The Lower Limit of Pitch Perception for Pure Tones and Low-Frequency Complex Sounds

Downloads

Authors

  • Carlos JURADO Universidad de Las Américas, Ecuador
  • Marcelo LARREA Universidad de Las Américas, Ecuador
  • Brian C.J. MOORE University of Cambridge., United Kingdom

Abstract

The lower limit of pitch (LLP) perception was explored for pure tones, sinusoidally amplitude-modulated (SAM) tones with a carrier frequency of 125 Hz, and trains of 125-Hz tone pips, using an adaptive procedure to estimate the lowest repetition rate for which a tonal/humming quality was heard. The LLP was similar for the three stimulus types, averaging 19 Hz. There were marked individual differences, which were correlated to some extent across stimulus types. The pure-tone stimuli contained a single resolved harmonic, whereas the SAM tones and tone-pip trains contained only unresolved components, whose frequencies did not necessarily form a harmonic series. The similarity of the LLP across stimulus types suggests that the LLP is determined by the repetition period of the sound for pure tones, and the envelope repetition period for complex stimuli. The results are consistent with the idea that the LLP is determined by a periodicity analysis in the auditory system, and that the longest time interval between waveform or envelope peaks for which this analysis can be performed is approximately 53 ms.

Keywords:

pitch, lower limit, periodicity analysis

References

1. Atal B.S. (1972), Automatic speaker recognition based on pitch contours, The Journal of the Acoustical Society of America, 52(6B): 1687–1697, https://doi.org/10.1121/1.1913303

2. Bernstein J.G., Oxenham, A.J. (2005), An autocorrelation model with place dependence to account for the effect of harmonic number on fundamental frequency discrimination, The Journal of the Acoustical Society of America, 117(6): 3816–3831, https://doi.org/10.1121/1.1904268

3. British Society of Audiology (2018), Recommended Procedure: Pure-tone air-conduction and bone conduction threshold audiometry with and without masking, British Society of Audiology, Reading, UK.

4. Burke S. (1998), Missing values, outliers, robust statistics & non-parametric methods, Scientific Data Management, 1: 19–24.

5. Carney L.H., Yin T.C.T. (1988), Temporal coding of resonances by low-frequency auditory nerve fibers: Single-fiber responses and a population model, Journal of Neurophysiology, 60(5): 1653–1677, https://doi.org/10.1152/jn.1988.60.5.1653

6. de Cheveigné A. (1997), Concurrent vowel identification III: A neural model of harmonic interference cancellation, The Journal of the Acoustical Society of America, 101(5): 2857–2865, https://doi.org/10.1121/1.419480

7. de Cheveigné A., Pressnitzer D. (2006), The case of the missing delay lines: Synthetic delays obtained by cross-channel phase interaction, The Journal of the Acoustical Society of America, 119(6): 3908–3918, https://doi.org/10.1121/1.2195291

8. Cullen J.K., Long G.R. (1986), Rate discrimination of high-pass-filtered pulse trains, The Journal of the Acoustical Society of America, 79(1): 114–119, https://doi.org/10.1121/1.393762

9. Dau T. (2003), The importance of cochlear processing for the formation of auditory brainstem and frequency following responses, The Journal of the Acoustical Society of America, 113(2): 936–950, https://doi.org/10.1121/1.1534833

10. Drugman T., HuybrechtsG., Klimkov, V., Moinet A. (2018), Traditional machine learning for pitch detection, IEEE Signal Processing Letters, 25(11): 1745–1749, https://doi.org/10.1109/LSP.2018.2874155

11. Drullman R., Festen J.M., Plomp R. (1994), Effect of reducing slow temporal modulations on speech reception, The Journal of the Acoustical Society of America, 95(5): 2670–2680, https://doi.org/10.1121/1.409836

12. Elliott T.M., Theunissen F.E. (2009), The modulation transfer function for speech intelligibility, PLOS Computational Biology, 5: e1000302, https://doi.org/10.1371/journal.pcbi.1000302

13. Fastl H. (1983), Fluctuation strength of modulated tones and broadband noise, [In:] Hearing – Physiological Bases and Psychophysics, Klinke R. Hartmann R. (eds), pp. 282–288, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-69257-4_41

14. Fukushima M., Doyle A.M., Mullarkey M.P., Mishkin M., Averbeck B.B. (2015), Distributed acoustic cues for caller identity in macaque vocalization, Royal Society Open Science, 2(12): 150432, https://doi.org/10.1098/rsos.150432

15. Gerson A., Goldstein J.L. (1978), Evidence for a general template in central optimal processing for pitch of complex tones, The Journal of the Acoustical Society of America, 63(2): 498–510, https://doi.org/10.1121/1.381750

16. Glasberg B.R., Moore B.C.J. (1990), Derivation of auditory filter shapes from notched-noise data, Hearing Research, 47(1–2): 103–138, https://doi.org/10.1016/0378-5955%2890%2990170-t

17. Guttman N., Pruzansky S. (1962), Lower limits of pitch and musical pitch, Journal of Speech, Language, and Hearing Research, 5(3): 207–214, https://doi.org/10.1044/jshr.0503.207

18. Han K., Wang D. (2014), Neural networks for supervised pitch tracking in noise, [In:] Proceedings of the International Conference on Acoustic, Speech and Signal Processing (ICASSP), Florence, Italy, pp. 1488–1492, https://doi.org/10.1109/ICASSP.2014.6853845

19. He C., Trainor L.J. (2009), Finding the pitch of the missing fundamental in infants, Journal of Neuroscience, 29(24): 7718–7722, https://doi.org/10.1523/JNEUROSCI.0157-09.2009

20. Hoeschele M. (2017), Animal pitch perception: melodies and harmonies, Comparative Cognition and Behavior Reviews, 12: 5–18, https://doi.org/10.3819/CCBR.2017.120002

21. Hoke M., Ross B., Wickesberg R., Lütkenhöner B. (1984), Weighted averaging – theory and application to electric response audiometry, Electroencephalography and Clinical Neurophysiology, 57(5): 484–489, https://doi.org/10.1016/0013-4694%2884%2990078-6

22. ISO-226 (2003), Acoustics – normal equal-loudness contours, International Organization for Standardization, Geneva, Switzerland.

23. Jackson H.M., Moore B.C.J. (2013), The dominant region for the pitch of complex tones with low fundamental frequencies, The Journal of the Acoustical Society of America, 134(2): 1193–1204, https://doi.org/10.1121/1.4812754

24. Joly O., Baumann S., Poirier C., Patterson R.D., Thiele A., Griffiths T.D. (2014), A perceptual pitch boundary in a non-human primate, Frontiers in Psychology, 5, Article 998, https://doi.org/10.3389/fpsyg.2014.00998

25. Jurado C., Gallegos P., Gordillo D., Moore B.C.J. (2017), The detailed shapes of equal-loudness-level contours at low frequencies, The Journal of the Acoustical Society of America, 142(6): 3821–3832, https://doi.org/10.1121/1.5018428

26. Jurado C., Larrea M., Patel H., Marquardt T. (2020), Dependency of threshold and loudness on sound duration at low and infrasonic frequencies, The Journal of the Acoustical Society of America, 148(2): 1030–1038, https://doi.org/10.1121/10.0001760 .

27. Jurado C., Marquardt T. (2016), The effect of the helicotrema on low-frequency loudness perception, The Journal of the Acoustical Society of America, 140(5): 3799–3809, https://doi.org/10.1121/1.4967295

28. Jurado C., Marquardt T. (2020), Brain’s frequency following responses to low-frequency and infrasound, Archives of Acoustics, 45(2): 313–319, https://doi.org/10.24425/aoa.2020.133151

29. Jurado C., Moore B.C.J. (2010), Frequency selectivity for frequencies below 100 Hz: Comparisons with mid-frequencies, The Journal of the Acoustical Society of America, 128(6): 3585–3596, https://doi.org/10.1121/1.3504657

30. Jurado C., Pedersen C.S., Moore B.C.J. (2011), Psychophysical tuning curves for frequencies below 100 Hz, The Journal of the Acoustical Society of America, 129(5): 3166–3180, https://doi.org/10.1121/1.3560535

31. Kanedera N., Arai T., Hermansky H., Pavel M. (1999), On the relative importance of various components of the modulation spectrum for automatic speech recognition, Speech Communication, 28(1): 43–55, https://doi.org/10.1016/S0167-6393%2899%2900002-3

32. Kinsler L.E., Frey A.R., Coppens A.B., Sanders J.V. (1999), Fundamentals of Acoustics, 4th ed., New York: Wiley-VCH.

33. Koumura T., Terashima H., Furukawa S. (2019), Cascaded tuning to amplitude modulation for natural sound recognition, Journal of Neuroscience, 39(28): 5517–5533, https://doi.org/10.1523/JNEUROSCI.2914-18.2019

34. Krumbholz K., Patterson R.D., Pressnitzer D. (2000), The lower limit of pitch as determined by rate discrimination, The Journal of the Acoustical Society of America, 108(3): 1170–1180, https://doi.org/10.1121/1.1287843

35. Kühler R., Fedtke T., Hensel J. (2015), Infrasonic and low-frequency insert earphone hearing threshold, The Journal of the Acoustical Society of America, 137(4): EL347–EL353, https://doi.org/10.1121/1.4916795

36. Logos Foundation (2016), Instrument frequencies and ranges, https://www.logosfoundation.org/kursus/frequency_table.html (date last viewed: 05-Oct-20).

37. Marquardt T., Hensel J., Mrowinski, D., Scholz G. (2007), Low-frequency characteristics of human and guinea pig cochleae, The Journal of the Acoustical Society of America, 121(6): 3628–3638, https://doi.org/10.1121/1.2722506

38. Meddis R., O’Mard L. (1997), A unitary model of pitch perception, The Journal of the Acoustical Society of America, 102(3): 1811–1820, https://doi.org/10.1121/1.420088 .

39. Mehta A.H., Oxenham A.J. (2020), Effect of lowest harmonic rank on fundamental-frequency difference limens varies with fundamental frequency, The Journal of the Acoustical Society of America, 147(4): 2314–2322, https://doi.org/10.1121/10.0001092

40. Møller H., Pedersen C.S. (2004), Hearing at low and infrasonic frequencies, Noise and Health, 6(23): 37–57.

41. Moore B.C.J. (1982), An Introduction to the Psychology of Hearing, 2nd ed., London: Academic Press.

42. Moore B.C.J. (2008), The role of temporal fine structure processing in pitch perception, masking, and speech perception for normal-hearing and hearing-impaired people, Journal of the Association for Research in Otolaryngology, 9(4): 399–406, https://doi.org/10.1007/s10162-008-0143-x

43. Moore B.C.J. (2019), The roles of temporal envelope and fine structure information in auditory perception, Acoustical Science and Technology, 40(2): 61–83, https://doi.org/10.1250/ast.40.61 .

44. Moore B.C.J., Glasberg B.R., Flanagan H.J., Adams J. (2006), Frequency discrimination of complex tones; assessing the role of component resolvability and temporal fine structure, The Journal of the Acoustical Society of America, 119(1): 480–490, https://doi.org/10.1121/1.2139070 .

45. Moore B.C.J., Glasberg B.R., Low K.E., Cope T., Cope W. (2006), Effects of level and frequency on the audibility of partials in inharmonic complex tones, The Journal of the Acoustical Society of America, 120(2): 934–944, https://doi.org/10.1121/1.2216906

46. Moore B.C.J., Gockel H.E. (2011), Resolvability of components in complex tones and implications for theories of pitch perception, Hearing Research, 276(1–2): 88–97, https://doi.org/10.1016/j.heares.2011.01.003

47. Moore B.C.J., Hopkins K., Cuthbertson S. (2009), Discrimination of complex tones with unresolved components using temporal fine structure information, The Journal of the Acoustical Society of America, 125(5): 3214–3222, https://doi.org/10.1121/1.3106135

48. Moore B.C.J., Ohgushi K. (1993), Audibility of partials in inharmonic complex tones, The Journal of the Acoustical Society of America, 93(1): 452–461, https://doi.org/10.1121/1.405625

49. Moore G.A., Moore B.C.J. (2003), Perception of the low pitch of frequency-shifted complexes, The Journal of the Acoustical Society of America, 113(2): 977–985, https://doi.org/10.1121/1.1536631

50. Oxenham A.J. (2008), Pitch perception and auditory stream segregation: implications for hearing loss and cochlear implants, Trends in Amplification, 12(4): 316–331, https://doi.org/10.1177/1084713808325881

51. Patterson R.D. (1987), A pulse ribbon model of monaural phase perception, The Journal of the Acoustical Society of America, 82(5): 1560–1586, https://doi.org/10.1121/1.395146

52. Plomp R. (1964), The ear as a frequency analyzer, The Journal of the Acoustical Society of America, 36(9): 1628–1636, https://doi.org/10.1121/1.1919256

53. Plomp R. (1967), Pitch of complex tones, The Journal of the Acoustical Society of America, 41(6): 1526–1533, https://doi.org/10.1121/1.1910515

54. Plomp R. (1983), The role of modulation in hearing, [In:] Hearing – Physiological Bases and Psychophysics, R. Klinke, R. Hartmann [Eds], Springer, Berlin, pp. 270–276.

55. Pressnitzer D., Patterson R.D., Krumbholz K. (2001), The lower limit of melodic pitch, The Journal of the Acoustical Society of America, 109(5): 2074–2084, https://doi.org/10.1121/1.1359797

56. Ritsma R.J. (1962), Existence region of the tonal residue – I, The Journal of the Acoustical Society of America, 34(9A): 1224–1229, https://doi.org/10.1121/1.1918307

57. Santurette S., Dau T. (2011), The role of temporal fine structure information for the low pitch of high-frequency complex tones, The Journal of the Acoustical Society of America, 129(1): 282–292, https://doi.org/10.1121/1.3518718

58. Seebeck A. (1841), Observations on some conditions of tone formation [in German: Beobachtungen über einige Bedingungen der Entstehung von Tönen], Annalen der Physik, 129(7): 417–436, https://doi.org/10.1002/andp.18411290702

59. Shackleton T.M., Carlyon R.P. (1994), The role of resolved and unresolved harmonics in pitch perception and frequency modulation discrimination, The Journal of the Acoustical Society of America, 95(6): 3529–3540, https://doi.org/10.1121/1.409970

60. Shamma S., Dutta K. (2019), Spectro-temporal templates unify the pitch percepts of resolved and unresolved harmonics, The Journal of the Acoustical Society of America, 145(2): 615–629, https://doi.org/10.1121/1.5088504

61. Singh N.C., Theunissen F.E. (2003), Modulation spectra of natural sounds and ethological theories of auditory processing, The Journal of the Acoustical Society of America, 114(6): 3394–3411, https://doi.org/10.1121/1.1624067

62. Spetner N.B., Olsho L.W. (1990), Auditory frequency resolution in human infancy, Child Development, 61(3): 632–652, https://doi.org/10.1111/j.1467-8624.1990.tb02808.x

63. Terhardt E. (1974), Pitch, consonance, and harmony, The Journal of the Acoustical Society of America, 55(5): 1061–1069, https://doi.org/10.1121/1.1914648

64. Tichko P., Skoe E. (2017), Frequency-dependent fine structure in the frequency-following response: The byproduct of multiple generators, Hearing Research, 348: 1–15, https://doi.org/10.1016/j.heares.2017.01.014

65. Tukey J.W. (1977), Exploratory Data Analysis, Reading, Mass: Addison-Wesley Pub.

66. Varnet L., Ortiz-Barajas M.C., Erra R.G., Gervain J., Lorenzi C. (2017), A cross-linguistic study of speech modulation spectra, The Journal of the Acoustical Society of America, 142(4): 1976–1989, https://doi.org/10.1121/1.5006179

67. Walker K.M.M., Schnupp J.W.H., Hart-Schnupp S.M.B., King A.J., Bizley J.K. (2009), Pitch discrimination by ferrets for simple and complex sounds, The Journal of the Acoustical Society of America, 126(3): 1321–1335, https://doi.org/10.1121/1.3179676

68. Warren R.M., Bashford J.A. (1981), Perception of acoustic iterance: Pitch and infrapitch, Perception and Psychophysics, 29(4): 395–402, https://doi.org/10.3758/BF03207350

69. Yrttiaho S., Tiitinen H., May P.J.C., Leino S., Alku P. (2008), Cortical sensitivity to periodicity of speech sounds, The Journal of the Acoustical Society of America, 123(4): 2191–2199, https://doi.org/10.1121/1.2888489