Archives of Acoustics, 49, 1, pp. 95–106, 2024

The Influential Factors and Prediction of Kuroshio Extension Front on Acoustic Propagation-Tracked

Weishuai XU
Dalian Naval Academy

Dalian Naval Academy

Dalian Naval Academy

The Kuroshio Extension front (KEF) considerably influences the underwater acoustic environment; however, a knowledge gap persists regarding the acoustic predictions under the ocean front environment. This study utilized the high-resolution ocean reanalysis data (JCOPE2M, 1993–2022) to assess the impact of the KEF on the underwater acoustic environment. Oceanographic factors were extracted from the database using the Douglas-Peucker algorithm, and acoustic propagation characteristics were obtained using the Bellhop raytracing model. This study employed a backpropagation neural network to predict the acoustic propagation affected by the KEF. The depth of the acoustic channel axis and the vertical gradient of the transition layer of sound speed were identified as the fundamental factors influencing the first area of convergence, with correlations between the former and the distance of the first convergence zone ranging from 0.52 to 0.82, and that for the latter ranging from −0.42 to −0.7. The proposed method demonstrated efficacy in forecasting first convergence zone distances, predicting distances with less than 3 km error in >90% of cases and less than 1 km error in 68.61% of cases. Thus, this study provides a valuable predictive tool for studying underwater acoustic propagation in ocean front environments and informs further research.
Keywords: Kuroshio Extension front; acoustic propagation; convergence zone prediction
Full Text: PDF
Copyright © 2023 The Author(s). This work is licensed under the Creative Commons Attribution 4.0 International CC BY 4.0.


Amante C., Eakins B.W. (2009), ETOPO1 1 Arc-Minute Global Relief Model: Procedures, data sources and analysis. NOAA technical memorandum NESDIS NGDC-24, National Geophysical Data Center, doi: 10.7289/V5C8276M.

Chang Y.-L., Miyazawa Y., Guo X. (2015), Effects of the STCC eddies on the Kuroshio based on the 20-year JCOPE2 reanalysis results, Progress in Oceanography, 135: 64–76, doi: 10.1016/j.pocean.2015.04.006.

Chang Y.-L.K., Miyazawa Y., Béguer-Pon M., Han Y.-S., Ohashi K., Sheng J. (2018), Physical and biological roles of mesoscale eddies in Japanese eel larvae dispersal in the western North Pacific Ocean, Scientific Reports, 8(1): 503, doi: 10.1038/s41598-018-23392-5.

Chassignet E.P. et al. (2007), The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system, Journal of Marine Systems, 65(1–4): 60–83, doi: 10.1016/j.jmarsys.2005.09.016.

Chen C., Yang K., Duan R., Ma Y. (2017), Acoustic propagation analysis with a sound speed feature model in the front area of Kuroshio Extension, Applied Ocean Research, 68: 1–10, doi: 10.1016/j.apor.2017.08.001.

Chen S. (2008), The Kuroshio Extension Front from satellite sea surface temperature measurements, Journal of Oceanography, 64(6): 891–897, doi: 10.1007/s10872-008-0073-6.

Cheney R.E., Winfrey D. (1976), Distribution and classification of ocean fronts, U.S. Naval Oceanographic Office, Washington D.C.

Doan V.-S., Huynh-The T., Kim D.-S. (2020), Underwater acoustic target classification based on dense convolutional neural network, IEEE Geoscience and Remote Sensing Letters, 19: 1–5, doi: 10.1109/LGRS.2020.3029584.

Dong S., Sprintall J., Gille S.T. (2006), Location of the Antarctic Polar Front from AMSR-E satellite sea surface temperature measurements, Journal of Physical Oceanography, 36: 2075–2089, doi: 10.1175/JPO2973.1.

Dreini G., Jensen F.B. (1990), Sound propagation through an oceanic front, Journal de Physique Colloques, 51(C2): 1025–1028, doi: 10.1051/jphyscol:19902240.

Hamilton E.L. (1980), Geoacoustic modeling of the sea floor, The Journal of the Acoustical Society of America, 68(5): 1313–1340, doi: 10.1121/1.385100.

Etter P.C. (2013), Underwater Acoustic Modeling and Simulation, 4th ed., CRC Press, Taylor & Francis Group.

Kida S. et al. (2015), Oceanic fronts and jets around Japan: A review, Journal of Oceanography, 71: 469–497, doi: 10.1007/s10872-015-0283-7.

Lee-Leon A., Yuen C., Herremans D. (2021), Underwater Acoustic Communication Receiver Using Deep Belief Network, IEEE Transactions on Communications, 69(6): 3698–3708, doi: 10.1109/TCOMM.2021.3063353.

Lee B.M., Johnson J.R., Dowling D.R. (2022), Neural network predictions of acoustic transmission loss uncertainty, The Journal of the Acoustical Society of America, 152(4): 152, doi: 10.1121/10.0015877.

Liu J., Piao S., Zhang, M., Zhang S., Guo J., Gong L. (2021), Characteristics of three-dimensional acoustic propagation in Western North Pacific Fronts, Journal of Marine Science and Engineering, 9(9): 1035, doi: 10.3390/jmse9091035.

Liu J., Zhang Y., Zhang X. (2015), Analysis on the characteristics of the spatial and temporal variation of the Kuroshio Extension Front and the distribution of the sound field [in Chinese], Journal of Ocean Technology, 34(02): 15–20,

Liu Z.-J., Nakamura H., Zhu X.-H., Nishina A., Guo X., Dong M. (2019), Tempo-spatial variations of the Kuroshio current in the Tokara Strait based on long-term ferryboat ADCP data, Journal of Geophysical Research: Oceans, 124(8): 6030–6049, doi: 10.1029/2018JC014771.

Mellberg L.E., Johannessen O.M., Connors D.N., Botseas G., Browning D.G. (1991), Acoustic propagation in the western Greenland Sea frontal zone, The Journal of the Acoustical Society of America, 89(5): 2144–2156, doi: 10.1121/1.400908.

Miyazawa Y. et al. (2017), Assimilation of high-resolution sea surface temperature data into an operational nowcast/forecast system around Japan using a multi-scale three-dimensional variational scheme, Ocean Dynamics, 67(6): 713–728, doi: 10.1007/s10236-017-1056-1.

Miyazawa Y. et al. (2019), Temperature profiling measurements by sea turtles improve ocean state estimation in the Kuroshio-Oyashio Confluence region, Ocean Dynamics, 69(2): 267–282, doi: 10.1007/s10236-018-1238-5.

Ozanich E., Gawarkiewicz G., Lin Y.-T. (2022), Study of acoustic propagation across an oceanic front at the edge of the New England shelf, The Journal of the Acoustical Society of America, 152(6): 3756, doi: 10.1121/10.0016630.

Porter M.B. (2011), The BELLHOP Manual and User’s Guide: Preliminary Draft, Heat, Light, and Sound Research, Inc., USA.

Rousseau T.H., Siegmann W.L., Jacobson M.J. (1982), Acoustic propagation through a model of shallow fronts in the deep ocean, The Journal of the Acoustical Society of America, 72(3): 924–936, doi: 10.1121/1.388173.

Seo Y., Sugimoto S., Hanawa K. (2014), Long-Term variations of variations of the Kuroshio Extension Path in winter: Meridional movement and path state change, Journal of Climate, 27(15): 5929–5940, doi: 10.1175/JCLI-D-13-00641.1.

Shapiro G., Chen F., Thain R. (2014), The effect of ocean fronts on acoustic wave propagation in the Celtic Sea, Journal of Marine Systems, 139: 217–226, doi: 10.1016/j.jmarsys.2014.06.007.

Sugimoto S., Kobayashi N., Hanawa K. (2014), Quasi-decadal variation in intensity of the western part of the winter subarctic SST Front in the Western North Pacific: The influence of Kuroshio extension path state, Journal of Physical Oceanography, 44(10): 2753–2762, doi: 10.1175/JPO-D-13-0265.1.

Urick R.J. (1975), Principles of Underwater Sound, 3rd ed., McGraw-Hill, New York, London.

Wang J., Mao K., Chen X., Zhu K. (2020), Evolution and structure of the Kuroshio extension front in spring 2019, Journal of Marine Science and Engineering, 8(7): 502, doi: 10.3390/jmse8070502.

Wang Y., Yang X., Hu J. (2016), Position variability of the Kuroshio Extension sea surface temperature front, Acta Oceanologica Sinica, 35(07): 30–35, doi: 10.1007/s13131-016-0909-7.

Yasuda I. (2003), Hydrographic structure and variability in the Kuroshio-Oyashio transition area, Journal of Oceanography, 59(4): 389–402, doi: 10.1023/A:1025580313836.

Yu P., Zhang L., Liu M., Zhong Q., Zhang Y., Li X. (2020), A comparison of the strength and position variability of the Kuroshio Extension SST front, Acta Oceanologica Sinica, 39(5): 26–34, doi: 10.1007/s13131-020-1567-3.

DOI: 10.24425/aoa.2024.148767