Sound Radiation Characteristics of Acoustically Thick Composite Cylinders and Their Experimental Verification
Abstract
Cylindrical shells made of composite material form one of the major structural parts in aerospace structures. Many of them are acoustically thick, in which the ring frequencies are much higher than their critical frequencies. In this work, sound radiation behaviour of acoustically thick composite cylinders is presented. Based on the structural and acoustic wave number diagrams, the modal average radiation resistances in the frequency band of interest are theoretically determined. The structural wavenumbers are determined considering transverse shear deformation. The results show lesser sound radiation between the critical and ring frequencies, and significant sound radiation near the ring frequency and beyond. In the absence of the present results the radiation efficiency is considered to be unity at all frequencies beyond the critical frequency, including near the ring frequency. The radiation resistances of the same cylinder are determined experimentally and they are in very good agreement with the theoretical estimates. As part of this investigation, an expression for determining the ring frequency of composite cylinder is also presented.Keywords:
radiation resistance, radiation efficiency, cylindrical shells, composites, ring frequency, critical frequency, SEAReferences
1. Bordoni P.G., Gross W. (1948), Sound radiation from a finite cylinder, Journal of Mathematics and Physics, 27(1–4): 242–252, https://doi.org/10.1002/sapm1948271241
2. Burroughs C.B. (1984), Acoustic radiation from fluid-loaded infinite circular cylinders with doubly periodic ring supports, The Journal of the Acoustical Society of the America, 75(3): 715–722, https://doi.org/10.1121/1.390582
3. Cao X., Hua H., Ma C. (2012), Acoustic radiation from shear deformable stiffened laminated cylindrical shells, Journal of Sound and Vibration, 331(3): 651–670, https://doi.org/10.1016/j.jsv.2011.10.006
4. Cox T.J., D’Antonio P. (2004), Acoustic Absorbers and Diffusers: Theory, Design and Application, New York: CRC Press.
5. Fahy F.J. (1969), Vibration of containing structure by sound in the contained fluid, Journal of Sound and Vibration, 10(3): 490–512, https://doi.org/10.1016/0022-460x%2869%2990228-4
6. Fahy F.J. (1970), Response of a cylinder to random sound in the contained fluid, Journal of Sound and Vibration, 13(2): 171–194, https://doi.org/10.1016/s0022-460x%2870%2981172-5
7. Fyfe K.R., Ismail F. (1989), An investigation of the acoustic properties of vibrating finite cylinders, Journal of Sound and Vibration, 128(3): 361–375, https://doi.org/10.1016/0022-460x%2889%2990780-3
8. Ghinet S., Atalla N., Osman H. (2006), Diffuse field transmission into infinite sandwich composite and laminate composite cylinders, Journal of Sound and Vibration, 289(4–5): 745–778, https://doi.org/10.1016/j.jsv.2005.02.028
9. Josephine Kelvina Florence S., Renji K., Subramanian K. (2018), Modal density of honeycomb sandwich composite cylindrical shells considering transverse shear deformation, International Journal of Acoustics and Vibration, 23(3): 83–92, https://doi.org/10.20855/ijav.2018.23.11241
10. Laulagnet B., Guyader J.L. (1989), Modal analysis of a shell’s acoustic radiation in light and heavy fluids, Journal of Sound and Vibration, 131(3): 397–415, https://doi.org/10.1016/0022-460x%2889%2991001-8
11. Le Bot A., Cotoni V. (2010), Validity diagrams of statistical energy analysis, Journal of Sound and Vibration, 329(2): 221–235, https://doi.org/10.1016/j.jsv.2009.09.008
12. Lin T.R., Mechefske C., O’Shea P. (2011), Characteristics of modal sound radiation of finite cylindrical shells, Journal of Vibration and Acoustics, 133(5): 051011–051016, https://doi.org/10.1115/1.4003944
13. Lyon R.H. (1975), Statistical Energy Analysis of Dynamical Systems: Theory and Applications, Cambridge, MA: MIT Press.
14. Manning J.E., Maidanik G. (1964), Radiation properties of cylindrical shells, The Journal of the Acoustical Society of the America, 36(9): 1691–1698, doi: /10.1121/1.1919266.
15. Miller V.J., Faulkner L.L. (1983), Prediction of aircraft interior noise using the statistical energy Analysis method, Journal of Vibration, Acoustics, Stress and Reliability in Design, 105 (4): 512–518, https://doi.org/10.1115/1.3269136
16. Norton M.P. (1989), Fundamentals of Noise and Vibration Analysis for Engineers, England: Cambridge University Press.
17. Qiao Y., Chen H.B., Luo J.L. (2013), Estimation of shell radiation efficiency using a FEM-SmEdA algorithm, Journal of Vibroengineering, 15(3): 1130–1146.
18. Ramachandran P., Narayanan S. (2007), Evaluation of modal density, radiation efficiency and acoustic response of longitudinally stiffened cylindrical shell, Journal of Sound and Vibration, 304(1–2): 154–174, https://doi.org/10.1016/j.jsv.2007.02.020
19. Renji K., Josephine Kelvina Florence S. (2020), Critical frequencies of composite cylindrical Shells, International Journal of Acoustics and Vibration, 25(1): 79–87, https://doi.org/10.20855/ijav.2020.25.11572
20. Renji K., Josephine Kelvina Florence S., Sameer Deshpande (2019), Characteristics of in-plane waves in composite plates, International Journal of Acoustics and Vibration, 24(3): 458–466, https://doi.org/10.20855/ijav.2019.24.31290
21. Renji K., Josephine Kelvina Florence S., Sameer Deshpande (2020), An Experimental investigation of modal densities of composite honeycomb sandwich cylindrical shells, International Journal of Acoustics and Vibration, 25(1): 112–120, doi: /10.20855/ijav.2020.25.11626.
22. Renji K., Nair P.S., Narayanan S. (1998), On acoustic radiation resistance of plates, Journal of Sound and Vibration, 212(4): 583–598, https://doi.org/10.1006/jsvi.1997.1438
23. Reynolds D.D. (1981), Engineering Principles of Acoustics Noise and Vibration, Boston, MA: Allyn and Bacon.
24. Runkle C.J., Hart F.D. (1969), The Radiation Resistance of Cylindrical Shells, NASA CR-1437.
25. Squicciarini G., Putra A., Thompson D.J., Zhang X., Salim M.A. (2015), Use of a reciprocity technique to measure the radiation efficiency of a vibrating structure, Applied Acoustics, 89: 107–121, https://doi.org/10.1016/j.apacoust.2014.09.013
26. Stephanishen P.R. (1978), Radiated power and radiation loading of cylindrical surfaces with non-uniform velocity distribution, The Journal of the Acoustical Society of the America, 63(2): 328–338, https://doi.org/10.1121/1.381743
27. Sun Y., Yang T., Chen Y. (2018), Sound radiation modes of cylindrical surfaces and their application to vibro-acoustics analysis of cylindrical shells, Journal of Sound and Vibration, 424: 64–77, https://doi.org/10.1016/j.jsv.2018.03.004
28. Szechenyi E. (1971), Modal densities and radiation efficiencies of unstiffened cylinders using statistical methods, Journal of Sound and Vibration, 19(1): 65–81, https://doi.org/10.1016/0022-460x%2871%2990423-8
29. Wang C., Lai J.C.S. (2000), The sound radiation efficiency of finite length acoustically thick circular cylindrical shells under mechanical excitation. I: Theoretical analysis, Journal of Sound and Vibration, 232(2): 431–447, https://doi.org/10.1006/jsvi.1999.2749
30. Wang C., Lai J.C.S. (2001), The sound radiation efficiency of finite length circular cylindrical shells under mechanical excitation II: Limitations of the infinite length model, Journal of Sound and Vibration, 241(5): 825–838, doi: /10.1006/jsvi.2000.3338.
31. Yin X.W., Liu L.J., Hua H.X., Shen R.Y. (2009), Acoustic radiation from an infinite laminate composite cylindrical shells with doubly periodic rings, Journal of Vibration and Acoustics, 131(1): 011005–011009, https://doi.org/10.1115/1.2980376
32. Zhao X., Zhang B., Li Y. (2015), Vibration and acoustic radiation of an orthotropic composite cylindrical shell in a hygroscopic environment, Journal of Vibration and Control, 23(4): 673–692, doi: /10.1177/1077546315581943.
2. Burroughs C.B. (1984), Acoustic radiation from fluid-loaded infinite circular cylinders with doubly periodic ring supports, The Journal of the Acoustical Society of the America, 75(3): 715–722, https://doi.org/10.1121/1.390582
3. Cao X., Hua H., Ma C. (2012), Acoustic radiation from shear deformable stiffened laminated cylindrical shells, Journal of Sound and Vibration, 331(3): 651–670, https://doi.org/10.1016/j.jsv.2011.10.006
4. Cox T.J., D’Antonio P. (2004), Acoustic Absorbers and Diffusers: Theory, Design and Application, New York: CRC Press.
5. Fahy F.J. (1969), Vibration of containing structure by sound in the contained fluid, Journal of Sound and Vibration, 10(3): 490–512, https://doi.org/10.1016/0022-460x%2869%2990228-4
6. Fahy F.J. (1970), Response of a cylinder to random sound in the contained fluid, Journal of Sound and Vibration, 13(2): 171–194, https://doi.org/10.1016/s0022-460x%2870%2981172-5
7. Fyfe K.R., Ismail F. (1989), An investigation of the acoustic properties of vibrating finite cylinders, Journal of Sound and Vibration, 128(3): 361–375, https://doi.org/10.1016/0022-460x%2889%2990780-3
8. Ghinet S., Atalla N., Osman H. (2006), Diffuse field transmission into infinite sandwich composite and laminate composite cylinders, Journal of Sound and Vibration, 289(4–5): 745–778, https://doi.org/10.1016/j.jsv.2005.02.028
9. Josephine Kelvina Florence S., Renji K., Subramanian K. (2018), Modal density of honeycomb sandwich composite cylindrical shells considering transverse shear deformation, International Journal of Acoustics and Vibration, 23(3): 83–92, https://doi.org/10.20855/ijav.2018.23.11241
10. Laulagnet B., Guyader J.L. (1989), Modal analysis of a shell’s acoustic radiation in light and heavy fluids, Journal of Sound and Vibration, 131(3): 397–415, https://doi.org/10.1016/0022-460x%2889%2991001-8
11. Le Bot A., Cotoni V. (2010), Validity diagrams of statistical energy analysis, Journal of Sound and Vibration, 329(2): 221–235, https://doi.org/10.1016/j.jsv.2009.09.008
12. Lin T.R., Mechefske C., O’Shea P. (2011), Characteristics of modal sound radiation of finite cylindrical shells, Journal of Vibration and Acoustics, 133(5): 051011–051016, https://doi.org/10.1115/1.4003944
13. Lyon R.H. (1975), Statistical Energy Analysis of Dynamical Systems: Theory and Applications, Cambridge, MA: MIT Press.
14. Manning J.E., Maidanik G. (1964), Radiation properties of cylindrical shells, The Journal of the Acoustical Society of the America, 36(9): 1691–1698, doi: /10.1121/1.1919266.
15. Miller V.J., Faulkner L.L. (1983), Prediction of aircraft interior noise using the statistical energy Analysis method, Journal of Vibration, Acoustics, Stress and Reliability in Design, 105 (4): 512–518, https://doi.org/10.1115/1.3269136
16. Norton M.P. (1989), Fundamentals of Noise and Vibration Analysis for Engineers, England: Cambridge University Press.
17. Qiao Y., Chen H.B., Luo J.L. (2013), Estimation of shell radiation efficiency using a FEM-SmEdA algorithm, Journal of Vibroengineering, 15(3): 1130–1146.
18. Ramachandran P., Narayanan S. (2007), Evaluation of modal density, radiation efficiency and acoustic response of longitudinally stiffened cylindrical shell, Journal of Sound and Vibration, 304(1–2): 154–174, https://doi.org/10.1016/j.jsv.2007.02.020
19. Renji K., Josephine Kelvina Florence S. (2020), Critical frequencies of composite cylindrical Shells, International Journal of Acoustics and Vibration, 25(1): 79–87, https://doi.org/10.20855/ijav.2020.25.11572
20. Renji K., Josephine Kelvina Florence S., Sameer Deshpande (2019), Characteristics of in-plane waves in composite plates, International Journal of Acoustics and Vibration, 24(3): 458–466, https://doi.org/10.20855/ijav.2019.24.31290
21. Renji K., Josephine Kelvina Florence S., Sameer Deshpande (2020), An Experimental investigation of modal densities of composite honeycomb sandwich cylindrical shells, International Journal of Acoustics and Vibration, 25(1): 112–120, doi: /10.20855/ijav.2020.25.11626.
22. Renji K., Nair P.S., Narayanan S. (1998), On acoustic radiation resistance of plates, Journal of Sound and Vibration, 212(4): 583–598, https://doi.org/10.1006/jsvi.1997.1438
23. Reynolds D.D. (1981), Engineering Principles of Acoustics Noise and Vibration, Boston, MA: Allyn and Bacon.
24. Runkle C.J., Hart F.D. (1969), The Radiation Resistance of Cylindrical Shells, NASA CR-1437.
25. Squicciarini G., Putra A., Thompson D.J., Zhang X., Salim M.A. (2015), Use of a reciprocity technique to measure the radiation efficiency of a vibrating structure, Applied Acoustics, 89: 107–121, https://doi.org/10.1016/j.apacoust.2014.09.013
26. Stephanishen P.R. (1978), Radiated power and radiation loading of cylindrical surfaces with non-uniform velocity distribution, The Journal of the Acoustical Society of the America, 63(2): 328–338, https://doi.org/10.1121/1.381743
27. Sun Y., Yang T., Chen Y. (2018), Sound radiation modes of cylindrical surfaces and their application to vibro-acoustics analysis of cylindrical shells, Journal of Sound and Vibration, 424: 64–77, https://doi.org/10.1016/j.jsv.2018.03.004
28. Szechenyi E. (1971), Modal densities and radiation efficiencies of unstiffened cylinders using statistical methods, Journal of Sound and Vibration, 19(1): 65–81, https://doi.org/10.1016/0022-460x%2871%2990423-8
29. Wang C., Lai J.C.S. (2000), The sound radiation efficiency of finite length acoustically thick circular cylindrical shells under mechanical excitation. I: Theoretical analysis, Journal of Sound and Vibration, 232(2): 431–447, https://doi.org/10.1006/jsvi.1999.2749
30. Wang C., Lai J.C.S. (2001), The sound radiation efficiency of finite length circular cylindrical shells under mechanical excitation II: Limitations of the infinite length model, Journal of Sound and Vibration, 241(5): 825–838, doi: /10.1006/jsvi.2000.3338.
31. Yin X.W., Liu L.J., Hua H.X., Shen R.Y. (2009), Acoustic radiation from an infinite laminate composite cylindrical shells with doubly periodic rings, Journal of Vibration and Acoustics, 131(1): 011005–011009, https://doi.org/10.1115/1.2980376
32. Zhao X., Zhang B., Li Y. (2015), Vibration and acoustic radiation of an orthotropic composite cylindrical shell in a hygroscopic environment, Journal of Vibration and Control, 23(4): 673–692, doi: /10.1177/1077546315581943.

