Archives of Acoustics, 47, 1, pp. 3–14, 2022
10.24425/aoa.2022.140727

Acoustic Metamaterials

Bartłomiej SZTYLER
Lodz University of Technology
Poland

Paweł STRUMIŁŁO
Lodz University of Technology
Poland

This review article is concerned with metamaterials, i.e. specifically engineered structures with special properties for interaction with sounds. The research on and practical design of these materials have gained momentum in the last decade, when 3D printing techniques provided the possibility to fabricate such geometrically complex structures. We briefly describe the history of research on AMMs and group them into active and passive metamaterials. For each of these groups of AMMs, we discuss the most notable construction achievements and outline the main applications. We conclude this review with a discussion of possible directions for further research and main applications of AMMs such as noise attenuation, acoustic lens, and the cloaking phenomenon.
Keywords: acoustic metamaterials; acoustic metasufraces; tunability; 3D printing.
Full Text: PDF

References

Akl W., Baz A. (2012), Experimental characterization of active acoustic metamaterial cell with controllable dynamic density, Journal of Applied Physics, 112(8): 084912, doi: 10.1063/1.4759327.

Akl W., Baz A. (2021), Active control of the dynamic density of acoustic metamaterials, Applied Acoustics, 178: 108001, doi: 10.1016/j.apacoust.2021.108001.

Allam A., Elsabbagh A., Akl W. (2017), Experimental demonstration of one-dimensional active platetype acoustic metamaterial with adaptive programmable density, Journal of Applied Physics, 121(12): 125106, doi: 10.1063/1.4979020.

Born M., Wolf E. (1980), Elements of the theory of diffraction, [in:] Principles of Optics (Sixth Edition), Pergamon, pp. 370–458, doi: 10.1016/B978-0-08-026482-0.50015-3.

Carcione J.M., Cavallini F. (1995), On the acousticelectromagnetic analogy, Wave Motion, 21(2): 149–162, doi: 10.1016/0165-2125(94)00047-9.

Carcione J.M., Robinson E. (2002), On the acousticelectromagnetic analogy for the reflection-refraction problem, Studia Geophysica et Geodaetica, 46(2): 321–346, doi: 10.1023/A:1019862321912.

Chen Z. et al. (2016), A tunable acoustic metamaterial with double-negativity driven by electromagnets, Scientific Reports, 6(1): 30254, doi: 10.1038/srep30254.

Csernyava O. (2021), Anisotropic Cloak FDTD (version 1.3). MATLAB Central File Exchange, https://www.mathworks.com/matlabcentral/fileexchange/73120-anisotropic-cloak-fdtd.

Cummer S.A., Christensen J., Alù A. (2016), Controlling sound with acoustic metamaterials, Nature Reviews Materials, 1(3): 16001, doi: 10.1038/natrevmats.2016.1.

Cummer S.A., Schurig D. (2007), One path to acoustic cloaking, New Journal of Physics, 9(3): 45–45, doi: 10.1088/1367-2630/9/3/045.

Dong H.W., Zhao S.D., Wei P., Cheng L., Wang Y.S., Zhang C. (2019), Systematic design and realization of double-negative acoustic metamaterials by topology optimization, Acta Materialia, 172: 102–120, doi: 10.1016/j.actamat.2019.04.042.

Enoch J.M. (1999), Remarkable lenses and eye units in statues from the Egyptian Old Kingdom (ca. 4500 years ago): properties, timeline, questions requiring resolution, [in:] 18th Congress of the International Commission for Optics: Vol. Proc. SPIE, A.J. Glass, J.W. Goodman, M. Chang, A.H. Guenther, T. Asakura [Eds], pp. 224–225, doi: 10.1117/12.354722.

Esfahlani H., Karkar S., Lissek H. (2016), Acoustic carpet cloak based on an ultrathin metasurface, Physical Review, 94(1): 014302, doi: 10.1103/PhysRevB.94.014302.

Fang N. et al. (2006), Ultrasonic metamaterials with negative modulus, Nature Materials, 5(6): 452–456, doi: 10.1038/nmat1644.

Fang N., Xu J., Nemati N., Viard N., Lafarge D. (2018), Acoustic metamaterial, [in:] World Scientific Handbook of Metamaterials and Plasmonics, Volume 2: Elastic, Acoustic, and Seismic Metamaterials, R. Craster, S. Guenneau [Eds],World Scientific Publishing Co. Pte. Ltd., 10.1142/10642-vol2.

Goelzer B., Hansen C.H., Sehrndt G.A. (2020), Occupational exposure to noise: evaluation, prevention and control, [in:] Document published on behalf of the World Health Organisation, Vol. 15, Issues 1–2, https://www.who.int/occupational_health/publications/occupnoise/en/, retrieved October 8, 2020.

Gruber D.P., Tew J.M. (1998), History of the operating microscope: from magnifying glass to microneurosurgery, Neurosurgery, 42(4): 907, doi: 10.1097/00006123-199804000-00118.

Langfeldt F., Riecken J., Gleine W., von Estorff O., (2016), A membrane-type acoustic metamaterial with adjustable acoustic properties, Journal of Sound and Vibration, 373: 1–18, doi: 10.1016/j.jsv.2016.03.025.

Lee K.J.B., Jung M.K., Lee S.H. (2012), Highly tunable acoustic metamaterials based on a resonant tubular array, Physical Review B, 86(18): 184302, doi: 10.1103/PhysRevB.86.184302.

Lee S.H., Park C.M., Seo Y.M., Wang Z.G., Kim C.K. (2009), Acoustic metamaterial with negative density, Physics Letters, Section A: General, Atomic and Solid State Physics, 373(48): 4464–4469, doi: 10.1016/j.physleta.2009.10.013.

Lee S.H., Park C.M., Seo Y.M., Wang Z.G., Kim C.K. (2010), Composite acoustic medium with simultaneously negative density and modulus, Physical Review Letters, 104(5): 1–4, doi: 10.1103/PhysRevLett.104.054301.

Leonhardt U. (2006), Optical conformal mapping, Science, 312(5781): 1777–1780, doi: 10.1126/science.1126493.

Li J., Chan C.T. (2004), Double-negative acoustic metamaterial, Physical Review E – Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 70(5): 055602, doi: 10.1103/PhysRevE.70.055602.

Li P., Chen X., Zhou X., Hu G., Xiang P. (2015), Acoustic cloak constructed with thin-plate metamaterials, International Journal of Smart and Nano Materials, 6(1): 73–83, doi: 10.1080/19475411.2015.1005722.

Lin Q., Lin Q., Wang Y., Di G. (2021), Sound insulation performance of sandwich structure compounded with a resonant acoustic metamaterial, Composite Structures, 273: 114312, doi: 10.1016/j.compstruct.2021.114312.

Liu Y. et al. (2020), Three-dimensional fractal structure with double negative and density-near-zero properties on a subwavelength scale, Materials and Design, 188: 108470, doi: 10.1016/j.matdes.2020.108470.

Liu Z. et al. (2000), Locally resonant sonic materials, Science, 289(5485): 1734–1736, doi: 10.1126/science.289.5485.1734.

Long H. et al. (2020), Subwavelength broadband sound absorber based on a composite metasurface, Scientific Reports, 10(1): 1–10, doi: 10.1038/s41598-020-70714-7.

Long M. (2014), Sound transmission loss, [in:] Architectural Acoustics, 2nd ed., pp. 345–382, Boston: Academic Press, doi: 10.1016/b978-0-12-398258-2.00009-x.

Mahesh N.R., Prita N. (2011), Experimental and theoretical investigation of acoustic metamaterial with negative bulk modulus, Proceedings of 2011 COMSOL Conference, https://www.comsol.com/paper/experimental-and-theoretical-investigation-of-acoustic-metamaterial-with-negativ-11440.

Naify C.J., Ikei A., Rohde C.A. (2020), Locally programmable metamaterial elements using fourdimensional printing, Extreme Mechanics Letters, 36: 100654, doi: 10.1016/j.eml.2020.100654.

Nicolas L., Furstoss M., Galland M.A. (1998), Analogy electromagnetism-acoustics: Validation and application to local impedance active control for sound absorption, EPJ Applied Physics, 4(1): 95–100, doi: 10.1051/epjap:1998247.

Ning S., Yan Z., Chu D., Jiang H., Liu Z., Zhuang Z. (2021), Ultralow-frequency tunable acoustic metamaterials through tuning gauge pressure and gas temperature, Extreme Mechanics Letters, 44: 101218, doi: 10.1016/j.eml.2021.101218.

Pendry J.B. (2000), Negative refraction makes a perfect lens, Physical Review Letters, 85(18): 3966–3969, doi: 10.1103/PhysRevLett.85.3966.

Pendry J.B., Schurig D., Smith D.R. (2006), Controlling electromagnetic fields, Science, 312(1780): 1780–1782, doi: 10.1126/science.1125907.

Peng Y.G., Shen Y.X., Geng Z.G., Li P.Q., Zhu J., Zhu X.F. (2020), Super-resolution acoustic image montage via a biaxial metamaterial lens, Science Bulletin, 65(12): 1022–1029, doi: 10.1016/j.scib.2020.03.018.

Popa B.I., Zigoneanu L., Cummer S.A. (2013), Tunable active acoustic metamaterials, Physical Review B – Condensed Matter and Materials Physics, 88(2): 1–8, doi: 10.1103/PhysRevB.88.024303.

Sang Hoon K., Mukunda D. (2012), Seismic waveguide of metamaterials, Modern Physics Letters B, 26(17): 1250105, doi: 10.1142/S0217984912501059.

Sarvazyan A.P., Urban M.W., Greenleaf J.F. (2013), Acoustic waves in medical imaging and diagnostics, Ultrasound in Medicine and Biology, 39(7): 1133–1146, doi: 10.1016/j.ultrasmedbio.2013.02.006.

Shao C., Long H., Cheng Y., Liu X. (2019), Low-frequency perfect sound absorption achieved by a modulus-near-zero metamaterial, Scientific Reports, 9(1): 1–8, doi: 10.1038/s41598-019-49982-5.

Shao H., He H., Chen Y., Tan X., Chen G. (2020), A tunable metamaterial muffler with a membrane structure based on Helmholtz cavities, Applied Acoustics, 157: 107022, doi: 10.1016/j.apacoust.2019.107022.

Sirota L., Sabsovich D., Lahini Y., Ilan R., Shokef Y. (2021), Real-time steering of curved sound beams in a feedback-based topological acoustic metamaterial, Mechanical Systems and Signal Processing, 153: 107479, doi: 10.1016/j.ymssp.2020.107479.

Smith D.R., Padilla W.J., Vier D.C., Nemat-Nasser S.C., Schultz S. (2000), Composite medium with simultaneously negative permeability and permittivity, Physical Review Letters, 84(18): 4184–4187, doi: 10.1103/PhysRevLett.84.4184.

Veselago V.G. (1968), The electrodynamic of substances with simultaneous negative values of ε and μ, Soviet Physics Uspekhi, 10(4): 509–514, doi: 10.1070/pu1968v010n04abeh003699.

Walser R.M. (2001), Electromagnetic metamaterials, [in:] Complex Mediums II: Beyond Linear Isotropic Dielectrics, A. Lakhtakia, W.S. Weiglhofer, I.J. Hodgkinson [Eds], Vol. 4467, SPIE, doi: 10.1117/12.432921.

Xiao S. et al. (2015), Active control of membrane-type acoustic metamaterial by electric field, Applied Physics Letters, 106(9): 091904, doi: 10.1063/1.4913999.

Yang M., Ma G., Yang Z., Sheng P. (2013), Coupled membranes with doubly negative mass density and bulk modulus, Physical Review Letters, 110(13): 134301, doi: 10.1103/PhysRevLett.110.134301.

Yang Z., Mei J., Yang M., Chan N.H., Sheng P. (2008), Membrane-type acoustic metamaterial with negative dynamic mass, Physical Review Letters, 101(20): 1–4, doi: 10.1103/PhysRevLett.101.204301.

Zangeneh-Nejad F., Fleury R. (2019), Active times for acoustic metamaterials, Reviews in Physics, 4:100031, doi: 10.1016/j.revip.2019.100031.

Zhang H., Xiao Y., Wen J., Yu D., Wen X. (2016), Ultra-thin smart acoustic metasurface for lowfrequency sound insulation, Applied Physics Letters, 108(14): 141902, doi: 10.1063/1.4945664.

Zhang S. (2010), Acoustic metamaterial design and applications, Ph.D. Dissertation, Graduate College of the University of Illinois, http://hdl.handle.net/2142/16524.

Zhang X., Qu Z.,Wang H. (2020), Engineering acoustic metamaterials for sound absorption: from uniform to gradient structures, iScience, 23(5): 101110, doi: 10.1016/j.isci.2020.101110.

Zielinski T.G. et al. (2020), Reproducibility of soundabsorbing periodic porous materials using additive manufacturing technologies: round robin study, Additive Manufacturing, 36: 101564, doi: 10.1016/j.addma.2020.101564.

Zigoneanu L., Popa B., Cummer S.A. (2014), Three-dimensional broadband omnidirectional acoustic ground cloak, Nature Materials, 13(4): 352–355, doi: 10.1038/NMAT3901.

Ziolkowski R.W. (2014), Metamaterials: The early years in the USA, EPJ Applied Metamaterials, 1: 5, doi: 10.1051/epjam/2014004.




DOI: 10.24425/aoa.2022.140727

Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN)