Archives of Acoustics, 41, 2, pp. 189–201, 2016

Roughness Prediction Based on a Model of Cochlear Hydrodynamics

Musical Acoustics Research Center, Academy of Performing Arts in Prague
Czech Republic

The term roughness is used to describe a specific sound sensation which may occur when listening to stimuli with more than one spectral component within the same critical band. It is believed that the spectral components interact inside the cochlea, which leads to fluctuations in the neural signal and, in turn, to a sensation of roughness. This study presents a roughness model composed of two successive stages: peripheral and central. The peripheral stage models the function of the peripheral ear. The central stage predicts roughness from the temporal envelope of the signal processed by the peripheral stage. The roughness model was shown to account for the perceived roughness of various types of acoustic stimuli, including the stimuli with temporal envelopes that are not sinusoidal. It thus accounted for effects of the phase and the shape of the temporal envelope on roughness. The model performance was poor for unmodulated bandpass noise stimuli.
Keywords: roughness; prediction of roughness; auditory models; peripheral ear.
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).


Aures W. (1984), Berechnungsverfahren für den Wohlklang beliebiger Schallsignale, ein Beitrag zur gehörbezogenen Schallanalyse [in German], Ph.D. Thesis, TU M¨unchen.

Aures W. (1985), Ein Berechnungsverfahren der Rauhigkeit [in German], Acustica, 58, 268–281.

Daniel P., Weber R. (1997), Psychoacoustical Roughness: Implementation of an Optimized Model, Acustica, 83, 113–123.

Fastl H., Zwicker E. (2007), Psychoacoustics: Facts and Models, 3rd. Ed., Springer, Berlin, Heidelberg, New York.

Glasberg B.R., Moore B.C.J. (1990), Derivation of auditory filter shapes from notched-noise data, Hearing Research, 47, 103–138.

Hartmann W.M., Hnath G.M. (1982), Detection of Mixed Modulation, Acustica, 50, 297–312.

Helmholtz H.L.F. von (1895), Sensation of tone as a physiological basis for the theory of music, 3rd Ed., Longmans, Green, and Co., London, New York.

Kin M.J., Dobrucki A.B. (1998), Perception of mixed modulation for single components in harmonic complex for high modulating frequencies, Archives of Acoustics, 23, 379–390.

Kohlrausch A., Hermes D., Duisters R. (2005), Modeling roughness perception for sounds with ramped and damped temporal envelopes, Proceedings of Forum Acusticum, pp. 1719–1724, Budapest.

Leman M. (2000), Visualization and calculation of the roughness of acoustical musical signals using the synchronization index model (SIM), Proceedings of the COST G-6 Conference on Digital Audi Effects (DAFX–00), pp. DAFX 1–DAFX 6, Verona.

Kemp S. (1982), Roughness of Frequency-Modulated Tones, Acustica, 50, 126–133.

Mammano F., Nobili R. (1993), Biophysics of the cochlea. I: Linear approximation, Journal of the Acoustical Society of America, 93, 3320–3332.

Mathes R.C., Miller R.L. (1947), Phase Effects in Monaural Perception, Journal of the Acoustical Society of America, 19, 780–797.

Matlab Auditory Periphery (MAP1.14), University of Essex, Hearing Research Laboratory:

Meddis R. (2006), Auditory-nerve first-spike latency and auditory absolute threshold: a computer model, Journal of the Acoustical Society of America, 119, 406–417.

Meddis R. (1986), Simulation of mechanical to neural transduction in the auditory receptor, Journal of the Acoustical Society of America, 79, 702–711.

Miśkiewicz A., Rakowski A., Rościszewska T. (2006), Perceived Roughness of Two Simultaneous Pure Tones, Acta Acustica united with Acustica, 96, 331–336.

Miśkiewicz A., Rogala T., Szczepańska-Antosik J. (2007), Perceived roughness of two simultaneous harmonic complex tones, Archives of Acoustics, 32, 737–748.

Nobili R., Mammano F. (1996), Biophysics of the cochlea. II: Stationary nonlinear phenomenology, Journal of the Acoustical Society of America, 99, 2244–2255.

Nobili R., Veteˇsn´ik A., Turicchia L., Mammano F. (2003), Otoacoustic emissions from residual oscillations of the cochlear basilar membrane in a human ear model, Journal of the Association for Research in Otolaryngology, 4, 478–494.

Plomp R., Steeneken H.J.M. (1968), Interference between two simple tones, Journal of the Acoustical Society of America, 43, 883–884.

Pressnitzer D., McAdams S. (1999), Two phase effects in roughness perception, Journal of the Acoustical Society of America, 105, 2773–2782.

Shamma S.A., Chadwick R.S.,WilburW.J., Morrish K.A., Rinzel J. (1986), A biophysical model of cochlear processing: intensity dependence of pure tone responses, Journal of the Acoustical Society of America, 80, 133–145.

Sumner C.J., Lopez-Poveda E.A., O’Mard L.P., Meddis R. (2002), A revised model of the inner-hair cell and auditory-nerve complex, Journal of the Acoustical Society of America, 111, 2178–2188.

Terhardt E. (1974), On the Perception of Periodic Sound Fluctuations (Roughness), Acustica, 30 201–213.

Terhardt E. (1968), Über akustische Rauhigkeit und Schwankungsstärke [in German], Acustica, 20 215–224.

Vassilakis P.N. (2005), Auditory roughness as means of musical expression, [in:] Selected Reports in Ethnomusicology, UCLA Ethnomusicology Publications, pp. 119–144, Los Angeles.

Vassilakis P.N. (2001), Perceptual and physical properties of amplitude fluctuation and their musical significance, Ph.D. Thesis, University of California.

Vencovský V. (2014), Modeling roughness perception using a model of cochlear hydrodynamics, Proceedings of Forum Acusticum, Krakow.

Vencovský V. (2014), Modeling roughness perception for complex stimuli using a model of cochlear hydrodynamics, Proceedings of International Symposium of Musical Acoustics (ISMA 2014), pp. 483–488, Le Mans.

Vogel A. (1975), Über den Zusammenhang zwischen Rauhigkeit und Modulationsgrad, Acustica, 32, 300–306.

Wang Y.S., Shen G.Q., Guo H., Tang X.L., Hamade T. (2013), Roughness modelling based on human auditory perception for sound quality evaluation of vehicle interior noise, Journal of Sound and Vibration, 332, 3893–3904.

DOI: 10.1515/aoa-2016-0019