Archives of Acoustics, 47, 4, pp. 51-527, 2022

Acoustic Hysteresis in Flows with Different Kinds of Relaxation and Attenuation

Gdansk University of Technology

Graphs in the thermodynamic plane acoustic pressure versus excess acoustic density representing acoustic hysteresis, are considered as indicators of relaxation processes, equilibrium parameters of a flow, and kinds of wave exciters. Some flows with deviation from adiabaticity are examined: the Newtonian flow of a thermoconducting gas, the flow of a gas with vibrational relaxation, the flow of liquid electrolyte with a chemical reaction, and the Bingham plastic flow. The total range of characteristic frequencies of a harmonic exciter is taken into account. The impulsive sound is considered as well. The peculiarities of hysteretic behaviour are discussed in dependence with the kind and degree of deviation form adiabaticity. Examples of acoustically active flows are discussed.
Keywords: relaxation; acoustic hysteresis; acoustical activity
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).


Duck F.A., Baker A.C., Starritt H.C. (1998), Ultrasound in Medicine, Institute of Physics Publishing, Bristol–Philadelphia.

Eigen M., Tamm K. (1962), Sound absorption in electrolyte solutions as a result of chemical relaxation I. Relaxation theory of multilevel dissociation [in German: Schallabsorption in Elektrolytlösungen als Folge chemischer Relaxation I. Relaxationstheorie der mehrstufigen Dissoziation], Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, 66(2): 93–107.

Eigen M., De Mayer L. (1963), Relaxation methods, [in:] Techniques of Organic Chemistry, Freiss S.L., Lewis E.S., Weissberger A. [Eds], Interscience Publishers, New York.

Hall L. (1948), The origin of ultrasonic absorption in water, Physical Review, 73(7): 775–781, doi: 10.1103/PhysRev.73.775.

Hamilton M., Il’inskii Yu., Zabolotskaya E. (1998), Dispersion, [in:] Nonlinear Acoustics, Hamilton M., Blackstock D. [Eds], Academic Press.

Hedberg C.M., Rudenko O.V. (2011), Dissipative and hysteresis loops as images of irreversible processes in nonlinear acoustic fields, Journal of Applied Physics, 110(5): 053503, doi: 10.1063/1.3631800.

Hertzfeld K.F., Litowitz T.A. (1959), Absorption and Dispersion of Ultrasonic Waves, Academic Press, New York.

Herzfeld K.F., Rise F.O. (1928), Dispersion and absorption of high frequency sound waves, Physical Review, 31(4): 691–695, doi: 10.1103/PhysRev.31.691.

Landau L.D., Lifshitz E.M. (1987), Fluid Mechanics, 2nd ed., Pergamon, New York.

Leble S., Perelomova A. (2018), The Dynamical Projectors Method: Hydro and Electrodynamics, CRC Press.

Makarov S., Ochmann M. (1996), Nonlinear and thermoviscous phenomena in acoustics, Part I, Acta Acustica united with Acustica, 82(4): 579–606.

Mandelshtam L.I., Leontowich M.A. (1937), To the theory of sound absorption in liquids, Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 7(3): 438.

Mellen R.H., Simmons V.P., Browning D.G. (1979), Sound absorption in sea water: a third chemical relaxation, The Journal of the Acoustical Society of America, 65(4): 923–925, doi: 10.1121/1.382595.

Molevich N.E. (2001), Sound amplification in inhomogeneous flows of nonequilibrium gas, Acoustical Physics, 47(1): 102–105, doi: 10.1134/1.1340086.

Nachman A., Smith J.F., Waag R.C. (1990), An equation for acoustic propagation in inhomogeneous media with relaxation losses, The Journal of the Acoustical Society of America, 88(3): 1584–1595, doi: 10.1121/1.400317.

Nyborg W.L. (1978), Physical Mechanisms for Biological Effects of Ultrasound, Rockville: Bureau of Radiological Health.

Osipov A.I., Uvarov A.V. (1992), Kinetic and gasdynamic processes in nonequilibrium molecular physics, Soviet Physics Uspekhi, 35(11): 903–923.

Parker K.J. (1983), Ultrasonic attenuation and absorption in liver tissue, Ultrasound in Medicine and Biology, 9(4): 363–369, doi: 10.1016/0301-5629(83)90089-3.

Pierce A.D. (1981), Acoustics: An Introduction to Its Physical Principles and Applications, McGraw-Hill, New York.

Pierce A.D., Mast T.D., (2021), Acoustic propagation in a medium with spatially distributed relaxation processes and a possible explanation of a frequency power law, Journal of Theoretical and Computational Acoustics, 29(2): 2150012, doi: 10.1142/S2591728521500122.

Perelomova A. (2008), Acoustic heating in a weakly dispersive fluid flow, Acta Acustica united with Acustica, 94(3): 382–387, doi: 10.3813/AAA.918045.

Perelomova A. (2011a), Acoustic heating produced in the thermoviscous flow of a Bingham Plastic, Central European Journal of Physics, 9(1): 138–145, doi: 10.2478/s11534-010-0043-7.

Perelomova A. (2011b), Propagation of acoustic pulses in some fluids with yield stress, Canadian Journal of Physics, 89(2): 219–224, doi: 10.1139/p10-121.

Perelomova A. (2013), Hysteresis curves and loops for harmonic and impulse perturbations in some non-equilibrium gases, Central European Journal of Physics, 11(11): 1541–1547, doi: 10.2478/s11534-013-0305-2.

Perelomova A. (2015), The nonlinear effects of sound in a liquid with relaxation losses, Canadian Journal of Physics, 93(11): 1391–1396, doi: 10.1139/cjp-2014-0676.

Perelomova A. (2017), Instantaneous heating and cooling caused by periodic or aperiodic sound of any characteristic duration in a gas with vibrational relaxation, Acta Acustica united with Acustica, 103(4): 607–615, doi: 10.3813/aaa.919089.

Perelomova A. (2019), Excitation of non-wave modes by sound of arbitrary frequency in a chemically reacting gas, Acta Acustica united with Acustica, 105(6): 918–927, doi: 10.3813/AAA.919373.

Perelomova A. (2020), Hysteresis curves for some periodic and aperiodic perturbations in magnetosonic flow, Physics of Plasmas, 27(10): 102101; doi: 10.1063/5.0015944.

Rudenko O.V., Soluyan S.I. (1977), Theoretical Foundations of Nonlinear Acoustics, Plenum, New York.

Vilensky G., ter Haar G., Saffari N. (2012), A model of acoustic absorption in fluids based on a continuous distribution of relaxation times, Wave Motion, 49(1): 93–108, doi: 10.1016/j.wavemoti.2011.07.005.

Yeager E., Fisher F.H. (1973), Origin of the low-frequency sound absorption in sea water, The Journal of the Acoustical Society of America, 53(6): 1705, doi: 10.1121/1.1913523.

DOI: 10.24425/aoa.2022.142896