DOA Estimation of Ultrasonic Signal by Indirect Phase Shift Determination

Downloads

Authors

  • Bogdan KRECZMER Wrocław University of Science and Technology, Poland

Abstract

The paper presents the concept of the method of determining the direction of ultrasonic signal arrival, i.e., the azimuth and elevation angles. This method is an extension of the previous approach which was proposed to determine only the azimuth angle. The approach is based on the indirect phase determination. This makes it possible to tolerate spacing of receivers greater than half the wavelength of the received signal. At the same time, it provides increased measurement accuracy and reduced hardware requirements. To check the robustness of the method, simulations were carried out for the geometric arrangement of the receivers of the sonar module, for which the method was then implemented. This sonar module was used in the conducted experiments. The results of these simulations and experiments are included in the paper and discussed.

Keywords:

direction of arrival, signal phase, sonar, ultrasonic range finder

References

1. Allevato G., Rutsch M., Hinrichs J., Pesavento M., Kupnik M. (2020), Embedded air-coupled ultrasonic 3D sonar system with GPU acceleration, [in:] 2020 IEEE SENSORS, pp. 1–4, https://doi.org/10.1109/SENSORS47125.2020.9278601

2. Barabell A. (1983), Improving the resolution performance of eigenstructure-based direction-finding algorithms, [in:] ICASSP’83. IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 336–339, https://doi.org/10.1109/ICASSP.1983.1172124

3. Cadzow J.A. (1990), Multiple source location the signal subspace approach, IEEE Transactions on Acoustics, Speech, and Signal Processing, 38(7): 1110–1125, https://doi.org/10.1109/29.57540

4. Chen H., Ballal T., Muquaibel A.H., Zhang X., Al-Naffouri T.Y. (2020), Air writing via receiver array-based ultrasonic source localization, IEEE Transactions on Instrumentation and Measurement, 69(10): 8088–8101, https://doi.org/10.1109/TIM.2020.2991573

5. Choi K.H., Ra W.-S., Park S.-Y., Park J.B. (2014), Robust least squares approach to passive target localization using ultrasonic receiver array, IEEE Transactions on Industrial Electronics, 61(4): 1993–2002, https://doi.org/10.1109/TIE.2013.2266076

6. Cholewiński M., Dziergwa M., Kaczmarek P.M., Kędzierski J., Wnuk M. (2013), Malaga minimodule [in Polish], Technical report SPR no 13/2013, Wrocław University of Science and Technology.

7. Dokmanic I., Tashev I. (2014), Hardware and algorithms for ultrasonic depth imaging, [in:] 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6702–6706, https://doi.org/10.1109/ICASSP.2014.6854897

8. Gialich M., Im A., Lee T., Aliyazicioglu Z., Hwang H.K. (2012), DOA estimation using array antenna with large inter-element spacing, [in:] 2012 11th International Conference on Signal Processing (ICSP), pp. 1701–1704, https://doi.org/10.1109/ICoSP.2012.6491908

9. Haardt M., Nossek J.A. (1995), Unitary ESPRIT: How to obtain increased estimation accuracy with a reduced computational burden, IEEE Transactions on Signal Processing, 43(5): 1232–1242, https://doi.org/10.1109/78.382406

10. Kapoor R., Ramasamy S., Gardi A., Schyndel R.V., Sabatini R. (2018), Acoustic sensors for air and surface navigation applications, Sensors, 18(2): 499, https://doi.org/10.3390/s18020499

11. Kerstens R., Laurijssen D., Steckel J. (2017), Low-cost one-bit MEMS microphone arrays for in-air acoustic imaging using FPGA’s, [in:] 2017 IEEE SENSORS, pp. 1–3, https://doi.org/10.1109/ICSENS.2017.8234087

12. Kerstens R., Laurijssen D., Steckel J. (2019), eRTIS: A fully embedded real time 3D imaging sonar sensor for robotic applications, [in:] 2019 International Conference on Robotics and Automation (ICRA), pp. 1438–1443, https://doi.org/10.1109/ICRA.2019.8794419

13. Kleeman L. (1995), A three dimensional localiser for autonomous robot vehicles, Robotica, 13(1): 87–94, https://doi.org/10.1017/S0263574700017513

14. Kreczmer B. (2018), Azimuth angle estimation of ultrasonic signal arrival by using multi-pair receiver system, [in:] Automation 2018. Advances in Intelligent Systems and Computing, Szewczyk R., Zielinski C., Kaliczynska M. [Eds.], 743: 672–681, https://doi.org/10.1007/978-3-319-77179-3_65

15. Kreczmer B. (2019), Estimation of the azimuth angle of the arrival direction for an ultrasonic signal by using indirect determination of the phase shift, Archives of Acoustics, 44(3): 585–601, https://doi.org/10.24425/aoa.2019.129273

16. Kreczmer B. (2021), Influence of signal interference on determining direction of arrival by using the indirect phase determination method, [in:] Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques. AUTOMATION 2021. Advances in Intelligent Systems and Computing, Szewczyk R., Zielinski C., Kaliczynska M. [Eds.], Springer International Publishing, pp. 319–328, https://doi.org/10.1007/978-3-030-74893-7_30

17. Krim H., Viberg M. (1996), Two decades of array signal processing research: The parametric approach, IEEE Signal Processing Magazine, 13(4): 67–94, https://doi.org/10.1109/79.526899

18. Krishnaveni V., Kesavamurthy T., Aparna B. (2013), Beamforming for direction-of-arrival (DOA) estimation – A survey, International Journal of Computer Applications, 61(11): 4–11, https://doi.org/10.5120/9970-4758

19. Li P., Li C., Ye C., Zhang X. (2020), Low complexity DOA estimation using coprime circular array, [in:] 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), pp. 592–597, https://doi.org/10.1109/ICSIP49896.2020.9339298

20. Peremans H., Audenaert K., Van Campenhout J.M. (1993), A high-resolution sensor based on tri-aural perception, IEEE Transactions on Robotics and Automation, 9(1): 36–48, https://doi.org/10.1109/70.210793

21. Roy R., Kailath T. (1989), ESPRIT estimation of signal parameters via rotational invariance techniques, IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(7): 984–995, https://doi.org/10.1109/29.32276

22. Roy R., Paulraj A., Kailath T. (1986), Direction-of-arrival estimation by subspace rotation methods – ESPRIT, [in:] ICASSP ’86. IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 2495–2498, https://doi.org/10.1109/ICASSP.1986.1168673

23. Schmidt R. (1986), Multiple emitter location and signal parameter estimation, IEEE Transactions on Antennas and Propagation, 34(3): 276–280, https://doi.org/10.1109/TAP.1986.1143830

24. Steckel J., Boen A., Peremans H. (2013), Broadband 3-D sonar system using a sparse array for indoor navigation, robotics, IEEE Transactions on Robotics, 29(1): 161–171, https://doi.org/10.1109/TRO.2012.2221313

25. Sun F., Lan P., Gao B. (2015), Partial spectral search-based DOA estimation method for co-prime linear arrays, Electronics Letters, 51(24): 2053–2055, https://doi.org/10.1049/el.2015.2261

26. Tayem N., Kwon H.M. (2003), Conjugate ESPRIT (C-SPRIT), [in:] Proceedings of IEEE Military Communications Conference, 2003, MILCOM 2003, pp. 1155–1160, https://doi.org/10.1109/MILCOM.2003.1290358

27. Van Trees H.L. (2004), Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory Detection, Estimation, and Modulation Theory, John Wiley & Sons, Inc.

28. Van Veen B.D., Buckley K.M. (1988), Beamforming: A versatile approach to spatial filtering, IEEE ASSP Magazine, 5(2): 4–24, https://doi.org/10.1109/53.665

29. Verellen T., Kerstens R., Steckel J. (2020), High-resolution ultrasound sensing for robotics using dense microphone arrays, [in:] IEEE Access, 8: 190083–190093, https://doi.org/10.1109/ACCESS.2020.3032177

30. Yang X., Wu X., Li S., Sarkar T.K. (2018), A fast and robust DOA estimation method based on JSVD for co-prime array, [in:] IEEE Access, 6: 41697–41705, https://doi.org/10.1109/ACCESS.2018.2860680

31. Zhou C., Shi Z., Gu Y., Shen X. (2013), DECOM: DOA estimation with combined MUSIC for coprime array, [in:] 2013 International Conference on Wireless Communications and Signal Processing, pp. 1–5, https://doi.org/10.1109/WCSP.2013.6677080