Archives of Acoustics, 39, 3, pp. 365-383, 2014

Simulated Sound-Fields in a Multi-Configurable Auditorium

Instituto Universitario de Arquitectura y Ciencias de la Construcción, Seville University

Instituto Universitario de Arquitectura y Ciencias de la Construcción, Seville University

Instituto Universitario de Arquitectura y Ciencias de la Construcción, Seville University

In this work, simulation techniques have been implemented to study the sound fields of a multi-configurable performance enclosure by creating computer acoustic 3D-models for each room configuration. The digital models have been tuned by means of an iterative fitting procedure that uses the reverberation times measured on site for unoccupied conditions with the orchestra shell on the stage. The initial virtual acoustic model is validated by comparing the other monaural and binaural acoustic parameters measured in the room in terms of their perception differential threshold. The procedure is applied to The Maestranza Theatre of Seville, built for the Universal Exhibition in 1992. The spatial distribution of the acoustic parameters in the audience area of the venue by measured parameters and simulation mappings enables the establishment of three zones of acoustic comfort, which are corroborated by the values of the Ando-Beranek function which provide a global quality coefficient of each zone.
Keywords: acoustic simulation; concert hall acoustics; theatre heritage; sonic metrics.
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).


ANDO Y. (1985), Concert hall acoustics, Springer, Berlin.

BARRON M., LEE L.-J. (1988), Energy relations in concert auditoriums I, Journal of the Acoustical Society of America, 84, 2, 618-628.

BERANEK L.L. (1996), Concert and opera halls: how they sound, Acoustical Society of America, New York.

BERARDI U. (2014), Simulation of acoustical parameters in rectangular churches, Journal of Building Performance Simulation, 7, 1, 1-16.

CALAMIA P.T., MARKHAM B.E., SVENSSON U.P. (2008), Diffraction culling for virtual-acoustic simulations, Acta Acustica United with Acustica, 94, 6, 907–920.

CHILES S., BARRON M. (2004), Sound level distribution and scatter in proportionate spaces, Journal of the Acoustical Society of America, 116, 3, 1585-1595.

COWAN J. (2007), Building Acoustics, In Handbook of acoustics, edited by T. Rossing, 387-425, Springer-Verlag, New York.

COX T.J., D’ANTONIO P. (2009), Acoustic absorbers and diffusers. Theory, design and application, Taylor & Francis, Abingdon.

DALENBÄCK B.-I.L. (2011), CATT-Acoustic v9 powered by TUCT use manuals. Computer Aided Theatre Technique, Gothenburg, Sweden.

DANCE S.M., VAN BUUREN G. (2013), Effects of damping on the low-frequency acoustics of listening rooms based on an analytical model, Journal of Sound and Vibration, 332, 25, 6891-6904.

ERMANN M. (2005), Coupled volumes: Aperture size and the double-sloped decay of concert halls, Building Acoustics, 12, 1, 1-14.

GADE A.C. (2007), Acoustics in halls for speech and music, In Handbook of acoustics, edited by T. Rossing, 301-350, Springer-Verlag, New York.


GARCÍA-BBM S.A. FOR FIGUERAS (1991), Estudio técnico de absorción sonora para la butaca Carmen, [Technical study of sound absorption for Carmen seats]. Madrid, Spain.



GTEACUS, (Accessed 11 December 2013).

HAK C.C.J.M., WENMAEKERS R.H.C., HAK J.P.M., VAN-LUXEMBURG L.C.J., GADE A.C. (2010), Sound strength calibration methods. In: Proceedings of 20th International Congress on Acoustics, ICA 2010, Sydney, Australia.

HIDAKA T., BERANEK L.L., MASUDA S., NISHIHARA N., OKANO T. (2000), Acoustical design of the Tokyo Opera City (TOC) concert hall, Japan, Journal of the Acoustical Society of America, 107, 1, 340-354.

HOFFMEIER J. (1996), Untersuchungen zum Einfluß von Raumklang- färbungen auf die Deutlichkeit von Sprache [Investigations on the influence of room timbres on speech definition] Thesis for a degree at the TU Dresden, Technical University of Denmark.

ISO 3382-1:2009(E). Acoustics-Measurement of room acoustic parameters, Part 1: Performance spaces, International Organization for Standardization, Geneva, Switzerland.

KANG J. (2005), Numerical modeling of the sound fields in urban squares, Journal of the Acoustical Society of America, 117, 6, 3695-3706.

KIM Y.H., KIM J.H., JEON, J.Y. (2011), Scale model investigations of diffuser application strategies for acoustical design of performance venues, Acta Acustica United with Acustica, 97, 5, 791-799.

KUTTRUFF H. (2009), Room acoustics, Taylor & Francis, Abingdon.

MAHDAVI A., LECHLEITER J., PAK J. (2008), Measurements and predictions of room acoustics in atria, Journal of Building Performance Simulation, 1, 2, 67-74.

MARTELLOTTA F. (2009), Identifying acoustical coupling by measurements and prediction-models for St. Peter’s Basilica in Rome, Journal of the Acoustical Society of America, 126, 3, 1175-1186.

OKANO T., BERANEK L.L., HIDAKA T. (1998), Relations among interaural cross-correlation coefficient (IACCE), lateral fraction (LFE), and apparent source width (ASW) in concert halls, Journal of the Acoustical Society of America, 104, 1, 255-265.

OLDHAM D.J., ROWELL M.A. (1987), Computer applications in building and environmental acoustics, Building and Environment, 22, 3, 189-200.

PARATI L., PRODI N., POMPOLI R. (2007), Computer model investigations on the balance between stage and pit sources in opera houses, Applied Acoustics, 68, 10, 1156-1176.

POLACK J.D., MEYNIAL X., GRILLON V. (1993), Auralization in scale models – processing of impulse-response, Journal of the Audio Engineering Society, 41, 11, 939-945.

RYCHTÁRIKOVÁ M., DEN BOGAERT T.V., VERMEIR G., WOUTERS J. (2011), Perceptual validation of virtual room acoustics: Sound localization and speech understanding, Applied Acoustics, 72, 4, 196-204.

SAN MARTÍN R., ARANA M. (2006), Predicted and experimental results of acoustic parameters in the new Symphony Hall in Pamplona, Spain, Applied Acoustics, 67, 1, 1-14.

SANT’ANA D.Q., ZANNIN P.H.T. (2011), Acoustic evaluation of a contemporary church based on in situ measurements of reverberation time, definition, and computer-predicted speech transmission index, Building and Environment, 46, 2, 511-517.

SKETCHUP software, (Accessed 11 December 2013).

TEATRO DE LA MAESTRANZA, (Accessed 11 December 2013).

TORRES R.R., SVENSSON U.P., KLEINER M. (2001), Computations of edge diffraction for more accurate room acoustics auralization, Journal of the Acoustical Society of America, 109, 2, 600-610.

VASSILANTONOPOULOS S.L., MOURJOPOULOS J.N. (2009), The acoustics of roofed ancient odeia: The case of Herodes Atticus odeion, Acta Acustica United with Acustica, 95, 2, 291-299.

VORLÄNDER M. (2008), Auralization: fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality, Springer-Verlag, Berlin.

VORLÄNDER M. (2013), Computer simulations in room acoustics: Concepts and uncertainties, Journal of the Acoustical Society of America, 133, 3, 1203-1213.

XIANG N., BLAUERT J. (1993), Bianural scale modelling for auralisation and prediction of acoustics in auditoria, Applied Acoustics, 38, 2-4, 267-290.

YANG W., HODGSON M. (2006), Auralization study of optimum reverberation times for speech intelligibility for normal and hearing-impaired listeners in classrooms with diffuse sound fields, Journal of the Acoustical Society of America, 120, 2, 801–807.

YANG W., HODGSON M. (2007), Validation of the auralization technique: Comparative speech-intelligibility tests in real and virtual classrooms, Acta Acustica United with Acustica, 93, 6, 991-999.

ZAHORIK P. (2009), Perceptually relevant parameters for virtual listening simulation of a small room acoustics, Journal of the Acoustical Society of America, 126, 2, 776-791.

DOI: 10.2478/aoa-2014-0041