Archives of Acoustics, 41, 1, pp. 59–66, 2016

Acoustic Nonlinearity Parameter B/A, Internal Pressure, and Acoustic Impedance Determined at Pressures up to 100 MPa for 1-Ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide

University of Silesia

Institute of Chemistrysity of Silesia, Szkolna 9, 40-006 Katowice

Marzena DZIDA
University of Silesia

The nonlinearity parameter B/A, internal pressure, and acoustic impedance are calculated for a room temperature ionic liquid, i.e. for 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide for temperatures from (288.15 to 318.15) K and pressures up to 100 MPa. The B/A calculations are made by means of a thermodynamic method. The decrease of B/A values with the increasing pressure is observed. At the same time B/A is temperature independent in the range studied. The results are compared with corresponding data for organic molecular liquids. The isotherms of internal pressure cross at pressure in the vicinity of 70 MPa, i.e. in this range the internal pressure is temperature independent.
Keywords: nonlinearity parameter; speed of sound; high pressure; ionic liquids; internal pressure.
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).


Aparicio S., Alcade R. (2009), The green solvent ethyl lactate: an experimental and theoretical characterization, Green Chem., 11, 1, 65–78.

Averkiou M.A., Cleveland R.O. (1999), Modeling of an electrohydraulic lithotripter with the KZK equation, J. Acoust. Soc. Am., 106, 1, 102–112.

Barton A.F.M. (1971), Internal pressure. A fundamental liquid property, J. Chem. Educ., 48, 3, 156–162.

Beyer R.T. (1960), Parameter of nonlinearity in fluids, J. Acoust. Soc. Am., 32, 6, 719–721.

Beyer R.T. (1998), The parameter B/A, [in:] Nonlinear Acoustic, Hamilton M.F., Blackstock D.T. [Eds.], Academic Press, New York, pp. 25–39.

Bjørnø L. (2002), Forty years of nonlinear ultrasound, Ultrasonics, 40, 11–17.

Cempa M., Dzida M., Zorębski E. (2008), Study of the acoustic and thermodynamic properties of 2-methyl-2,4-pentanediol by means of high-pressure speed of sound measurements, Fortschritte der Akustik, DAGA 2008, 355–356.

Dack M.R.J. (1975), The importance of solvent internal pressure and cohesion to solution phenomena, Chem. Soc. Rev., 4, 211–229.

Dávila M.J., Aparicio S., Alcade R., Garcia B., Leal J.M. (2007), On the properties of 1-butyl-3-methylimidazolium octylsulfate ionic liquid, Green Chem., 9, 3, 221–232.

Duck F.A. (2002), Nonlinear acoustics in diagnostic ultrasound, Ultrasound Med. Biol., 28, 1–18.

Dzida M. (2004), The effect of pressure on the thermodynamic properties of propan-1-ol + n-heptane mixtures, J. Solution Chem., 33, 5, 529–548.

Dzida M. (2007), Speeds of sound, densities, isobaric thermal expansion, compressibilities and internal pressures of heptan-1-ol, octan-1-ol, nonan-1-ol and decan-1-ol at temperatures from (293 to 318) K and pressures up to 100 MPa, J. Chem. Eng. Data, 52, 2, 521–531.

Dzida M., Chorążewski M., Geppert-Rybczyńska M., Zorębski E., Zorębski M., Żarska M., Czech B. (2013), Speed of sound and adiabatic compressibility of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide under pressures up to 100 MPa, J. Chem. Eng. Data, 58, 6, 1571–1576.

Emery J., Gasse S., Dugué C. (1979), Coefficient de non-linéarité acoustique dans les mélanges eauméthanol et eau-éthanol, J. Phys. Colloques, 40, C8, 231–234.

Fumino K., Ludwig R. (2014), Analyzing the interaction energies between cation and anion in ionic liquids: The subtle balance between Coulomb forces and hydrogen bonding, J. Mol. Liq., 192, 94–102.

Goodwin A.R.H., Trusler J.P.M. (2003), Speed of sound. Measurements of the speed of sound. Thermodynamic properties from the speed of sound, [in:] Experimental thermodynamics, Vol. VI, Goodwin A.R.H., Marsh K.N., Wakeham W.A. [Eds], Measurement of the thermodynamic properties of single phases, Elsevier, Amsterdam.

Hagelberg M.P., Holton G., Kao S. (1967), Calculation of B/A for water from measurements of ultrasonic velocity versus temperature and pressure to 10,000 kg/cm2, J. Acoust. Soc. Am., 41, 3, 564–567.

Hagelberg M.P. (1970), Ultrasonic-velocity measurements and B/A for 1-propanol at pressures to 10,000 kg/cm2, J. Acoust. Soc. Am., 47, 1, 158–162.

Hartmann B., Balizer E. (1987), Calculated B/A parameters for n-alkane liquids, J. Acoust. Soc. Am., 82, 2, 614–620.

Ivanov E.V., Abrosimov V.K. (2005), Relationship between the internal pressure and cohesive energy density of a liquid nonelectrolyte. Consequences of application of Dack’s concept, J. Struct. Chem., 46, 5, 856–861.

Jacob X., Barriere C., Royer D. (2003), Acoustic non-linearity parameter measurements in solids using the collinear mixing of elastic waves, Appl. Phys. Lett., 82, 6, 886–888.

Khelladi H., Plantier F., Daridon J.L., Djelouah H. (2009), Measurement under high pressure of the nonlinearity parameter B/A in glycerol in various temperatures, Ultrasonics, 49, 668–675.

Kiełczyński P., Szalewski M., Balcerzak, A., Wieja K., Rostocki A.J., Siegoczyński R.M. (2014), Thermodynamic method for measuring the B/A nonlinear parameter under high pressure, Engng. Trans., 62, 1, 5–15.

Law W.K., Frizzell L.A., Dunn F. (1985), Determination of the nonlinearity parameter B/A of biological media, Ultrasound Med. Biol., 11, 307–318.

Lisnyanskii L.I., Mikhailkov I.G., Eshanov S.E. (1974), Relationship of the structure of aqueous solutions of tertiary butyl alcohol to the nonlinearity parameter, Sov. Phys. Acoust., 20, 39–40.

López E.R., Daridon J.L., Plantier F., Boned C., Fernández J. (2006), Temperature and pressure dependences of thermophysical properties of some ethylene glycol dimethyl ethers from ultrasonic measurements, Int. J. Thermophys., 27, 5, 1354–1372.

Lu Z., Lagourette B., Daridon J.L. (2001), Acoustic nonlinearity parameter of liquid alkanes as a function of temperature, chain length and isomerism, Phys. Chem. Liq., 39, 2, 255–266.

Marcus Y. (2013), Internal pressure of liquids and solutions, Chem. Rev., 113, 8, 6536–6551.

Matheson A.J. (1971), Molecular Acoustics, Wiley, London.

Narayama K.L., Swamy K.M. (1980), Nonlinear acoustical properties in n-amyl alcohol, Acustica, 47, 51–52.

Narayama K.L., Swamy K.M. (1981), Acoustic nonlinear parameter B/A in n-pentane, Acustica, 49, 336–339.

Plantier F., Daridon J.L., Lagourette B. (2002a), Measurement of the B/A nonlinearity parameter under high pressure: application to water, J. Acoust. Soc. Am., 111, 2, 707–715.

Plantier F., Daridon J.L., Lagourette B. (2002b), Nonlinear parameter (B/A) measurements in methanol, 1-butanol and 1-octanol for different pressures and temperatures, J. Phys. D: Appl. Phys., 35, 10, 1063–1067.

Plechkova N.V., Seddon K.R. (2008), Applications of ionic liquids in the chemical industry, Chem. Soc. Rev., 37, 123–150.

Prakash S., Kor S.K., Singh C.L. (1972), Nonlinearity acoustic parameter in higher alkanes, Acustica, 27, 28–30.

Prieur F., Nasholm S.P., Austeng A., Tichy F., Holm S. (2012), Feasibility of second harmonic imaging in active sonar: measurements and simulations, IEEE J. Oceanic Eng., 37, 3, 467–477.

Safarov J., El-Awady W.A., Shahverdiyev A., Hassel E. (2011), Thermodynamic properties of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, J. Chem. Eng. Data, 56, 1, 106–112.

Safarov J., Kul I., El-Awady W.A., Nocke J., Shahverdiyev A., Hassel E. (2012), Thermophysical properties of 1-butyl-4-methylpyridinium tetrafluoroborate, J. Chem. Thermodyn., 51, 82–87.

Sarvazyan A.P., Chalikian T.V., Dunn F. (1990), Acoustic nonlinearity parameter B/A of aqueous solutions of some amino acids and proteins, J. Acoust. Soc. Am., 88, 3, 1555–1561.

Takagi T., Wilhelm E. (2010), Speed-of-sound measurements and heat capacities of liquid systems at high pressure, [in:] Heat capacities: liquids, solutions and vapours, Wilhelm E., Letcher T.M. [Eds.], RSC Publishing, Cambridge, pp. 218–237.

Wilkes J.S. (2002), A short history of ionic liquids – from molten salts to neoteric solvents, Green Chem., 4, 2, 73–80.

Zorębski E. (2007), Internal pressure as a function of pressure for alkanols, Mol. Quant. Acoust., 28, 319–327.

Zorębski E. (2014), The effect of pressure and temperature on the second-order derivatives of the free energy functions for lower alkanediols, Int. J. Thermophys., 35, 5, 890–913.

Zorębski E., Dzida M. (2012), The effect of temperature and pressure on acoustic and thermodynamic properties of 1,4-butanediol. The comparison with 1,2- and 1,3- butanediol, J. Chem. Thermodyn., 54, 100–107.

Zorębski E., Geppert-Rybczyńska M., Zorębski M. (2013), Acoustics as a tool for better characterization of ionic liquids: a comparative study of 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide room-temperature ionic liquids, J. Phys. Chem. B, 117, 14, 3867–3876.

Zorębski E., Zorębski M. (2014), Acoustic nonlinearity parameter B/A determined by means of thermodynamic method under elevated pressures, Ultrasonics, 54, 368–374.

Zorębski E., Zorębski, M., Ernst S. (2005), Speed of ultrasound in liquids measured at a constant acoustic pathlength. Comparison and discussion of errors, J. Phys. IV France, 129, 79–82.

DOI: 10.1515/aoa-2016-0006