10.24425/aoa.2024.148771
Performance of the Direct Sequence Spread Spectrum Underwater Acoustic Communication System with Differential Detection in Strong Multipath Propagation Conditions
References
Freitag L., Stojanovic M. (2004), MMSE acquisition of DSSS acoustic communications signals, [in:] Oceans ‘04 MTS/IEEE Techno-Ocean ’04, pp. 14–19, doi: 10.1109/OCEANS.2004.1402888.
Freitag L., Stojanovic M., Singh S., Johnson M. (2001), Analysis of channel effects on direct-sequence and frequency-hopped spread-spectrum acoustic communication, IEEE Journal of Oceanic Engineering, 26: 586–593, doi: 10.1109/48.972098.
Kochańska I. (2021), A new direct-sequence spread spectrum signal detection method for underwater acoustic communications in shallow-water channel, Vibrations in Physical Systems, 32(1): 2021106, doi: 10.21008/j.0860-6897.2021.1.06.
Kochanska I., Salamon R., Schmidt J., Schmidt A. (2021), Study of the performance of DSSS UAC system depending on the system bandwidth and the spreading sequence, Sensors, 21: 2484, doi: 10.3390/s21072484.
Mironov A.S., Burdinskiy I.N., Karabanov I.V. (2018), The method of defining the threshold value of the symbolic correlation function for detecting DSSS hydroacoustic signal, 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), pp. 1–6, doi: 10.1109/FarEastCon.2018.8602588.
Pelekanakis K., Cazzanti L. (2018), On adaptive modulation for low SNR underwater acoustic communications, OCEANS 2018 MTS/IEEE, pp. 1–6, doi: 10.1109/OCEANS.2018.8604521.
Qu F., Qin X., Yang L., Yang T.C., (2018), Spread-spectrum method using multiple sequences for underwater acoustic communications, IEEE Journal of Oceanic Engineering, 43(4): 1215–1226, doi: 10.1109/JOE.2017.2750298.
Ra H.-I., An J.-H., Yoon C.-H., Kim K.-M. (2021), Superimposed DSSS transmission based on cyclic shift keying in underwater acoustic communication, OCEANS 2021 MTS/IEEE, pp. 1–4, doi: 10.23919/OCEANS44145.2021.9706130.
Sarwate D.V., Pursley M.B. (1980), Cross-correlation properties of pseudorandom and related sequences, Proceedings of the IEEE, 68(5): 593–619, doi: 10.1109/PROC.1980.11697.
Schmidt J.H. (2016), The development of an underwater telephone for digital communication purposes, Hydroacoustics, 19: 341–352.
Schmidt J.H. (2020), Using fast frequency hopping technique to improve reliability of underwater communication system, Applied Sciences, 10(3): 1172, doi: 10.3390/app10031172.
Schmidt J.H., Schmidt A.M. (2023) Wake-up receiver for underwater acoustic communication using in shallow water, Sensors, 23(4): 2088, doi: 10.3390/s23042088.
Sozer E.M., Proakis J.G., Stojanovic R., Rice J.A., Benson A., Hatch M. (1999), Direct sequence spread spectrum based modem for underwater acoustic communication and channel measurements, Oceans ’99. MTS/IEEE. Riding the Crest into the 21st Century. Conference and Exhibition. Conference Proceedings, pp. 228–233, doi: 10.1109/OCEANS.1999.799743.
van Walree P. (2011), Channel sounding for acoustic communications: Techniques and shallow-water examples, FFI-Rapport 2011/00007, Forsvarets Forskningsinstitutt.
Zepernick H.J., Finger A. (2005), Pseudo Random Signal Processing: Theory and Application, John Wiley & Sons Ltd.
DOI: 10.24425/aoa.2024.148771