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180 isolate voicings of (near) Cardinal Vowels — 10 of each: [iecaye e ®uoon
wYA D i#] were described using four formant frequencies, which were measured from FFT
spectra. In a 4-D space, the tokens could be correctly assigned 95% of the time using Bayes
estimators of discriminant scores. The error increases with the reduction of the number of
variables to three or two. The mean vectors characterizing the 18 vowel classes were, for the
present speaker, somewhat different from those recorded and measured about 20 years ago,
which may be due to aging.

1. The background

Until fairly recently, the Cardinal Vowels were used only for the purposes of Linguis-
tic Phonetics. But for over 3 decades now specialists in Speech Acoustics, Speech
Pathology and perhaps most of all, Speech Technology have been to a smaller or greater
extent forced to use the transcription of the International Phonetic Association at some
place or other in their routine work. These Specialists often have decidedly insufficient
knowledge of the system of IPA (International Phonetic Association) with the result that
even if their primary problem is correctly solved, erronious transcription confuses
phoneticians who wish to use their data.

In what follows we shall concentrate on those aspects of the Cardinal Vowels that are
of interest to the Speech Technologist, the Speech Pathologist and the Acoustician who
is dealing with the speaking or singing voice.

The Cardinal Vowels were devised by Daniel Jones some time between 1910 and
1920, and were based on the observation of four extreme vocalic articulations with
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respect to the natural, unmodified position of the tonge, its hump taking a maximally (1)
high-front, (2) low-front, (3) low-back and (4) high-back position. Of these, (1), (3) and
(4) can be indirectly controlled by the speaker’s tactile sense, their articulations being
minimally different from the palatal [{], uvular [k] and velar [¥]. The front-low position
can only be controlled auditorily and, possibly, kinaesthetically. The four vowels were
given the phonetic symbols [i a au]. The choice of the symbols was a mat-matter of
convenience, and the three represented by letters of the roman alphabet are just as normal
as the fourth. They were all intended as international reference values independent of
any particular language. In 1917 Jones made X-rays of the four extreme vowels and
these were published in the later editions of Jones’s The Pronunciation of English (e.g.
JoNEs 1956 [11] as a frontispiece. They formed the basis of the vowel quadrilateral,
which, with minor changes, has been in use by those adhering to the principles of the
International Phonetic Association.

Over a period of about 70 to 80 years, the set of Cardinal Vowels was made to include
initially (beside the extreme four) an additional set of four, viz. [ e€ 90]. For some time it was
maintained by many phoneticians, including D. Jones himself, that in the front series
[ieea] the articulatory distances [i]—-[e], [e]—[e] and [€]-[a] were equal, as were the
distances in the back series: [u]—[o], [0]-[3], [9]-[a]. The total system was, then:

i u close
e o half-close
€ 2 half-open
a a open
front back

The trapezoidal form of the arrangement, as seen above, reflects the assumed posi-
tions of the tongue hump and has here been slightly simplified (see, e.g. JasseM (1973),
p. 124 [9)).

For several decades the trapezoid was used by phoneticians to describe the vowels of
various languages ¢.g. for English in JonEs (1956) [11], Roach (1983) [23], and GiMsON
(1988) [8], for French by ARMSTRONG and Jongs (1951) [2], for Russian by JONES and
WAaRD (1969) [12], for Polish by Jassem (1973) [9] etc.

The articulatory basis for the 8-item set of Cardinal Vowels was never confirmed
experimentally. What little X-ray work was done on their articulation actually falsified
that basis (BuTcHER (1982) [3]). For some forty years now it has been maintained that the
trapezoid represents auditory (i.e. psychoacoustic) relations. This, too, has been ques-
tioned by ButcHER [3].

The 8 Cardinal Vowels (CVs) were not sufficient for the description of many lan-
guages because it was assumed that [i € a a] were unrounded (i.c. spoken with neutral
position of the lips) whilst [aoou] have, in that order, increasing lip-roundig. Although
this reflected a strong tendency, many languages have rounded front vowels and some
have unrounded back ones. Such symbols as [y] for “close front rounded” or [e] for
“front half-close rounded” were used even towards the end of the 19th century within the
International Phonetic Alphabet, but it was not before the end of the 1T World War that



IN QUEST FOR CARDINAL VOWELS 345

the complete set of 18 CVs was established. Ignoring the trapezoidal shape of the
schematic, the full set of CVs is now arranged as follows:

central close

unrounded rounded
i B
front back
unrounded  rounded unrounded  rounded

close i y w u
half-close e o Y 0
half-open 3 ® A 2
open a E D a

The front unrounded and back rounded vowels are often referred to as “primary” and
the “newer” 8 as “secondary”. In the above arrangement of the CVs, the secondaries lie
within, the primaries if looked upon as placed in a plane.

For several decades the set of 8 primaries or the set of all the 18 CVs has been used
in texts on the phonetics of many languages (see a comparative sample in Jassem (1973)
[9] 130 and 134). But X-ray studies of the CVs as well as those of real linguistically used
vowels tended 10 show that the assumed articulatory basis was incorrect (BUTCHER
(1985) [3]). It was also shown loc.cit. that the perception of the CVs was strongly af-
fected by the first language of the hearer. It would seem that the only hopeful level at
which the identity of the CVs could be sought was the acoustic level.

2. Earlier acoustical data

The carliest data on the acoustic properties of the Cardinal Vowels come from a
paper by DELATTRE, LiBERMAN and CoopER (1951) [6] who produced them synthetically.
Figures 1 and 2 in that paper show the synthesized 16 vowels, 15 of which were intended
to represent the [PA (International Phonetic Association) CVs, in an (F,F») acoustical
plane. On a straight low—F (first formant) line (250 Hz) lie [i yw u] — the close vowels.
Along three other straight lines (1) at F; = 440 Hz (2) F; = 550 Hz and (3) F; = 750 Hz
lic [es¥o], [eead] and [&a pal, in that order. These relations should be compared with
the 8-vowel and 18-vowel arrangements above. Within each of the four subsets, F;
decreases in the order indicated within brackets. Only the last subset of four requires
comment. Cardinal [@&] had not yet been approved by the International Phonetic As-
sociation at the time of the Delattre-Liberman—Cooper experiment. In the two quad-
rangles —one for the unrounded and the other for the rounded, published in Fundamentos
(1944) [7] and Principles (1949) [20], the lower-left corner in the “rounded” quad-
rilateral was left unmarked. Apart from [z], the arrangement in the acoustical (Fy, F»)
plane in DELATTRE-LIBERMAN-COOPER (1951) [6] can be seen to correspond very well
with the arrangement of the sixteen non-central vowels shown above, with one excep-
tion: the positions of [a] and [p] were reversed. A very important feature of the Delattre—
Cooper—Liberman quadrangle was that the Primaries lie on the circumference while the
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Secondaries lie within the quadrangle. The figure is a trapeze, with the bottom side con-
siderably shorter that the top side, so that the [i][u] distance is over 3 times that between
[]—[a]. This should be confronted with the trapezoid on p. 2 above. In the Delattre—Liber-
man-Cooper trapeze, the distance D(y—ux) is only half that of D(i, u), D(8—Y¥) is about
half that of D(e— o) and D(cee— a) is distinctly less than half of D(e - 9). This reflects the
fact usually tacitly admitted by phoneticians that the “secondary” CVs are perceptually
less distinct —or less distant — than the Primaries of the same degree of openness (approx. the
same value of F).

LEE (1968) [18] published an (Fy, F>) chart of the Primaries pronounced by D. Jones.
The geometry of the vowel “loop” turned out quite similar to the Delattre—Liberman—
. Cooper trapeze, though some of the absolute frequencies were different: [e - o] and [a-
a] do not lie on a const Fy line, Fi[a] > Fi[a] and F,[e] > Fi[o]. Lee was trying to prove
a point which is outside the scope of the present paper. But in order to proceed with his
argumentation Lee took into account an important consideration, viz. that the frequen-
cies of F, and F, vary not only with the phonetic quality of the vowel, but also with its
personal quality (personal timbre).

It has been realized for some 30 years now that in speech perception a process of nor-
malization takes place which permits phones that are acoustically different to be perceived
as linguistically identical. Viewed differently, the hearer extracts {rom the acoustical speech
signal simultaneously two kinds of information: linguistic and personal. Several attempts
have been made to describe, sometimes in mathematical terms, the interaction between these
two essential and intertwined sources of variation (see, €.g. LADEFOGED and BROADBENT
(1957) [17], AinswortH (1975) [1] and, especially, NEAREY (1978) [19].

CatrorDp (1981 [4], 1988 [5]) has devised two acoustic grids with F; and F, as non-
orthogonal co-ordinates: one for the rounded vowels and the other for the unrounded,
and used them to describe the vowels of several languages. But he does not say how he
deals with inter-speaker differences. Further data have been published by Jassem (1973)
[9], 1984 [10] including those on all the lower four formant frequencies. An acoustical
map of all the 18 CVs, now including also [i] and [&], in an (Fy, F>) plane was
demonstrated. The topography is here very similar to that in the earlier studics, but the
absolute values tend to be higher, possibly pointing to a smaller vocal tract. As the carlier
investigations are limited to F; and F, Table 1 below includes only such data, for com-
parison. Values that had to be read off the (F), F>) plots (the source giving no numbers)
appear here in cursive. The values which appeared in Jassem (1973) [9] and (1984) [10]
are here given under WJ1. For comparison, the mean values obtained in the present ex-
periment for F; and F also appear in Table 1 as WJ2.

Although in terms of absolute values the data differ between the individual sources,
the following regularities may be observed.

(1) F, increases with the degree of openness:

[i] > [e] > [e] > [a] (frontunrounded)

[y] > [e] > [ee] > [e] (front rounded)

[w] > [¥] > [A] > [p] (back unrounded)

[u] > [0] >[9] > [a] (back rounded)
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(2) For cach degree of openness, F5 is higher in the unrounded than for the cor-
responding rounded vowel:

[i] > [yl [e] > [@], [€] > [ee], [a] > [®] (frontseries)

[w] > [u], [¥]=>][o], [A] > [2], [a] > [p] (back series) (cf. above about the relations
between the open vowels in DLC)

(3) For the front series,

[i]>[e]>[e]>[a] (unrounded)

[y]>[®]>[ce] >[e®] (rounded)

Table 1. F'; and F> frequencies of Cardinal Vowels from five sources

vowel i y e ] 3 ® a ®
source
Py Fy 240 240 360 360 520 520 730 —_
s 2900 1900 2500 1700 1650 1450 1320 _—
F 250 —_— 375 — 525 — 775 —_
Lee
F2 2500 ——— 2250 — 1800 — 1100 _—
& F1 240 235 390 370 610 585 850 820
at
F 2400 2100 2300 1900 1900 1710 1610 1530
0k Fy 210 220 380 350 590 520 870 790
1
¥ 2750 2550 2630 2320 2280 1950 1750 1650
F 217 249 417 422 559 511 921 511
Wi
: Fa 2775 2255 2538 1968 2151 1769 1560 1769
w u ¥ o A 2 a ]
o, Fi 250 250 360 360 520 520 730 730
Fa 1050 700 1100 800 1180 950 1050 1250
p
Fi e 250 —_— 350 e 525 775 —
Lee
Fr — 625 P 775 e 900 1450 _
& Fi 300 250 460 360 600 500 750 700
at
Fi 1390 595 1310 640 1170 700 940 760
e Fy 280 270 450 400 570 550 800 710
1 ;
Fa 850 615 850 730 940 820 1050 900
- Fy 369 308 475 427 591 535 740 680
2

P 808 577 846 686 911 805 995 931
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For comparison, we would cite some data contained in PApcun (1980) [2]. Figure 6.3
in this paper contains, in the form of a graph, measured F, and F7, of the English vowels
as produced by two male speakers. Except, possibly, for [a]/[o] the vowels represent the
same linguistic-phonetic entities. In keeping with the position taken by the Phonetics
Laboratory at the Department of Linguistics, University of California Los Angeles,
where the data was obtained, instead of the straight F, frequency, the other variable,
beside F, is F» = F» — F.

The F, and F values, reads as closely as possible from the chart are presented below
in Table 2.

Table 2. Frequencies of Fj and F» of English monophthongs

vowel [i] 1] [E] [] Le] [2] [w] [u]

(0]
speaker 1 Fy 270 400 550 700 710 360 450 310
F> 1950 1550 1250 990 390 290 590 560
speaker 2 Fy 250 270 380 470 370 580 300 220
F 1620 1500 1280 950 460 290 430 460

Both voices were male.

As can be seen from Table 2, the differences in the values for F; and F of linguisti-
cally equivalent vowels may be striking. They are due to the ffect of personal timbre. If
spoken by the same voice, the corresponding values in each of the columns would easily
represent different, even very different linguistic-phonetic entities.

3. The present materials and their acoustic analysis

The purpose of the present experiment is fivefold:

(i) to establish reasonably narrow Cardinal Vowel subspaces in a four-dimensional
vowel space.

(ii) to find for each CV a 4-clement mean vector for each CV in the vowel space,

(iii) to perform a statistical discriminant analysis of the vectors representing the com-
plete set of 18 Cardinal Vowels,

(iv) to see whether the CVs might be affected by the speaker’s aging.

(v) to find, using statistical discriminant analysis, whether the frequencies of the
higher formants, i.e. F3 and F4 contribute to the discriminability of CVs.

The materials for the present experiment consist of sets of two or three voicings
intended to represent the Cardinal Vowels [ieea] (front unrounded) [w yaa] (back un-
rounded), [yece ] (front rounded), [u 0op] (back rounded) and the high central un-
rounded [i] and rounded [w], and vowels near enough to cach Cardinal for the tokens to be
transcribed by the respective Cardinal, possibly with such IPA-approved diacritics as [+ T +].
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No set of two or three contained more than just one representation of any Cardinal.
For convenience of analysis the experimenter (WJ) avoided combining into one set such
vowels as differ strongly in intrinsic intensity level (e.g. close and open or even half-
open). The total material included 10 tokens of each of the 18 CVs (or near-CVs). They
were spoken in a silent (but not sound-treated) room and the S/N ratio was controlled to
cnable the extraction of even the weakest formants (F3 and F, of [u]). The analysis was
performed using the KAY Elemetric DSP 5500 Workstation. A 512-point FFT analysis
was performed of all the 180 voicings (10 replications of 18 VCs). The measurements
were made at a moment approx. 15% into the vowel from its beginning, in the middle of
the vowel, and approx. 15% into the vowel from its end. This demonstrated that what is
intended as a steady vowel cannot normally be produced as a perfectly stationary acous-
tic event (except by synthesis). At each point, the frequency of each of the four formants
was estimated from the 512-point FFT spectrum with an accuracy of 10 Hz. The frequen-
cy of a given formant was the arithmetic mean of the three measurements, and this mean
was assumed (o represent the entire vowel-token. Averaged formant frequencies for each
token could of course have been obtained more directly by taking an average cumulative
spectrum of the entire voicing, but we were interested in how the formant frequencies are
permitted actually to vary in what is intended (and perceived) as an isolate stationary
vowel sound. This temporal variation is of little consequence for the issue at hand, but
will be taken into account in further experiments which we propose to make with syn-
thetic stationary vowels. We may, however, just mention in passing that these variations
were mostly of the order of 2...7%, though occasional higher values of the calculated
coefficient of variation were not uncommon in the case of F; of close vowels in which
there is the well-known interaction between F; and F,,. Approx. 2% of the time the tem-
poral variation in the course of one formant was zero within the measurement accuracy.
The fundamental frequency, held steady for each voicing, varied among the individual
voicings within the range 97...105 Hz (a somewhat low male voice). The duration of the
individual vowel tokens varied between approx. 200..300 ms. Altogether, then, 18 (CVs)

x 10 Replications x 3 moments in time x 4 Formants = 2160 measurements were made.

The results of the measurements are summed up in Table 3. The coefficient of varia-
tion in Table 3 pertains to within-class variability, not to the temporal variability within
individual tokens.

Table 3. Mean formant frequencies and their dispersions

vowel category

Mind Wi imoodsd mean F f-quency st.dev. var.coeff.
[i]
Fi 217 28.8 0.1326
s 2775 1153 0.0416
F 3645 108.7 0.0298
Fy 4107 80.1 0.0195
le]
Fy 417 338 0.0811

Fz 2538 135.4 0.0534




[cont. Tabl. 3]

1 2 3 5
F3 2944 94.0 0.0319
Fy 3805 455 0.0119
(€]
Fy 559 318 0.0569
Fy 2151 123.7 0.0575
F3 2743 839 0.0306
Fy 3689 160.5 0.0435
(a]
F\ 921 403 0.0438
Fy 1560 83.4 0.0534
F3 2741 452 0.0165
Fy4 3571 41.2 0.0364
front rounded
b
F, 249 383 0.1528
Fy 2255 152.0 0.0674
P 2663 200.5 0.0753
Fy4 3494 118.2 0.0338
(o]
F 422 18.2 0.0431
F> 1968 66.1 0.0336
F3 2479 79.3 0.0320
Fa 3647 53:5 0.0147
[ce]
Fy 511 322 0.0630
) 1769 933 0.0527
F3 2466 758 0.0308
Fy 3586 518 0.0457
@
F 676 783 0.1164
') 1375 105.1 0.0765
Fa 2616 186.8 0.0714
N 3501 179.8 0.0514
back unrounded
(]
F 369 725 0.1965
Fp 808 113.8 0.1408
F3 2525 131.7 0.0522
Fy 3240 217.9 0.0673
[¥] '
Fy 475 30.7 0.0647
Fp 846 38.5 0.0455
F3 2497 683 0.0273
Fy 3193 1253 0.0393

[350]
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1 2 3 4 ]
[4] _
Fi 591 48.7 0.0824
Fy 911 74.5 0.0818
F3 2794 160.5 0.0575
Fy 3313 79.3 0.0239
a]
Fy 740 230 0.0312
Fs 995 58.8 0.0591
Fy 2082 663 0.0222
Fy 3538 2142 0.0605
back rounded
[u]
Fy 308 30.2 0.0982
) ST 39.7 0.0688
F3 2467 121.0 0.0490
Fy 3133 2654 0.0847
[o]
£y 427 19.0 0.0445
Fa 686 78.0 0.1165
F 2583 484 0.0593
Fy 3166 126.9 0.0401
[o]
Fy 535 272 0.0508
Fr 805 28.8 0.0375
Fs3 2660 174.2 0.0655
Fy 3253 543 0.0167
[o]
Fy 680 46.9 0.0691
F> 931 50.6 0.0544
I3 3007 1074 0.0357
Fy 3516 111.5 0.0317
central unrounded
[i]
F 309 26.3 0.0851
F> 1936 198.5 0.1025
I3 2594 123.7 0.0477
Fy 3603 104.7 0.0291
central rounded
[¢]
Fy 300 432 0.1413
Fa 1004 95.7 0.0953
F 2399 . 173.8 0.0725
Fy 3400 164.7 0.0484

1351)
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Figure 1 represents the (F), F») means of the 18 CVs as pronounced by WI for the
purposes of the experiment, each point being a two-element vector representing the
grand means of F; and F, of the 18 CVs.

4. Statistical discriminant analysis

The four discriminant linear combinations wy...ws have been calculated. Their
values expressed in terms of F...F4 are as follows:

wy = —0.0068672 * F| + 0.0094832 * F, — 0.00081388 * F3 + 0.00096338 * F; (1)
wy = —0.023943 = F, - 0.27703 * F5 + 0.0011695 * F3 — 0.00084285 * F, (2)
ws = —0.0015498 * F; — 0.0015240 * F, + 0.0082357 * F3 - 0.0045712 * F4y ~ (3)

wy = 0.040886 * F| + 0.016195 * F, + 0.064314 = F3 + 0.87861 * F4 4)

The above exact relations between the values of the discriminant variables and the
formant frequencies should be compared with the coefficients of determination between
the discriminant variables and the formant frequencies:

Table 4. Coefficients of determination between the formant frequencies
and the calculated discriminant variablcs

wi w2 w3 w4
F 78 90.9 08 0.5
F; 89.5 o 09 24
F3 1.8 1.1 97.0 0.1
Fy 4.1 1.6 6.4 87.9

[t transpires from equations (1)...(4) and the Table 4 that
The first discriminant variable w, depends chiefly on Fa, w2 on Fy, ws on F3 and

wy on Fy.
The dependence of the discriminant variables on the formants may most simply be

demonstrated by the following Table:

Table 5.
wi——> Fp = F1 = F4 > 3

wo > F| = Fp = F4 — I3

wy—> F3 = F4 — F2 = Fy

wa > Fy = F2 > F| = F3
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In Table 5, the F—frequencies are, in each row, arranged in order of decreasing effect.

We shall refrain, in this study, from presenting the mathematical foundations of Dis-
criminant Analysis, as these may be found in various statistical texts such as LACHEN-
BRUCH (1975) [16] Ki.EckaA (1980) [13] or Krzy$ko (1990) [14].

The discriminant variables are obtained, as can be seen above, as linear combina-
tions of the original variables, so that cach discriminant variable represents in varying
degrees, each of the original variables. The discriminant variables are so calculated that
they are uncorrelated and all their covariance matrices are unit matrices. As demonstra-
ted above, it is usually he case that one discriminant variable (w,,) reflects one particular
original variable more strongly than others.

Table 5 shows, in general terms, how the discriminant variables depend, inde -
creasing order, on the individual formant frequencies. The main advantage of the
w,’s is that they make it possible to map the mean vectors of the classes under con-
sideration in a plane though the original data vectors lie in a multidimensional space
(four-dimensional in our case) since each object under observation has here been repre-
sented by measurements on four variables: F|, F,, Fa, and F.

The Mahalanobis distances were transformed into respective values of the T2 statistic.
The significance of the individual values of T2 was verified using the method of simul-
taneous test procedure. The common critical value for 72 in our case wasT, (%,05) =112.14.

HG. 1.
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Out of the 153 distances between the mean vectors 14 were below the critical T value, i.e., the
14 distances were not significantly different from 0. In Table 6 we give all the Mahanalobis
distances ordered in columns rather than in a matrix arrangent in order (o facilite the look-up.
Those distances that at & = 0.05 are not significantly different from 0 are marked <.

Table 6. Mahalanobis distances between the mean vectors

pair M-dist pair M-dist pair M-dist
[e. ] 8.05 [a,1] 2218 [, A] 12.52
[e, 1] 12.68 [a,e] 17.59 |2, q] 13.67
[e.e] 5.36 [a,€] 13.05 [@,y] 5.65
[a,1] 22.38 [a,a] 8.24 [ee, i] 14.86
[a,e] 1591 [a, m] 9.58 [ce,e] 831
[a,¢€] 10.75 [a,¥] 7.30 |ee, €] 4.10<
[, 1] 20.57 [a, a] 401 < [ce, a] 10.44
[, €] 17.33 [¥. 1] 8.75 [ce, w] 10.93
[, €] 14.41 [y. €] 5.29 [ce, ¥] 9.91
[, a] 15.73 [y, €] 7.87 [ce, A] 10.15
[ 1] 21.10 [y. a] 18.07 [ce,q] 10.10
[¥, ] 17.02 [y, w] 14.81 [ce,¥] 8.37
[v. €] 13.39 Iy ¥] 15.16 [ce, &) 29 <
[v, a] 13.29 [y 4] 16.17 [ee, ] 19.21
[¥, w] 274 < [y.q] 1791 [, e] 13.28
[A, i] 21.21 [@, ] 12.59 (@, €] 8.28
pair M-dist pair M-dist pair M-dist
[a, €] 17.03 (o, €] 6.12 [, a] 6.31
[4, €] 12.98 (2, €] 4.0 (@, w] 9.71
[a, a] 11.02 [, a] 13.10 [, ¥] 751
pair M-dist pair M-dist pair M-dist
[A, ui] 5.69 |, w] 12.35 (@, A 6.08
[A, ¥] 347 < (o, ¥] 11.89 [, a] 5.53
(@, ¥l 13.79 [u, ¢ 13.64 [0, ] 7.08
[, 2] 8.87 [u, &] 12.38 [0, u] 3.13
(@, @] 5.95 [0, 1] 22.00 [2,1] 21.69
[u, i] 22.54 [0, €] 18.63 [0, €] 17.67
[u,e] 19.82 [0, €] 1536 [0, €] 13.83
[u, €] 17.14 [0, a] 1533 [o, a] 12.51
[u,a] 18.25 [0, ux] 2.06 < [0, w] 4.14 <
[u, w] 2.80 < [0, ¥] 237 < [0, ¥] 197 <
[u, ¥] 5.00 [0, A] 4.66 [2, A] 1.84 <
[u, A] 5 [0, q] 8.55 [0, a] 5.64
pair M-dist

[u,a] 11.62 [0, ¥] 16.45 [2.] 16.29

[u.y] 16.90 [0, 2] 13.72 [0, 2] 10.64
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[cont. Tabl. 6]
[u, 2] 14.89 [o, ] 11.98 [0, ] 723
EX 7.23 [a,9] 438 < e, ] 18.71
[o,u) 6.03 [i, ] 11.01 [, e] 15.40
[0, 0] 294 < [i,e] 6.56 [&, €] 12.94
[0, 1] 21.82 [i, €] 6.51 [&, a] 16.13
[p, €] 17.67 [, a] 15.61 [&, w] 313<
[0, €] 13.42 [i, w] 11.63 [a, ¥] 4.76
[0, a] 9.81 [i, ¥] 11.86 g, A] 7.64
[p, w] 8.19 [i, A 12.93 [w, a] 11.16
[0, ¥] 6.13 [i, a] 14.76 (&, ] 12.48
[p, A] 2.75= [i,y] 3.67 < (&, 2] 10.24
[0, q] 1.73 < [i, 2] 322« [&, ce] 9.36
[0, y] 17.55 [i, ce] 5.47 &, &) 9.84
[0, 2] 13.64 [i, ] 10.70 [, u] 4.94
[0, ] 11.12 [i, u] 13.90 [e, 0] 5.14
[o, ®] 6.19 [i, 0] 13.26 [&,9] 6.45
[0, u] 10.12 [i, 9] 12.99 [&,a] 10.01
[0, 0] 7.09 [i, n] 14.36 [e, 1] 9.26

5. Classification

Discriminant functions were used to divide the total vowel space into 18 subspaces, one
for each CV. The classification was performed in the “one out” design. That is, for each
individual token, the training set included the 9 tokens remaining in the given class. For each
individual token 18 discriminant scores were calculated and the highest-value discriminant
score assigned the given vowel-token to just one of the 18 classes. Four discriminant models
were tested: (1) Classification by the unbiassed estimator of the quadratic discriminant score,
(2) Classification by the Bayes estimator of the quadratic discriminant score, (3) Classifica-
tion by the unbiassed estimator of the linear discriminant score, and (4) Classification by the
Bayes estimator of the linear discriminant score. Of these, (2) gave the best results:

(a) With 4 variables, F) F, F3 Fs, out of the 180 tokens, 9 were misassigned, viz.:

Ile] ——> 1]e]
3[w] ——> 3[o]
2[A] ———= 1][v¥],1[9]
1[a] —> 1][n]

1y] ——> 1[i

1g] ——> 1[w]

(b) With three variables: Fy F; F3, and the same classification procedure, there were
14 misassignments.

(c) With two variables: F, and F, the same classification procedure produced 19
misassignments.
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6. Conclusions

The total 4-D vowel space can be divided into 18 subspaces representing the 18
Cardinal Vowels such that only about 5% of individual isolate voicings are erroneously
assigned. In a 3-D space the error is about 8%. With only two variables, F, and F», the
error is increased to almost 10%. So, in order to procure fewer mistakes, especially with
fewer variables, such as F; and F,, the statistical dispersions would have to be distinctly
smaller than in the present materials.
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MEASUREMENTS OF DISPERSION OF ULTRASONIC WAVE VELOCITY
IN THIN LAYERS BY THE ULTRASONIC SPECTROSCOPY

W. WOJDOWSKI

Institute of Fundamental Technological Research
Polish Academy of Sciences
(00-049 Warszawa, Swigtokrzyska 21)

This paper presents the results of measurements of the phase velocity dispersion of
ultrasonic waves in thin aluminium sheets. The interaction between ultrasonic waves and a
thin solid layer is analysed and the theoretical relations for the transmission and reflection
coefficients are presented. Experiments are based on the spectrum analysis of ultrasonic pul-
ses, generated by the broad-band probes in the frequency range of 2-13 MHz. From the
maxima of transmission coefficients for different incidence angles the phase velocity of
Lamb waves is determined as a function of ultrasonic wave frequency.

Presented method allows to determine the acoustic parameters and the dispersion curves
for the velocity of Lamb waves in thin layers.

1. Introduction

The use of new materials in many branches of technology has been an incentive to
further the ultrasonic methods of testing materials, especially those nonhomogeneous
ones such as composites. Some of their properties, such as strength, resistence to frac-
ture, thermal and electrical parameters largely depend on the current state of their inter-
nal structure. Suitable measurement techniques have therefore to be developed to ossess
the quality of such materials. It is the ultrasonic methods, based on the interaction of
waves and nonhomogencous media, that have found many applications in the field [1].

Complexity of phenomena that take place during the wave propagation in a multi-
component medium is one of the reasons for the difficulties in proper interpretation of
measurement results. The most difficult problem is to separate the geometrical effects
that influence the ultrasonic wave parameters from those connected with the material
structure and the boundary conditions at the interfaces of various materials. In particular,
the response of laminates and adhesive connections is of interest since the relevant
properties largely depend on the character of contacting surfaces. The measurement
techniques are mainly based on the resonance in layers [2] and on the generation of
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a number of Lamb wave modes |3, 4] caused by the incident ultrasonic wave. The Lamb
waves are known to disperse considerably, i.e. their velocities are very sensitive to the
frequencies. Dispersion curves are functions of material structure as well as boundary
conditions on the surfaces. These, in turn, can vary with the changes in properties of
glued connections and with the types of connected surfaces. Measurements of ultrasonic
wave velocity dispersion are on the means to evaluate the quality of nonhomogeneous
materials [4].

However, due to the complexity of involved phenomena and considerable difficul-
ties in the interpretation of test data, some advanced measurement procedure must be
employed in which the ultrasonic signals are analysed and digital data processing is used [S].

The present paper is devoted to the application of ultrasonic spectrum analysis in the
determination of phase velocity dispersion curves for this layers of materials. The meas-
urement apparatus and broad-band probes were used as described in [6, 7]. Measurement
results are compared with theoretical predictions. Accuracy and resolution of the
presented results are also assessed.

2. Transmission of ultrasonic waves through a thin material layer.
Basic theoretical relationships

The motion equation for the transmission of harmonic acoustic waves in an infinite
isotropic medium has the form [8]

(A+2u)Av+ (A+ p)V x (V x v) = -0’ pv (1)

where A, u—Lamé’s constants, v — particle velocity, @ —wave frequency, p —density of
the medium. As known from the vector analysis, every vector ficld can be decomposed
into two parts solenoidal and irrotational ones

UV=U1+ U =VP+VxII 2)
where @ and ITare the scalar and the vector potentials respectively. For the solenoidal
field we have

Vxu=Vx(Vd)=0 (3)
whereas for the irrotational one the following applies:
Vu,=V(VxII)=0 (4)

The solenoidal field v, corresponds to a longitudinal acoustic wave, associated with
volumetric changes of the medium, whereas the irrotational ficld v, corresponds to a
transverse, or shear, wave for which the volume remains constant. The equation (1) can
be replaced by two equations for potentials & and 17

AP+ kid=0
AT+ k3IT=0 (5)

where k; — wave number for longitudinal wave, (k;, = w/cy ), ky—wave number for shear
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0] j b LETHy (
wave, (k= = ¢y and cr — longitudinal and shear wave velocities in the medium, ex-
T

pressed in terms of Lamé’s constants as

A+2u
C; =. N
: P
CT=V%.

Consider a case in which an acoustic wave transmitted in a fluid medium impinges a
solid isotropic layer of thickness A at an incidence angle 6. The direction of waves can be
defined with the use of the wave vector k, where |k| = w/c and ¢ denotes the velocity of
longitudinal waves in the fluid. To determine the transmission coefficient through the
layer, the coordinate system and notation will be used as shown in Fig. 1. The lon-
gitudinal wave from the medium I impinges at an angle ¢ and is refracted in the layer
(medium II) to be transmitted at an angle @, as a longitudinal wave and at an angle 67 as
a transverse wave. These waves are reflected at the lower and upper interfaces. A part of
the wave energy is transmitted to the fluid medium III. Ratio of the amplitude in medium
III to the amplitude of incident wave is a measure of the transmission coefficient through
the layer.

Assume the media [ and III to be identical and the longitudinal acoustic wave im-
pinge in the x, z - plane (Fig. 1), i.e. the velocity components v, vanish. According to the
formula (2) the scalar potential @ cannot depend on the coordinate y and the vector
potential has to depend on [T, only, IT= [0, IT, 0].

R I g.5

F1G. 1. Coordinate axes and notation for the transmission of ultrasonic waves through a layer.
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Acoustic pressures of an incident, reflected and transmitted wave can be shown in
the following forms:

po=exp|iki(xsin@+ zcosf) ]
pr=Rexp|iki(xsinf - zcos8) ] (6)
pr=Texp[ ik (xsin@+ zcos )]

where po, pr, prare the pressure amplitudes of incident reflected and transmitted waves,
respectively, R, T denote the reflection and transmission coefficients, k; = w/c, is a wave
number for the medium I, ¢, is the wave velocity in the medium 1.

The particle velocities in the layer can be derived from the formula (2) and calculated as

L L
Fis B D
g oIl
1 Sty 7
" 0z ox ™

The potentials @ and I7T for the transmission of waves in the layer have the form
&= @ exp|iky(xsinf, + zcos O] + @' exp|iki(xsinf, - zcos 6,)]
I, = IT'exp[ ikr(xsin 07 + zcos O] + IT"exp[ ikz(xsinfr — zcos Or) ] (8)
The angles 6, ;, O satisfy the Snell’s rule
kysinfy, = krsinOr = k,sinf.

The following boundary conditions must hold true at the interfaces between the media I,
11 and 11, III: continuity of z—components of velocities and stresses and the absence of
shearing stresses at z = 0 and z = h. This is expressed by

vi=v], Ou=-(po+pr); 0==0  forz=0,

vi=uv" o,=-pp Op=0 for z = h. 9)

The stream components can be calculated from the expressions [8]

; v, du. v,
—ICOG_»_Z--A( i +—az)+2y P
; v, Jdu;
=W Oy = y( o +—6x) (10)

The equations (9) together with (6), (7), (8) and (10) constitute a set of six linear
equations in six unknown: R, T, @', @", IT, IT". Solution for the coefficients R and T'is
the following:

_ i(M*-N?+1)
T OM+i(M2-N?-1)
2Ne'?
L= Y 2
M +i(M°-N°-1)

(11)
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where

ZQ[ Cos ZBT szr sin 291'

~ Z, sinP Z, sinQ
Z
M= Z—m cos *20rcigP + % sin*26rcigQ
1 1

@=khcos8;, P=kyhcos6,, Q=krhcos@Or

7 P1Ca _ PacyL | j P2Cr1
T cosB’ cosBL’ £ cos O
C2 2
cosf, =V 1- —=sin%0; cosf;= Vi- —sm g
C C!

When the incident angle 6 is greater than the critical angle for either a longitudinal
or transverse wave, the magnitudes cos ¢, and cos 67 become purely imaginary and the
following formulae should be used in the solution (11)

2
cosE)L=iV—‘; sin’6- 1

Cy
‘V C%r 2
cosOr=i Y —sin“0-1
ci
sinP = isinh(ImP) (12)

sinQ = isinh(ImQ)
ctgP = —ictgh(ImP)
ctgQ = -ictgh(ImQ)

Both reflection and transmission coefficients R and T are complex numbers; their
amplitudes and phases depend on the wave frequency w=271If. Using (11), the
amplitude of transmission coefficient 7' can be expressed in the form [9]

2 1-1
Zi-E:F
| T | 14| 57— (13)
SZ\(E + F)
where
E = Zycos?26 Tctgg + ersinZZBTctg%
F=2Zy c052267tg§ + Zyrsin 20y tg% (14)

From the formula (13) it follows that the transmission coefficient attains its maximum,
i.e. equals unity, when
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E-F=Z7} (15)

In the case of acoustic impedance of a medium on both sides of the layer approach-
ing zero (Z,~0), the formula (15) furnishes EF =0, that is either E=0 or F=0.
Remembering (14), we arrive at the equations

clgE
2 Zor 2
T a2y
ctgg QT
2
Wi
2  Zog 2
o=
£2

After a number of trigonometric rearrangements the equations (16) can be shown to be
identical with the dispersion equations for the symmetric and antisymmetric modes of
Lamb waves, presented in [10].

Thus, when the wave impedance of the solid layer is much larger than the impedance
of the fluid from which the wave travels (i.e. Z, can be neglected in comparison with
Z»;, and Zoy) the maximum values of the transmission coefficient generate definite modes
of Lamb waves in the layer. The above statement amounts to the so-called coincidence
rule [9]. The amplitude of vibrations is at its largest for such incidence angles for which
a resonance leads to the generation of a Lamb wave mode. The vibration energy is par-
tially transmitted with relatively large amplitude are generated there. The transmission
coefficient through the layer assumes its maximum value. The amplitude of reflected
wave is also relatively large but, since its phase is opposite 0 that of the incident wave,
the corresponding reflection cocfficient attains its maximum.

When the maximum of the transmission coefficient corresponds to the incidence
angle fand the frequency f, a Lamb wave mode is generated in the layer. Projection of the
incident wave vector is equal to the wave vector of the mode, Fig. 2. This means that

[1G. 2. Wave vector of Lamb wave k as a projection of incident wave vector k.
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217 217
|ky|sin 6 = |k|, where |ky| = —cl; |k| = Tf’ ¢ — phase velocity of the Lamb wave mode.
1
Hence o1
= sing an

Displacements of particles for a given mode of Lamb waves are given by the com-
plicated expressions [10]. Qualitative and quantitative analyses of the motion of the
medium transmitting Lamb waves are presented in [8]. Of special interest is the case in
which the longitudinal wave impinges from the medium I at such an incidence angle that
the resulting wave in the layer is transmitted at 45°, Fig. 3. In this case the mode is termed
the Lamé mode [8] and consists of a purely transverse wave that is reflected at 45° from
both faces of the layer. Simple geometrical relationships apply in this case:

|

FIG. 3. Lamb mode - transverse wave travels in the layer at 45°,

ﬂlﬁ:—‘/—i— —Snell’s law
2CT

€1
217 .
*—f : \/—25 =n-IIL n=1,2,3 —boundary conditions
¥ on the layer interface [8].
On combining the two above expressions, we get the formula
n-"Cy
2f-h
This is the condition for the incidence angle of longitudinal wave, expressed in terms
of frequency, necessary for the transmission of a purely transverse wave inclined at 45°,

i.e. the presence of Lamé’s mode. This condition will be used further on to determine the
velocities of transverse waves in solid layers.

sinf = (18)

3. Concept of measurements

The formula (17) determines the phase velocity of Lamb waves generated in a solid
layer by a longitudinal ultrasonic wave impinging from a fluid at an angle 6. The wave
velocity in the fluid is denoted by ¢).
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It follows from previous considerations that a given mode of Lamb waves can only
be generated under specific frequency of incident waves and for a specific incidence
angle. From the coincidence rule it follows that the maximum of transmission coefficient
is associated with those magnitudes. Knowing the suitable incidence angle 6 and the
frequency f the phase velocity of Lamb mode can be calculated from (17). Lamb waves
exhibit dispersion, i.e. their phase velocities depend on frequencies, see expressions (16).

Complete picture is complicated. Nevertheless, experimental determination of dis-
persion curves is possible with the help of various measuring techniques. In general, the
reflection or the transmission coefficients are measured for fixed frequencies and various
incidence angles [3, 9]. Relevant curves have a number of maxima or minima that cor-
respond to succesive Lamb modes. To obtain complete characteristics of velocity disper-
sions many ultrasonic probes must be available to emit waves with various frequencies.

Experiments described in this paper were made for a wide range of frequencies with
the use of broad-band probes and spectrum analysis of pulses. The idea of measurements
consists in the application of Fourier analysis to the examination of broad-band pulses
generated in the layer at a given incidence angle. The medium is assumed to be linear, that
is the ultrasonic pulse is a sum of its harmonic components. In the case of small ampli-
tudes of the acoustic pressure, of the order of 10~* MPa, and the wavelength of 1 mm, the
linearity condition is satisfied to within a very good accuracy. The measurement results
are presented as transmission coefficient vs. frequency curves. By broadly varying the
incidence angle the maxima of transmission coefficient can be determined as depending
on both the frequency and the incidence angle itself. Next, the formula (17) furnishes the
phase velocity of Lamb waves for many modes simultaneously. As a result, the spectrum
analysis method supplies a further picture of the velocity dispersion of Lamb waves than
any other conventional method. It is also faster and more convenient to apply.

Computer program was prepared, based on the relationships shown in Sec. 2, to
compare the test measurements of transmission coefficient with theoretical predictions.
The following input data were used: impedance of the layer and the surrounding media,
wave velocities in all the media concerned, thickness of the layer and the incidence
angle. The transmission coefficient was computed from the formula (13). Three ranges
of the incidence angle were distinguished: smaller than the first critical angle, in between
the first and the second critical angle and larger than the second critical angle. In the last
two cases the relationships (12) were used.

4. Measuring system

The test apparatus consisted of transmitting and receiving broad-band probes [7],
ultrasonic defectoscope, sampling converter, micro-computer and printer [6]. The trans-
mitting band was 2—13 MHz (with the drop of 12 dB). The setup is shown in Fig. 4. The
incidence angle was changed with the use of micrometer screw 1o within an accuracy of
0.1° and in the range of 0-34°. The testpicces were made of aluminium sheet metal 0.5
and 1 mm thick, immersed in water.



DISPERSION MFASUREMENTS BY THE ULTRASONIC SPECTROSCOPY 365

. sampling ; monitor
ulser receiver microcomputert—
putze converter v
oscillos - printer
cope

F'1G. 4. Measuring sel. 1, R — broad-band (ransmifting and recciving probes.

Ultrasonic pulse transmitted through the layer was sampled and fed into the
microcompuler. Fast procedure of Fourier transform enabled pulse spectra to be ob-
tained. Sampling density was 256 in the range of 5 ps. Spectral lines were spaced at
0.2 MHgz; resolution of measurements of transmission coefficient maxima was about
+0.1 MHz. Spectra of pulses transmitted through the layer were displayed on the
monitor and printed.

5. Test results

Ultrasonic pulse between the probes and its spectrum are shown in Fig. 5. From the
curves it follows that the useful range of frequencies is from 2 to 13 MHz. Its width is

a)

10

voltage [arb. units]

Olus

b)

amplitude

1
0 5 0 15 fIMHz]

FIG. 5. a — Ultrasonic pulse between the probes at contact,
b — its spectrum.
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FIG. 6. Spectra of pulses through the aluminium layer 0.5 mm thick and theoretical relationships between
the transmission coefficients and frequency for various incidence angles within the range of 0-34°.
Experiment-solid curves, theory — dashed curves.

a result of a number of parameters: width of the transmitting band on pulser—probe—
medium-receiver, ratio of signal to noise for the relevant range and sampling of signals.

Spectra of pulses travelling through the aluminium layers with thicknesses 0.5and 1 mm
at a number of incidence angles from the range 0-34° are shown in Figs. 6 and 7. Curves are
also shown corresponding to the relationships between the transmission coeflicients and
frequencies, calculated with the use of computer program described in Sec. 4.



DISPERSION MEASUREMENTS BY THE ULTRASONIC SPECTROSCOPY 367

10

50

a5

o 5 10 15 flMHz]

0

25°

05

0 5 10 15 flMHz] 0 5 10 7:5 fIMHz]

FIG. 7. Spectra of pulses through the aluminium layer 1 mm thick and theoretical relationships between the
transmission coefficients and frequency for various incidence angles within the range of 0-34°,
Experiment solid curves, theory - dashed curves.

A number of maxima are seen in the diagrams. Relative amplitudes of those maxima
depend on the spectrum characteristics of the transmitter-receiver system which can be
accounted for by means of suitable signal processing (deconvolution process). However,
this would require all the parameters to be analysed such as transmission band, damping
in the medium and to on. Presentation of results is here confined to the transmitted pulses
since their maxima were of primary interest.



Table 1. Locations of transmission coefficient maxima for aluminium sheet metal with the thickness
g = 0.5 mm obtained from calculations. Mcasured values in parantheses

Incidence angle

Locations of maxima (MHz)

0 6.4 (6.5);12.9; 19.4
5 3.7 (3.8); 6 (6.1); 7.6 (7.8); 13.9
75 4.(4Y; 6 (5.9); 8.3 (8.6); 15
10° 4.4 (4.5); 6.3 (6.1); 10 (9.8); 15.4
13° 53(5.5) 7.9, 13.7; 15.4
15° 63 (6.3); 9.1 (9.1); 133
17.5° 3.4(3.8); 7.7(79); 11.7, 156
20° 4.4 (4.6); 87 (9.0); 13.3
225 5(5.1); 10.1 (10.5); 15
25° 53(5.5); 11.6
275 59(58-63);15.8
30° 7-15(53-7)
34° 4-43(38)

Table 2. Locations of transmission coefficient maxima for aluminium sheet metal with the thickness
g =1 mm obtained from calculations. Measured values in parentheses

Incidence angle

Locations of maxima (MHz)

0° 32(3.2); 6.5 (6.5); 9.8 (9.8); 13
5° 1.8;3;3.8(3.8); 7(7); 8.4 (8.3); 9.6 (9.5); 10.7 (10.8)
75° 2,3 (2.9) 4.2 (4.2); 7.6 (7.5 9 (9): 10 (9.7); 11.8 (11.7)
10° 2.2;3.2(2.9); 5.1 (5.0); 7.6 (7.5); 8.5 (8.3); 10.2 (10.2); 11.3
13° 2.7 (3); 4; 6.6 (6.1); 7.8 (8.4); 10.4 (9.7); 13.2(13.2)
15° 32(3.2); 4.6 (4.8); 6.7 (7.1); 8.4 (8.9); 10.4 (10.6); 122 (124)
175 3.9 (4.2); 5.9 (6.1); 7.9 (8.1); 9.9 (10.1); 12 (12.2)
20° 22(2.3); 4.4 (4.4); 6.7 (6.9); 8.9 (9.2); 11.2 (11.4)
205 2.5(2.6); 5.1 (5.4); 7.6 (7.9); 10.2(10.5); 12.8 (13.2)
25° 2.7 (2.8); 5.9 (6.7); 9.1 (10.2)
2715% 3(334), 8
30° 37(3.7)
34° 2-22@4r23)

[368]
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Since the frequency range was not wider than 13 MHz, higher maxima had small
amplitudes or were not detected at all. For instance, for the incidence angles of 90° and
25° applied to the layer 0.5 mm thick it was only the first maximum that was obtained.
For angles of 13° and 15° weak maxima above 10 MHz were detected.

Theoretical curves shown in Figs. 6 and 7 enable to compare both the shapes of
experimental and theoretical diagrams and the positions of their maxima. Particular
maxima can be interpreted and associated with specific modes of Lamb waves travelling
through the layer.

Numerical comparison of positions of measured and calculated maxima are
presented in Tables 1 and 2. Good agreement can be seen, the differences do not usually
exceed 0.1-0.2 MHz. The best fit of results is found to be for the following parameters:

pacy =17+ 10° kg/m’s
pacr =83 10° kg/m’s
¢ =6.37-10° m/s
cri=3.11-10° m/s
Cip=032" 103 m/s
¢ =3.0810° m/s

the above values are close to those known for aluminium sheets.

} for the thickness of 0.5 mm

} for the thickness of 1 mm

6. Analysis of test results. Curves of velocity dispersion for Lamb waves

Measurement and calculation results shown in Tables 1, 2 and Figs. 6, 7 enable the
velocity dispersion curves of Lamb waves to be determined together with the parameters
of the layer under consideration (wave impedance, velocities ¢z, cr and thickness. Both
¢, and ¢y were found with the use of curve-fitting as presented in Sec. 5. The velocity
¢, can also be determined from the positions of maxima in the spectra of pulses cor-
responding to the perpendicular incidence. In this case the frequencies associated with
maxima of transmission coefficient can be calculated from the formula

n-cy.
2-h’
Given the thickness h, c,, readily follows from the above relationships. The transverse
wave velocities can be determined due to the fact that, in the case of Lamb mode, a
purely transverse wave propagates at 45° in the layer. Remembering (18) given in Sec. 2,
the angle can be obtained as a function of the frequency at which the Lamb mode is
generated. This condition, combined with the relationship between the location of trans-
mission maximum and the frequency leads to the velocity c. This can be seen in Figs. 8
and 9 where the maxima from Figs. 6 and 7 are shown for various incidence angles and
the condition (18) for Lamb modes is indicated. The incidence angles for which Lamb

S = n=0,123 (19)
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waves propagate in the layer are determined by the points of intersection of the solid and
dashed curves. Thus the velocities ¢r can be found from (18). They amount to about
3.1 x 10* m/s for both testpicces. However, accuracy of such a graphical method is
limited and depends on how densely the test points are located in the vicinity of angles
at which the condition (18) is expected to be satisticd. Nevertheless, this method can be
useful in the case of very thin layers, when other methods to determine cr fail.

The curves of Figs. 8 and 9 can be presented in a different manner. If, instead of the
angle 6, the magnitude ¢ = c,/sin 6 is measured along the vertical coordinate axis then,
according to the formula (17), the relationships between the phase velocities of particular
Lamb wave modes and the frequencies (i.c. the dispersion curves) will be obtained. The
test results and the theoretical curves from the formulae (13), (14) are shown in Figs. 10
and 11. The curves were obtained from the maxima of transmission cocfficients calcu-
lated with the use of program described in Sec. 3. The incidence angles 0°, 1°, 2°... up to
34° were taken to follow the changes in the locations of relevant peaks of transmission
coefficients in a sufficiently accurate manner. Then, symmetric (s) and antisymmetric
(a) modes were associated with appropriatc curves with the help of data given in [9] for
the dispersion curves for the Lamb wave valocities in aluminium. Good agreement is
found between the measurements and the theoretical results. The differences do not ex-
ceed 0.1+0.2 MHz, i.c., are within the accuracy of measurements.

It is common in the existing literature to represent the dispersion curves for the
velocity of Lamb waves as a functions of a product of the frequency and the thickness of
layer [5]. In this paper the results are given in the phase velocity vs. frequency form, since
it was the frequency range that followed from the parameters of applied ultrasonic probes.
Within this range more Lamb modes were generated in thicker layers than in thinner ones.
The applied representation made it possible to indicate which modes for a given thickness
can be shown with the specific transmission band of the probe used. When the largest
frequency of the probes is 10 MHz, the mode a, can only to be visible for an aluminium
layer thicker than 0.2 mm, whereas the modes s and @, can be observed even for thicke-
ness smaller than 0.1 mm provided the incidence angles were sufficiently large. However,
the pulse becomes too weak for large angles (o maintain the required accuracy of meas-
urements. For the applied frequency range of 0+13 MHz the thickness of aluminium
layers should not be smaller than 0.3 mm to obtain some segments of dispersion curves
for the modes ag, So and a;. For other materials with lower ultrasonic velocities the layers
can be as thin as 0.1 mm. Thinner layers must be tested with the use of probes with
broader bands, especially when higher frequencies are involved.

7. Accuracy and resolution of results

The above described method makes it possible to determine parameters of thin single
layers such as velocities of longitudinal and transverse acoustic waves. Phase velocity
dispersion curves can also be found for various Lamb modes. It thus becomes necessary
to evaluate the resolution and accuracy of the method.
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Since the interpretation of test measurements is based on the location of maxima in the
pulse spectra, the resolution depends on the spacing of neighbouring spectral lines. For
the pulse sampling parameters described in Sec. 5 the resolution was found to be
+0.1 MHz. When the maximum of the transmission coefficient was close to the ends of
the band of probe, its amplitude was comparatively small, so the error rcached 0.2-0.9
MHz.

For the incidence angles in the region of 30+34° the transmission spectrum maxima
were smeared out and it resulted in an accuracy of determining frequency to within 0.2 -
0.3 MHz. Thus the accuracy of measurements depended not only on the incidence angles
but also on the locations of maxima in the pulse spectra.

Maximum error in the velocity ¢, as a result of spacings of spectral lines can be
assessed with the use of the formula (19) which relates the velocity ¢, with the locations
of maxima and the thickness of the layer. Assuming f=10MHz, & ~0.5mm,
f= 0.1 MHz, relative error in the determination of frequency ammounted to 2 per cent.

Error in the velocity ¢y may be somewhat larger because indirect methods are here
applied — either the graphical one or by the curve-fitting procedure.

Main source of the measurement error is a limited resolution in the pulse sampling.
Resolution and accuracy can be enhanced by increase in the length of the sampled signal
and the density of sampling. Resolution of the frequency depends on the duration of
sampled signal number of samples and is given by Af = 1/N At = 1/T, where T is the
signal period, N denotes the number of samples and At is their time spacing. Increase in
the sampling density, i.c. decrease in At, leads to an increase in the accuracy of signal
sampling and in the maximum frequency of the Fourier transform spectrum.

Parameters of the signal sampling can be improved when a more powerful computer
is used and the calculation times can be longer.

8. Conclusions

Method is presented to investigate the velocity dispersion of ultrasonic waves in this
layers of material. Spectral analysis of pulses enables the velocity dispersion curves to be
determined for Lamb waves and the velocities of longitudinal and transverse waves in
the material to be measured. Other methods are known to be cumbersome when thin
layers of material are investigated. The obtained results show some possibilities to apply
the method to study more complex and practically important situations such as adhesive
connections and multilayered media. The author plans to further his research in this
direction.
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SHEAR ACOUSTIC WAVES IN PLATES

P. KIELCZYNSKI, W. PAJEWSKI and M. SZALEWSKI

Institute of Fundamental Technological Research
Polish Academy of Sciences
(00-049 Warszawa, ul. Swigtokrzyska 21)

In the paper the theoretical analysis and results of experimental investigations of SH
waves propagation in plates are presented. The dimensions of different plates and methods of
SH wave excitation were applied in order to attain mode separation and identification.

1. Introduction

A shear horizontal wave with polarization parallel to a plate surface can propagate in a
plate with a definite thickness and other unlimited dimensions. Waves of this type can be
generated by shear vibration transducers bonded to a plate edge. Such a wave is dispersive
and multimode. A propagation analysis for this wave permits to obtain an exact analytical
solution in the form of a relatively simple expression [1, 2]. However, the limitation of
transverse dimension introduces new boundary conditions into the calculations. These con-
ditions do not permit to obtain an exact analytical solution of the problem. This is due to
reflections and the wave transformation (shear-longitudinal) on the plate edge. In this case
oscillograms of pulses propagating in the plate are complicated. The separation of thick-
ness plate modes from modes rising on plate edges is difficult. For more precise ex-
perimental investigations of SH wave propagation in plates it is necessary to choose
boundary conditions and the method of wave excitation in such a way that the separation
and identification of pulses are possible. It is not simple, as shown in the published
photographs, owing to small velocity differences and superposition of pulses.

2. SH waves propagation in plate waveguides
2.1. Plates with limited thickness and infinite width

An elastic plate with infinite width and length can be treated as an approximation of
real waveguide structures with limited dimensions. A thorough study of SH wave



376 P. KIELCZYNSKI, W. PAJEWSKI AND M. SZALEWSKI

H+—

FiG. 1. Elastic plate infinitely extended in directions x and y, thickness 2h.SH wave with displacement in y
direction propagates in x direction.

propagation in such a plate is helpful in investigations of two— and three—dimensional
waveguides in which the acoustic beam is limited in the cross-section in relation to the
propagation direction (x axis). We assume that the SH wave mode propagating in the x
direction in the plate shown in Fig. 1 possesses the vibration component u only in the y
axis direction. The medium is homogeneous and isotropic, nevertheless the propagating
SH wave mode is dispersive as a result of multiple reflections at the boundaries z= = h
[1]- The problem of SH wave propagation in an infinite plate is described by the follow-
ing differential problem:

+—= LI 1
ax’ oyt vg o 0

ou

Elz-:h=0 (2)

In the general case one can solve the problem of acoustic wave propagation in un-
limited plates by applying the potential method, the partial wave method or the
transverse resonance method [2]. It appears that the problem (1)~(2) possesses the finite
analytical solution [1, 2].

u=Blsin(%r%)-exp[i(kx—wt)] 3)
=13 5.
for asymmetric modes, and
nmz :
u=Bzcos(75)-exp[z(kx— wt)] (4)
n=0,24,.

for symmetric modes, where By, B; — optimal constants, k — propagation constant of the
SH plate wave.
The dispersive equation for both SH wave mode types is

2
w 2 IIZJE'
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From the relation (5) the phase velocity results

1
e ©
M LEL
2hg
and the group velocity
ve= iV 1- (ﬂ%) )

) .
where g = .~ Propagation constant of the volume SH wave.
0

Except for the mode n = 0, all other modes are dispersive — Fig. 2.

Y group velocity in unlimited elastic plate
Y
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FiG. 2. Dispersion curves of SH modes group velocity in infinite elastic plate with thickness 2h.

The structure considered hirtherto is infinite in the direction perpendicular to the
wave propagation direction. In real waveguide structures one uses acoustic beams with
limited width. This implies the application of waveguide structures with limited dimen-
sions. Among these structures one can distinguish strip waveguides, topographic
waveguides, ridge waveguides etc.

2.2. Plates with limited thickness and width

The general problem of acoustic SH wave propagation in plates with limited dimen-
sions (Fig. 3), does not have, up till now, an analytical solution [2]. The following dif-
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‘
\2 7

HFIG. 3. Plate with finite dimensions.

ferential problem describes the SH wave propagating along the z axis with the displace-
ment in the direction of the x axis:

_QZ_LE 6_2u u 1 du

Bl ey 8
ax’ E)y2 3z uh ot )
o I ©
o z=0 ay z=0
Ju du du
= = e =0 1
x| x=0 dy|x=0 9z|=x=0 19
x=a xX=a x=a
d
5% 0 =% 0 =% 0 =0 (L)
0 Bl B! yIb

In spite of the apparent simplicity, Eq. (8) does not possess the exact finite solution
fulfilling the boundary conditions (9)—(11) on plate boundaries. One should notice that
the analogical problem of electromagnetic wave propagation in rectangular waveguides
possesses an exact analytical solution.

The motion equation for the plate with limited dimensions can be solved only in the
approximate way. To this end we can distinguish two procedures:

1) solving numerically the system of exact equations in the approximate way,

2) simplification of motion equations and exact solution of the obtained equations.

Mindlin’s theory of vibrations of plates with finite dimensions [3—5] can be included
in the second way of proceeding. We encounter similar problems in the case of strip
waveguides [6] and topographic waveguides [7]. In both of these cases one can obtain
field distributions and dispersive curves only numerically. A considerable limitation of
the guided acoustic beam width has been achieved in these waveguides. It leads to the
increase of acoustic wave power density, what can be employed in acoustoelectric
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devices utilizing nonlinear effects [8]. The complicated character of phenomena appears
particularly strikingly in plates with three limited dimensions. Eventually one obtains
standing waves using suitable excitation. This case occurs in resonators applied as
ultrasonic transducers, constant frequency sources or electromechanical filter elements.

3. Experimental investigations of special cases of plate waves

3.1. Methods of plate wave excitation

Experimental investigations of plate waves aim at separating definite modes using
appropriate elastic wave excitation. These application of appropriate excitation for the
generation of definite modes is widely used in the field of piezoelectric resonators. It is
possible to choose the electric field direction, the dimension of electrodes, the shape of
plates, e.g., lenticular, with chamfered edges. Such procedures have permitted to
claborate resonators working on one fundamental frequency.

In spite of the lack of a theory, experimental investigations permit to observe a very
complicated process of elastic wave propagation in plates with limited dimensions. It is
advantageous to investigaie the phenomena occurring in plates with two limited dimen-
sions using pulse methods. Resonance effects can be eliminated, at least partly, if the
pulse transit time is considerably larger than the pulse duration time. The fact that a
generated wave beam does not have the character of a plane wave complicates the ex-
perimental investigations.

For the excitation of plate waves we applied transducers in the form of plates bonded
to plate edges — Fig. 4. Applying the proper plate width and the wave beam with small
divergence one can excite only the fundamental thickness mode — Fig. 5. For the low

bz

[

//..—- 2
I/ = ;

FIG. 4. Methods of plate waves excitation. 1 - piezoelectric transducer, 2 - direction of transducer
vibrations, 3 - direction of wave propagation.
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FIG. 5. Plate 15 x 14.9 x 0.5 mm cxcited as in Fig. 4a, f = 10 MHz, 5 ps/div, 100 mV /div.

frequency, when the beam is strongly divergent, transverse (plate thickness) and width
SH wave modes are excited. This effect seriously complicates the image of received
pulses — Fig. 6. One should also take into consideration shcar wave transformations into
a longitudinal wave. Mode separation becomes impossible. Narrowing of the plate
should eliminate transverse modes but then flexural symmetric and asymmetric modes
arise. All these effects can be observed in the photos of pulses.

The edge excitation (Fig. 4b) permits to privilege higher thickness mode but width
modes are not eliminated.

FIG. 6. Plate 15 x 14.9 x 0.5 mm excited as in Fig. 4a, f=1 MHz, 10 ps/div, 0.2 V/div.
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3.2. SH waves in plates with large width in relation to length

In order to eliminate SH wave reflections from the plate sides, we applied plates with
large dimension in a direction perpendicular to the wave propagation direction. The
widths of these plates were greater than their lengths or comparable. In this way we tried
to approach unlimited space conditions. The SH wave was excited as in Fig. 4a or Fig.

FiG. 7. Plate 16.5 x 15.8 x 1 mm exciled as in Fig. 4a, f= 5 MHz, 5 ps/div, 0.5 V/div.

FIG. 8. Plate 16.5 x 15.8 x 1 mm excited as in Fig. 4b, f=5 MHz, 2 ps/div, 20 mV/div.
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11G. 9. Plate 16,5 x 15,8 x | mm, [ = | Mllz, 10 ps/div

a) excited as in Fig. 4b, 100 mV/div,
b) excited as in Fig. 4a, 0.5 V/div.

4b. The obtained oscillograms of pulses are presented in Fig. 7 and 8. In Fig. 7 the fun-
damental mode pulse is visible, higher modes are almost imperceptible, whereas in Fig.
8 higher modes are clearly noticeable. The superposition of visible modes and the defor-
mation of transmitted pulses come out here, what makes velocity calculations impos-
sible. The third echo observation does not improve the situation. Difficulties of the
separation of pulses appear specially for lower frequencies, e.g., 1 MHz, when the wave
beam is more divergent — Figs. 9a and 9b. As one can see in the figures, it is not simple
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to obtain measurement conditions close to the theoretical conditions because the
generated wave is not the plane wave and the generated pulses are expanded in time.

3.3. SH waves in plates with transverse dimension smaller than the dimension in the
wave propagation direction

This case of SH wave propagation in a plate is the most complicated and it cor-
responds with the theoretical case considered in Chapter 2.2. Figure 10 presents the

FIG. 10. Plate 26.4 x 17 x 1.1 mm exciled as in Fig. 4a. f=5 MHz, 5 ps/div, 100mV/div.

F1G. 11. Plate 26.4 x 17 x 1.1 mm excited as in Fig. 4b, f =5 MHz, 5 ps/div, 20mV/div.
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image of pulses rising with the excitation as in Fig. 4a. Besides the main pulse, one can
see additional pulses rising as a result of reflections at side edges of the plate. Edge
excitation (Fig. 4b) complicates furthermore the image of pulses — Fig. 11. Consequent-
ly, the identification of SH wave modes is not possible. The image becomes simplified
for higher frequency (10 MHz) when the wave beam is narrow and the side reflections
are eliminated. This case does not possess an exact analytical solutions, it is also compli-
cated experimentally.

FiG. 12. Plate 25 x 5 x 1.1 mm excited as in Fig. 4a. f= 5 MHz. 5 ps/div. 100 mV/div.

FiG. 13. Plate 25 x 5 x 1.1 mm excited as in Fig. 4b, f =5 MHz, 5 us/div, 20 mV/div.
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3.4. SH wave in narrow plates

The climination or the reduction of side reflections of SH waves is possible in nar-

row plates. Figure 12 presents SH wave pulses excited by a plate transducer as in Fig. 4a,
while Fig. 13 —as in Fig. 4b.

3.5. SH waves in plates with different thickness

FIG. 14. Plate 25 x 12.1 x 0.5 mm,5 ps/div,
a) excited as in Fig. 4a, f= 5 MHz, 100 mV/div,
b) excited as in Fig. 4b, f= 10 MHz, 10 mV /div.
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One can sec from the analytical solution for the plate wave that for an unlimited plate
the frequency limitation appears in the form of cut-off frequency. Below this frequency
plate modes do not exist. The cut-off frequency is defined by the formula

Up
f(.‘m = 4h

The experimental investigations of plates with different thickness and also for dif-
ferent frequencics should enable to observe the cut-off frequency. Mcasurements have

FIG. 15. Plate 10.5 x 15.8 x 1 mm, f = 10 Mllz, 5 pus/div,

a) excited as in Fig. 4a, 0.2 V/div,
b) excited as in Fig. 4b, 20 mV/div.
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FiG. 16. Plate 33.5 x 18 x 2 mm, f= 5 MHz, 10 us/div,
a) excited as in Fig. 4a, 0.2 V/div,
b) excited as in Fig. 4b, 20 mV /div.

been performed for plates with thicknesses of 0.5 mm, 1 mm, 2 mm. Figures 14a, b, 15a,
b and 16a, b present the results of measurements. The results of velocity calculations for
SH plate modes are shown in Fig. 2. In spite of the mentioned difficultics, we succeeded
in identifying plate modes, especially for frequencies higher than 5 MHz. For this range
we succeded in separating the modes particularly for edge excitation. Instead, for the
frequencies 1 MHz and 2 MHz, where the considerable differences of mode velocities
caused by the cut-off frequency existence should be visible, measurements and observa-
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tion of pulses show a very complicated image. In this case we succeeded only partly in
identifying the pulses corresponding to SH wave modes. It scems that the existence of
flexural modes is possible in this frequency range.

4. Conclusion

The results of experimental investigations of the propagation of SH wave pulses in
plates show that the best agreement of measurements results with calculations for an
unlimited plate is obtained for narrow plates (ratio 5/20 = 0.25). In this case the SH wave
has a plane wave character and shear wave transformation into a longitudinal wave does
not appear at the edges. The plates are sufficiently wide and flexural waves are not
present. In the case of thicker plates and higher wavenumbers it is possible to excite and
to separate higher order modes. From the realized investigations it is evident that plates
with a width/length ratio smaller than 0.4-0.5 are the most suitable for waveguides. One
should also take the plate thickness into consideration on account of cut-off frequency.
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Surface acoustic wave (SAW) propagating in arbitrarily anisotropic piezoelectric
halfspace is considered. The wave interacts with a perfectly conducting and weightless metal
disk on the substrate surface by means of the electric potential only which is coupled to SAW
due to the substrate piezoelectricity. A perturbation theory of scattering plane harmonic SAW
by the disk is presented which accounts the dielectric, and elastic anisotropy of the substrate.
The solution for electric charge distribution on the disk is given in a form of fast convergent
scries easy for computation. The total electric charge induced by SAW on the grounded disk
is explicitly evaluated. Angular dependences of the scattered SAW in large distance from the
disk is also discussed.

1. Introduction

Surface acoustic wave propagating in a piezoelectric halfspace is accompanied with
a wave of electric potential on the halfspace surface. Perturbation of the potential allows
scattering SAW. This phenomenon is exploited for some technical purposes in SAW
devices. The theory presented below concerns SAW scattering by perfectly conducting
elliptic disk on anisotropic piezoelectric substrate.

There are similar problems in acoustics and electromagnetics, where a rigorous
theory has been developed of wave scatiering by ellipsoid and, in limit, by disk [1].
Perturbation theories are also known for small disks [2], [3]. The problem considered in
this paper differs from the above ones at least with the substrate anisotropy. The
dielectric anisotropy of the substrate directly effects the electric charge distribution on
the disk induced by the incident SAW. This, and the angular dependence of SAW
velocity and SAW coupling to the electric field resulting from the elastic and
piezoelectric anisotropy of the substrate, influence on the angular dependence of the
scattered SAW far-field.
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The theory presented below is a perturbation one. It relys on neglecting of
piezoelectric interaction when the electric charge distribution on the disk is evaluated.
This simplification can be applied under the assumption of weak piezoelectricity of the
substrate or on the assumption that the disk diameter is not excessively large as com-
pared to the wavelength of SAW.

The formulation of the boundary problem considered is given in Section 2. Appendix
B shows how the problem for elliptic disk can be transformed into the problem for cir-
cular disk of unit radius. The transformation results however in anisotropic Green’s func-
tion, which is discussed in Appendix A. Section 3 presents the solution of certain
electrostatic problem for anisotropic dielectric halfspace (much more elegant solution
was recently presented in [18]). The key features of this solution are discussed in Appen-
dix C. Section 4 is devoted to the evaluation of electric charge distribution induced on the
disk by the incident SAW. The scattered SAW is considered in Section 5 where some
numerical examples are also presented.

Note. In the paper, several functions are represented in a form of infinite or finite
series which components, as well as summation limits are described separately in the
main text or in Appendices. To clarify the presentation of the formulas the symbols of
summation are usually dropt (there are notes about it however from time (o time).

2. Integral formulation of the scattering problem

2.1. Simplified description of the substrate electric property

Consider a traction-free piezoelectric substrate surface with electric charge distribu-
tion in a form of the travelling wave on it

AD, = pexp(jot - jk - r) ey

where the denotation AD, expresses well known relation between surface electric charge
and the discontinuity of electric flux density on both sides of the surface [4], @~ angular
frequency (in what follows, the time dependence will be droped), k — wave-vector, p —
complex amplitude of the surface electric charge.

Following [5], [6] the wave of electric charge results in the wave of electric potential
on the substrate surface. The potential complex amplitude is

d=G(w,k)p (2)

where G is the Fourier transform of electric Green’s function of the piezoelectric
halfspace (the considered Green’s function concerns the electric quantities on the
halfspace surface only).

Generally, G can be decomposed into three components describing three different
physical phenomena, dielectric property of the substrate, gencration of surface acoustic
wave or bulk acoustic waves coupled to the surface electric potential. A detailed discus-
sion of the function G is given elsewhere [7], [8], let us only note here that both two
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former components are singular functions of wave-number k, while the latter component
is usually bounded function of k.

In what follows, the latter part of G describing bulk waves is completely neglected,
however there are not any substantial difficulties in including it into considerations on a
similar way as the surface waves.

Following this simplification we have

1 k*-ko
M oy v

where k = |[kl|, and ko — wave-number of SAW for metalized substrate surface, k, —
wave-number of SAW for free substrate surface, £, — effective surface permittivity of the
substrate, all the above quantities depend on the direction of propagation of the wave k/k,
note however that due to point symmetry there is £.( + ) = £,(1?) and similarly for ko and
ke

Itis convenient to write the relation (2) in spatial representation as follows

@(r) = [[g(r;r") p(x')dS' 4)
S

where the integral is taken over the whole surface occupied by the electric charge. Ex-
plicit form of g is given in Appendix A.

2.2. Simplified formulation of the scattering problem

Itis shown in Appendix B how the problem for elliptic disk can be led to the problem
for circular one. It is done by suitable scaling and subsequent transformation of the coor-
dinate system. The following considerations concern the transformed spatial coordinates
where we have to do with circular disk of unit radius.

Let us consider the grounded disk which electric potential is zero. With help of (4)
this can be expressed in a form

- @'(r) = [[g(r;r) p(r')ds’ ®)
S

where r and r’ belong to the disk area S where ||r|| < 1, and @° is the incident wave
potential on the free substrate surface

@° = exp(jk,z) (6)

(for convenience, we apply the unitary potential amplitude and incident SAW propagat-
ing in —z-axis direction).

In the case of free (floating) disk where the disk potential can have nonzero value
(constant over the whole disk), the scattering problem can be divided into three parts
which can be solved separately.
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i) firstly, the solution for grounded disk should be found and the total electric charge
Q induced on the disk evaluated,

ii) secondly, an auxiliary problem should be solved for grounded disk with

— @° = V = const applied instead of (6). The total electric charge Qo over the disk should
be evaluated in this case, 100,

iii) the last step is to make a superposition of both solutions with V chosen in such a
way that Q + Qo = 0. The potential V is the floating disk potential induced by the incident
SAW.

The problem ii) describes also the generation of SAW by a disk supplied with an external
voltage, it can be solved on a similar way as the problem i).

The integral cquation (5) is very complicated and, generally, it can not be solved
exactly. However, for common piezoelectric substrates we can apply the assumption of
weak piezoelectric coupling, that is

Av/v = (ko - ky )k, << 1 @)

This enable us to apply the iteration procedure in solving (5), speaking in advance we
will perform only first step of the iteration.
Applying results given in Appendix A we can write

- @ =[[gfpds + [[g"pas ®)
S Ry

where g¥ is a singular function at r = r, while g" is a regular function proportional to
Av/v which value is relatively small. It means that the second component in (8) can be
neglected for all r in vicinity of r’, say forall r from the disk area S.

Following this simplification the first approximation 10 (8) is

- Jm k ejml‘?= p(rlﬁ') dx'd'=
% (kr) J;f 2are.(0-a/2) .

1 27 R(®)
— [[e(T-m2)T"dD [p(r, &)dr ©)
2y 5

where 7 = ||[r - r'||, #=arg{(r - r')/7} similarly r, #and r', ¥’ represent vectors r and
r’ in polar coordinates on the substrate surface (Fig. 1). The left-hand side of (9) is
— @ in polar coordinates r, . The equation (9) is the weekly singular Fredholm integral
equation of the first kind for charge distribution .

Confining our consideration to the first approximation, the far-field solution for the
scattered SAW can be evaluated with help of asymptotic representation for g~ (see Ap-
pendix A), that is

d(r— o0, 9) =g (1, 0)plr', 0")dS (10)
S

where pis the solution of (9).
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3. An auxiliary electrostatic problem

3.1. Arbitrary distribution of electric charge over the disk

Charge distribution which is a smooth function over the circular disk can be repre-
sented by a series (summation over m, n will not be explicitly marked troughout the

paper)

' ! TPI l“ jm
p(r, i )=o'mn(1_(—’ﬂ))ll,zej g (11)

where T, is the n—th order Tchebyshev polynomial and o, is an arbitrary constant. The
applied charge distribution (11) exhibits square-root singularity at 7' — 1 which is typi-
cal for the problem considered here [2]. The condition that p(r', @) = p(-r', @ + x)
constrains n in (11) to numbers having the same parity as m.

Substitution of the above representation into (9) gives the potential @ under the disk
(that is for r < 1) in the form (see Fig. 1 for geometric interpretation of r, and r)

2 (1-rp”

¢=%IJdT?X(§_ J[/Z)f!f(f], W' )dr, (12)

-(l-rl)
where x = 1/¢, and
ry=rsin(%- 17)
ra=7 +reos( - )

Y= ()

ﬂ'=§—%arg[ (=ra+jr)/(=ra-jr) | (13)

where arg {e’“} = a.

FIG. 1. Geometrical interpretation of integral variables.
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[t follows from (13) that the substitution can be made

ri= &sinn

ry=Ecosn (14)
resulting in variables

V=0 n

r=§ (15)
both dependent on r; and ¥, which applied to (12) yield

il s e
¢= 4E6fx(0—n/2)e’ dv | M(T—W“’ 'dr, (16)

~(1-r))

Let us introduce an auxiliary function f(r;) the domain of which is -l=ris1so0
that f(r,) can be further expanded into a Fourier series as follows

T,[(r}+r3)"7
W(1-1i-r3)"

(1-r))

firy=f

=)

4™y w Nicye 7

] =-

where

2.2

1 (1-r,) 2 2

1 ; Fithra
e1=3 [dre™ | SLevae)

2 2,172
-1 -(l-r:)m(l-rl r'Z)

le] )
e?™dr, (18)

We easily note that the integration area in the double integral (18) appears to be a circle
of unitary radius on the plane (4, r2) then applying new polar coordinates (14) the in-
tegral (18) can be transformmed into
L OETL(E) B e s
SEtal\b alEsing _—jmun
dE f /™5™ gy (19)

6[(1 _ 52)”2 4
The second integral can be evaluated as 27(signm )"J \m|( 7wl §) where sign{m} = +1 for
m =0 and -1 otherwise.

Now, with help of the relation given in [9] (rel. 2.13.30.2, p-209) for a>0 and

v>-1

1
Cl=§

fcos [ narccos{x/a)]

2 25112
) (@-x)

J,,(cx)dx = J[/QJ(,H',‘),'2(asz)J(v~;L)f2(aC/2)

where cos(narccos(z)) = T,(z) we obtain

ci™" = (:r/?.)z(signm)"'[Jlml—rwlllmlw—l +J&m|—u—1J|m|+»+1] (20)
2 2 2 2
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where the argument of each Bessel function J above is 7z//2. Also note that all these
Bessel functions have half-integer indices because m and n have the same parity. Upper
indices in the left-hand side of (20) mark the dependence of ¢; on m and n.

It is easy to prove that

Pl 0, for m=0 and arbitrary n,
e = -1)"*(1-n%", for m=0 (neven). (21)

Some further properties of the coefficients c are discussed in Appendix C.

Having f(r,) expanded into the Fourier series (17) the relation (16) gives after
simple transformation

¢=%ak,,xm_kc§*""ef“*’1m(mr) (22)

(note that there are summations over m, k and / in infinite limits and after » from 0 to ).
Taking into account (C.2) the above relation can be further transformed into

(kyn) b(k,r:)
1 f”np(-1)‘+ (”[)P for 10
D= O tm- 16" An(tlr) { LT i (23)
cftm forl=0

(summation after p —see Appendix C).

3.2. Particular case of charge distribution

Let us introduce a polynomial (m and n have the same parity, n = 0)

T,"(r) =Y wer, |m|sn (24)

k=|m|(2)

which is a Tchebyshev polynomial truncated from the lower side, the only components
left are these with power of r equal or greather than |m|. Note that & in the definition (24)
has the same parity as n. Also note that 7" = T, (neven)and T\" = T, (n odd).

Consider now a particular case of charge distribution over the circular disk in a form
(O — arbitrary constants, n = |m|)

™ (25)
It is shown in Appendix C that the electric potential resulting from the above charge

distribution in the disk area (r < 1) on the strength of (12) takes the form similar to (23)
but without terms (+1)"//7, that is (summation over m, n, land p as previously)
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0; for/=0andm=0
1 mo %"
D==CYm-r€"" " =1 Ja(mlr); forl=0 2
2 b Ko~ (-1) (nl)? ( ) (26)
c§®"); for/=0and k=0

where a®") can be expressed by aj“") by suitable superposition (C.5) (transforming (23) to

(26) we took into account that.J,,(0) = 0 for m = 0 as well as (21) and Appendix C).
Moreover, some components in (26) can be completely neglected because ([9], rel.
5.7.19.9, p.678)

2(— %> T (kx)=0 ; O<x<m, v-2n>1/2

k=1

It means that all components with p <|m| in (26) can be dropt independently on the
values of 0y, and a3*") .
Let us consider net, or total electric charge on the disk resulting from integration of
charge distribution (25) over the whole disk. We have (summation after even n)
1
T _ 1y
Q=ffpd§=2;rao,,f-(-{—"(§r))l—,2dr=2nao,,( L)% 2ef3 9 g, (27)
s 0 = F

=
1-n

4. Charge distribution induced by SAW

4.1. Approximation of the incident potential wave

In (9) the wave of electric potential coupled to incident SAW is represented in polar
coordinates. This representation can be further expanded with help of the relations given
in [9], rel. 5.7.17. (26) and (2) (below taken with 2 = 1)

< k+ 1 | il T om-v-1
E( -1) 2 5. (kx) = 54 cosec(amr)J,(ax)
k=1 =

o0

2(—1)"10(kx)=% i i e R £ BT
k=0

The result is (summation over m dropt)

0; for [=0 and m=0
Sinky imo < (T R
P s e IR -1)- e J.(xmlr), I=0 28
k, ,_,E_m( ) - () @
j for /=0 and m=0

where v=2form=0and v=0 form=0.
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As known, J,,(7lr) ~ INT for large / and r = 0. It means that the above series over
I is absolutely convergent for all m and 0 < r < 1 under consideration. Allowing certain
error of an order of O(1/N), components with large /, say with |/| > N can be omited
when the series is evaluated. Thus we can replace infinite limits of summation over [ in
(28) with = N, where N >> k, /.

Now consider Lagrange interpolation allowing representation of [/* - (k,/7)*] " ina
form of finite series of terms like /™%, p=1,2, .., N with strict equality of both repre-
sentations for |/| = 1,2, ..., N (see Appendix D). Applying this representation in (28) we
obtain series like

|m|+ v

N N ' k
/N ke | Ky
2 -1 B (ﬂ) Tn(lr)
=1 p=1
(v as above in (28)). Once more it is seen that the summation over / can be extended to
infinity with error of an order of O(I/N).
Finally, an admissible approximation to (28) is

0; for /=0 and m=0
z a0 N (m)
sink,, ; B
selDX e ___UC,JMI‘?E (-1) E £ — J.(xlr); [=0 (29)
k., g p-v+|m!(2)(ﬂ:l)p |
I for =0 and m=0

where summation over m is limited to [m| < M and B, appearing above are correspond-
ing coefficients of the Lagrange interpolation calculated for N dependent on |m), namely
for N, = N - |m|. Note that p varies from |m| + v to N by step of 2 so that both p and m

have the same parity. To obtain good approximation one has to apply large value of N, at
least to fulfil N - M >> k,, /.

4.2. Evaluation of charge distribution

A comparison of (29) and (26) makes evident that:

i) electric charge distribution induced by SAW can be expanded into a series like
(25), resulting in the similarity of both the above series.

i) the expansion coefficients 0, can be evaluated on the strength of equality of
similar components appearing in (26) and (29) at the same m and P

iii) when comparing the above series, components with p < |m| must be neglected what
ensures that the number of equations equals the number of unknown (see Section 3.2).

Adirect comparison of (29) and (28) takes place for every m and p = 0, and separate-
ly for free term at /=0 (only for m = 0). On the strength of (21), (27) the later gives
directly the total electric charge induced on the grounded disk by the incident wave of
electric potential of unitary amplitude (6)

sink,,

Q= (4/x0) x

(30)
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It follows from this relation taken for k, — O that the disk capacitance is [10], [15]
C=4/x (31)

The simultancous equations obtained as a result of the comparison ii) can be solved
numerically on the usual way. However note that for the simplest case of circular disk on
isotropic substrate, when only xo = 0 and the remaining ;= 0 the simultaneous equa-
tions are separated for every m. What’s more, the matrix of the equations has a triangular
form in this case (this follows from the triangular form of truncated matrix aj*"’ for
p =|m|, where the dot upper index means any particular value of m, sce Appcndlx Cand
the discussion at the end of Section 3.2, below (26), concerning zero-valued series of
Bessel functions).

It is seen that the above equations allow to evaluate all 0,,, except goo which can be
evaluated on the strength of (30) and (27). This concludes the evaluation of charge dis-
tribution on a grounded disk. It was discussed in Section 2.2 above how it can be ex-
ploited in the case of free (floating) disk. The simple result is that the disk potential
induced on the floating disk is V = Q/C = sink, /k .

5. Angular dependence of the scattered far-field
5.1. Asymptotic analysis of the scattered SAW

Relation (10) describes the scattered electric potential wave on the substrate surface
at point (r, ), far from the disk, where the wave can be considered as plane wave which
Poynting vector is oriented in direction 1. The double integral over the disk area S can
be evaluated on the similar way as the integral (19) in Section 3 above. Indeed, we have
after simple transformations with taking into account (C.2) (summation after m, n, k,
note that g is inversely proportional to Vr, see Appendix A)

m n)
y Lo m(6,+2/2) [ T (T,, T;) ' )
(p ffg pdS Lo W O € } ! f r )1’:2 Jm(rkﬂ)dr (34)

We easily note the similarity of every k-th term of (34) and (19), if only () is
replaced by k. Thus we can write

e Co 0, (O 12) Z(C}""") " t;(;'"”')cf""“) (35)
vr () =k,
Taking into account (C.2), (C.4) we see that
(m,n) (m,n)
Cea m(8,+2)| Gp i g
Do s T 00 cos(ml) + sin(7l) (36)
vr (xl)? (ml)? Cofs danr

where a, — see (C.5), similarly y, = (signm Pl - E dihhylmaly,

m
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Below we show that we need not evaluate all y,, but only y, (for m even). Indeed, it
is easy to prove that the right-hand side of (35) is a regular function at ks — 0, then (36)
should be regular as well. It means, that every term like acos(kg)/ks must be accom-
panied with term like ysin(ky)/kjust necessary to climinate singularity from the expres-
sion [ acos(kp) + ysin(ke)/ks]/ks at ko= 0. This allows to evaluate y for the given c.

Exactly, the expression in brackets in right-hand side of (36) can be rewritten as
follows

asCoS ks + yssinkyfks

208 kg + y3Sinkg/ks +

ks
sinkg/ky + ; for m even
}’l MR kt% Vi (37)
ink
acosky + yasinko/ko + echie 12}'481 ofke
? ; for m odd
ks

As we see, every y, can be evaluated from the given vector of a, this way, except y;
which appears only for m even and which must be evaluated directly from (35), (36). It
should be noted however that the above representation is not convenient for computation
for small value of kg in which case it is better to apply (35) and to evaluate suitable
Bessel functions (20) in ordinary way.

5.2. Numerical examples

All results shown below (except Fig. 11) were obtained either for circular disk of unitary
radius or for elliptic disk with main axes 1/a and « (that is for R = 1, see Appendix B).

ommmmmg0 2SS T g

FIG. 2. Diagram of electric charge distribution on a circular disk of unitary radius for k,, = . Left figure —
isotropic substrate, right figure — dielectrically anisotropic substrate (xo = 1, 2 = —j.2), upper part of the

figures — imaginary component, and lower part — real component of p(1 - rz)l"2 (see relation (11)).
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FIG. 3. Angular scattering pattern for grounded circular disk on isotropic substrate, kv = /2 (on left) and
ko= 3m/2 (right figure).

* l

| |
FIG. 4. The same as on Fig. 3 but for floating disk.

[400]
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FIG. 5. Circular disk on isotropic (lefl) or anisotropic substrate (right, the diclectric anisotropy only, the
same as in Fig. 2), forky = 7

FIG. 6. Isotropic substrate and elliptic disk with & = VZ, longer axis horizontally oriented and ky = 7vVZ
(left figure), and vertically oriented and kv = /¥ (right figure), incident SAW from top of the figures.

[401)
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FIG. 7. Isotropic substrate and 45” rotated disk wilh ¢ =2, ko = /4, a - grounded disk, b — floating disk, ¢
— radiation pattern obtained for unitary voltage amplitude applied to the disk.

The influence of dielectric anisotropy of the substrate on the electric charge distribu-
tion on the circular disk is illustrated on Fig, 2 for k, = 7. The case of isotropic substrate
is shown on left part of the figure, while the right one concerns substrate with xo = 1 and
%2 =—j0.2. The diagrams do not present the charge density directly, it illustrates rather

|

11G. 8. As in Fig. 7 but for k¢ = 77/2.
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|

|
FG. 9. As in Fig. 7 but for k,, = .

the relation (25) with square-root term dropt for better presentation of the charge dis-
tribution in vicinity of the disk border. We sec that the charge distribution is effected well
by the dielectric anisotropy of the substrate.

Figs. 3-10 show the angular dependence of the far-field amplitude S (see (A.12)) of
the scattered SAW, multiplied by vr. All figures are in the same scale except Fig. 10,
which dimensions are 50% reduced. A kind of normalization was also applied, namely
the values of the wave amplitudes were divided by Av/v for SAW propagating in z-
direction (in isotropic cases we simply applied Av/v = 1, sec Appendix A). In all cases
the incident wave propagates from the top to the bottom of the figures. As we see, in each
case the largest value of the scattered field takes place in the shadow area.

Figs. 2-9 concern mainly isotropic substrate, the scattering patterns are rather typi-
cal. Fig. 10 concerns Y—cut lithium niobate and incident wave along —Z-axis. The disk is
elliptic with main axes ratio 4:1, it is 47.2° rotated with respect to X-axis, as it is com-
monly applied for SAW reflection from Z to X direction. We observe large amplitude of
the scattered field in + and - Z directions. It is connected with small curvature of the
slowness curve in this case, leading to large value of Cy (see Appendix A) for 7= 90°
(detailed discussion can be found in [14]).

In computations, we applied limited angular harmonic expansion (25) with |m| up to
M =9 and finite series over n up to N = 14 for m even or N = 15 for m odd. This results
in simultaneous equations for real and imaginary parts of 0,,, of dimension up to 60*60.
Note that o, = x2, and x2,, =0 what results in

O_pn = (_1 )m G:rm (3 8)

so that the equations are separated for even and odd m. The calculations can then be
arranged in such a way that only components with m = 0 are to be evaluated. The conver-



FIG. 10. 4:1 clliptic disk (a = 2), 47.2° rotated with respect lo X—axis ol LiNbO3, Y-cul, incident wave in
- Z direction (vertical axis of the figures), ky = 7/2, a, b, c —as in Fig. 7.
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FiG. 11. The dependence ol total clectric charge ampliludc (2 induced on clliptic electrode on the electrode
length d (that is on the disk main axis which is perpendicular to the direction of SAW propagation). Vertical
axis in arbitrary units. The electrode width w is assumed constant, applied as a unit for figure horizontal axis.

[404]
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gence of the solution for charge distribution given in a form of (25) was checked by
applying different M and N. We obtain satisfactory results for wave-numbers up to 6.
The last figure (Fig. 11) presents total electric charge induced on the grounded ellip-
tic disk on YZ lithium niobate. The disk has one main axis of constant (unitary) length
w = D/a which is oriented along Z-axis of the substrate (that is in SAW propagation
direction), and the other main axis has variable length d = @D, the total charge is depend-
ent on (the vertical axis of the figure is in arbitrary units, the figure presents the relation
(30) with k, w assumed constant). In very coarse approximation the figure may be inter-
preted as concerning the detection “efficiency” of one (isolated) electrode of an inter-
digital transducer of SAW. As we see, the “efficiency” does not depend linearly on the
electrode length what may effect the performance of apodized transducers [8].

6. Summary

An anisotropic diffraction problem cannot be expected to be solved explicitly so that
computations are necebsa?’ The theory presented above allows to perform some com-
putations only once (a,™"’ can be stored and applied in all cases). It is worth to note that
important part of computations are performed with integer numbers («,, are integer num-
bers), however the value of these numbers grows very fast with m, n, p, so that applying
FORTRAN double precision variables on IBM-PC allows to perform exact computa-
tions with |m| < 9 and » = 15 only. This work was supported by grant 312129101.

Appendix A

With help of new spatial and spectral coordinates
k.=kcost; x=rcost
k.=ksin8;, z=rsint (A. 1)
the inverse Fourier transform of G (k) can be writtcn as

o 2
g(r, 9 = (Zx)'zfdkfe"‘”‘“‘“" Dy (60)do +

k (8) - k2(0) (2
—(2n)'2fdkf B e o T
-k (8)
where (n takes even values only because of polar symmetry of €,)
x(0)=1/c.(0) =£.(0+ )= Y xne'’ (A.3)
-o(2)

(2 in brackets means that n varies step 2).
First component of g is [11]

85, ) =5 = (D4 7/2) (A 4)
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while the second one can be transformed into
¥ e c AO+ O+ m/2)
r,M=02n dk
&ry 0)= (20§ Osz-ki(mﬁm/z)

allowing to apply Jordan’s lemma on the complex k-plane. The result is
o+ /2

g (r, 9) = j(4m) [[A(0") tho( )]0 D gy (A.6)
@-n/2

e_jrksinﬂda (A. 5)

where
Alkey = (ko + y) (ko — ko) (Kyee) = 2(ko - ky)/Ee = 2 Ak

The function g = g© + g* taken with arguments (7, 1#) describing vector (r—r') in
polar coordinates presents the electric Green’s function for piezoelectric half-space. This
function expresses electric potential at point r resulting from the point electric charge at
point r’, where both r and r’ are on the substrate surface.

Let us evaluate the relation between ||g¥]| and ||g"|| for the simplest case of isotropic
substrate. We have

gl /g™l < 7r Ak = 20( Av/v)r/A

where Av/v is of an order of .001 for week piezoelectrics and .01 for strong ones
(Av/v = .024 for YZ lithium niobate). The above estimation means that in all cases g
can be neglected when evaluating potential in the distance of about one wave-length A
from the point electric charge, and up to above 104 for week piezoelectrics. This justifies
the approximation (9) in the main text of the paper.

An asymptotic Green’s function g for large value of r (it follows from the above
reasoning that g" can be neglected in this case) can be obtained applying the stationary
phase method [12] to (A.6). Taking into account that

rer-r (A.8)

for r — o, where r is the distance from the disk center to point (r, 17), where electric
potential is evaluated, while (7', ') is the pointin the disk area, where electric charge is
placed, and r is the distance between these two points, we obtain

O, ) =g (r—=>o0, &, 0)~
F+m/2
~ji2m) [ x(6')Ak(8 )e ") A ay (A.9)
-n/2

Let us denote a stationary phase point as 84 (below we assume that there is only one
such a point). This is an angle, for which the Poynting vector of the wave with wave-
number k,( 8s) is directed to the observation point (7, ) (as known, the Poynting vector
is perpendicular to the slowness surface k,( '), here ¥ = 65[13]). The stationary phase

method yields
K o=ky(6s) (A. 10)
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C e
g(e.r, ) = zm‘;_ exp[jr'kacos( ' — Bp)]e?" % (A. 10)
; - [cont.]
T
Co=|— . X(89) k. B)

k(8 )cos(@ -1
P [k.(8 )cos( )]I
on the assumption that the second derivative in the denominator in C s is different from
zero [14]. Further transformations gives (phase term exp[ —jrkascos(? - 8,)] dropt)

’ ' Cl‘?
g (o, )= T
Let us define the amplitude of plane SAW as S, where Poyinting vector of SAW is
IT=SS"/2 by the definition of S. Unitary amplitude SAW propagating in z-direction is
coupled to electric potential of amplitude ., while propagating in direction #is coupled
to potential @,. Taking this into account one obtains the dependence of scattered SAW
far-field on the the angle #as follows

S(1) = B(9)[ P./Dy] (A. 12)

0 =6,

Ejm(rrkﬂ)e-jmt?'ejm(ﬂ,’2+ 8,) (A 11)

Appendix B

Let us consider an elliptic disk having main axes R/a and aR. The disk orientation
in the coordinate system x, z is described by rotation angle 6. The disk is transformed
into a circle of unitary radius on the (& &) plane, where new cartesian coordinate system
&, Cis defined by

z/R = (&la) (1 + a*1g’6y) Pcos 6,

x/R = [ a& - &(1 - a*)sin6y)] /cos by (B. 1)
(the new system is chosen in such a way that {-axis is directed along z-axis, it means
that the incident wave propagates along — {-axis in new coordinate system).

Consider a wave propagating in the direction that is ¢ rotated with respect to £ in the
new coordinate system, and the wave-number of the wave in new coordinate system is k.
In old coordinate system this wave correspond to (that is, it is transformed into) the wave

with wave-number £, and its propagation direction is rotated from x—axis with angle 9,
where

(1- a")tgﬂg +(1+ tgzﬂo)aztgﬁ'
9 1+a'tg’6,
k=sk' (B.2)

172

tg

1 (1+ a4tg290) "
TR a?(1 + g6 )cos* Lo e
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Note also, that the point described in polar coordinates by r" and @' in the new system
corresponds to point described in polar coordinates by r and in old system, where

r=r's (B.3)
On the strength of the relation (3) the amplitude of electric potential resulting from
the wave of surface charge fulfils

o 1 (skY-K_ 1 K- (kis)’
AD; £ (0)sk (sk') -k K[se(D] k- (kuls)

As we see, in the coordinate system ( & &) we obtain similar relation as in the original
system (3), but with & (') =s¢e(0), k' () =ko( /s, ky () =k, (F)/s with
= 9( ), instead of &, ko, k.

The relation (36) gives the scattered potential amplitude. In the transformed coor-
dinate system where the disk is a circular one with unitary radius. To transform the an-
gular dependent scattered potential @( ) into the original system of coordinates one
should take into account the relations (B.1). To apply it we need to denote polar coor-
dinates of the same point in the old system of coordinates as r and 6, while polar coor-
dinates in the new system (that is in the system applied in (36)) as r’ and 6'. With these
denotations the far-field potential wave is

() = o(0')(r' )" (B.5)

where 0= 6(8') and V(7 /r) term appears above as a result of the dependence of ¢ on
r (6 and 9 from (B.2) are different angles!).

It is worth to note that the scattered far-ficld amplitude can be also calculated directly
in the original system of coordinates, with applying suitable asymptotic Green’s function
and charge distribution expressed in the original coordinates. The evaluation of the in-
tegral (10) however, needs integral variable transformation leading to integration over a
circle. Both approaches give the same results.

(B. 4)

Appendix C

As known, it is for integer k

syt o, ot 20
-1 bl /8 i
Jra1p(z) =2 }P: [ i cos(z) + " sin(z) ]
where a and a? can be found elsewhere [16], and summation after p = 0 takes place in
finite limits. The above allows to rewrite (21) in form (for [ = 0)

1 _(myn) 2 _(myn)

cl=(:r/2)2(signm)'”(2 % cosz(m’/2)+2 - sin®(wl2) +

(l/2)? (ml/2)?
i :
TN BTG cos( /2 )sin( 7l /2 )) (C.1)

which can be further transformed into (cos(al) = (~1)')
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Py (myn) Py ‘gms")
¢ = n(signm)” cos(l) + +
1 p-g(z)(’”)}’ -Pztz)( ml)”
Py d(m,n)
sin( zl) (€1 2)

P
p-ra2f()"

The coefficients a, b and d can be easily calculated numerically, it is also easy to
check that the following Property I takes place
PROPERTY |

a) b})ﬂ, n) bfj n) =)

what means, that there is not the second component in brackets in (C.2) for m = 0 or
m=1,

b) in (C.2) the summation after p is step 2 and takes place in the following limits
(m and n have the same parity)

= 2 for m even or 1 for m odd,

Py=n,

P; =2 fornevenor 1 for nodd,

Py = |m|a

Ps =1 for m even or 2 for m odd,

Ps=n+1,

¢) in (C.2) the number of components of ( + 1)'//” kind is [m/2| (integer part of the
product for m odd).

The polynomial (24) can be written as a combination of Tchebyshev polynomials of
the lower orders as follows [16]

[m] -2

T =T~ 3 T (C.3)
k(2)

where #; are easy to find and where summation after k starts from O for m even or 1 for
m odd, step 2, to |m| -
The following Property II takes place for every m and n = |m|

ProprerTY 11

|m] -2

b= i €4
k

The formal proof of (C.4) is expected very tedious, but it is very easy to check it numeri-
cally. All numbers appearing in (C.4) are integers so that the numerical check of (C.4)
may be considered exact and sufficient for our purpose in the paper.

Now consider charge distribution in the form of (24). On the strength of (C.4) we
obtain the representation (26) for potential under the disk, where components like
( +1)'/I” does not appear and
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Table 1. Coefficients af,”" " and yi”" ") for some m and n = m in following rows, in subsequent
columns @), are arranged with growing p except the cases of even m, where in the first column y;

is presented.
y1 even) i az(m even) ag
m n a (m odd) :1 a3 (m odd) | as
0o | 2 1 E 2 I
4 1 1 8 72
6 1 ' 18 912 7200
8 1 i 32 5280 192000 -1411200
1 1 -1
3 -1 12
5 A 84 -720
7 = | 312 -13200 100800
9 o1 840 -104880 3528000 -25401600
2 | 2 B/ v o
4 0 : 8 120
6 2 l 22 1200 -10080,
8 0 E -32 6240 -241920 1814400
3 3 4 -60
5 -4 -100 1680
g 8 472 21840 -181440
9 -8 -936 146160 -5382720 39916800
4 | 4 8 i 80 840
6 -16 ll -128 -1680 30240
8 32 5 320 -11424 483840 -3991680
5 5 -16 1680 -15120
7 48 -3696 -35280 665280
9 -112 11184 -315504 12640320 -103783680
§ ithoil A ki o6 40230 332640
128 : 2560 -112896 -887040 17297280
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af™" - (signm)”'(a_f,’"‘ " E “w" )af,""")) (C.5)

k

Table I presents values of « for some indices m, n, and p. The calculation were per-
formed in double precision (18 decimal digits). Note that the values presented in Table I
are integer numbers so that their values can be considered as exact ones.

Appendix D

Consider an expression 1/(n* - £*) for e < 1 firstly. It can be expanded into a Taylor
series as follows

1! 0F .9 .08 +£”’ Sl
g - n 114

—2+—+...] (D. 1)
The Lagrange interpolation formula applied to (D.1) forn =1, 2, ..., N yields (below,
there is strict equality for n in the above limits, a, is given in rel. 3.1.1 of [17], for in-
stance)
1 _a

as asn
3T mIR AT el 2 N (D.2)
n-¢ n° n n

By comparison of (D.1) and (D.2) we see that applying a,=1, a,= ¢ ...,
ay=€"""") we admit an error to (D.2) of an order of ¢'/(1 - &) thus vanishing for
N — o. It means that a; — 1 for N — o, similarly a, becomes constant dependent on &
etc. This reflects fact that (n” — %) is close to n~ 2 for n > N — .

The above is difficult to prove for £> 1 s0 we show it numerically in Table I1 below
for N between 4 and 10 and for some ¢ (only a; is shown in the Table)

Table 2. First coefficient a; of Lagrange interpolation (D.2)

E\N 4 5 6 7 8 9 10
25 99999 1. i 1. 1. 3 1.
9 98270 1.0006 99998 1. 1. 1.

25 1.1978 97802  1.0016 99991 1. 1. f

39 19.927 -1.389 1.2903 97490  1.0016 99992 1.

95 54.608 -31.86 12.779 -1.833 1.4938 93439 1.0069

Most important conclusion is that at least the leading term of Lagrange interpolation
(D.2), that is the term @,/n’ became 1/n” for large N. So applying (D.2) beyond its
validity area, thatis foralln =1, 2, ..., N, ...%, we admit error of an order of 0( 1/N> ).
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ACOUSTIC PRESSURE OF A FREELY VIBRATING CIRCULAR PLATE WITHOUT BAFFLE

L. LENIOWSKA and W. RDZANEK

Department of Physics, Department of Technics
Pedagogical University
(35-310 Rzeszdw, ul Rejtana 16a)

Formula for an acoustic pressure of a circular plate under free vibrations without baffle
board is derived with the use of oblate spheroidal coordinate system. The result is obtained
in terms of a single series of spheroidal function products. The number of terms ensuring a
required accuracy can be determined numerically. The field radiated by a plate without baffle
is analysed for the first three vibration modes on the basis of their directional characteristics
and accounting for various values of an interference parameter h = 2sra/A.

1. Introduction

The knowledge of basic quantities that characterize an acoustic ficld is necessary to
employ plates and shells vibrating systems used acoustic diagnostic applicances as well
as receivers and transmitters of acoustic waves. It was not earlier than in the eighties that
detailed analytical investigations on the acoustic field radiated by a circular plate begun
Analysis comprised free vibrations [10, 11] and forced vibrations [12]. Damping effects
and modifications of wave emission by its specific field were also accounted for [8, 13].
Relevant phenomena were assumed to be linear and vary in time in a sinusoidal manner.
Relatively simple mathematical tools were used since a plate was considered to vibrate
in an infinite plane baffle. No such baffle board exist in real situations and the obtained
results were valid for sufficiently high frequencies only.

Acoustic fields around sources without baffles or supplied with finite rigid baffles
were analysed in [1-5]. Directional characteristics and impedances for pulsating and
oscillating piston with uniform wave velocity distribution were found by solving a wave
equation with the use of separation of variables in the spheroidal frame of reference.

To date, investigations have been taking on acoustic fields radiated by a circular plate
without any baffle or with a finite baffle. This subject is dealt with in this paper, which is
an extension of [7] and also refers to [1-5].

Properties of the oblate spheroidal coordinate system are used to derive a formula for
acoustic pressure of a circular plate freely vibrating without a baffle. The plate is as-



414 L.LENIOWSKA AND W.RDZANEK

sumed to be thin, homogeneous and clamped at the circumference; surrounding medium
is lossless. Employing the known solution for free vibration of such a plate, wave
velocity distribution is found and transformed to the oblate spheroidal frame of refer-
ence. Such a degeneration of the frame leads to a formula for an acoustic pressure in
terms of series of spheroidal function products. Since no standard numerical procedures
have been worked out to calculate values of spheroidal functions, an attempt is made to
prepare suitable algorithms. To determine eigenvalues of the wave equation and the ex-
pansion coefficients d;", Hodge’s method [6] is used. Angular and radical spheroidal
functions and the necessary derivatives of radial functions are calculated with the help of
recurrence relationships given by FLAMMER [15], to within an accuracy of 67 significant
figure after decimal point.

Directional characteristics are given for the first three modes of freely vibrating cir-
cular plate without baffle and — for the source of comparison — with finite baffle as well
as for a piston with uniform vibration velocity distribution are also presented. For wave
lengths shorter than the dimensions of considered sources the obtained results fully agree
with the characteristics calculated for a freely vibrating plate with an infinite baffle by
using Huygens—Rayleigh integral [10].

2. Vibration equation for a plate

Free vibrations of a thin homogeneous plate of density o and thickness H, small
compared with its diameter 2a, is described by an equation [16]

62W B 4

?-’-EV w=0, 2. 1)
where M is a plate mass per unit area, B denotes its flexural stiffness and wis a deflection
function. For a circular plate the equation (2. 1) is solved in polar coordinates and the
deflections are [16]

w(r, ) =w(r)e ™ =[AoJo(kr)+ Bolo(kr) e 2.2)

where
k* = wVMJB, (2.2a)

w — frequency, Ao Bo — constants, Jo — Bessel’s zero-degree function of the first kind, Jp —
modified Bessel’s zero-degree function of the first kind.

The vibration process is harmonic hence the equation (2.2) supplics the following
expression for vibration velocity

u(r, 1) =v(r)e™ 2.3)
v(r)y=AJo(kr) + Blo(kr) 2. 4)

where
A=-iwA,, B=-iwBy (2. 4a)
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The velocity satisfies the boundary conditions for a clamped plate :

v(r)| _ =0 2.5)
dv(r)|
= -0 (2.6)

Their use in (2.4) leads to the so-called frequency equation
Jo(ka)I,(ka) + J(ka)ly(ka) =0, 27)

whose solution is a series k= k; for [ =1, 2, 3.
On account of the formula (2.2a) the free vibration frequency for the (0, /) mode is

f=kiVM/B 2% 2.8)
Formula (2.4) becomes
ui(r) Jo(kia)
¥ =Jo(kir) T Io(kir) 2.9

3. Transformation of velocity distribution for the OSCS

The equation (2.9) will now be expressed in the oblate spheroidal coordinate system
OSCS with the use of the following transformation

x=b[(1-7)(E+1)]"cosg

y=b[(1-n*)(&+1)]"sing G.1)
z=bé&n
where
@pe<0,2r>, ne<-1,1> <0, 0> (3. 1a)

Due to the symmetry with respect to the z-axis, Fig. 1, the problem can be con-
sidered in the xz—plane by assuming @ =0 in the formulae (3.1). Since r* = x” + y® on
account of (3.1) we get

r=b[(1-n*)(&+1)]"? 3.2)

Denoting the surface of a spheroid on which the source is transformed by &, and
substituting (3.2) into (2.9), the following formula for the vibration velocity is reached in
the OSCS

U;( n, gﬂ)
A

Jo(kia)
Iv(kia)

=| JokbV (1 - P)(E+ 1)) - LkbV(1 -7 & +1)) | (33)

where 2b is a distance between focal points.
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n=1
L(E,n)

a n=-1

FIG. 1. Circular plate in the oblate spheroidal coordinate system.

4. Solution of Helmholtz equation in the OSCS

Let @( & 0, ¢, t) denote a potential of a velocity field radiated by a plate. For har-
monic processes can be expressed as @(§, 7, ¢, 1)

D(E N, @ t)=W(E N @’ 4.1)

In order to determine a distribution of the acoustic field around a considered source,

Neuman’s boundary value problem for the Helmholtz equation should be solved in the
OSCS

9 o gan’ _@_ .
5(1_ )5;’:"' c-(‘:: +1 ag (§+1 (1- ) h(&"""? (7?,§,¢7)-0
4.2)

where h = kob — dimensionless wave number (ko = 27/4). Boundary condition on the
surface of a chosen spheroid &= &, has the form

¥ 1 ¥

-v(n, &), 0=sy=1
an  hg OF { 0 ¢

-1=71<0

E=E

where v(n, &) —according to the formula (3. 3)

172
h EI — hg=b ( é;;ﬂ ) — the so-called scaling factor [15] 4.4

In the OSCS the equation (4.2) can be separated into two differential equations, each
being satisfied by its eigenfunction that depends on only one spatial variable — £ or 1.
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Due to the symmetry of radiated waves with respect to the z-axis (@ = 0), the solu-
tion for outgoing waves is assumed to be a superposition of eigenfunctions, namely

W(n, &)=Y ASS( ~ ik, MRS - ih, i) (4.5)

where A, constant coefficients to be obtained from boundary conditions, S&( - ih, 1) —
angular spheroidal function of the first kind, R%)( - ik, iE) — radial spheroidal function
of the third kind depending on the distance of a wave from its source. Asymptotic proper-
ties of radial functions [15],

E—bsw» (_i)n+1elh§,

hE.

are such that the assumed solution (4.5) does also satisfy Somerfield’s conditions.

RGX( - ih, i&)

(4.6)

5. Determination of coefficients A,

To find A, that appear in (4.5), the known function v(n, &) describing vibration
velocity of a source on the surface of a selected spheroid & = &, is expanded into a series
with respect to the angular spheroidal functions [17]

v(n, &) = 2 VouSon( = ih, 17) (5.1)

[n turn, to determine the expansion coefficients V,, the series (5.1) is multiplied by
an orthogonal spheroidal function S,,( — ik, 1) and integrated on the surface of
spheroid. The following expression for V,, is arrived at:

1

1
NN S & = - :
V. N,,,,(—ih)!h“'v(n’ E0) Son(~ih, n)dn (5.2)
in which the N,,(—-ih ) has the form

1
Nan("ih) drm’ =fSar:(_ih-a T])So,,'(—ih, T])d?’] (53)

=
On account of the condition (4.3), we get
IRG (=i, &)
&

Equating the corresponding terms in the series (5.1) and (5.4), we finally obtain

1 < ]
’U( 1, 50) Lo "E EAHSOH(_Ih, n)

>t 4

(5.4)

v f he,v(1, E0)Sa(=ih, n)dn (5.5)

Nl zh)REf,‘?( ~ih, &)}
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where
ARG (=ih, &)

REY (i, &) =

(5.6)

6. Acoustic field of a circular plate

To describe an acoustic field radiated by a plane circular plate with no baffle the
following acoustic pressure is applied

- .
F=py D(En, @ t)=-ipchW(E n) (6.1)

where p — density of medium, ¢ — sound velocity. The formula (6.1) together with (4.5) to
describe ¥( & 1) refers to a source on a spheroid &o. To make this solution valid for the
considered plate, the coordinate system must be degenerated by assuming &o = 0. We get

P( E? 7?) » _Iph EAJtSm(—ihv H)RE,,:?( _ih? lg) (62)
where
1 1 :
An=Nou(=ih) RS (<ih, 0)! S riandie o)
and
vi(n)=A[Jo(kiaV1l- n*) Jo(k'a)ln(k,a\/l ~5*)] (6.4)

" Io(kia)

7. Diagrams and conclusions

When analysis an acoustic field radiated by a circular plate without a baffle, two
cases can be examined each depending on a manner in which the waves are emitted by a
system with the plate as a source of vibrations.

Model 1. A ficld radiated by the upper surface of the plate. The source should be
assumed on the upper surface of spheroid and the field is to be calculated according to
(6.2).

Model 2. A field radiated by both upper and lower surfaces of the plate. In the ab-
sence of baffle this results in two axially located sources on the upper and lower surfaces
and vibrating in the counterphase manner. The coefficients A, (6.3) should now be cal-
culated from

-b

1 0
¥ 7 Son(=ih, d Son(—ih, dn (7.1
OETT L RIS S vi(m)San(=ib, m)ndn + f vL(m)Sa(=ih, ) ndn |(7.1)

0 -1

A
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FIG. 2. Directional characteristics of the first three modes of freely vibraling circular plate without a baffle

for h = 5; a — model 1, b — model 2. Curves are numbered according to the 1st, 2nd and 3rd mode.
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The distribution of acoustic field in the Fraunhofer zone is determined by a direction-
al characteristic

D= |p|flpqu| (7.2)

where p —acoustic pressure in an arbitrary direction, pm.x — Maximum acoustic pressure.
At a generic point of the field L (& ) that is sufficiently distant from the source, the
following relationships are relevant:
if
E— o , b=const, (7.3)
then
§|§ — r/b and 17— cosf (7.4)
On account of asymptotic properties of the radial function (4.6), the ratio (7.2) can be
rewritien to become

. (=)' AuSon(~ih, cos 0)

(1.5)

n

D=
2 ("i)"AnSou( = Iha 1 )l

11

10
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AR RR A RN REREERREEELARRRRARES RRRRRELELS R

PR N N NN RS WY WS TN U W TN T S T N N YR T N N T N N O O ST T Y N W

50 100 150 angle

o IR ESREEERRRERRRRRERE N

FIG. 3. Directional characteristics of the first three modes of freely vibrating circular plate without a baffle
for h = 1, model 1. Curves are numbered according to the 1st, 2nd and 3rd mode.
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F1G. 5. Directional characteristics for the first mode of freely vibrating circular plate for i = 5, model 1.
1 — without baffle, 2 — with baffle, b/a = 0.2.

With the use of this formula the directional characteristics were prepared for the first
three modes of the plate, different frequency ranges being adapted for each of the modes in
order to accentuate the differences resulting from the absence of baffle. In addition, a direc-
tional characteristic for a piston with uniform vibration velocities is shown it Fig. 2.

The characteristics for model 1 (Fig. 2a), plotted according to (7.5), arc found to
coincide with the characteristics for a plate in an infinite baffle (cf. [10, Fig. 15]),
provided the generalized interference parameter i > 10, (h = 27a/4) (Which corresponds
to wavelengths comparable with the radius of the plate or shorter ones). For smaller & the
characteristics are shown in Fig. 3. For a plate with no baffle it is the model 2 that seems
to be more adequate (due to the symmetry of directional characteristics with respect to
the middle surface of the plate), Fig. 2b and 4. Moreover, for plates whose radius is
comparable with the lengths of emitted waves a finite baffle is found to change the shape
of acoustic field around its source, Fig. 5. An effect of finite dimensions of baffles on the
directional characteristics of plate with be dealt with in a separate paper.
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MUTUAL ACOUSTIC IMPEDANCE OF CIRCULAR SOURCES WITH PARABOLIC
VIBRATION VELOCITY DISTRIBUTION FOR HIGH FREQUENCIES

L. LENIOWSKA, W. RDZANEK and P. WITKOWSKI

Department of Physics, Department of Technics,
Pedagogical University
(35-310 Rzeszéw, ul. Rejtana 16a)

In the paper the mutual impedance of circular planar sources with parabolic vibration
velocity distribution occurring harmoniously in time is analyzed. It is assumed that the sour-
ces set in planar rigid baffle radiate into a lossless and homogeneous gas medium. The acous-
tic impedance is calculated using the method based on the Fourier representation of acoustic
pressure, thanks to which the mutual impedance is expressed in the Hankel representation.
The real integrals in the formula are replaced by complex ones and integrates is performed
round a closed and smooth integration contour. Using approximation methods, the expres-
sion for mutual impedance at high frequencies is obtained.

1. Introduction

The use of circular planar sources as a vibratory system for the reception or propaga-
tion of acoustic waves requires a knowledge of the frequency characteristics of many
basic acoustic values with mutual acoustic impedance among them.

The paper [4] includes detailed mathematical considerations of the acoustic im-
pedance problem, as well as a review of calculation methods referring to the system of
planar sources at a given forced vibration velocity distribution.

The paper gives integrated formulae for the acoustic impedance of two circular sour-
ces with parabolic velocity distribution. During the calculation of the acoustic im-
pedance, the integrand functions are developed into Lommel series and next, the Sonine
and Schlafly integrals for the imaginary part are applied. In this way the final formula for
the mutual impedance is presented as a double series in which the Hankel spherical func-
tion of the second kind is used. On the basis of this formula the mutual impedance for
low interference parameters is calculated, with the assumption that the distance between
the sources is many times longer than their radii. By applying integrated formulae, how-
ever, acoustic impedance is calculated and it is proved that in a special case, for normal
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velocity distribution, the derived formulae develop into the well-known Rayleigh ex-
pression. Formulae for the acoustic impedance for low interference parameters are given
as well. 7

This paper refers to the paper [4] and presents the expression for the mutual im-
pedance for high interference parameters. By replacing the real variable by the complex
one, the contour integral is introduced instead of the real one and further integration is
done round the close contour [1]. The method of stationary phase and the asymptotic
expansion of cylindrical functions are applied as well. The derived expressions have a
simple mathematical form, what makes it possible to carry out detailed numerical cal-
culations.

2. Mutual acoustic impedance

The system of M circular planar sources of the radius « is set in a planar rigid baffle
surrounded on both sides by a gas medium with the rest density p. The vibration of each
source is harmonic in time and its amplitude is defined by the following surface distribution

2
U, (1) = Uoy (1 -~ q%) (D)

where n denotes a given source, U,, amplitude of the midpoint, r — radial variable in a
chosen reference system, g — constant whose value depends on the way the source is
mounted to the baffle, 0 < ¢ s 1. For such a vibratory system the mechanical impedance
of the source with regard to influences from other sources can be expressed as

-
Zs . 2 = Zsrh (2)
n=1 9%
where Z,, is the mutual impedance defined by the formula [4]
1 .
Zrz.r=___¢ fpsna(r) US(F)dG}, (3)
. Uon UOS o,

in which p,,(r) denotes the amplitude of the acoustic pressure from the n-source, €x-
erted on the s—source. Without neglecting further calculations are aimed at deriving the
formula for the mutual impedance Z; of any two sources. The above definition takes a
simpler form for axially-symmetrical problem
2+ oo
Zow = 2mpck?f W, ()W, (8)Jo(klsin®)sin 9d 0, @)
0

where

W,(0) = f Fu(r)To(krsin®) rdr ()
0
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is the characteristic function of the source [2], f,(r) = v,(r)/v,, is the function of the
vibration velocity distribution, %= @+ iy, l is the distance between the midpoints of the
sources, ¢ — propagation velocity of sound in the medium having the density p, k — wave
number. This formula can be obtained through the Fourier transform of acoustic pressure
expressed by the Huygens—Rayleigh integral. Assuming the same vibration velocity dis-
tribution (1) on the surface of the s and n source and applying the formulae (4) and (5),
the mutual impedance can be expressed as follows:

2

— 3 s 2 S T T TR 1R R I
Zag=2pca” | (1-q)T,+ i 112+(ka)2122 ) (6)
where
P kasinv)
asl §
In=f g Jo(kIsin)dD (6a)
Jl:v'-2+£o} k ., 19‘).] (k ind
bawd (kasinO)y(kasind) ;¢ 1sin0ydo (6b)
: sin“1}
= ioflz( kasin1?)
In=[ ﬁf}—h(k!sinﬂ)dﬁ (6¢)
S1

0

The integrals included in Eq. (6a, b, ¢) have no exact analytical solutions. Thus there is a
need 1o find a method to solve them, which would be proper for a given range of the
interference parameter ka. The method presented below is based on the use of the
asymptotic expansion of cylindrical functions as well as on integration using the method
of constant phase. The obtained results are valid for sufficiently high frequencies. Each
integral (6a, b, ¢) is a complex function of a complex variable. Separation of variables is
done by replacing y = 6+ iy what results in

sin( 1) = sin(6 + i1p) = sinfcos iy + cos Psiniy @)

Taking into consideration the chosen integral contour 0 < 6= /2, =0, 0= <oo,
6= 7/2, the first integral (6a) has the following real and imaginary part:

/2 5 :
Re(yy) = [ Lﬁnsg—)fg(k[sina)dﬂ )
0
Toto
Im(7y) = W%(Hemhwdw )
0

In order to obtain the solution of the above integrals, let us apply the replacement
x =sin# for Eq. (8) and x = coshy for Eq. (9)
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Ji(kax)

xV1-x>

Ji(kax)
xVx?-1

Let us now consider the real part of the first integral (6a). The remaining ones are trans-
formed analogically in regard to the similarity of their integrands. The integral (6a) is
replaced for a complex one by introducing the auxiliary complex function

F(2) = J¥(kaz)HY’ (klz) (12)

We choose the smooth, closed integral contour along the positive part of the x axis, omit-
ting the branch cut. Then we follow along the quadrant with an infinite radius, which
joins the positive semi-axes x and y. The value of this integral, according to the Cauchy
theorem, equals zero. The integration itself is done by adding the integrals around the
consecutive parts of the contour.

Let us now consider the real part of the applied contour integral. Since both the real
part of the integral along the axis y and the part around the circle with an infinite radius
equal zero, we obtain the following equation

. .
Re {I_F(,L} '[JMJO(k;x)dx_f Ji(kax) No(klx)dx=0 (13)

i 2V1-22 =0 xV1-x2 1 xVx%-1

Let us now compare the integrals included in the above equation. The first is Eq. (8)
calculated before

1
Re(ly) = [ To(klx)dx (10)

o

Im(ly) = [ To(klx)dx (11)
0

1 @
Ji(kax) Ji(kax)
S22 Jo(klx)dx = | —-———=No(klx)dx (14)
arx\;fl—x2 ]foxz—l
Applying the asymptotic expansion of the cylindrical functions
1
2. P ol 5
Jl(kax)=[M] cos(kax - 3/4m) (15)
1
2 P 4 16
NO(klx):[:rklx] sin(klx - m/4) (16)

and integrating using the method of stationary phase, we obtain
V2/kl jf [1 - sin(2kax)]sin(klx - 7/4) | _
xha 1 X"'Z\/x_zj -

1 2sin(kl) - cosk(! - 2a) N cosk(l +2a)
_Zfrka( kl kVI(1-2a) k~/1(7+2a))'

Re(lyy) =

(17)
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As opposed (o the real parts, the imaginary parts of the integrals (6a, b, ¢) do not
require transformations connected with the change of integration limits. This enables a
direct application of approximation methods. The above explained calculations result in:

49(1-q) 49°
Zm=Rmm{(1-Q)2hl+ B Il2+(ka)2122]’ (18)
. 2exp[-i(kl-m2)] exp[-ik(l-2a)] exp[-ik(l+2a)] -
“‘2;:1«:[ kl T Wi(I-2a) | Wi(I+2a) } e

P exp(=i[k(!+2a)-m2]) exp(-i[k(l-2a)- m2])
“'2:rka[ Wiie2a) ¢ i) }

__ 1 [2exp[-i(kl-m2)] exp[-ik(l-2a)] exp[-ik(l+2a)] »
22‘2:;1“1[ ki Y Wi(i-2a) | wiie2a) J (182)

(18b)

where R., = 1/3xpca’(q* - 3q +3) is a normalized factor described as the acoustic
resistance when k — oo [4].

3. Figures and conclusions

After comparing the mutual impedance frequency characteristics obtained by using
integral formulae and their approximate expression (Fig. 1), it is concluded that there is
a good agreement of both characteristics above the value of the parameter k/ = 10 and

Z,h
Re E :
0002 ﬂ

0001 -

-0001 |-

-1l||:|1::|111|.|n1|!.||1|||11]

5 10 5 ka 20

FIG. 1. Normalized mutual resistance depending on the parameter ka. The solid line denotes a curve which
has been obtained by numerical integration of formulae (6a, b, c); the dashed line denotes a curve which
has been calculated using approximation expressions (7a, b, c).
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HG. 4. Normalized mutual reactance as a function ka, g=1l.—---lla=5 ——Ila=8.

that the relative error does not exceed 1%.

Further numerical calculations have been performed on the basis of the formulae
obtained by means of the approximate method presented above. The character of mutual
impedance changes has been analyzed in the case when the distance between the sources
changes and also their shapes and their vibration velocity distribution. It can be casily
noticed that as the distance between the sources extends, the value of the real and imagi-
nary part of the mutual impedance approaches zero, and the envelope has a exponential
character (Fig. 3). The higher the frequencies, the weaker the mutual influences.
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THE SOUND POWER OF A CIRCULAR MEMBRANE FOR AXIALLY-SYMMETRIC
VIBRATIONS
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This paper gives an analysis of the sound power with regard to the influence of a
radiated wave on the vibrations of a membrane. The vibrations of the membrane are forces
by time-harmonic external pressure. The source is placed in a rigid plannar baffle and
radiates into a lossless and homogeneous gas medium. Distributing a velocity in a series of
eigenfunctions, we could transform a motion equation into an algebraic system of linear
equations. As the final result of the analysis, a relative real power of self and free vibrations
for high frequency was derived using an approximate method. The expressions derived here
are very useful and convenient for numerical calculations.

1. Introduction

The problem of radiation of surface sources, specified as classical, still exists and is
very often considered. It results from the necessity of solving newer and newer theoreti-
cal and practical problems as well as from the upgrading of computational methods.

Lately there have been published solutions concerned with the interaction of plates,
membranes for axially-symmetric vibrations and also the interaction of two modes of the
same source. .

Recent studies [1, 48] are devoted to sources fixed in a coplanar rigid baffle and
radiated into a lossless gas medium. The paper [1] presents an analysis of forced vibra-
tions of a plate with regard to the damping effects caused by an internal friction and the
influence of radiated waves through a plate on its vibration. The second part of the paper
[1] also shows an approximate method of calculating real power by integration in a com-
plex space using an asymptotic expansion of cylindrical functions. The same results
were obtained in the paper [4] applying another approximate method.

With reference to the papers [1, 4], the present one is concerned with the calculation
of the acoustic power of a circular membrane set in a planar rigid baffle. The forced
vibrations are considered with regard to the influence of a radiated wave on the vibra-
tions of the membrane. The losses inside membrane caused by internal friction were
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disregarded due to the slender thickness of the membrane. The expressions obtained
have a simple mathematical form and can be the basis for further detailed numerical
calculations.

2. Damped vibrations of membrane

A circular membrane of a radius @ and surface density 7, placed in a rigid planar
baffle, is surrounded by a gaseous medium with a rest density po. The membrane is
excited to vibrations by an external force f(r, t) = fo(r)exp(-iwt) for 0 sr=sa. The
vibrations are modified as a consequence of the interaction of the medium with acousti-
cal pressure p on the membrane surface.

The equation of axially-symmetric vibrations of the circular membrane is as follows:

2
(Tvz—n%)s(r,rw(r, ()= 2p(r, 1), )

where & is the distribution of the transverse vibrations, T, the force stretching the
membrane, related to a unit length. Using known formulations for harmonic phenomena
between the displacement & () and normal velocity &(r) = iv(r)/wand the acoustical
pressure po(r) and velocity potential po(r) = poiw@(r), Eq. (1) could be presented in
a changed form:

(k;2V2+l)U(r)+2£1k¢(r)=—-?iajfo(r), 2

where k, is the wave number defined as k2 = nw*T, € = po/nk, k =274,
Let us present the normal velocity in the form of an infinite series of eigenfunctions

v(r) = ¢ va(r) 3)
in which
V(1) = VonJo(kur),0=sr=a (3a)
and use the orthonormality property :
fvn(r)vm(r)rdr=6mn (4)
0

for normalized velocity U,, =V2 /aJ(k,a) equation; the previous equations (2) turns
into an algebraic system of linear equations

#
c,,[%— 1) +2£ii2cmg,m,=f,, )

P m

The quantity f, expressed as

fl'1=n%05rf0(r)vn(r)rdr (6)
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is the coefficient of expansion of the external force into a orthogonal series, whereas
8mn 18 a normalized mutual impedance of axially-symmetric modes for free vibrations [7]:

ka - iw

G = 2(kna) (kya) [

0

where x = kasin6, y=V1 - (x/ka)* for 0 =x < kaor y=iV(x/ka)* -1 for ka < x < .

The real part of g,,,(m = n) can also be interpreted as a relative real power of free vibrations.
In order to calculate the acoustical power of a circular membrane let us use the
definition [4]:

J3(x)rdx
y[2° = (kna)®] [ X* - (kaa)?]

)

1
N=5fp(r)v(r)d0 8)
which, in the case of axially-symetric velocity (3), leads to
2 -iw
N = 5p0cok® S i f Wl 0YWi( 9)sin 0, ©)
m n 0

When we regard the value of the characteristic function W,,( ) [4] and the relation
(7), the acoustical power has the following form [6]:

N=7poco Y ¥ CmCulmn- 7 (10)

It is possible to reach another form of the formula describing acoustical power. Let
us multiply Eq. (5) by ¢, and the sum by #, then employ Eq. (10). The formula for the
acoustical power of forced vibration takes the form of single series:

_i,OoCo?L' ) k_p% o
N=5 ;[C"(kﬁ—ll ¢ ] (11)

where &, determines the influence of the wave radiated by a membrane on its vibration.
If we assume that the density of the gaseous medium is much smaller than that of the
membrane, £, approaches zero and then we get

2o\
cn=f,.(k—;—1] . (12)

3. The real power for high frequency wave radiation

Considering the linear phenomena sinusoidally dependent on time, the axially-sym-
metric vibration of a circular membrane can be described by Eq. (3a). For that distribu-
tion of velocity, the characteristic function [4] W, (1) for the (0, n) modal is as follows:
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Jo(kasint})
Wnﬂ': onkn-I kn N T L 13
() = vaksal(kaa) 7 a0 3 (13)
Basing on the relation (13) and expression [4]
/2
N, = pocortk® [ Wa()sin 0d0, (14)
0
the real power is expressed by the integral formula
xf2
J3(kasin®)sin ¢d?
N,=xm BPvtat(k.a)2Ti(k, 2 15
Poco (kna)“Ji( a)![(kua)z-(kasinﬁ)z]z (15)

Now, adopting the notations &=sin®, ka = f, O, = k,afka, the new version of the
expression (15) becomes

1
J3 d
e gt Rl (16)
No =5 V1-82(&- 60
The factor
No = 127pocovaa®J i (kya) (17)

specifies the radiated power for the n-th axi-symmetric modal velocity profile at vanish-
ing small wavelengths, viz. k — o [4]. The coefficient d, means a relative real power.
Let us introduce the function of a complex variable

F(z) =Jo(B2)Hy (B2), (18)
selected such that
Re F(&) =J3(BE), (19)
and consider the complex integral
F(z)zdz
(20)
!\/1 ey

instead of Eq. (16).

The contour C (Fig. 1) bypasses the singular point of second order at z = 0,, the branch
point at z = 0 and branch cut, between z = 1 and z = . The integral (20) is equal to zero.
This is the consequence of its single-valued and regular integrans within C. The contour
C consists of several parts; this can be written symbolically as

o 0
fodfefefef-0 @
0 v 1 R. =

The contribution of two integrals vanishes: from the large circular R.. when the radius
grows indefinitely and also the real part of the integral along an imaginary axis, what
results from the relation Re F(it) = 0, 7is real.
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F1G. 1. The integration contour C for pattern (20).

Then there only remains

o0

F(x)xdx F(x)xdx

)+ +
5 \/1-x2(x2-6,2,)2 AETA LR U e o T

J- F(it)itidt 22)
» V1+ 2 (2 +062)
where
F(z)z
F(z)= (23)
VIZ 2+ 5,)°
Taking the real part of the expression (22), we get a value of the integral (16):
Jo(Bx)xdx 4 e (Bx N.;.(ﬂx)xdx
=Re[ 7iF' (6,) ] (24)
f\’l X% (x* - 07)? f\/x—(
because
1 2
F (x xdx Jo( Bx)xdx
Re (24a)
f V1-x? 'or Vi <x il
Finally, the normalized real power radlated by the membrane is given as
2
: O L v S L), (25)

Oy =
( B 6’%)112 ( 6,% 1/2ﬁ3|'2

[n order to determine the last integral in Eq. (24), the method of a constant phase was
used. Besides, the cylindrical functions were presented in an asymptotic form, right in
the high frequency (ka = ) [3]:
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Jo( Br)No( Bx) = - S2Px) (26)

wPhx

For the case of fixed n and ka = o, i.e. when 0, = k,a/ka = 0 the result is

2

1 k,_,a 1 (kna :
0"_1+2(ka] - (ka)mcos(Zﬁ+ m4). 27
When the mode number  is large (k,a >> 1 and ka = ) what means that 9, is of the
order of unity; in this case, one can used the expression (25).

4. Conclusions

By using a distribution of velocity in a series of eigenfunctions, the acoustic power
radiated by an excited membrane with regard to the influence of a radiated wave on the
vibrations of this membrane has been derived. The solutions obtained have the form of
series (10), (11). Because of the high rate of convergence of series, the first solution (10)
is especially useful for numerical calculations. It results from the character of changes of
mutual impedance, the values of which are strong decreasing together with an increase
of the mode numbers m and n. The second shape of the solution (11), expressed by a
single series, is simpler but slowly convergent. It is the consequence of the small dif-
ference between the values of the cﬁ(kf/kﬁ - 1) and c},f, dependent on summation.

The real part of normalized self impedance obtained for high frequency consists of a
polynomial and oscillatory term. This solution is generalized of the pattern received in [8].
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MUTUAL IMPEDANCE OF CIRCULAR PLATE FOR AXIALLY SYMMETRIC FREE
VIBRATIONS AT HIGH FREQUENCY OF RADIATING WAVES

W. RDZANEK

Department of Physics
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Mutual normalized impedance of radiation of single axially symmetric normal modes is
analysed for a circular clamped plate with a plane rigid baffle. Damping in the plate is ig-
nored and the acoustic waves are assumed to radiate in a homogeneous lossless fluid
medium. Selecling an integral representation of the considered acoustic impedance and using
the Cauchy theorem of residues, an expression is obtained in an elementary form valid for
high frequencies.

1. Introduction

Acoustic power output of a circular plate under forced vibrations was analysed by
LeviN and LepPINGTON [ 1] and the present author [5]. Losses in the material and coupled
vibrations of surrounding air were both taken into account. The applied mathematical
method led to the expressions for a load forcing vibrations, displacements and vibration
velocities in the form of known series expansions with respect to the complete set of
eigen functions. As a result, the acoustic power of the plate with internal losses and in-
fluenced by its surroundings was obtained in the form of double series with rapid con-
vergence. Application of the series 10 numerical calculations depends on the knowledge
of a general term in the series that comprises the normalized specific and mutual im-
pedance of circular plates for the case of axially symmetric free vibrations. For high
frequencies of acoustic waves elementary expressions were obtained for free resistance
of one mode [1, 3] and mutual resistance of two different modes for the same plate [4].

Elementary formulae for the radiation reactance have up to now been lacking, both
for a single mode and for two mutually interacting modes.

Paper prepared within the grant CPBP02.03
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On account of results arrived at in [4] and with the use of LEvIN and LEPPINGTON'S
method [1], based on the Cauchy theorem on residues, an elementary formula is derived for
a normalized mutual resistance, account being taken of its oscillatory character as dependent
on the frequency. A formula for mutual reactance of radiation of two different modes of the
same plate is obtained by means of a direct integration of the expression from the papers (1,
5]. Asymptotic formulac for the Bessel functions are used in the presence of sufficiently
large values of the interference parameter. Itis also shown that the expression for a reactance
of a single mode follows from an expression for mutual reactance.

The frequency characteristics of the considered normalized impedance of radiation
are also shown diagrammatically.

2. Assumptions

A thin circular plate is thickness /, small with respect to its diameter 2a, made of
homogeneous material of density p is immersed in a lossless fluid medium. The plate is
clamped at the circumference. For sinusoidal time dependence a normal velocity of the
axially symmetric free vibration can be expressed in the form [6]

wumehmﬂm-%%%hwmw, M

where r — radial coordinate of a point, J,, — Bessel function, /,, — modified Bessel’s func-
tion (both of order m), y, — the n-th root of the frequency equation [2]

h)(?n)"l(?n)“"Il(}’r:)JO(yu)v (2)
that describes the frequency of free vibrations for the n—th mode,
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where, in turn, B denotes flexural stiffness of the plate. The constant v, can be ex-
pressed with the use of an amplitude of vibrations for the centre of the plate v, in the
following manner

Von /Von =1 =Jo(¥n )/10( yn)- 4

Mechanical mutual impedance between (0, n) and (0, s) axially symmetric vibration
modes of a circular plate with a plane rigid baffle is calculated from the formula, cf. [5]

1
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where p,, is an acoustic pressure generated by the (0, n) mode of the plate and exerted
on the same plate through the (0, s) vibration mode. Mean square of the velocity of
(0, n) mode is expressed by

.
<fol’> =55 Jvar)ds, 6)
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where 0 = a’.
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Referring the mechanical mutual impedance to the specific resistance of fluid
medium pgc and to the area d of the plate, the normalized mutual impedance between
(0, n) and (0, s) modes is obtained [1, 4, 5]:
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where y=(1-x%)" for 0sxs1,y=i(x*~1)" for 1sx<®, a=koa, 0,=7y/a
dp =‘I](yﬁ)l"]0(}’ﬂ)
Moreover,

Cns - Bm o ix”s (8)

where 6, is a normalized mutual resistance and y,, is a normalized mutual reactance.

When koa/y, >> 1 and koa/ys >> 1, the normalized mutual resistance between the
(0, n) and (0, s) modes of [ree vibrating circular plate can be shown in the form

Bm' = hns a-2, (9)

where
a,Yn— as 5 s
R e ©)

for n = 5. Although the value of h,, for n = s does exist, the formula (9°) is not valid for
the case: Suitable formulae were given in [1].

3. Normalized mutual resistance

To obtain more accurate formula for the normalized mutual resistance than (9), the
derivation will be based on the real part of its iritegral representation (7).

Following LeviN and LepPINGTON [1], the following function of complex variable is
introduced

F(Z) = ananasds-jﬂ( (IZ)H(()D((IZ) = (auart <+ asés)ZJO( az)Hfl)(az) +*
+22J1(az)an( az) (10)
such that
ReF(x) = a,0,a,0,.J5(ax) = (a,0, + a;0,)xJo( ax)J,(ax) + x> T3 (ax), (11)

where x is a real variable.
Further, a contour integral is used,

f zF(z)dz e (12)
Y Vi~ (20 -84
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arg/T-27 =n/2
0 g —Fo—o) ottt

FIG. 1. Integration path for the expression (12), cf. [1].

calculated along the path C, Fig. 1. Assuming d,, d; < 1, the integrand stays unique and
regular inside C. As a consequence, the frequency range is limited because
O, = yult, O, = ys/a, a=koa and the formula (3) is valid. Employing the Cauchy
theorem on residues, the integral (12) can be shown symbolically as

1 © ] 4
f+_f+f+_f= JtiERez(z,-), (13)
0 1 G j-1

where for z; = 8y, id,, 0s, i, singular points exist with first order poles and the integrals
1 0

f f are interpreted in the eigenvalue tense. The latter vanish on integration along a
0 =

large circle when its radius tends to infinity. They also vanish on integration along small
circles around the bifurcation points (z =0, z= 1) when their radii shrink to zero. The
following auxiliary functions are introduced to determine residua at singular points as
first order poles:

Fi(z) = zF(z) 7=
R R LA I
zF(z) .
F - 5 = om
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zF(z)
F = ] =65s
) = s 0P+ ) -8
Fu(z 2 - i, (14)
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Accounting for Re F(iy) = 0 for real values of y, the expression (13) yields

Ref xF(x)dx f xImF(x)dx %
V1-2Z (x* - 88)(x* - 0) 1 VE2i-1(x*-06%)(x*- oY)
+Re(-7ﬂ.[F[(6")+F2(i(5,,)+F3((55)+F4(1‘6_;)]). (15)

It immediately finishes ImF(J,)= [mF(:d)-—asé,, ImF(d;)=ImF(id;)=

i a, dll'
Ta

The second integral in (15) can be calculated with the use of known asymptotic
relationships:

Ji(ax)N (ax) ~-Jo(ax)No( ax) ~ (max) 'cos2ax,
Jo(ax)N (ax) ~-(mwax)™ (1 +sin2ax), (16)

for a — oo x > 1. Since the “non-oscillating” part of the integral is equal to

44 xdx A N 0 (0 QI Ul
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the “oscillating” part can be dealt with by means of asymptotic method

2Vajm (1-63)(1 - 07) [[ (x* - a,0,a,0,)cos2ax +
1

xsinZax] & =
vV - 1 {x* 88 (- o)

=(1-a,0,a,0;)cos(2a + n/4) + (a,0, + a,0,) sin(2a + m/4)

+(a,0,+ a.0;) (18)

Accounting for

Re (m[ﬂ(a,,) + F(i0,) + F3(0,) + F4(id,) ])

s RA b 1 1),
20 6,-0!| 6 | Vi-02 Vi+ o2

a0, 1 1
_ - , 19
on (\/1-65 \/1+a},’” (19)

the following formula for the normalized mutual resistance is finally arrived at:
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+ a,0, a,d;)cos(2a+ m4) + (a, 0, + a;0;)sin(2a + m/4) ] (20)

within an accuracy of o( o267 a )

When J;, 02 << 1, an approximate formula (1 = e )'”2 ~13F %12 for t << 1 is used
leading to the expression (20) in the form

2 Oy Y= O Ys -
Bus=2(1u1s) e BLZE o512y, y,)

n= [s

2acos(2a+ m4).  (20)

Its first term is identical to (9) which comes from the paper [4].

[t should be emphasized that:

— the formulac (20) and (20’) are valid for n = s only and the limiting case n = s is not
possible,

— the formula for the resistance of a single mode can be found in [1] where the same
mathematical procedure was used,

— for n = s the terms of (20) and (20”) containing trigonometric functions (charac-
terizing oscillatory character of variations in radiation resistance) are of the same form
as those relevant for free resistance equations (20) and (21) in [1].

4. Normalized mutual reactance

The starting point to calculate the mutual reactance of a circular plate radiating
acoustic waves with the help of two axially symmetric modes (0, n) and (0, s) is an
imaginary part of the integral formula (7)

a, 6,,J0(-ax) - xJ(ax)
x* 88 :

@

Xos = 40282 [
1

y a0, Jo(ax) —=xJi(ax) ] xdx
x s (5? X 1 .

(21)
Integration of (21) will be made for sufficiently large interference parameter
a = kopa >> 1 i.e. for @ — . The asymptotic formulae
Jo(ax)J (ax)~ ~(max) " cos(2ax),
J3(ax) ~(wax)™ (1 +sin2ax),

Ji(ax) ~(max) ™" (1 -sin2ax), (22)
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are used for @ — o (x > 1) to be put into the integrand of (21). “Non-oscillating” part of

the integral is calculated with the use of the formulae

f dx £ arcsint
W 4 e L R
Arsht 23)

N dx
]erz— L{x*+) Vs o
whereas the “oscillating” part is arrived at with the use of asymptotic method. The result is
arcsind, Arshd, ]
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aPa®(1 - 0p)(1 - of
(a,0, + a,0,)cos(2a + 7/4) ]

) [ (a,.dua:és - 1)sin(2(1+ m4) +

(24)

v3l2 )

with the accuracy of 0(070
For 82, 03 << 1 the cxpressmn (24) takes the form
. (24"

Kons = 15 (vu¥s) @™ = 2272 (1) 2@ Vsin(2a + m/4)
The expression (24) was simplified to become (24") after taking account of the first
three terms of expansions with respect to x = d, d; for the root function and for arc sin x,

Arsh x.
In the limiting case n = s the formula (24) yields a normalized reactance of circular

plate radiating with the help of the axially symmetric vibration mode (0, n)
14+262) arcsméz,, o
20,(1 - 03)

1+ a2
1-0,

Xonn = (Jta)_l [ (aﬁ( -3+ 46?!) -
Arshd,

2 2 2

(3 +40;)-1-246, =
+(a( + ) )2(5"(1+(5;)3ﬂ
o) 2 [ (07 = 1)sin(2ax + m/4) +

+ 200w R a2 (1 -
(25)

+2a,0,c08(2a + m/4) |

with the accuracy of o( 0, a™>?).
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5. Final remarks

The theoretical analysis of the radiations of a thin circular plate fournished elemen-
tary formulae for normalized impedance of axially symmetric modes of free vibrations.
They can be applied only for sufficiently short acoustic wave length as compared with
the diameter of the plate.

Suitable terms, characterizing the “oscillatory” character of variations in both the
real part (20), (20”) and in the imaginary part (24) of the normalized mutual impedance
of circular plate, were determined, Fig. 2.

When the interference parameter koa tends to infinity, the expression (20°) takes the
form (9), given in [4].

The normalized mutual reactance (24) of two vibration modes (0, ) and (0, s) in the
limit n = s assumes the form (25) which corresponds to the normalized specific case is
possible in the case of the real part of the mutual impedance.
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FIG. 2. Normalized reactance of a circular plate (25) vs. parameter koa/yy for the first three axially
symmetric vibration modes.
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FIG. 3. Normalized mutual impedance of a circular plate (20), (24), vs. parameter ko a for axially
symmetric vibration modes. Curves obtained from the formula (7) are dashed.

Exceptionally simple form of the approximate formula (25) for the normalized reac-
tance can be onset for computations under less rigorous constraints than koa >> ¥Ya- For
instance, at kga > 3y, the normalized reactance (25) of the circular plate is, for a number
of initial vibration modes, determined to within an accuracy of several per cent, Fig. 3.

When koa << y,y, or when great accuracy of results is required, computer-sided
numerical integration of the formula (7) can be used.

The obtained simple expressions for the normalized mutual impedance of axially
symmetric vibration modes for a circular plate can be employed to analyse more complex
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situations, e.g. losses in the material can be allowed for together with the effects of vibra-
tion enforcing agencies and their modifications due to own acoustic fields, cf. [1, 5].
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INTERNATIONAL CONGRESS ON ULTRASONICS (ICU-90)
DECEMBER 12-14, 1990, NEW DELHI, INDIA

International Congress on Ultrasonics (ICU-90) was organized by National Physical
Laboratory at New Delhi on December 12-14, 1990. The congress was sponsored by the
Council of Scientific and Industrial Research, Indian Council of Medical Research,
Central Scientific Instrument Organisation and Ultrasonic Society of India. This was the
second international conference being organized by National Physical Laboratory (NPL)
in ultrasonics, after the one held in July 1980. The Chairman of the Advisory Board was
Prof. Dr. S.K. Joshi, Dircctor of NPL and the Secretary was Deputy Director of NPL, Dr.
V.N. Bindal. The president of the Organizing Committee was Dr. T.K. Saksena, Co-
Chairman — Mr. S.C. Gupta and Secretary — Dr. Ashok Kumar. The Convenors of the
Publication and Technical Programme Committee, Finance Committee and Reception
Committee were Dr. S.K. Jain, Mr Ved Singh, Dr. J. Singh and Dr. R.P. Tandon, respec-
tively. The Chairman of the Souvenir and Exhibition Committee was Dr. S.P. Signal and
Convenor — Dr. J.N. Som.

The ICU-90 was conducted in nine sessions (I. Ultrasound in Medicine (A), II. Un-
derwater Acoustics (B), I1I. Ultrasonic Studies in Solids (C), [V. Non-Destructive Evolu-
tion (D), V and V1. Ultrasonic Propagation in Liquids (E), VII, VIII and IX Ultrasonic
Transducers, Instrumentation and Materials (F).

The congress was inaugurated by Prof. S.Z. Qasim, Vice-Chancellor of the Jamia
Millia Islamia, New Delhi. A keynote adress entitled ,,Acoustics-Infrasonics to
Ultrasonics" was delivered by Dr. V.K. Aatres, Director of the Naval Physical and Oce-
anographic Laboratory, Cochin, during the Inaugural Session. The scientific programme
included 9 invited contributions (3 of them were published as abstracts and 1 as invited
paper) and 56 research papers. The invited talks were presented by: Prof. V.R. Minicha
(Lithotripsy — Issues and Perspective), Prof. Dubrovskii (Delphine acoustics), Prof.
Z. Kaczkowski (Ultrasonic studies in metallic glasses), Prof. P.K. Raju (Non-destructive
evaluation of the composites using acousto-ultrasonics), Prof. L.M. Lyamshev (Radia-
tion acoustics), Prof. V.P. Bhatnagar (Modern trends in acousto-optics diffraction),
Dr. S. Khandpur (Challenges in ultrasound hyperthermia). The list of participants con-
tained 171 names from India and abroad.

An exhibition had been organized by the Ultrasonic Society of India, which also
brough out the Souvenir containing the programme, abstracts of the accepted papers and
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lists of participants and exhibitors. The Proceedings of the ICU-90, cdited by the Publi-
cation Committee with Dr. T.K. Saksena as the Chairman, were given to the 102 par-
ticipants during registration. The proceedings contained 49 papers (1 invited and 48 con-
tributed) from India (39), Egipt (3), Spain (1), Italy (1), Soviet Union (1), Great Britain
(1) and Poland (3). On Ultrasound in Medicine were published 7 papers (35 pages), on
Underwater Acoustics — 3 papers (26 pages), on Ultrasonic studies in Solids — 7 papers
(6 contributed and 1 invited, 45 pages), on Non-Destructive Evaluation — 5 papers (29
pp-) on Ultrasonic Propagation in Liquids — 14 papers (86 pp.) and on Ultrasonic
Transducers Instrumentation and Materials — 13 papers (79 pp.). The index of the
proceedings contained 115 author names. On the list of exhibitors were Accutrol Sys-
tems Pvt. Ltd. New Delhi, Blue Star Ltd, New Delhi, Electronics Corporation India Lid,
Hyderabad, L and T — Gould Ltd., Mysore, Mekaster Electronic Service Centre Pvt. Lid.
and Systronics (Agency Division) Ahmedabad. As the co-chairman of the Round Table
Session were invited Dr. V.N. Bindal, Dr. T.K. Saksena, Professors: Dubrovski, Raju and
Kaczkowski. As the introduction to the discussion Prof. Dubrovskii has talked on
ultrasonic research in Acoustical Institute of the Academy of Sciences of the USSR, prof.
Raju spoke on the non-destructive investigation at the Auburn University (USA) and
prof. Kaczkowski spoke on the current research status and opportunities in ultrasound in
Poland. In the discussion the delegates presented their institutions, organizations and
factories. ;

The Proceedings of the Congress ICU-90 were dedicated to Dr. W.N. BINDAL.

Dr. V.N. BINDAL, Member of the Editorial Committee of the Archives of Acoustics,
was born on December 25, 1930 in India. He received his M.Sc degree from Agra
University and Ph.D. degree from Delhi University. He is Deputy Director and Scientist
Fellow of the National Physical Laboratory at New Delhi. He is also Head of the
Materials Division of the NPL. He has played a key role in giving a momentum of the
Research and Development efforts towards applied ultrasonic technology in India. He is
currently engaged in the works on underwater acoustics, ultrasonic standards and
ceramical transducer materials.

Dr V.N. BINDAL is the author or co-author of more than 300 papers and 15 patents.
He is Founder President of the Ultrasonic Society of India and Chairman of the Delhi
Headquarter of the NDT Society of India.

He is member of Editorial Board of Journal od Pure and Applied Ultrasonics (India),
Acoustics Letters (UK), Archives of Acoustics and Ultrasonics (UK). He is also chair-
man and member of various ISI committeces and Advisor from Asia to WHO for En-
vironmental Health Criteria on Ultrasound.

Dr. V.N. BinpAL received 6 National Awards in the area of ultrasonics.

Zbigniew Kaczkowski
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