Archives of Acoustics, 41, 1, pp. 161–168, 2016

The Effect of Sonication on Acoustic Properties of Biogenic Ferroparticle Suspension

Adam Mickiewicz University

Adam Mickiewicz University

Anita KRÓL
Adam Mickiewicz University

Institute of Experimental Physics

Adam Mickiewicz University

Institute of Experimental Physics

Superparamagnetic iron oxide nanoparticles (SPION) synthesised chemically usually need the modification of the particle surface. Other natural sources of magnetic particles are various magnetotactic bacteria. Magnetosomes isolated from magnetotactic bacteria are organelles consisting of magnetite (Fe$_3$O$_4$) or greigite (Fe$_3$S$_4$) crystals enclosed by a biological membrane. Magnetotactic bacteria produce their magnetic particles in chains. The process of isolation of magnetosome chains from the body of bacteria consists of a series of cycles of centrifugation and magnetic decantation. Using a high-energy ultrasound it is possible to break the magnetosome chains into individual nanoparticles – magnetosomes. This study presents the effect of sonication of magnetosome suspension on their acoustic properties, that is speed and attenuation of the sound. Acoustic propagation parameters are measured using ultrasonic spectroscopy based on FFT spectral analysis of the received pulses. The speed and attenuation of ultrasonic waves in magnetosome suspensions are analysed as a function of frequency, temperature, magnetic field intensity, and the angle between the direction of the wave and the direction of the field.
Keywords: magnetosomes; sonication; ultrasonic properties.
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).


Araujo A., Abreu F., Silva K., Bazylinski D., Lins U. (2015), Magnetotactic Bacteria as Potential Sources of Bioproduct, Marine Drugs, 13, 389–430, doi: 10.3390/md13010389.

Bennet M., Bertinetti L., Neely R.K., Schertel A., Kornig A., Flors C., Muller F.D., Schuler D., Klumpp S., Faivre D. (2015), Biologically controlled synthesis and assembly of magnetite nanoparticles, Faraday Discussions, 181, 71–83, doi: 10.1039/C4FD00240G.

Ceyhan B., Alhorn P., Lang C., Schüler D., Niemeyer C.M. (2006), Semisynthetic Biogenic Magnetosome Nanoparticles for the Detection of Proteins and Nucleic Acids, Small, 2, 1251–1255, doi: 10.1002/smll.200600282.

Challis R.E., Povey M.J.W., Mather M.L., Holmes A.K. (2005), Ultrasound techniques for characterizing colloidal dispersions, Rep. Prog. Phys., 68, 1541–1637, doi: 10.1088/0034-4885/68/7/R01.

Dukhin A.S., Goetz P.J. (2002), Ultrasound for characterizing colloids, Elsevier, New York.

Dzarova A., Royer F., Timko M., Jamon D., Kopcansky P., Kovac J., Choueikani F., Gojzewski H., Rousseau J.J. (2011), Magneto-optical study of magnetite nanoparticles prepared by chemical and biomineralization process, Journal of Magnetism and Magnetic Materials, 323, 1453–1459, doi: 10.1016/j.jmmm.2010.12.041.

Gojzewski H., Makowski M., Hashim A., Kopcansky P., Tomori Z., Timko M. (2012), Magnetosomes on surface: an imaging study approach, Scanning, 34, 159–169, doi: 10.1002/sca.20292.

Han L., Yang S.L.Y., Zhao F., Huang J., Chang J. (2007), Comparison of magnetite nanocrystal formed by biomineralization and chemosynthesis, J. Magn. Magn. Matter., 313, 236–242, doi: 10.1016/j.jmmm.2007.01.004.

Józefczak A., Hornowski T., Závišová V., Skumiel A., Kubovčíková M., Timko M. (2014), Acoustic wave in a suspension of magnetic nanoparticle with sodium oleate coating, J. Nanopart. Res., 16, 2271, doi: 10.1007/s11051-014-2271-z.

Kiani B., Faivre D., Klumpp S. (2015), Elastic properties of magnetosome chains, New Journal of Physics, 17, 043007, doi: 10.1088/1367-2630/17/4/043007.

Molcan M., Hashim A., Kovac J., Rajnak M., Kopcansky P., Makowski M., Gojzewski H., Molokac M., Hvizdak L., Timko M. (2014), Characterization of Magnetosomes After Exposure to the Effect of the Sonication and Ultracentrifugation, Acta Phys. Pol. A, 126, 198–199, doi: 10.12693/APhysPolA.126.198.

Ovchinnikov I.E., Sokolov V.V. (2009), Effect of an External Magnetic Field on the Propagation Velocities of Magnetoacoustic Waves in a Magnetic Fluid, Acoustical Physics, 55, 359–364, doi: 10.1134/S1063771009030117.

Ovchinnikov I.E., Sokolov V.V. (2013), Waves in Magnetic Fluids with Equilibrium and Frozen-In Magnetizations, Acoustical Physics, 59, 51–55, doi: 10.1134/S1063771012060115.

Peters F., Petit L. (2003), A broad band spectroscopy method for ultrasound wave velocity and attenuation measurement in dispersive media, Ultrasonics, 41, 357–363, doi: 10.1016/S0041-624X(03)00109-4.

Prozorov R., Prozorov T., Mallapragada S.K., Narasimhan B., Williams T.J., Bazylinski D.A. (2007), Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite, Physical Review B, 76, 054406, doi: 10.1103/Phys-RevB.76.054406.

Shliomis M., Mond M., Morozov K. (2008), Ultrasound Attenuation in Ferrofluids, Phys. Rev. Lett., 111, 074505, doi: 10.1103/PhysRevLett.101.074505.

Sun J., Tang T., Duan J., Xu P.-X., Wang Z., Zhang Y., Wu L., Li Y. (2010), Biocompatibility of bacterial magnetosomes: Acute toxicity, immunotoxicity and cytotoxicity, Nanotoxicology, 4, 271–283, doi: 10.3109/17435391003690531.

Timko M., Dzarova A., Kovac J., Skumiel A., Józefczak A., Hornowski T., Gojżewski H., Zavisova V., Koneracká M., Sprincova A., Kopčanský P., Tomasovicova N. (2009), Magnetic properties and heating effect in bacterial magnetic nanoparticles, J. Magn. Magn. Matter., 321, 1521–1524, doi: 10.1016/j.jmmm.2009.02.077.

Timko M., Dzarova A., Zavisova V., Koneracka M., Sprincova A., Kopčanský P., Kovac J., Vavra I., Szlaferek A. (2008), Magnetic properties of bacterial magnetosomes and chemosyntheized magnetite nanoparticles, Magnetohydrodynamics, 44, 113–120.

DOI: 10.1515/aoa-2016-0016