Archives of Acoustics, 45, 4, pp. 663–679, 2020
10.24425/aoa.2020.135254

Radiation Impedance for Square Piston Sources on Infinite Circular Cylindrical Baffles

John L. VALACAS
Currently none.
Greece

The evaluation of complex radiation impedance for a square piston source on an infinite circularcylindrical baffle is associated to the Greenspon-Sherman formulation for which novel evaluation methods are proposed. Unlike existing methods results are produced in a very wide range of frequencies and source semi-angles with controllable precision. For this reason closed-form expressions are used to describe the truncation errors of all integrals and infinite sums involved. Impedance values of increased accuracy are also provided in tabulated form for engineering use and a new radiation mass-load model is derived for low-frequencies.
Keywords: cylindrical baffle; radiation impedance; radiation mass-load; piston source
Full Text: PDF

References

Arase E.M. (1964), Mutual radiation impedance of square and rectangular pistons in a rigid infinite baffle, The Journal of Acoustical Society of America, 36(8): 1521–1525, doi: 10.1121/1.1919236.

Bank G., Wright J.R. (1990), Radiation impedance calculations for a rectangular piston, Journal of the Audio Engineering Society, 38: 350–354.

Baricz Á., Ponnusamy S., Vuorinen M. (2011), Functional inequalities for modified Bessel functions, Expositiones Mathematicae, 29(4): 399–414, doi:

1016/j.exmath.2011.07.001.

Beranek L.L. (1996), Acoustics, Acoustical Society of America, Cambridge, MA.

Burnett D.S., Soroka W.W. (1972), Tables of rectangular piston radiation impedance functions, with application to sound transmission loss through deep apertures, The Journal of Acoustical Society of America, 51(5B): 1618–1623, doi: 10.1121/1.1913008.

Greenspon J.E., Sherman C.H. (1964), Mutualradiation impedance and nearfield pressure for pistons on a cylinder, The Journal of Acoustical Society of America, 36(1): 149–153, doi: 10.1121/1.1918925.

Kim J.S., Kim M.J., Ha K.L., Kim C.D. (2004), Improvement of calculation for radiation impedance of the vibrators with cylindrical baffle, Japanese Journal of Applied Physics, 43(5B): 3188–3192, doi: 10.1143/JJAP.43.3188.

Lee J., Seo I. (1996), Radiation impedance computations of a square piston in a rigid infinite baffle, Journal of Sound and Vibration, 198(3): 299–312, doi: 10.1006/jsvi.1996.0571.

Levine H. (1983), On the radiation impedance of a rectangular piston, Journal of Sound and Vibration, 89(4): 447–455, doi: 10.1016/0022-460X(83)90346-2.

Mellow T., Kärkkäinen L. (2016), Expansions for the radiation impedance of a rectangular piston in an infinite baffle, The Journal of Acoustical Society of America, 140(4): 2867–2875, doi: 10.1121/1.4964632.

Morse P.M., Ingard K.U. (1968), Theoretical Acoustics, Princeton University Press, Princeton, New Jersey.

Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. [Eds], (2010), NIST Handbook of Mathematical Functions, NIST & Cambridge University Press.

Stepanishen P.R. (1977), The radiation impedance of a rectangular piston, Journal of Sound and Vibration, 55(2): 275–288, doi: 10.1016/0022-460X(77)90599-5.

Swenson G.W., Johnson W.E. (1952), Radiation impedance of a rigid square piston in an infinite baffle, The Journal of Acoustical Society of America, 24(1):

, doi: 10.1121/1.1906856.

Valacas J. (2020), Tabulated values for radiation impedance of a square piston source on a circular cylindrical baffle, Mendeley Data Repository, http://dx.doi.org/10.17632/rvwffybpdw.3.

Watson G.N. (1966), A Treatise on the theory of Bessel Functions, 2nd Ed., Cambridge University Press.

Yang Z.H., Chu Y.M. (2017), On approximating the modified Bessel function of the second kind, Journal of Inequalities and Applications, 1: 1–8, doi: 10.1186/s13660-017-1317-z.




DOI: 10.24425/aoa.2020.135254

Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN)