10.24425/aoa.2021.138139
Artificial Intelligence on the Identification of Beiguan Music
References
Briot J.-P., Hadjeres G., Pachet F.-D. (2019), Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, arXiv:1709.01620.
Hagan M.T., Demuth H.B., Beale M. (2002), Neural Network Design, CITIC Publishing House, Beijing.
Lamere P. (2008), Social tagging and music information retrieval, Journal of New Music Research, 37(2): 101–114, doi: 10.1080/09298210802479284.
Lu C.-K. (2011), Beiguan Music, Taichung, Taiwan: Morningstar.
Pan J.-T. (2019), The transmission of Beiguan in higher education in Taiwan: A case study of the teaching of Beiguan in the department of traditional music of Taipei National University of the Arts [in Chinese], Journal of Chinese Ritual, Theatre and Folklore, 2019.3(203): 111–162.
Rosner A., Schuller B., Kostek B. (2014), Classification of music genres based on music separation into harmonic and drum components, Archives of Acoustics, 39(4): 629–638, doi: 10.2478/aoa-2014-0068.
Tzanetakis G., Kapur A., Scholoss W.A., Wright M. (2007), Computational ethnomusicology. Journal of Interdisciplinary Music Studies, 1(2): 1–24.
Wiering F., de Nooijer J., Volk A., Tabachneck-Schijf H.J.M. (2009), Cognition-based segmentation for music information retrieval systems. Journal of New Music Research, 38(2): 139–154, doi: 10.1080/09298210903171145.
Yao S.-N., Collins T., Liang C. (2017), Head-related transfer function selection using neural networks, Archives of Acoustics, 42(3): 365–373, doi: 10.1515/aoa-2017-0038.
Yeh N. (1988), Nanguan music repertoire: categories, notation, and performance practice, Asian Music, 19(2): 31–70, doi:10.2307/833866.
DOI: 10.24425/aoa.2021.138139