10.24425/aoa.2022.141656
Acoustic Matching Characteristics of Annular Piezoelectric Ultrasonic Sensor
References
Basu S., Thirumalaiselvi A., Sasmal S., Kundu T. (2021), Nonlinear ultrasonics-based technique for monitoring damage progression in reinforced concrete structures, Ultrasonics, 115, doi: 10.1016/j.ultras.2021.106472.
Cheng X., Qin L., Zhong Q.Q., Huang S.F., Li Z.J. (2013), Temperature and boundary influence on cement hydration monitoring using embedded piezoelectric transducers, Ultrasonics, 53(2): 412–416, doi: 10.1016/j.ultras.2012.07.007.
Choi P., Kim D.-H., Lee B.-H.,Won M.C. (2016), Application of ultrasonic shear-wave tomography to identify horizontal crack or delamination in concrete pavement and bridge, Construction and Building Materials, 121: 81–91, doi: 10.1016/j.conbuildmat.2016.05.126.
Geng B., Xu D., Yi S., Gao G., Xu H., Cheng X. (2017), Design and properties 1–3 multi-element piezoelectric composite with low crosstalk effects, Ceramics International, 43(17): 15167–15172, doi: 10.1016/j.ceramint.2017.08.047.
Guo S., Dai Q., Sun X., Sun Y. (2016), Ultrasonic scattering measurement of air void size distribution in hardened concrete samples, Construction and Building Materials, 113: 415–422, doi: 10.1016/j.conbuildmat.2016.03.051.
Ham S., Song H., Oelze M.L., Popovics J.S. (2017), A contactless ultrasonic surface wave approach to characterize distributed cracking damage in concrete, Ultrasonics, 75: 46–57, doi: 10.1016/j.ultras.2016.11.003.
Hong J., Kim R., Lee C.H., Choi H. (2020), Evaluation of stiffening behavior of concrete based on contactless ultrasonic system and maturity method, Construction and Building Materials, 262, doi: 10.1016/j.conbuildmat.2020.120717.
Lee T., Lee J. (2020), Setting time and compressive strength prediction model of concrete by nondestructive ultrasonic pulse velocity testing at early age, Construction and Building Materials, 252: 119027, doi: 10.1016/j.conbuildmat.2020.119027.
Liu P., Hu Y., Chen Y., Geng B., Xu D. (2020), Investigation of novel embedded piezoelectric ultrasonic transducers on crack and corrosion monitoring of steel bar, Construction and Building Materials, 235: 117495, doi: 10.1016/j.conbuildmat.2019.117495.
Liu P., Hu Y., Geng B., Xu D. (2020), Corrosion monitoring of the reinforced concrete by using the embedded annular piezoelectric transducer, Journal of Materials Research and Technology, 9(3): 3511–3519, doi: 10.1016/j.jmrt.2020.01.088.
Liu P.,Wang W., Chen Y., Feng X., Miao L. (2017), Concrete damage diagnosis using electromechanical impedance technique, Construction and Building Materials, 136: 450–455, doi: 10.1016/j.conbuildmat.2016.12.173.
Lootens D. et al. (2020), Continuous strength measurements of cement pastes and concretes by the ultrasonic wave reflection method, Construction and Building Materials, 242: 117902, doi: 10.1016/j.conbuildmat.2019.117902.
Miró M., Eiras J.N., Poveda P., Climent M.Á., Ramis J. (2021), Detecting cracks due to steel corrosion in reinforced cement mortar using intermodulation generation of ultrasonic waves, Construction and Building Materials, 286: 122915, doi: 10.1016/j.conbuildmat.2021.122915.
Nematzadeh M., Tayebi M., Samadvand H. (2021), Prediction of ultrasonic pulse velocity in steel fiberreinforced concrete containing nylon granule and natural zeolite after exposure to elevated temperatures, Construction and Building Materials, 273: 121958, doi: 10.1016/j.conbuildmat.2020.121958.
Rao R.K., Sasmal S. (2020), Smart nano-engineered cementitious composite sensors for vibration-based health monitoring of large structures, Sensors and Actuators A: Physical, 311: 112088, doi: 10.1016/j.sna.2020.112088.
Ridengaoqier E., Hatanaka S., Palamy P., Kurita S. (2021), Experimental study on the porosity evaluation of pervious concrete by using ultrasonic wave testing on surfaces, Construction and Building Materials, 300: 123959, doi: 10.1016/j.conbuildmat.2021.123959.
Shin S.W., Oh T.K. (2009), Application of electromechanical impedance sensing technique for online monitoring of strength development in concrete using smart PZT patches, Construction and Building Materials, 23(2): 1185–1188, doi: 10.1016/j.conbuildmat.2008.02.017.
Sun H., Zhu J. (2020), Nondestructive evaluation of steel-concrete composite structure using high-frequency ultrasonic guided wave, Ultrasonics, 103: 106096, doi: 10.1016/j.ultras.2020.106096.
Tseng K.K., Wang L. (2004), Smart piezoelectric transducers for in situ health monitoring of concrete, Smart Material Structures, 13(5): 1017–1024, doi: 10.1088/0964-1726/13/5/006.
Xu Y., Wang Q., Jiang X., Zu H., Wang W., Feng R. (2021), Nondestructive assessment of microcracks detection in cementitious materials based on nonlinear ultrasonic modulation technique, Construction and Building Materials, 267: 121653, doi: 10.1016/j.conbuildmat.2020.121653.
Yang X. et al. (2020), Multi-layer polymer-metal structures for acoustic impedance matching in highfrequency broadband ultrasonic transducers design, Applied Acoustics, 160: 107123, doi: 10.1016/j.apacoust.2019.107123.
Zhang J., Sun M., Hou D., Li Z. (2017), External sulfate attack to reinforced concrete under drying-wetting cycles and loading condition: Numerical simulation and experimental validation by ultrasonic array method, Construction and Building Materials, 139: 365–373, doi: 10.1016/j.conbuildmat.2017.02.064.
DOI: 10.24425/aoa.2022.141656