Archives of Acoustics, 46, 1, pp. 167–175, 2021
10.24425/aoa.2021.136570

Assessment of Occupational Risk in the Case of the Ultrasonic Noise Exposure

Dariusz PLEBAN
Central Institute for Labour Protection - National Research Institute
Poland

Bożena SMAGOWSKA
Central Institute for Labour Protection - National Research Institute
Poland

Jan RADOSZ
Central Institute for Labour Protection - National Research Institute
Poland

Increased efficiency of production and improved quality have contributed to the development of ultrasonic technological applications, in which low frequency ultrasounds are generated to operate, accelerate as well as to facilitate technological processes. Technological ultrasonic devices (i.e. sources of ultrasonic noise in the work environment, e.g. ultrasonic washers, ultrasonic welding machines) have relatively high power and their nominal frequencies are in the range from 18 kHz to 40 kHz. In Poland, ultrasonic noise (defined as noise containing high audible and low ultrasonic frequencies from 10 kHz to 40 kHz) is included in the list of factors harmful to health in the work environment and therefore the admissible values of ultrasonic noise in the workplaces are established. The admissible values of ultrasonic noise and the new ultrasonic noise measurement method make it possible to perform the assessment of occupational risk related to ultrasonic noise. According to this method, the scope of the measurements includes the determination of the equivalent sound pressure levels in the 1/3 octave bands with the centre frequencies from 10 kHz to 40 kHz. This paper presents the description of both, i.e. the method for ultrasonic noise measurements and the method of the assessment of occupational risk related to ultrasonic noise. The examples of the results of the assessment of occupational risk related to exposure to ultrasonic noise are also discussed.
Keywords: occupational risk; ultrasonic noise; workplaces; measurement; assessment; occupational safety; airborne ultrasound
Full Text: PDF

References

Act Labour Code (1974), Announcement by the Speaker of the Sejm of the Republic of Poland of 13 April 2018 on the announcement of the uniform text of the Act –Labor Code [in Polish: Obwieszczenie Marszałka Sejmu Rzeczypospolitej Polskiej z dnia 13 kwietnia 2018 r. w sprawie ogłoszenia jednolitego tekstu ustawy – Kodeks pracy], Journal of Laws 2018, item 917 with later changes.

Acton W.I. (1974), The effects of industrial airborne ultrasound in humans, Ultrasonics, 12(3): 124–128, doi: 10.1016/0041-624X(74)90069-9.

Announcement of Minister of Family, Labour and Social Policy (2018), Regulation of the Minister of Family, Labour and Social Policy of 12 June 2018 on the maximum permissible concentrations and intensities of factors harmful to health in the working environment [in Polish: Rozporządzenie Ministra Rodziny, Pracy i Polityki Społecznej z dn. 12.06.2018 r. w sprawie najwyższych dopuszczalnych stężeń i natężeń czynników szkodliwych dla zdrowia w środowisku pracy], Journal of Laws 2018, item 1286.

Ashihara K., Kurakata K., Mizunami T., Matsushita K. (2006), Hearing threshold for pure tones above 20 kHz, Acoustical Science and Technology, 27(1): 12–19, doi: 10.1250/ast.27.12.

Augustynska D., Zawieska W.M. [Eds], (1999), Protection against noise and vibration in the working environment [in Polish: Ochrona przed hałasem i drganiami w środowisku pracy], Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy, Warsaw.

Barrera-Figueroa S. (2018), Free-field reciprocity calibration of measurement microphones at frequencies up to 150 kHz, The Journal of the Acoustical Society of America, 144(4): 2575–2583, doi: 10.1121/1.5063815.

Cieslak M., Kling C., Wolff A. (2020), Ultrasound exposure in a workplace and a potential way to improve its measurement methodology, IEEE International Workshop on Metrology for Industry 4.0 & IoT, Roma, Italy, 172–176, doi: 10.1109/MetroInd4. 0IoT48571.2020.9138223.

Council Directive (1989), Council Directive 89/391/EEC of 12 June 1989 on the introduction of measures to encourage improvements in the safety and health of workers at work, Official Journal of the European Communities, No L 183/1.

Dobrucki A., Zółtogórski B., Pruchnicki P., Bolejko R. (2010), Sound-absorbing and insulating enclosures for ultrasonic range, Archives of Acoustics, 35(2): 157–164.

Dolder C.N. et al. (2018), Measurements of ultrasonic deterrents and an acoustically branded hairdryer: Ambiguities in guideline compliance, The Journal of the Acoustical Society of America, 144(4): 2565–2574, doi: 10.1121/1.5064279.

Dudarewicz A. et al. (2017), The hearing threshold of employees exposed to noise generated by the low-frequency ultrasonic welding devices, Archives of Acoustics, 42(2): 199–205, doi: 10.1515/aoa-2017-0022.

Duck F., Leighton T. (2018), Frequency bands for ultrasound, suitable for the consideration of its health effects, The Journal of the Acoustical Society of America, 144(4): 2490–2500, doi: 10.1121/1.5063578.

Fletcher M.D., Lloyd Jones S., White P.R., Dolder C.N., Leighton T.G., Lineton B. (2018a), Effects of very high-frequency sound and ultrasound on humans. Part I: Adverse symptoms after exposure to audible very-high frequency sound, The Journal of the Acoustical Society of America, 144(4): 2511–2520, doi: 10.1121/1.5063819.

Fletcher M.D., Lloyd Jones S., White P.R., Dolder C.N., Leighton T.G., Lineton B. (2018b), Effects of very high-frequency sound and ultrasound on humans. Part II: A double-blind randomized provocation study of inaudible 20-kHz ultrasound, The Journal of the Acoustical Society of America, 144(4): 2521–2531, doi: 10.1121/1.5063818.

Fletcher M.D., Lloyd Jones S., White P.R., Dolder C.N., Lineton B., Leighton T.G. (2018c), Public exposure to ultrasound and very high-frequency sound in air, The Journal of the Acoustical Society of America, 144(4): 2554–2564, doi: 10.1121/1.5063817.

Holmberg K., Landstrom U., Nordstom B. (1995), Annoyance and discomfort during exposure to high-frequency noise from an ultrasonic washer, Perceptual and Motor Skills, 81(3): 819–827, doi: 10.2466/pms.1995.81.3.819.

International Electrotechnical Commission (1995), IEC 61094-4:1995 Measurement microphones – Part 4: Specifications for working standard microphones.

International Electrotechnical Commission (2013), IEC 61672-1:2013 Electroacoustics – Sound level meters – Part 1: Specifications.

International Electrotechnical Commission (2014), IEC 61260-1:2014 Electroacoustics – Octave-band and fractional-octave-band filters – Part 1: Specifications.

International Organization for Standardization (2009), ISO 9612:2009 Acoustics – Determination of occupational noise exposure – Engineering method.

Kling C., Koch C., Kühler R. (2015), Measurement and assessment of airborne ultrasound noise, Proceedings of the 22nd International Congress on Sound and Vibration, M.J. Crocker, F. Pedrielli, S. Luzzi, M. Pawelczyk, E. Carletti [Eds], Vol. 4, pp. 1307–3213, Curran Associates, Red Hook, NY, USA.

Kling C., Schöneweiß R., Wolff A., Ullisch-Nelken C. (2017), Investigations on airborne ultrasound at working places, Proceedings of the 24th International Congress on Sound and Vibration, Vol. 4, pp. 2529–2532, Curran Associates, Red Hook, NY, USA.

Koradecka D. [Ed.], (2010), Handbook of occupational safety and health, CRC Press, Boca Raton.

Lawton B.W. (2001), Damage to human hearing by airborne sound of very high frequency or ultrasonic frequency, Retrieved April 23th, 2019, from http://www.hse.gov.uk/research/crr_pdf/2001/crr01-343.pdf.

Mapp P. (2018), Potential audibility of ultrasonic signal monitoring of Public Address and Life Safety Sound Systems, The Journal of the Acoustical Society of America, 144(4): 2539–2547, doi: 10.1121/1.5063993.

Martin J.A. (2011), Bone-Conducted Ultrasonic Hearing: Can Distortion Product Optoacoustic Emissions Confirm Cochlear Involvement?, Retrieved April 23th, 2019, from http://publications.lib.chalmers.se/records/fulltext/147171.pdf.

Miegel J., Branch P., Blamey P. (2018), Wireless communication between personal electronic devices and hearing aids using high frequency audio and ultrasound, The Journal of the Acoustical Society of America, 144(4): 2598–2604, doi: 10.1121/1.5063813.

Mikulski W. (2013), Method of determining the sound absorbing coefficient of materials within the frequency range of 5000–50000 Hz in a test chamber of a volume of about 2 m3, Archives of Acoustics, 38(2): 177–183.

Øyerhamn R., Nag Mosland E., Storheim E., Lunde P., Vestrheim M. (2018), Finite element modeling of ultrasound measurement systems for gas. Comparison with experiments in air, The Journal of the Acoustical Society of America, 144(4): 2613–2615, doi: 10.1121/1.5063814.

Pawlaczyk-Łuszczynska M., Koton J., Sliwinska-Kowalska M., Augustynska D., Kameduła M. (2001a), Ultrasonic noise. Documentation of proposed occupational exposure limit values [in Polish: Hałas ultradźwiękowy. Dokumentacja proponowanych wartości dopuszczalnych poziomów narażenia zawodowego], Podstawy i Metody Oceny Środowiska Pracy, 28(2): 55–88.

Pawlaczyk-Łuszczynska M., Koton J., Augustynska D. (2001b), Ultrasonic noise. Measuring procedure [in Polish: Hałas ultradźwiękowy. Procedura pomiarowa], Podstawy i Metody Oceny Środowiska Pracy, 28(2): 89–95.

Pawlaczyk-Łuszczynska M., Dudarewicz A., Sliwinska-Kowalska M. (2007a), Theoretical predictions and actual hearing threshold levels in workers exposed to ultrasonic noise of impulsive character –A pilot study, International Journal of Occupational Safety and Ergonomics, 13(4): 357–366, doi: 10.1080/10803548.2007.11105098.

Pawlaczyk-Łuszczynska M., Dudarewicz A., Sliwinska-Kowalska M. (2007b), Sources of occupational exposure to ultrasonic noise [in Polish: Źródła ekspozycji zawodowej na hałas ultradźwiękowy – ocena wybranych urządzeń], Medycyna Pracy, 58(2), 105–116.

Paxton B., Harvie-Clark J., Albert M. (2018), Measurements of ultrasound from public address and voice alarm systems in public places, The Journal of the Acoustical Society of America, 144(4): 2548–2553, doi: 10.1121/1.5063811.

Pleban D. (2013), Method of testing of sound absorption properties of materials intended for ultrasonic noise protection, Archives of Acoustics, 38(2): 191–195.

Pleban D., Mikulski W. (2018), Methods for testing of sound insulation properties of barriers intended for high frequency noise and ultrasonic noise protection, Journal of Mechanical Engineering – Strojnicky Casopis, 68(4): 55–64, doi: 10.2478/scjme-2018-0047.

Polish Committee for Standardization (1986), PN-86/N-01321 Ultrasonic noise. Admissible sound pressure levels at work place and methods of measurements [in Polish: Hałas ultradźwiękowy. Dopuszczalne wartości poziomu ciśnienia akustycznego na stanowiskach pracy i ogólne wymagania dotyczące wykonywania pomiarów].

Polish Committee for Standardization (2011), PN-N-18002 Occupational health and safety management systems –Guidelines for assessing occupational risk [in Polish: Systemy zarzadzania bezpieczeństwem i higiena pracy – Ogólne wytyczne do oceny ryzyka zawodowego].

Polish Committee for Standardization (2020), PN-Z-01339:2020 Ultrasonic noise. Requirements for measurements in the work environment [in Polish: Hałas ultradźwiękowy. Wymagania dotyczące wykonywania w środowisku pracy].

Radosz J. (2012), Methodology issues of ultrasonic noise exposure assessment, Noise Control Engineering Journal, 60(6): 645–654, doi: 10.3397/1.3701038.

Radosz J. (2014), Uncertainty due to instrumentation for sound pressure level measurement in high frequency range, Noise Control Engineering Journal, 62(4): 186–195, doi: 10.3397/1/376219.

Radosz J. (2015), Procedure for measuring ultrasonic noise [in Polish: Procedura pomiaru hałasu ultradźwiękowego], Podstawy i Metody Oceny Środowiska Pracy, 86(4): 169–190.

Radosz J., Pleban D. (2018), Ultrasonic noise measurements in the work environment, The Journal of the Acoustical Society of America, 144(4): 2532–2538, doi: 10.1121/1.5063812.

Schöneweiß R., Wächtler M., Kling C., Koch C. (2018), Novel measurement techniques and measurement methods for the determination of ultrasound noise exposure at work places, Proceedings of the 25th International Congress on Sound and Vibration, Vol. 4, pp. 2468–2473, Curran Associates, Red Hook, NY, USA.

Schust M. (1996), Biologische Wirkung von luftgeleitetem Ultraschall, Technical Report, Federal Institute for Occupational Safety and Health, Dortmund.

Smagowska B. (2013), Ultrasonic noise sources in a work environment, Archives of Acoustics, 38(2): 169–176.

Smagowska B., Mikulski W. (2008), Ultrasonic noise at workstations with ultrasonic drills –occupational risk assessment [in Polish: Hałas ultradźwiękowy na stanowiskach pracy drążarek ultradźwiękowych – ocena ryzyka zawodowego], Bezpieczeństwo Pracy – Nauka i Praktyka, 10: 18–22.

Smagowska B., Pawlaczyk-Łuszczynska M. (2013), Effects of action of ultrasonic noise on the human body – a bibliographic review, International Journal of Occupational Safety and Ergonomics, 19(2): 195–202, doi: 10.1080/10803548.2013.11076978.

Smagowska B. (2015), Hazard identification and assessment of occupational risk associated with ultrasonic noise in selected industries [in Polish: Identyfikacja zagrożeń i ocena ryzyka zawodowego hałasem ultradźwiękowym w wybranych gałęziach przemysłu], Doctoral Thesis, Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy, Warsaw.

Śliwiński A. (2013), Assessment of ultrasonic noise hazard in work places environment, Archives of Acoustics, 38(2): 243–252.

Takahashi H., Horiuchi R. (2018), Uncertainty analysis on free-field reciprocity calibration of measurement microphones for airborne ultrasound, The Journal of the Acoustical Society of America, 144(4): 2584–2597, doi: 10.1121/1.5063816.

Ullisch-Nelken C., Wolff A., Schöneweiß R., Kling C. (2018), A measurement procedure for the assessment of industrial ultrasonic noise, Proceedings of the 25th International Congress on Sound and Vibration, Vol. 4, pp. 2433–2438, Curran Associates, Red Hook, NY, USA.

Van Wieringen A., Glorieux C. (2018), Assessment of short-term exposure to an ultrasonic rodent repellent device, The Journal of the Acoustical Society of America, 144(4): 2501–2510, doi: 10.1121/1.5063987.




DOI: 10.24425/aoa.2021.136570

Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN)