10.24425/aoa.2021.136585
Experimental and Numerical Acoustoelectric Investigation of the New SAW Structure with (RR)-P3HT Polymer in DMMP Detection
Numerical results for the gas DMMP (CAS Number 756-79-6) for layer (RR)-P3HT in the steady state are shown. The main aim of the investigations was to study the thin film interaction with target gases in the SAW sensor configuration based on diffusion equation for polymers. Numerical results for profile concentration in steady state are shown.
The results of numerical acoustoelectric analysis (NAA) allow to select the sensor design conditions, including the morphology of the sensor layer, its thickness, operating temperature and layer type. The numerical results based on the code written in Python, are described and analyzed. The theoretical results were verified and confirmed experimentally.
References
Auld B.A. (1973), Acoustic Fields and Waves, Vol. 2, Wiley, New York, pp. 271–290.
Crank J. (1975), The mathematics of diffusion, Clarendon Press, Oxford, pp. 259–262.
Czop P., Gąsiorek D., Gniłka J., Sławik D., Wszołek G. (2012), Fluid-structure simulation of a valve system used in hydraulic dampers, Modelowanie Inżynierskie, 14(45): 197–205.
Gąsiorek D. (2013), The application of the smoothed particle hydrodynamics (SPH) method and the experimental verification of cutting of sheet metal bundles using a guillotine, Journal of Theoretical and Applied Mechanics, 51(4): 1053–1065.
Gąsiorek D., Baranowski P., Malachowski J., Mazurkiewicz L., Wiercigroch M. (2018), Modelling of guillotine cutting of multi-layered aluminum sheets, Journal of Manufacturing Processes, 34(Part A): 374–388, doi: 10.1016/j.jmapro.2018.06.014.
Gąsiorek D., Mężyk A., Skibniewski A., Głuchowski W. (2013), Metallographic investigations of metal plate edges after cutting, Journal of Achievements in Materials and Manufacturing Engineering, 60(1): 31–38.
Hejczyk T., Kamiński G., Ogaza R. (2018), Application of the hybrid sensor with acoustic surface wave [in Polish: Zastosowanie hybrydowego sensora z akustyczną falą powierzchniową], Patent no PL 229696 B1, pp 2–5.
Hejczyk T., Pustelny T, Wszołek B., Jakubik W. (2016), Numerical analysis of sensitivity of SAW structure to the effect of toxic gases, Archives of Acoustics, 41(4): 747–755, doi: 10.1515/aoa-2016-0072.
Hejczyk T., Urbańczyk M., Pustelny T., Jakubik W. (2015), Numerical and experimental analysis of the response of a SAW structure with WO3 layers an action of carbon monoxide, Archives of Acoustics, 40(1): 19–24, doi: 10.1515/aoa-2015-0003.
Jasek K., Miluski W., Pasternak M. (2011), New approach to saw gas sensors array response measurement, Acta Physica Polonica A, 120(4): 639–641, doi 10.12693/APhysPolA.120.639.
Jasek K., Neffe S., Pasternak M. (2012), SAW sensor for mercury vapour detection, Acta Physica Polonica A, 122(5): 825–828, doi 10.12693/APhysPolA.120.639.
Kawalec A., Pasternak M. (2008), Microwave humidity sensor based on surface acoustic wave resonator with nafion layer, IEEE Transactions on Instrumentation and Measurement, 9(57): 2019–2023.
Kawalec A., Pasternak M., Jasek K. (2008), Measurements results of SAW humidity sensor with nafion layer, European Physical Journal: Special Topics, 154: 121–126.
Lee H.J., Park K.K., Kupnik M., Oralkan Ö., Khuri-Yakub B.T. (2011), Chemical vapor detection using a capacitive micromachined ultrasonic transducer, Analytical Chemistry, 83(24): 9314–932, doi: 10.1021/ac201626b.
Long Y., Wang Y., Du X., Cheng L., Wu P., Jiang Y. (2015), The different sensitive behaviors of a hydrogen-bond acidic polymer-coated SAW sensor for chemical warfare agents and their simulants, Sensors, 15: 18302–18314, doi: 10.3390/s150818302.
Magnuski M., Wrotniak J. (2018), System for detecting chemical compounds in gaseous atmospheres, with a sensor using surface acoustic waves (SAW) [in Polish: Układ do wykrywania związków chemicznych w atmosferach gazowych z czujnikiem wykorzystującym akustyczne fale powierzchniowe (AFP)], Patent no PL 230526 B1.
Matsumaga N., Sakai G., Shimonoe K., Yamazoe N. (2001), Diffusion equation-based study of thin film semiconductor gas sensor-response transient, Sensors and Actuators B, 83(1–3): 216–221, doi: 10.1016/S0925-4005(01)01043-7.
Matsumaga N., Sakai G., Shimonoe K., Yamazoe N. (2003), Formulation of gas diffusion dynamics for thin film semiconductor gas sensor based on simple reaction-diffusion equation, Sensors and Actuators B, 96(1–2): 226–233, doi: 10.1016/S0925-4005(03)00529-X.
Powroźnik P., Jakubik W., Kaźmierczak-Bałata A. (2015), Detection of organophosphorus (DMMP) vapour using phthalocyanine-palladium bilayer structures, Procedia Engineering, 120: 368–371, doi: 10.1016/j.proeng.2015.08.640.
Pustelny B., Pustelny T. (2009), Transverse acoustoelectric effect applying in surface study of GaP: Te(111), Acta Physica Polonica A, 116(3): 383–384, doi 10.12693/APhysPolA.116.383.
Pustelny T. et al. (2012), Gas sensors based on nanostructures of semiconductor ZnO and TiO2, Bulletin of the Polish Academy of Sciences: Technical Sciences, 60(4): 853–859, doi: 10.2478/v10175-012-0099-1.
Sakiewicz P., Nowosielski R., Babilas R., Gąsiorek D., Pawlak M. (2013), FEM simulation of Ductility Minimum Temperature (DMT) phenomenon in CuNi25 alloy, Journal of Achievements in Materials and Manufacturing Engineering, 61(2): 274–280.
Wrotniak J., Jakubik W., Powroźnik P., Stolarczyk A., Magnuski M. (2018), Acoustic tests of RR-P3HT type polymer for the detection of DMMP in the air [in Polish: Akustyczne badania polimeru typu RR-P3HT do wykrywania DMMP w powietrzu], Przegląd Elektrotechniczny, 94(6): 70–73,. doi:10.15199/48.2018.06.12
Yoo R. , Kim J., Song M.J., Lee W., Noh J.S. (2015), Nano-composite sensors composed of single-walled carbon nanotubes and polyaniline for the detection of a nerve agent simulant gas, Sensors and Actuators B: Chemical, 209: 444–448, doi: 10.1016/j.snb.2014.11.137.
DOI: 10.24425/aoa.2021.136585