accuracy of a constant. That value must be found from the condition

lim y = 0. (39)
ka— o
From the formula (38) we obtain
2 k 2 Yim
X= ( f) fcoshwdtp+ <. (40)
Ul 0
In the case of ka > a,,,, the integral (40) is a simple one and we have
2(ka)*
X= ( f ) sinh yjim + C. (41)
A
or, according to (21)
2( ka )2 . .1 %im
= ' h — : 42
¥ =) [ sin (sm ka)]+c (42)

Since integration in (40) is performed with respect to 1, C may be a function of ka, and
should be calculated from the condition (39)
When ka — « we have

; . -1 Ay _ alm-‘alm
smh(sm %ka) Smh_ka T T (43)
and
k 2
TR L Y (44)

ka—> » ka—o iy ka
The only possibility of fulfilling the above condition is to take
o sudka, (45)

a]_,.,,’
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and finally we obtain

2(ka)® . (. .10\ 2ka
= h bl P v
p-a sinh |sin™ — = (46)
When ka = ay,, we must replace (l;_a by 1 and we obtain
im
x= 2sinhg -2 =2.5986. 7

When ka < a,,, the value of ¥, in the formula (41) remains equal to 7/2. In that case
we must choose another value of the constant (from the condition of continuity for
a1, = ka and the positive value of ysi.e.

2
K = 2(;‘;) (sinhg— 1) (48)

or, substituting the value of sinhs/2,
sinhz/2 = 2.2993,

we get
(ka)®
x = 2.5986 5 (49)
Qm
We see that for ka — 0 we have
lim =0
ka—0

Of course, the case of ka < ay,, is of theoretical interest only, since it has no application
in practice.

3. The accurate method

We assume the distribution function of the velocity amplitude as

T @)
ZuO—?— for O<r<a
u(r)= Cin (50)
0 for r=za
The directivity index (1) takes then the form:
a
4ma r g
R=MOQalm Bf.h(almz).lg(krsmy)dr. (51)

In order to calculate the output of the source we must replace in (18) the upper limit
o by a.
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a o r
O'% 4nuoa—m(;f.ll(a1mz)dr. (52)

The integral is an elementary one and we get
2

Q 43’5“0( ][1 Jo(al,,,] (53)

Substituting (53) into (51) we obtain the directivity index in the form

R- [ al,,,i Vo( krsiny)dr. (54)

all-Jo(am)] b

Evidently, for y=0 we get R = 1. In the formula (54) we introduce a new variable:

x== (55)

a

and we get:
1

Sy =] [1(@unx)Jo(kaxsiny)dsx, (56)

Rm——0
1-Jo(ax

Figures 2, 3, 4 represent the directivity index versus the angle yfor ay;, apand 3. The
continuous lines represent the approximate case the dashed line the accurate solutions
(56). Of course, the value ¥y, has not the same meaning as before. Nevertheless, it is
easy to calculate the directivity pattern for y= y;» (21) because the above integral takes
then a form given in the tables of integrals. In that case we obtain (kasiny = dy,,)

1

D s 7)ol ) d. (57)

Rjjm=—72—
T = Jo( @) 8

T3

N}
T

TETA,CHI

0 — ] 7 6 KA 20

FIG. 2. Directivity index for a1, 12, a13: approximate case — dashed line, accurate case — continuous
line.
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—;—90“

FIG. 3. Directivity index for ar11, @12, er13: approximate case — dashed line, accurate case — continuous
line.

“hd ,90°
0 1

FIG. 4. Directivity index for a11, 12, 13: approximate case —dashed line, accurate casc — continuous
line.

Substituting in (57) the value of the integral [3 p. 41] we get:
1
an=§[1+«fo( Cim) |- (58)

We see that the value of the directivity index for yjn is independent of ka but, of course,
it is obtained for a fixed y, which depends on ka. For example, we have for
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TETA,CHI

-

0

FIG. 5. Real & and imaginary yxm parts of the specific impedance for )], 12 and a3 versus ka.
Continuous line — accurate solution, dashed line — approximate one.

a 12

LN

TETA, CHI

0 y; e 7 6 KA 20

FIG. 6. Real 6,, and imaginary . parts of the specific impedance for a1, a2 and a3 versus ka.
Continuous line — accurate solution, dashed line — approximate one.

@11 Riim = 0.2981, for a3 Rjim = 0.6501 and for &3 Ry = 0.3752.
Simultaneously we take into account that the integral in the formula (56) may be
considered as the definition of a new function. We will denote that function by F,,(x)

Fo(x) = [J1( @imt)To(xt)dt. (59)
0

Examination of that function must be considered as a separate subject; in the present
paper we will only use the values F,,(x) calculated numerically. Applying (56), the direc-
tivity index takes now the form:
Aim
R = TOT TR
1-J 0( a j_m)
According to (26) we can write the real part of the specific impedance in the following
form:

Fn(kasiny). (60)
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—90°

FIG. 7. Real 8,, and imaginary Xm parts of the specific impedance for ar1y, @12 and @3 versus ka.
Continuous line — accurate solution, dashed line — approximate one.

k7]
(ka)? At
On=x F2(kasiny)sinyd 61
2 TT-daea T4 Sl ©b
and the imaginary one:
(ka)? Lim

m=K FZ(kacoshy) coshyd 62
B (- Ta( @) 1 f IR =

To calculate the normalizing coefficient k we denote by u the amplitude of the velocity
on the piston. According to the remarks following (26) we have:

2
Umean
i T (63)

Substituting (50) for the value of u in (63) we have 44} both in numerator and deno-
minator. For that reason we may omit that factor and write the mean values:

o= Jul r)rdr = J' e f J(x)dx (64)
0

where:
r
= Uy 65
X m" (65)

The integral in the formula (64) is a simple one and we get:

umean=% [I_JO(alm)] (66)
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We obtain the mean value of the square velocity as:

"le(al,,,i) am2
2 2 a 2 Jl(x)
U dnen=—% | ————dr=—"- dx, 6
(4 )ome= 23 (alm)z a%,,,of s (©7)
— | r
a

where x is, as before, defined by the formuia (65). The integral in (67) is given in tables
of integrals [3, p. 41 form 17] in the form:

flj, dt=—n[1+Jn(x)+J,,(x) 221,,(x)] (68)
0 ! k=0
In our case we have n = 1 and
r1 1
f?J["(t)dt=-2-[ 1o Jdite) T8 (69)
0
Taking into account the limits of integration we get
1
() =5~ [ 1= Jo(@1m) ] (70)
1m

According to (66) and (70) the normalizing coefficient (63) is equal to:
4 [1-Jo(awm)]® 4 1-Jo(@im)
o ke e (71)
[0 &7 I—Jo(alm) A 1+J0(a1m)

To obtain the final results we must substitute the k coefficient given by (71) to the for-
mulae (61) and (62). Thus we get

2(ka)®

Op= 110 am)fF (kasiny)sinydy (72)
and:
= %]Fm(kacoshw)mshwdw (73)

The enclosed figures present the values of 8, and ¥,, (72), (73) continuous line and the
approximate values dashed line for m =1, 2, 3 versus ka. The results were obtained
numerically.

Conclusions

The approximate method of the considered velocity distribution gives us the direc-
tivity coefficient equal to 1 in a certain angle, when ka > a,,. The results of the accurate
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method have a better directivity. Of course, the cut-off of the directivity coefficient does
not occur, but practically the pattern is sharper and the lateral lobes are so small, that they
can be neglected — they are invisible in the figure. The real part of the specific impedance
is practically equal to 1 for ka > 1.5a 1, and the imaginary part is then equal to 0. So we
may say that the source adjusts well to the medium. If we compare the results for dif-
ferent values of a,,, we see that the source for @y, has the best properties. Since this is
the case the easiest to be realised we have no nodal lines, this value should be chosen.
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ACOUSTIC POWER OF RADIATION OF A CIRCULAR PLATE FIXED ON THE RIM AND
VIBRATING UNDER EXTERNAL PRESSURE

W.RDZANEK

Institute of Physics, Pedagogical University
(34-310 Rzeszdw, Rejtana 16a)

The main scientific aim of our work was the realization of theoretical research on the
problem of energy radiation of axially-symmetric forced vibrations of a circular plate. This
research focussed on the determination of frequency characteristics of relative acoustic
power. A thin plate, fixed on the rim in a rigid and flat acoustic baffle, radiating into a lossless
and homogeneous fluid medium was considered. Dynamic interactions between the acoustic
wave radiated by the plate and the form of the radiations as well as losses in the plate were
neglected.

The active acoustic power of radiation was expressed with a single integral within finite
limits and with elementary form in special cases, i.e., for high-frequency wave radiation and
when the plate’s thickness is sufficiently small in relation to its diameter. The results of cal-
culations are also presented in graphical form.

1. Introduction

The practical application of a circular plate as a vibrating system in acoustic devices
— sound emitting and sound receiving — has led to a comprehensive and more detailed
description of acoustic properties and of the problem of radiation energy of axially sym-
metrical forces vibrations of a circular plate, in particular.

Besides theoretical considerations of the analysis of the field of acoustic radiation
from supercifial sources with a “guessed” distribution of vibration velocity (which ap-
proximately satisfies the boundary conditions related with the shape of the source), this
field was also theoretically analysed. Here the cause is taken into consideration assuming
that the distribution of the force inducing vibrations of the source is known.

A detailed description of parameters which characterize a circular membrane as a
sound source or receiver, with a stress on the problem of the output impedance frequency
characteristic, can be found in Haiasaki’s paper [ 1]. The acoustic impedance of radiation
of a circular membrane excited to vibrate with the neglect of losses in the membrane and
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the influence of the surroundings is known from the paper [5]. SzenpErOw [9] analysed
sound radiation of an oscillating membrane without an acoustic baffle applying associa-
ted integral equations. The paper [8] analyzes the problem of radiation of an acoustic
wave by a circular plate. However, the directional characteristic was only determined
with the application of the classical Kirchoff-Love plate theory under the assumption
that the surface distribution of the factor forcing vibrations is known.

Expressions for acoustic power radiated by a circular plate, concerning individual
forms of vibrations, are presented in the papers [6] and [7]. Yet, their application was
limited to high frequencies. This problem was axpanded in LEVINE’s and LEPPINGTON’S
paper [3] by including a correction for the “oscillating” character of radiated acoustic
power. Furthermore the effective damping coefficient was calculated for frequencies
comparable with resonance frequencies, including losses in the plate and the relation
between the wave radiated by the plate and its vibrations.

However, there is no expression so far for acoustic power radiated by a circular plate
when the surface distribution of the factor forcing vibrations is known.

This paper undertakes this problem under the assumption that the plate is sufficiently
thin and the forcing pressure is strong enough to neglect the influence of losses, includ-
ing vibration damping by the acoustic field. Frequency characteristics of active power
were determined for a known surface distribution of the pressure forcing vibrations. Ele-
mentary forms of expressions were achieved for special cases, i.., for high frequencies
of radiated wave and for a plate thickness sufficiently small with respect to its diameter.
It was also shown that expressions obtained for limiting cases are already known from
previous papers. The results of numerical calculations are presented in graphical form.

2. Assumptions of the analysis

Let us consider the case of an acoustic wave radiated in a fluid medium with low
self-resistance (¢.g., air) by a thin homogeneous circular plate (r < a, z = 0) with a plane,
as a rigid acoustic baffle (r > a, z = 0) behind it complete fixing of the plate results in the
following boundary conditions: the deflection of the plate 7(r) and the derivative
an(r)/dr are equal to zero for r = a. We assume that the plate is subject to external
pressure Re { f(r)exp(-iwt) } forO=<r<a.

The theoretical analysis of such a system is based on the equation of vibrations given
by LEVINE and LEPPINGTON [3]

(ka'V* - 1) v+ 261 ko= -i/(Mw)f 1)
for z =+ 0. The quantity ¢(r, z)exp(-iwt) is the acoustic potential which fulfills the
Helmholtz equation (V2 + kﬁ) @=0, k= w/c. From now on we will neglect the time
factor exp (—iwt). The normal component of vibration velocity of the plates surface
v(r) = —i wn(r) and acoustic pressure generated by the plate p(r) = ipo we(r), where
po is the density in rest stage of the fluid medium. The wave number of the plate is
defined with k, =M w’/B, where M is the mass of the plate per unit surface,
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B = By(1 - i¢') is the plates flexural rigidity with internal losses in the plate included [4],
&'~ measure of plates damping. The quantity &; = po/(Mko) is the measure of density in
rest stage of the fluid medium to material density of the plate ratio.

We will limit our considerations to the case of acoustic power radiated by the plate
to which the theory of bending of thin plates applies, accepting that the plates thickness
h satisfies the inequality (e.g., [2]).

h<01D, @)

where D = 2a is the diameter of the plate. In accordance with the assumptions, the plate
is surrounded by a fluid medium with low self-resistance and the following condition is
fulfilled:

E;ko = pofM<< 1, (3)

Hence, instead of Eq. (1) we have
(V' =k*)n(r) =f(r)/Bo, “

where k* = @VM/B,. The disregard of term 2¢&1ko@ in Eq. (1) means that the influence
of the acoustic wave radiated by both surfaces of the plate on the form of vibrations is
disregarded.

Moreover, we accept that the amplitude of the factor inducing vibrations is as fol-
lows:

f(r) =

fo for 0<r<ay,
{ 5

O for ap<r<a.

where f = const. Accepted simplifications lead to a limitation of the range of application
of the solution to Eq. (4) depending on the frequency of the factor inducing vibrations.
The solution to Eq. (4) should not be applied to frequencies close or equal to resonance
frequencies.

In practice such a type of vibration excitation can be realized with, for example, two
flat circular electrodes with a radius a < a, parallel to the surface of the plate [1]. The
solution to Eq. (4) for a plate excited to vibrate by the factor (5) is as follows [8]:

__ T
25(y)

ni(r)/mo=1 {lyh(}’o)+gh(}’)[Jl(YO)No(}’)-i-

oD =SB LN 0 =700 M) 1|

inlhr) o el LI G0+ LRGE) (K () 1+

=Jo() [1(y0) Ki(y) = 11 () Ki(y0) ] } Jo(kr) (6)

forO<r<a,,
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n2(r)/ 70 -2—}55{—1};11(;@) 2100 [ Mo (1) +

Yo
25(y)

+N1(9)Io(y) ]}Jo{kf) - {l},h(}’o) +1i(y0) [KO(}’)J'l(}’) +

-Ki(y)Jo(7) ]}IO(kf) +% {h(}’u)Ko(kT) +J§r11( Yo) No(kr) ] (7

forap<r<a
where J,(x) is a Bessel function, I,(x) — modified Bessel function, N, (x) — Neumann
function, K, (x) — cylindrical MacDonald function, all are of the n-order.
The following notation was introduced:

y=ka, yo=kay, S(?)=Jo(?)11(?)+Io(Y)Jl(}’) ®
and
g I
o= -3 " )

The relative amplitude of the transverse displacement of points on the plates surface
can be expressed in a much simpler way in a special case when the whole surface of the
plate is excited to vibrate with a factor different from zero. If we accept ao = a (vo=7),
then instead of the solution (6) and (7) we have

M) m0= 1= 505 [ Do) + 11 (D olhr) (10)

and 12(7)/n0=0
2. Acoustic power

The calculation of active acoustic power radiated by the vibrating plate will be based
on the definition

N= % af »(F)v'(F)do (11

where p is the pressure radiated by the plate and v’ is a quantity conjugate with the
complex quantity of vibration velocity v. In the case of a circular plate with its vibrations
presented by the formulae (6) and (7), i.e., a circular source with an axially-symmetrical
distribution of vibration velocity the Hankel representation (6) for acoustic power is ap-
plied:

/2

N = poc ks [M(0)M"(9)sin0d, (12)
0

where
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a, a

M(9) = iw[fm(r)Jg(kgrsinﬁ)rdr + [ na(r)Jotkorsin®) rdr (13)
0 a,

is the characteristic function of the source. We calculate integrals from Eq. (13)
n/2

fokoa 2J‘ 1 [J1(€ow)
Mw ¥ : (w)4 Eg W +
- 3 L

2

N= pgc:ra2£3 (

~ Ul 1157 (0) = Wien, 1) Ja(w)| } sin 0, (14)

where €9 =ag/a, W = kgasint*and :
U=U(¢o,Y) =gi0}’5 [11(6'0}')10(}’) =Ii(&oy)Jo(y) ]= (15)
W= W(ea) =S [Ji(ea) (1) + 1i(201) (1)} (16)

It is convenient to use the notion of relative acoustic power N/N* in numerical
calculations N is the active power of the source for kg = 27/A — . If kg — o then
p(r) = pcv(r). On the basis of the formula (11), we reach

N =lim N = % poc [v?(F)do. (17)
ky— o 2 i
In the case of vibrations of the plate (6) and (7) the quantity N Gl equal to
f)_
(o) _ 9 0 0
N = pycma (Mm) 5(7) {2S(y) + &S(y0) +

+'§10(}’) T, [ YoJo(¥0) =37 1(70) ] -Jo(J’)Tz[ volo(y0) - 311 (y0) ] +

+gh( ) J1( y0) [}’oTs—- 3w, ] +J1(N 1 () [ YoT4-3W; ] +
2
=S 1 (10) + 55 [T o) = () o) | } 18)
where

Wa=J1(7%)No(y) =Jo(7)1(y0),
Wa=11(7)Ko(y) + Io(y)Ki(10),
Ty =J1(0)N1(y)=J1(Y)N1(10)
Ty =11(y0) K1 (7) - 1i(7)K1(10),
T3 =Jo(10)No(y) = Jo(¥)No(10),
Ty = 1o (y0) Ko( y) = Io(¥) Ko(70)- (19)
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The form of the quantity N ) is more elementary when the whole surface of the
plate is excited to vibrate with a factor different from zero. For ag=a, we have
=2/(my), W.=1/y, T =T,=T3=T,=0and instead of Eq. (18) we have
2

N®) = pgcnaz(% ) B, (20)

where

p=1-

SLinh(y) [ 3 2o ] (20a)

+
S(7) g S(y)
4. Acoustic power for high frequencies
The relative acoustic power gy = N/N for the case of ag = a( yo = y) is calculated on

the basis of the relations (14) and (20). We substitute £ = sin#and introduce the follow-
ing notations

a=koa, 6=k/ko=yla, (21)
Wo=(2/8)J1(y)11(7),
Uo=(1/S)[J1(o(y) = Ii(7)Jo(y) ]. (22)
We achieve :
oo=r5"ﬁ"1f C
Vi-¢#
{(6/5)11(05) (Q:Z)UoJ(aE) WoJo(ag) }? dt 23)

The integral (23) is converted into a form making oy analysis for high frequencies
easier on the basis of the LEvINE and LeppingTON method [3]. We introduce the function
of a complex variable

F(z)=[0/z-(2/0)Us 2T (az)H" (az) +
+2(2/0)UoWoJo(az)H: " (az) + Wo [ WoJo(az) +

~2(0/z)J1(az)|HS" (az) (24)
for
ReF(§) = { [0/~ (£/0)Un]J1(a&) - Wolo(aE) }>. (25)
The calculation begins from a contour integral

f zF( z)dz " 26)
c V1- St .

The integral is calculated for contour C (F ig. 1) m31de which the integrand is single—valﬁed
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and regular. We assume that.d < 1 (ko > k). The contour integral is noted as follows

1 © 0
f+ f+ f+ f=-21-Rez(z= d) +%Rez(z =id)+ %Rez(z =0). (26a)
0 1 Ry =
i§ o
urg\/l—z: =m/2
0 ? OSgetdid b
7

HG. 1. Integration path (see [3]) for the expression (26)

Contributions to the value of the integral (26) from small semicircles around singular
points with second order poles z = 6, +id and 1/4 arc of the small circle arround the
breakway point z = 0, which is a first order pole at the same time are calculated with the
following auxiliary taken into consideration:

N zF(z)
Fikt V1-2%(z+0)*(2%+ 62)2,
_ zF(z)
722 V1-2(2+i6)2(2%- 6°)%
Fo(z)= £ EL)

o : (27)
1 _ZZ (24_ 64)2
The contribution during integration over the big circle R.. disappears when its radius

oncreases infinitely. If we also take into consideration the fact that Re F(i ) = 0 for real
values of 7, we obtain from the expression (26)

1 1
Reof il 2dx=af 3

VIl oY) Vl—xzx
{[0/x = (x/0)Up | J1(ax) - WoJo(ax) }2
y dx

- Re{ i [%%m)»«ﬂ (8)+ 73 (ia)”+ 28)
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L]

"'f 5 2{[CUX—(x/é)Uo]z.I-.(ax)Nl(ax)+

' A sl (xt e 0
+2(x/0)UgWoJo(ax)N(ax)+ Wo | WoJo(ax) +
-2(0/x)J1(ax) |No(ax) }dx, [cont.] (28)
where the first integral is interpreted in terms of the main value the second integral is its
expansion to explicit form and the symbol denotes differentiation for an adequate argu-
ment of the functions ¥ and F,. The integral parts for the functions ¥ | (9), F2(i0) are
found after taking the following into consideration:

ReF(0)=0
2

ImF(d) = —n% (%) JH L) To(y),

2
F(f5)=i_;(%] L(y) (1) Jo(7)

2
ImdF’(5)=%(%) {%SL(}’)M}')—1%(}')[13(7)+J?(7)],

S

while Im7o(0) = - 67° is obtained immediately.
The integral from the formula (28) is calculated within the limits (1, %) on the basis
of known asymptotic expressions:

2
ReoF(i0) = - 2 (Z] {%Sh(r)h(}*) s RO LB - (29)

Ji(ax)N(ax)=-Jo(ax)No(ax) ~ (max) ™ cos2ax,
Jo(ax)Ny(ax) ~- (wax)™'(1+sin2ax),
Ji(ax)No(ax)~(mwax) "' (1 - sin2ax), (30)

for o — o, x > 1. Since the “non-oscillating” part of the integral is equal to

£ Q2U0Wox/(5+2lvl*06/x
—(mra)™? dx =
If \,xz"l(x4—64)2

_21(NI(y) {_1 1 1

+ + +
yS6° W1-02 2V1+6°

0’ 1 1
) T[2(1—62)3’2_2(1+62)3’2H’ G

then when we apply the asymptotic calculation method to the “oscillating” part of the
integral
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(| [(0/%)% + (x/6)2U3 = 2U - W3 | cos2ax
(mra) f +

X xz—l(x4~64)2

. [20/x)Wo~2(x/8) Uo W,  sin2ax }dx, (32)

Viio1 (x* = 6%)?

and take the value Re { 7i [-;- Fo(0)+F1(0)+F5(id)]} into consideration, we will

finally reach a formula for relative power in the following form:

S 1 )y 1 1
Oo= 1{—— 24 + +
&g S 2V1-62 2V1+ 62

+i[1f(r)[a’3(r)+lf(r)] J%(r)[fé(y)—rf(r>1}+

+
s? 2vV1-6° 2V1+ 0

o 1 o 2T
R o 7T W{ | 30009 - DB (1 i+

2

—%(11(}’)10(?) =1Ii(y)Jo(y) ]cos(2a+ m/4) +

. 22 [ 52 %}Q T (N o(¥) = L(1)To( 1)) ] sin(2a + :c/4)}} (33)

with the error 0(6*a™>'?),

For the case of frequency of a factor which forces the plate to vibrate equal to the
frequency of free vibrations, that is for

» . _Jl(kn) - |
6—6n’ Y“Vr:, a”_JO(}’n), S(}’rr)"'o (34)

we obtain the formula

_ 1 (1+a)? 1 (1-a,)?
O, =limoy(k)== =
kL“; of - (1—(5,2.)”2+2 (1+6ﬁ)”2+

254
72?1 - 54

5{(1-ai07) cos(2a+ n/4) + 2a,0,sin(2a+ 7/4)}.  (35)

identical with this published in [3].
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5. Acoustic power in specific case

For (ko/k)* = (a/y)* << 1 a simplification in the formula (14) was accepted

-2
[ 1 - (ko/k)*sin* 0] -l (36)
The condition (ko/k)* << 1 can also be substituted with another one, namely
LEWE P e CLatla | 37)
2a o E Y1

where 7, is the root of the frequency equation S(y;) = 0, corresponding with the pulsa-
tion w,, p is the volumetric density of the material of the plate, E — Young modulus, v—
Poissons ratio. As opposed to the inequality (k/ko )* << 1 the inequality (37) contains an
explicit dependence between the quantities &/2a, o/ w, and the so-called “material con-
stants”. Accepting ao = a, we have

n/2

e S Yy (esin®) a _
oo=(aly) B of [ © sng 5 Upsin?J,( asin®?) + (38)
- Wodo(asin®) )*sin?dd.
N/NZ[
20}
I ]
15| i
ST _/ .
i "
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FIG. 2. Acoustic power radiated by a circular plate in terms of pulsation for different values of the
parameter bo . ao/a = 1 was accepted.
a-0.25; b- 0.16; c-012 d-0.1;
c-0.08; f—0.06; g—0.02.
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HG. 3. Acoustic power radiated by a circular plate in terms of pulsation for different values of the
parameter bo . ao/a = 0.5995 was accepted.

a—0.25; b-0.16; c-012 d-0.1;
c—0.08; f-0.06; g-0.02.
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FiG. 4. Acoustic power radiated by a circular plate in terms of pulsation for different values of the
parameter bo . ap/a = 0.7373 was accepted.
a-03; b-0.16; c-0.12 d-0.1;
c-0.08; f-0.06; g-0.02.
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After integration

2B00=1- 129 _2

—;Wo[ 1-Jo(2a) | +

J
+ qz{ZWng + 4U0 [l(%a)' —Ao} +ZyU0W0 [Ao —Jo(2a) ] +

+4iy2UE[AD—ZaJ-l(Za)—JO(Za)]}+q4U%A0, (39)

where g = a/y <1 and

Ao=Jo(20) +35 [J1(2a) So(20) - Jo(20)$1(2@) ] (40)

where S, (x) is an n-order Struve function.

6. Conclusions

Our theoretical analysis has resulted in an expression for acoustic radiated by a cir-
cular plate, including the factor forcing the plate to vibrate.

The performed calculations indicate that the relative radiation power N /N, in ac-
cordance with the formulae (23) and (33), accepts finite values for all values of the para-
meter koa, ka, even for those frequency bands in which these formulae should not be
applied because of the accepted ideal model of the vibrating system. Even for the bound-
ary values ka — ,, i.., the frequency of the factor forcing the plate to vibrate is equal
to the frequency of the plates free vibrations we obtain results which can be found in the
earlier papers [6] and [3].

However, it is impossible to discuss the boundary case (ka — ¥, ) for the radiated
power N, in accordance with the formula (14), and N{“’), in accordance with the formulae
(18) and (20), when their values increase infinitely due to disregard of damping effects
and the influence of the plates sound field on its vibrations.

There were several various values of the parameter ao/a, accepted in out numerical
example. This made possible the estimation of the influence of the factor forcing vibra-
tions of the plate, a, the radius a, of the central circular surface excited to vibrate was
changed. This case is illustrated with diagrams of acoustic power radiated by a circular
plate in Figs. 2, 3 and 4. Also such values of ao/a were analyzed, for which the volu-
metric displacement of the vibrating plate is equal to zero. In these cases exceptionally
unfavourable conditions for radiation should be expected.

[t was also stated that the frequency characteristic of radiated power (Figs. 2, 3 and
4) significantly depends on the plates thickness 4, its diameter 2a and material constants.
To this end calculations of radiated power were carried out also for various values of the
following dimensionless parameter

bo = koa/(ka)? = (h/2a)VE/[3pc3(1- )],

including the material constants, and is proportional to the quantity &/2a.
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The 38th Open Seminar on Acoustics OSA’91 was held in Kiekrz n. Poznari on September 17th—20th
1991. The seminar was organized jointly by the Institute of Acoustics Adam Mickiewicz University, the
Poznan Branch of the Polish Acoustical Society, the TONSIL Loudspeaker Factory in Wrzesnia, and the
Institute of Fundamental Problems of Technology at the Polish Academy of Sciences. The seminar attracted
110 participants, including 7 foreign guests. 86 papers were read on nearly all field of acoustics, i.e. acous-
tics of speech and music, psychoacoustics, electroacoustics, medical acoustics, environmental acoustics,
solid body acoustics and molecular acoustics.

Participants of the seminar took part in a round table discussion on the latest trends in noise monitori ng
and measurement.

U. Jorasz

4th Symposium on Sound Egineering and Mastering
Gdaiisk, 17-19 June, 1991

Six years ago, the participants of the 1th Sound Engineering Symposium in Gdarisk decided to organize
similar symposia biannually. Consequently, in 1987, the Chopin’s Academy of Music in Warsaw entertained
the 2nd one, while in 1989, the Institute of Mechanics and Vibroacoustics of the Technical University of
Mining and Metallurgy in Cracow played host to the 3rd one. Now, again in Gdarisk, the 4th Symposium
closed a first periodic round of those useful meetings of musicians and engineers working on mutual inter-
disciplinary problems.

The debates of the 4th Symposium, held under the Patronage of the Rector of the Technical University
of Gdarisk, took place there in the auditoria of the Shipbuilding Institiute. The total number of presentations
was 35, i.e. an introductory lecture, 23 contributed papers, and 11 laboratory demonstrations presented
within a session “Practicum”. The 23 papers and 10 communications have been published in the Symposium
Proceedings edited and printed, partly in Polish, partly in English, by the TUG Sound Engineeri ng Depart-
ment and distributed among the participants prior to the debates. The total number of registrated participants
was 90, including 3 guests from abroad; more unregistrated persons attended particular presentations, main-
ly during the Practicum session.

On the second day of Symposium, a special session was devoted to foundation and inauguration of
activity of the Polish Section of the Audio Engineering Society. This initiative of the organizers was wel-
come by the participants, which results in a formal Organizatory Meeting of the Polish AES Section (see
separate report).

The second day afternoon, participants were brought by bus to visit the Old City of Gdarisk, and, in
particular, to see an interesting exposition of the newly opened Maritime Museum, situated within three
mediaeval harbour granaries, recently rebuild beautifully after the total war destruction.

The final session completed the Symposium with a general fruitful discussion; among other con-
clusions the participants demanded a broadening of the didactic activities ot the TUG Sound Engineering
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Department in order to allow students from other universities of the Gdarisk to study that interdisciplinary
important and useful domain.

Participation fee, as well as, accomodation and boarding costs for the participants could be calculated
very cheap in comparison to the current prices, thanks to a grant obtained from the Ministry of Education,
and to the sponsoring aid of the TUG Rector. Organizers acknowledge it with gratitude, and express thanks
for that help on behalf of all Symposium participants.

Chairman of the Organisation Committee
Doc dr inz. Marianna Sankiewicz

The Polish Section of the Audio Engineering Society
Organizatory Meeting in Gdaisk - 18. 6. 1991

The meeting was convoked on the second day of the Fourth Symposium on Sound Engineering and
Mastering, held in Gdarisk. It was an initiative of the Symposium organizers, among which were four pre-
viously active AES members, who prepared the meeting having entered in direct contact with AES Europe
Region Board.

The meeting started at noon, in the Auditorium of Ocean-techique Building at Gdarisk Technica.
University. 69 persons participated in the meeting, among them Mr T. SHELTON, AES Vice-President
(Europe Region). Debates were presided by DSc. A. CzyZEWsKI (Gdanisk) and Prof. M. ROLAND-MIESZ-
KOwsKI (Halifax), both AES members.

An introduction in the aims of the meeting was given by A. CZYZEWSKI. Then, T. SHELTON informed
about AES activities, as well as, about main Society laws, members duties and privileges. He presented also
organisatory requirements concerning foundation of a new AES Section and the Polish Section in particular.

As all participants accepted the conditions and expressed their willingness to enter the Audio Engineer-
ing Society, so elections of the Polish Section Board became possible. The electoral part of the meeting was
presided by M. ROLAND-CIESZKOWSKI, who asked for candidatures to the post of the Section Chairman.
Four candidates were proposed by the participants. After secret voting and scrutiny Mrs. M. SANKIEWICZ has
been elected as Chairman of the new founded Polish Section of the AES. She thanked the participants for
their confidence and then she presented her proposal for a composition of the Section Board, adequate to the
cope with hard organizatory tasks due to the initial period of activity. Her proposal having been accepted
unanimously, the following colleagues have been elected by acclamation:

A. CzYZEWSKI (Gdarisk) — as Secretary, B. KOSTEK (Gdarisk) — as Treasurer, A. BRZOSKA (Warszawa),
A. MSKIEWICZ (Warszawa), K. RUDNO-RUDZINSKI (Wroclaw), J. ADAMCZYK (Krakéw), E. HoiaN
(Poznari), A. SLIWINSKI (Gdarisk), G. BUDZYNSKI (Gdarisk) — as Members.

T. SHELTON congratulated the elected colleagues and wished them many organizatory successes. He
expressed hope to meet Polish colleagues soon at the opportunity of the 92nd AES Convention in Vienna.
He told also that the AES President R. K. FURNESS who intended to come fot this meeting, yet could not
participate, will visit Polish Section at first opportunity.

M. ROLAND-CIESZKOWSKI thanked all participants for the fruitful result of the meeting. He expressed
special gratitude for T. SHELTON for coming to Gdansk and his active support to the initiators. Thus, thanks
to cooperation of many people interested in audio engineering development in Poland, the Polish Section of
AES as the first among the countries of the former East-European bloc has been called into existence.

Alphabetic list of the Polish AES Section founders:’

J. Adamczyk, A. Brzoska, G. Budzynski, J. Cichminski, H. Ciotkosz—F.upinowa, K. Cisowski, M.
Czabajski, A. Czyzewski, A. Dobrucki, A. Dyro, M. Fengler, A. Gotas, J. Gudel, E. Hojan, B. Iwanicka, M.
Iwanowski, B. Janta—Pokczyriski, M. Kaminska, W. Kapczyniski, W. Kasinski, P. Kleczkowski, B. Kostek,
Z. Krawczyk, W. Kucharski, B. Kulesza, B. Libura, W. Makowski, M. Markuszewicz, S. Moroz, P. Mroz, B.
Okofi-Makowska, T. Osifski, K. Pawlak, T. Pietrzykowski, P. Podgérski, J. Regent, A. Rehman, K. Rudno-
Rudzifiski, D. Ruser, W. Rvszkowski, M. Sankiewicz, Z. Sobieszczanski, C. Swvpron, K. Szlifirski, M.
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Szydtowski, M. Szyszkiewicz, A. Sliwinski, K. Srodecki, A. Swiderski, M. Tajchert, J. Targonski, A. Tarka,
7. Wagner, K. Walczak, M. Waraksa, J. Wasniewski, Z. Wasowicz, Z. Weyna, J. Wierzbicki, A. Witkowski,
K. Wojtowicz, N. Wotk—F.aniewski, R. Wozniak, Z. Zajac, W. Zajakata, S. Zielinski, B. Zéttogorski.

Chairman of the Polish AES Section
Doc dr inz Marianna Sankiewicz

[Address of the AES Polish Section Board:
Sound Engineering Department
Technical University
80952 Gdansk
Phones: (058) 471301 or (058) 472444]

92nd AES CONVENTION - 24-27. 03. 1992 - VIENNA
Polish AES Section Report

The Audio Engineering Society spring convention is the most important European event in the field of
sound engineering and of related domains. For the first time in the history of the AES, Vienna was site of the
Convention, continuing the tradition of former AES Convention sites: London, Hamburg, Montreux, Paris.
In the opinion of the AES President, Mr. Roger FURNESS, a major factor in choosing Vienna for the 92nd
Convention was the proximity of this city to eastern European countries. The idea which led to that choice
was to bring East and West together. The decision was undertaken long before the Berlin Wall came down.
Vienna was expected to be the first real opportunity for audio-engineers of the West to come together with
those of the former Eastern Bloc. Exchange of information, mutual discussions and new contacts built-up in
Vienna should contribute to further development and progress in the domain of audio-engineering.

The 92nd Convention was held in the modern Austria Center, Vienna, located on the left bank of the
Danube, in the middle of a large island between Old Danube and New Danube rivers. The Center has a
capacity for up to 9500 participants, and its fourteen large halls and auditoria are arranged with the greatest
possible versatility and equipped with most advanced convention technology, including sophisticated ap-
plicance for film and video projections. Every hall has four or more booths for simultaneous translations,
aided by an infrared transmission system. There are spacious exhibitions areas equipped with removable
partition walls, with adjacent offices, foyers, buffets, restaurants etc.

The Center location is very convenient from a transport point of view. It is only eight minutes away
from the Vienna downtown by subway, while a highway links it directly with a road network. There is a
built-in car-parking facility for 1200 cars.

On the day of the Convention opening ceremony the impressive main entrance to the Austria—Center
was decorated with flags of all countries whose Sections belong to the AES.

For the first time the polish flag was there among the 24 one, as the Polish Section was founded in 1991,
already after the previous European Convention. The opening ceremony took place in the Entrance Hall on
Tuesday, March 24, at 9% am. During the ceremony an AES Fanfare was performed for the first time,
composed for this occasion by the Austrian composer Rene Clemencic. The President of the AES Mr. Roger
FURNESS and the Convention Chairman Mr. Ewald KERSCHBAUM opened the Convention. The program
contained debates divided into 26 sessions, which, during three and half days of Convention, ran in three or
sometime four parallel sections, and into three workshops, as well as, two seminar sessions.

The total number of contributed papers was 138. Authors’ index contained 202 names. Those figures
exceeded in about 50% the average number of the papers submitted to previous European AES Conventions.
The contributions concerned almost all branches of audio-engineering: Music & Musical Acoustics; Ar-
chitectural Acoustic; Audio History Presentation & Restoration; Computer Aided Audio Production; Digital
Recording & Reproduction; Measurement Techniques & Instrumentation; Psychoacoustics; Digital Signal
Processing; Sound Reinforcement; Additional & Special Topics; Transducers; New Techniques in Transmis-
sion. Workshops were devoted to problems of Re-Recording with optical Pick-Ups, of Tape Life — Tape
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Care, and of Wireless Microphones. One seminar was on New Audio Media, while another one on the Sound
of the Orchestra. That seminar consisted of an interesting lecture given by Prof. Jurgen MEYER, from PTB
Braunschweig, followed by a short concert performed by the symphonic orchestra of the Technical Univer-
sity, Vienna, conducted partly by Prof. MEYER presenting examples to illustrate his lecture, and partly by the
regular conductor Ottokar PROCHAZKA, who ravished the audience with a typical Vienna music: Strauss’
"An der schonen blauen Donau".

The AES Preprints containig texts of the contributed papers were available on the Convevtion opening.
However, for the first time their price was not included into Convention fee.

Parallel to sessions devoted to papers presentations and discussions, exhibition activities ran in a huge
area divided into stands and booths of various audio-industry enterprises, disc-producers, recording dealers,
sound and vision studio technique companies, etc. Above 245 companies exhibited their most advanced
products, giving opportunity to visitors to get familiar with the newest systems and techniques on the field
of audio-engineering and related topics. It is impossble to report here the richness of exhibition and pos-
sibilities offered to customers. E. g. big mixing consoles automated with sophisticated computer systems
including tape machines and other control room equipment were accessible to everyone who wanted to
check their functioning. Technical information, publications, data, prospects, etc., were disseminated richly
among interested guests. Special issues were edited daily containing actual information on subsequent Con-
vention days. It may be added as a curiosity that only two companies from the former socialist countries
were present: Czechoslovak “Tesla” from Bratislava exhibited mixing consoles, while Russian
“Kunstkamera” represented a new private owned recording studio in Moscow.

Participation of Polish acousticians and sound-engineers was for the first time in the AES Conventions
history so numerous: 30 members and 2 student-members were present. This was possible not only due to
the proximity of Convention site but also thanks to favourable fee payment conditions offered to Polish
participants. Those conditions were in advance agreed by the Polish Section Board with the AES Authorities
so, that a reduced fee was payable in Polish currency. Therefore, Conference personal badges allowing free
entrance to all debates and exhibition areas were distributed among Polish participants during their separate
organizatory meeting held on the first Convention day, in the main hall.

Three representatives of the Polish AES Section board, i.e. Mrs. M. SANKIEWICZ (Chairman), Mr. A.
CzYZEWSKI (Secretary) and Mrs. B. KOSTEK (Treasurer) attended an AES European Section Committee
meeting, which was held at 1 pm, on March 25, in the first floor restaurant-hall. The AES Vice-President Mr.
Gerhard STEINKE, presiding over the European AES Region, welcomed all Sections representatives, espe-
cially warmly those from new founded Sections within the former Eastern-Bloc countries. He invited sec-
tion chairmen to express their opinions relative to various aspects of AES activities. Among other, Mrs.
SANKIEWICZ, speaking on behalf of the Polish Section, thanked the AES Authorities for their organizatory
assistance at Polish Section foundation; she expressed hope that one of the future AES Conventions could
be organized in Gdansk.

The most important contribution of the Polish Section to Convention debates were papers written by
Polish authors or coauthors. There were four such papers, the first two read during the morning session on
Music and Musical Acoustic, on March the 25:

“Acoustic Investigation of the Carillons in Poland” written by M. SANKIEWICZ, A. KACZMAREK and G.
BUDZYNSKI from Gdarisk Technical University, was presented by G. BUDZYNSKI. Starting with the historical
background of the topic, he continued with the investigations carried out recently in the laboratories of the
Sound Engineering Department of the Gdansk Technical University, on three carillons, and discussed the
results.

“Computer Modelling of the Pipe Organ Valve Action” written by B. KOSTEK and A. CZYZEWSKI from
Gdansk Technical University, (Preprint No. 3266), was presented by B. KOSTEK. She introduced the
audience to the topic of the pipe organ control systems. She described a pipe organ instrument, built recently
in Bielsko-Biata (Southern Poland), she explained functions of its computer control system, and presented
new hardware solutions applied to the system design, as well as appropriate experiments carried out. The
paper aroused a vivid interest among several organ builders participating in that session.

The third paper of that session: “Isolation of Rhythmic Patterns in Musical Signals” by G. KALLIRIS and
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G. PAPANIKOLAU from the University of Thessaloniki (Preprint No. 3267), read by G. KALLIRIS and
presented by both authors, was especially interesting to Polish participants, as an opporuinity to meet their
Greek coworkers and to discuss common problems of interest for both parties. This meeting was agreed in
advance among partners of the scientific cooperation on the field of acoustics and sound engineering, carried
on by the Gdarisk Technical University, by the Aristotle University of Thessaloniki, Greece, by the Aalborg
University, Denmark, and the Dalhousie University in Halifax, Canada.

The next Polish paper was read during the afternoon session on Architectural Acoustics, on March the
26. The paper entiteled “Signal Simulation Based on Convolution of Room Impulse Response” (Preprint
No. 33287), written by A. GOLAS, H. £.oPACZ and H. WIERZBICKI from the Academy of Mining and Metal-
lurgy, Cracow, was presented by A. Gor.as. He described a theoretical approach to predicting sound signal
transmission through various rooms and gave some results of experimental applications.

The fourth paper was read during the session on Psychoacoustics, on the last Convention day, the 27.
The paper resulted of the above mentioned cooperation, under the title: “Investigation of the Loud—Music—
Exposure Hearing Loss™ (Preprint No. 3312), was written by G. WHITEHEAD and M. ROLAND-
MIESZKOWSKI, from the Dalhousie University, by G. PAPANIKOLAOU from the Aristotle University of Tes-
saloniki and by G. BUDZYNSKI from Gdarisk Technical University, who presented the paper. The described
facts of aggravating hearing loss in young people due to listening too loud music were alarming to session
participants. As they concluded that organization of preventive action was necessary and urgent, so a discus-
sion started on possible ways of introducing it in practice.

Several other papers read during the Convention debates are worth to be mentioned. First of all, papers
written by our Danish colleagues from Aal borg University and from Perceptive Acoustics A/S Aalborg. The
first one “Head—Related Transfer Functions: Measurements on 24 Human Subjects” by D. HAMMERSH@I, H.
M@LLER, M. SRENSEN, K. LARSEN (Preprint No. 3289), and the second one “Transfer Characteristics of the
Headphones” by H. M@LLER, D. HAMMERSH@I, C. JENSEN, J. HUNDENB@LL (Preprint No. 3290). Both
papers were devoted to the perpetual difficulties in proper sound reproduction due to inherent differences of
speaker- vs. headphone-systems.

A numerous audience and a vivid interest was evoked among participants by Mr. W. WoszczyK with
his paper entitled “Microphone Arrays Optimized for Musik Recording” (Preprint No. 3255). After a prolon-
gued discussion and many questions addressed to the lecturer in the hall, it was a great pleasure for Polish
participants to meet Mr. WOSZCZYK separately and have with him a nice chat in Polish. He graduated in the
sixties in Warsaw Technical University in electroacoustics and went to America. There he made his degree
and a brillant career in audio engineering in Canada, where he is with the McGill University, Montreal.
Recently Mr. WoszczyK was elected AES Govemnor and Chairman of the AES Membership Committee.
The Polish AES Section hopes to have many future contacts with Mr. Woszczyk.

Another item of the polish Section activity may be quoted here. A mini-exhibition of lates issues of the
“Archives of Acoustics”, offered by its Editors, was arranged on a Convention press stand, in order to
promote the Polish quarterly among acousticians of the world.

To complete this report a few sentences ought to be devoted to many events accompaning the Conven-
tion. Awards were handed for those who made valuable contribution to the AES, during an evening reception
at the Palais Ferstel in Vienna, on March the 25. The Awards presentation was preceded by a short concert
of the Vienna Boys Choir. The evening continued with dinner, wine and Vienna style music.

Several Technical Tours were organized for Convention participants. The Tours were aimed to visit
interesting institutions and industrial plants in Vienna, as €.g.: the Austrian Broadcating Corporation TV—
Centre, the Siemens factory, the AKG factory, Bosendorfer piano manufacture, Vienna State Opera, Wicner
Musikvereinsaal, etc.

A rich social programme with many guided tours was also organized. It is, however, obvious that all
those accompaning events were almost unaccessible for those who wanted to attend as many sessions as
possible and to visit numerous interesting stands at the exhibitions. Seeing so much within three days is an
exhausting task, especially for visitors coming from Poland mostly by car, and accomodated far away from
the Austria—Center, because of obvious economic reasons.

Nevertheless, for all Polish participants the Convention was a successful experience. It was also an
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organizatory achievement of the young Polish AFS Section. As Berlin was decided for the next AES Con-
vention site, so the Polish Section would like repeat such experience in Spring 1993.

Chairman of the Polish AES Section
Doc dr inz Marianna Sankiewicz

NOISE-93

THE INTERNATIONAL NOISE AND VIBRATION CONTROL CONFERENCE will be held in St.
Petersburg, Russia on May 31 — June 3, 1993.

Two hundred word abstracts should be submitted to: Malcolm J. Crocker, Co—chairman NOISE-93,
Mechanical Engineering Department, 202 Ross Hall, Auburn University, AL 36849-5341, USA or Fax 205~
844-3307 by October 31, 1992 at the latest. Final manuscripts are due by November 30, 1992.

NOISE-93 is being organized by the St. Petersburg Mechanics Institiute in cooperation with the Acous-
tical Society of the Russian Federation, the Acoustical Society of America and similar societies or institiutes
in Brazil, China, Finland, Germany, India, Italy, Japan, the Netherlands and the United Kingdom.

The co—chairs of NOISE-93 are Professors Nickolai 1. Ivanov (St. Petersburg, Russia) and Malcolm J.
Crocker (Auburn, AL, USA).

Papers may be presented in English or Russian. There will be simulateous translation. Books of
Proceedings will be available also in both languages at the Conference and the written papers will be trans-
lated by the organizers. There will be a parallel cultural program involving visits in Hermitage, palaces and
ballet, or other similar events. .

A total of about 500 participant are expected, including 300 from Russia and 200 from 30 other
countries.

The registration fee for the Conference is $290.00 which includes the Books of Proceedings, a recep-
tion, and 3 cultural events. Meals for 4 days can be purchased for an additional sum of $120.00.

For further information contact Dr. Malcolm J. Crocker, Co—chairman NOISE-93, Mechanical En-
gineering Department, 202 Ross Hall, Auburn University, AL 36849-5341, USA (Tel.: 205-844-3301 or
Fax: 205-844-3307).
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