**47**, 4, pp. 529-538, 2022

**10.24425/aoa.2022.142895**

### The Effect of a Concentrated Mass on the Acoustic Power and the Resonant Frequencies of a Circular Plate

**Keywords**: thin plate; concentrated mass; fluid-structure interactions; resonant frequencies; modal expansion; acoustic power

**Full Text:**PDF

#### References

Abramowitz M., Stegun I. [Eds] (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U.S. Department of Commerce, National Bureau of Standards.

Arenas J. (2009), On the sound radiation from a circular hatchway, International Journal of Occupational Safety and Ergonomics, 15(4): 401–407, doi: 10.1080/1080 3548.2009.11076819.

Arenas J., Ugarte F. (2016), A note on a circular panel sound absorber with an elastic boundary condition, Applied Acoustics, 114: 10–17, doi: 10.1016/j.apacoust.2016.07.002.

Cho D., Kim B., Kim J.H., Choi T., Vladimir N. (2016), Free vibration analysis of stiffened panels with lumped mass and stiffness attachments, Ocean Engineering, 124: 84–93, doi: 10.1016/j.oceaneng.2016.07.055.

Hasheminejad S.M., Keshavarzpour H. (2016), Robust active sound radiation control of a piezolaminated composite circular plate of arbitrary thickness based on the exact 3D elasticity model, Journal of Low Frequency Noise Vibration and Active Control, 35(2): 101–127, doi: 10.1177/0263092316644085.

Hasheminejad S.M., Shakeri R. (2017), Active transient acousto-structural response control of a smart cavity-coupled circular plate system, Archives of Acoustics, 42(2): 273–286, doi: 10.1515/aoa-2017-0030.

Jandak V., Svec P., Jiricek O., Brothanek M. (2017), Piezoelectric line moment actuator for active radiation control from light-weight structures, Mechanical Systems and Signal Processing, 96: 260–272, doi: 10.1016/j.ymssp.2017.04.003.

Jun K., Eom H. (1995), Acoustic scattering from a circular aperture in a thick hard screen, The Journal of the Acoustical Society of America, 98(4): 2324–2327, doi: 10.1121/1.414404.

Leissa A. (1969), Vibration of Plates, National Aeronautics and Space Administration, Washington D.C., http://ntrs.nasa.govsearch.jsp?R=19700009156.

Lovat G. et al. (2019), Shielding of a perfectly conducting circular disk: Exact and static analytical solution, Progress In Electromagnetics Research C, 95: 167–182, doi: 10.2528/pierc19052908.

McLachlan N. (1955), Bessel Functions For Engineers, Clarendon Press, Oxford.

Ostachowicz W., Krawczuk M., Cartmell M. (2002), The location of a concentrated mass on rectangular plates from measurements of natural vibrations, Computers and Structures, 80(16–17): 1419–1428, doi: 10.1016/S0045-7949(02)00084-6.

Pierce A. (1994), Acoustics. An Introduction to Its Physical Principles and Applications, Acoustical Society of America through American Institute of Physics, New York.

Rao S. (2007), Vibrations of Continuous Systems, Wiley, New Jersey.

Rayleigh J. (1896), The Theory of Sound, Volume 2, 2nd ed., Macmillan, New York.

Rdzanek W.P. (2018), Sound radiation of a vibrating elastically supported circular plate embedded into a flat screen revisited using the Zernike circle polynomials, Journal of Sound and Vibration, 434: 92–125, doi: 10.1016/j.jsv.2018.07.035.

Rdzanek W.P., Engel Z. (2000), Asymptotic formulas for the acoustic power output of a clamped annular plate, Applied Acoustics, 60(1): 29–43, doi: 10.1016/S0003-682X(99)00041-9.

Rdzanek W.P., Rdzanek W.J., Engel Z., Szemela K. (2007), The modal low frequency noise of an elastically supported circular plate, International Journal of Occupational Safety and Ergonomics, 13(2): 147–157, doi: 10.1080/10803548.2007.11076718.

Rdzanek W.P., Szemela K. (2019), Sound radiation by a vibrating annular plate using radial polynomials and spectral mapping, The Journal of the Acoustical Society of America, 146(4): 2682–2691, doi: 10.1121/1.5130193.

Sommerfeld A. (1964), Partial Differential Equations in Physics, Academic Press, New York.

Trojanowski R., Wiciak J. (2012), Comparison of efficiency of different shapes of homogeneous and two-part piezo elements on vibration reduction, Acta Physica Polonica A, 122(5): 905–907, doi: 10.12693/APhysPolA.122.905.

Trojanowski R., Wiciak J. (2020), Impact of the size of the sensor part on sensor-actuator efficiency, Journal of Theoretical and Applied Mechanics, 58(2): 391–401, doi: 10.15632/jtam-pl/118948.

Wiciak J., Trojanowski R. (2015), Evaluation of the effect of a step change in piezoactuator structure on vibration reduction level in plates, Archives of Acoustics, 40(1): 71–79, doi: 10.1515/aoa-2015-0009.

Williams E., (1999), Fourier Acoustics. Sound Radiation and Nearfield Acoustical Holography, Academic Press, London.

Wrona S., Pawelczyk M., Cheng L. (2021a), A novel semi-active actuator with tunable mass moment of inertia for noise control applications, Journal of Sound and Vibration, 509: 116244, doi: 10.1016/j.jsv.2021.116244.

Wrona S., Pawelczyk M., Cheng L. (2021b), Semi-active links in double-panel noise barriers, Mechanical Systems and Signal Processing, 154: 107542, doi: 10.1016/j.ymssp.2020.107542.

Wrona S., Pawelczyk M., Qiu X. (2020), Shaping the acoustic radiation of a vibrating plate, Journal of Sound and Vibration, 476: 115285, doi: 10.1016/j.jsv.2020.115285.

Zagrai A., Donskoy D. (2005), A “soft table” for the natural frequencies and modal parameters of uniform circular plates with elastic edge support, Journal of Sound and Vibration, 287(1–2): 343–351, doi: 10.1016/j.jsv.2005.01.021.

DOI: 10.24425/aoa.2022.142895