Archives of Acoustics, 45, 2, pp. 233–240, 2020
10.24425/aoa.2020.133144

Sound Absorption Characteristics of Pineapple Leaf/Epoxy Composite

Damar Rastri ADHIKA
Bandung Institute of Technology
Indonesia

Iwan PRASETIYO
Bandung Institute of Technology
Indonesia

Abiyoga NOERIMAN
Bandung Institute of Technology
Indonesia

Nurul HIDAYAH
Bandung Institute of Technology
Indonesia

S. WIDAYANI
Bandung Institute of Technology
Indonesia

Natural fibres are attractive as the raw material for developing sound absorber, as they are green, eco-friendly, and health friendly. In this paper, pineapple leaf fibre/epoxy composite is considered in sound absorber development where several values of mechanical pressures were introduced during the fabrication of absorber composite. The results show that the composite can absorb incoming sound wave, where sound absorption coefficients α _n > 0.5 are pronounced at mid and high frequencies. It is also found that 23.15 kN/m^2 mechanical pressure in composite fabrication is preferred, while higher pressure leads to solid panel rather than sound absorber so that the absorption capability reduces. To extend the absorption towards lower frequency, the composite absorber requires thickness higher than 3 cm, while a thinner absorber is only effective at 1 kHz and above. Additionally, it is confirmed that the Delany-Bazley formulation fails to predict associated absorption behavior of pineapple leaf fibre-based absorber. Meanwhile, a modified Delany-Bazley model discussed in this paper is more useful. It is expected that the model can assist further development of the pineapple leaf composite sound absorber.
Keywords: natural fibres; pineapple leaf/epoxy composite; sound absorber; absorption prediction model
Full Text: PDF

References

Arenas J.P., Rebolledo J., del Rey R., Alba J. (2014), Sound absorption properties of unbleached cellulose loose-fill insulation material, BioResources, 9(4): 6227–6240.

Arib R.M.N., Sapuan S.M., Ahmad M.M.H.M., Paridah M.T., Khairul Zaman H.M.D. (2006), Mechanical properties of pineapple leaf fibre reinforced polypropylene composites, Materials, Design, 27(5): 391–396, doi: 10.1016/j.matdes.2004.11.009.

Asdrubali F. (2006a), Green and sustainable materials for noise control in buildings, 9th International Congress on Acoustics, Madrid, 2–7 September 2007.

Asdrubali F. (2006b), Survey on the acoustical properties of new sustainable materials for noise control, Proceedings of Euronoise 2006, Structured Session Sustainable Materials for Noise Control, Vol. 92, Tampere, Finland, 30 May – 1 June.

Asim M. et al. (2015), A review on pineapple leaves fibre and its composites, International Journal of Polymer Science, 2015, 16 pages, doi: 10.1155/2015/950567.

Berardi U., Iannace G. (2015), Acoustic characterization of natural fibres for sound absorption applications, Building and Environment, 94: 840–852, doi: 10.1016/j.buildenv.2015.05.029.

Berardi U., Iannace G. (2017), Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant, Applied Acoustics, 115: 131–138, doi: 10.1016/j.apacoust.2016.08.012.

Bies D.A., Hansen C.H. (1980), Flow resistance information for acoustical design, Applied Acoustics, 13(5): 357–391, doi: 10.1016/0003-682X(80)90002-X.

Cherian B.M., Leao A.L., de Souza S.F., Thomas S., Pothan L.A., Kottaisamy M. (2010), Isolation of nanocellulose from pineapple leaf fibres by steam explosion, Carbohydrate Polymers, 81(3): 720– 725, doi: 10.1016/j.carbpol.2010.03.046.

Delany M.E., Bazley E.N. (1970), Acoustical properties of fibrous absorbent materials, Applied Acoustics, 3(2): 105–116, doi: 10.1016/0003-682X(70)90031-9.

Devi L.U., Bhagawan S.S., Thomas S. (1997), Mechanical properties of pineapple leaf fibre-reinforced polyester composites, Journal of Applied Polymer Science, 64(9): 1739–1748, doi: 10.1002/(SICI)1097-4628(19970531)64:9<1739::AID-APP10>3.0.CO;2-T.

Ersoy S., Küçük H. (2009), Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties, Applied Acoustics, 70(1): 215–220, doi: 10.1016/j.apacoust.2007.12.005.

Ismail L., Ghazali M.I., Mahzan S., Zaidi A.M. (2010), Sound absorption of arenga pinnata natural fibre, World Academy of Science, Engineering and Technology, 43: 804–806.

ISO (1998), Standard 10534-2 Acoustics – Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes – Transfer Function Method.

Kino N., Ueno T. (2008), Evaluation of acoustical and non-acoustical properties of sound absorbing materials made of polyester fibres of various crosssectional shapes, Applied Acoustics, 69(7): 575–582, doi: 10.1016/j.apacoust.2007.02.003.

Lee Y., Joo C. (2003), Sound absorption properties of recycled polyester fibrous assembly absorbers, Autex Research Journal , 3(2): 78–84.

Lim Z.Y., Putra A., Nor M.J.M., Yaakob M.Y. (2018), Sound absorption performance of natural kenaf fibres, Applied Acoustics, 130: 107–114, doi: 10.1016/j.apacoust.2017.09.012.

Mamtaz H., Foula M.H., Nuawi M.Z., Narayana Namasivayam S., Ghassem M., Al-Atabi M. (2017), Acoustic absorption of fibro-granular composite with cylindrical grains, Applied Acoustics, 126: 58–67, doi: 10.1016/j.apacoust.2017.05.012.

Mvubu M., Patnaik A., Anandjiwala R.D. (2015), Process parameters optimization of needle-punched nonwovens for sound absorption application, Journal of Engineered Fibres and Fabrics, 10(4): 47–54, doi: 10.1177/155892501501000415.

Nelder J.A., Mead R. (1965), A simplex method for function minimization, The Computer Journal, 7(4): 308–313, doi: 10.1093/comjnl/7.4.308.

Or K.H., Putra A., Selamat M.Z. (2017), Oil palm empty fruit bunch fibres as sustainable acoustic absorber, Applied Acoustics, 119: 9–16, doi: 10.1016/j.apacoust.2016.12.002.

Patnaik A., Mvubu M., Muniyasamy S., Botha A., Anandjiwala R.D. (2015), Thermal and sound insulation materials from waste wool and recycled polyester fibres and their biodegradation studies, Energy and Buildings, 92: 161–169, doi: 10.1016/j.enbuild.2015. 01.056.

Pfretzschner J., Rodriguez R.M. (1999), Acoustic properties of rubber crumbs, Polymer Testing, 18(2): 81–92, doi: 10.1016/S0142-9418(98)00009-9.

Prasetiyo I., Desendra G., Hermanto M.N., Adhika D.R. (2018), On woven fabric sound absorption prediction, Archives of Acoustics, 43(4): 707–715, doi: 10.24425/aoa.2018.125164.

Putra A., Or K.H., Selamat M.Z., Nor M.J.M., Hassan M.H., Prasetiyo I. (2018), Sound absorption of extracted pineapple-leaf fibres, Applied Acoustics, 136: 9–15, doi: 10.1016/j.apacoust.2018.01.029.

Rusli M., Irsyad M., Dahlan H., Gusriwandi, Bur M. (2019), Sound absorption characteristics of the natural fibrous material from coconut coir, oil palm fruit bunches, and pineapple leaf, IOP Conference Series: Materials Science and Engineering, 602, 012067, doi: 10.1088/1757-899x/602/1/012067.

Silva C.C.B.D., Terashima F.J.H., Barbieri N., Lima K.F.D. (2019), Sound absorption coefficient assessment of sisal, coconut husk and sugar cane fibres for low frequencies based on three different methods, Applied Acoustics, 156: 92–100, doi: 10.1016/j.apacoust. 2019.07.001.

Swift M.J., Bris P., Horoshenkov K.V. (1999), Acoustic absorption in re-cycled rubber granulate, Applied Acoustics, 57(3): 203–212, doi:10.1016/S0003-682X(98)00061-9.

Zulkifli R., Mohd Nor J., Mat Tahir M.F., Ismail A.R., Nuawi M. (2008), Acoustic properties of multi-layer coir fibres sound absorption panel, Journal of Applied Sciences, 8(20): 3709–3714, doi: 10.3923/jas.2008.3709.3714.




DOI: 10.24425/aoa.2020.133144

Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN)