Archives of Acoustics, 49, 1, pp. 83–93, 2024
10.24425/aoa.2023.146811

Normal Mode Solutions of Target Strengths of Solid-filled Spherical Shells and Discussion of Influence Parameters

Bing JIA
1) Shanghai Jiao Tong University 2) Science and Technology on Underwater Test and Control Laboratory
China

Jun FAN
Shanghai Jiao Tong University
China

Gui-Juan LI
Science and Technology on Underwater Test and Control Laboratory
China

Bin WANG
Shanghai Jiao Tong University
China

Yun-Fei CHEN
Science and Technology on Underwater Test and Control Laboratory
China

The normal mode solution for the form function and target strength (TS) of a solid-filled spherical shell is derived. The calculation results of the spherical shell’s acoustic TS are in good agreement with the results of the finite element method (FEM). Based on these normal mode solutions, the influences of parameters such as the material, radius, and thickness of the inner and outer shells on the TS of a solid-filled spherical shell are analyzed. An underwater spherical shell scatterer is designed, which uses room temperature vulcanized (RTV) silicone rubber as a solid filling material and does not contain a suspension structure inside. The scatterer has a good TS enhancement effect.
Keywords: solid-filled spherical shell; room temperature vulcanized silicone rubber; target strength enhancement
Full Text: PDF
Copyright © 2024 The Author(s). This work is licensed under the Creative Commons Attribution 4.0 International CC BY 4.0.

References

Anstee S. (2002), Use of spherical objects as calibrated mine hunting sonar targets, Maritime Operations Division Systems Sciences Laboratory, DSTO-TN-0425.

Atkins P.R., Yan T., Hayati F. (2017), Standard target calibration: practical intercomparison with planar surface targets and calibrated transducers, [in:] Proceeding of Oceans ’17 MTS/IEEE, doi: 10.1109/OCEANSE.2017.8084801.

Deng W.-X., Yang T.-S., Yang J.-B. (1982), Experimental study on liquid filled focused spherical reflector [in Chinese], Acta Acustica, 7(2): 88–93, doi: 10.15949/j.cnki.0371-0025.1982.02.003.

Deveau D.M., Lyons A.P. (2009), Fluid-filled passive sonar calibration spheres: Design, modeling, and measurement, IEEE Journal of Oceanic Engineering, 34(1): 93–100, doi: 10.1109/JOE.2008.2010755.

Fan J., Tang W.L. (2001), Echoes from double elastic spherical shell covered with viscoelastic materials in water [in Chinese], Acta Acustica, 26(4): 302–306, doi: 10.15949/j.cnki.0371-0025.2001.04.003.

Fawcett J.A. (2001), Scattering from a partially fluid-filled, elastic shelled sphere, The Journal of the Acoustical Society of America, 109(2): 508–513, doi: 10.1121/1.1339827.

Foote K.G. (2018), Standard-target calibration of active sonars used to measure scattering: principles and illustrative protocols, IEEE Journal of Oceanic Engineering, 43(3): 749–763, doi: 10.1109/JOE.2017.2713538.

Foote K.G., Francis D.T.I., Atkins P.R. (2007), Calibration sphere for low-frequency parametric sonars, The Journal of the Acoustical Society of America, 121(3): 1482–1490, doi: 10.1121/1.2434244.

Goodman R.R., Stern R. (1962), Reflection and transmission of sound by elastic spherical shells, Journal of the Acoustical Society of America, 34(3): 338–344, doi: 10.1121/1.1928120.

Islas-Cital A., Atkins P. (2012), Practical considerations in the amplitude and phase calibration of SONAR systems in laboratory water tanks using the standard-target method, [in:] Proceedings of Meetings on Acoustics, ECUA 2012 11th European Conference on Underwater Acoustics, 17(1): 070013, doi: 10.1121/1.4767969.

Jia B., Wang J.H., Li G.J., Chen Y.F. (2020), Numerical analysis on target strength of the filled spherical elastic shell, IOP Conference Series: Materials Science and Engineering, 813: 012004, doi: 10.1088/1757-899X/813/1/012004.

Junger M.C. (1952), Sound scattering by thin elastic shells, The Journal of the Acoustical Society of America, 24(4): 336–373, doi: 10.1121/1.1906905.

Kaduchak G., Loeffler C.M. (1998), Relationship between material parameters and target strength of fluid-filled spherical shells in water: Calculations and observations, IEEE Journal of Oceanic Engineering, 23(1): 26–30, doi: 10.1109/48.659447.

Niu F.Q., Zhang X.P. (1982), Acoustic properties of domestic RTV silicone rubber [in Chinese], Applied Acoustics, 1(4): 39–42.

Stanton T.K., Chu D. (2008), Calibration of broadband active acoustic systems using a single standard spherical target, The Journal of the Acoustical Society of America, 124(1): 128–136, doi: 10.1121/1.2917387.

Tang W.L., Fan J. (1999), Echoes from double elastic spherical shell in water [in Chinese], Acta Acustica, 24(2): 174–182, doi: 10.15949/j.cnki.0371-0025.1999.02.009.

Tang W.L., Fan J., Ma Z.C. (2018), Acoustic Scattering from Underwater Targets, Science Press.

Xu S.Y., Fan J., Wang B. (2020), Low-frequency target strength enhancement based on acoustic tunnel effect, Technical Acoustics, 39(1): 34–39, doi: 10.16300/j.cnki.1000-3630.2020.01.006.

Zhou Y.L., Fan J., Wang B. (2019), Inversion for acoustic parameters of plastic polymer target in water [in Chinese], Acta Physica Sinica, 68(21): 214301, doi: 10.7498/aps.68.20190991.

Zhou Y.L., Fan J., Wang B. (2020), Phase characteristics of acoustic-scattering field for underwater spherical targets [in Chinese], Journal of Harbin Engineering University, 41(7): 945–950, doi: 10.11990/jheu.201905022.




DOI: 10.24425/aoa.2023.146811