Numerical Study on the Dynamics of a Charged Bubble in the Acoustic Field

Downloads

Authors

  • Liang LV Suzhou Vocational University, China
  • Fei LIU Hebei Petroleum University of Technology, China
  • Yawei LI Hebei Petroleum University of Technology, China

Abstract

In this paper, the dynamics of an acoustic bubble with a constant charge in compressible liquid are investigated numerically, which is based on the Gilmore-NASG model to estimate the radial oscillations. The cavitation effects are enhanced due to the presence of the charge on the bubble surface. The obtained results from the present model are compared with that calculated by the previous model within a wide range of parameters (e.g., charge, acoustic pressure amplitude, ultrasound frequency, and liquid temperature). The similar influences of these parameters on bubble collapse intensity can be observed from both models. Since the present model fully considers the compressibility of gas and liquid, it can be applied to a wider parameter range and leads to the larger predicted values. The research in this paper can provide important insights about the effects of charge on bubble dynamics and the acoustic cavitation applications (e.g., sonochemistry, water treatment, and food industry)

Keywords:

charged bubble dynamics, acoustic cavitation, bubble collapse intensity, Gilmore-NASG model

References

1. Chadi N.E., Merouani S., Hamdaoui O., Bouhelassa M. (2018), New aspect of the effect of liquid temperature on sonochemical degradation of nonvolatile organic pollutants in aqueous media, Separation and Purification Technology, 200: 68–74, https://doi.org/10.1016/j.seppur.2018.01.047

2. Cleve S., Guédra M., Mauger C., Inserra C., Blanc-Benon P. (2019), Microstreaming induced by acoustically trapped, non-spherically oscillating microbubbles, Journal of Fluid Mechanics, 875: 597–621, https://doi.org/10.1017/jfm.2019.511

3. Denner F. (2021), The Gilmore-NASG model to predict single-bubble cavitation in compressible liquids, Ultrasonics Sonochemistry, 70: 105307, https://doi.org/10.1016/j.ultsonch.2020.105307

4. Dehane A., Merouani S., Chibani A., Hamdaoui O., Ashokkumar M. (2022), Influence of processing conditions on hydrogen sonoproduction from methanol sono-conversion: A numerical investigation with a validated model, Chemical Engineering and Processing – Process Intensification, 179: 109080, https://doi.org/10.1016/j.cep.2022.109080

5. Dehane A., Merouani S., Hamdaoui O., Alghyamah A. (2021a), A complete analysis of the effects of transfer phenomenons and reaction heats on sonohydrogen production from reacting bubbles: Impact of ambient bubble size, International Journal of Hydrogen Energy, 46(36): 18767–18779, https://doi.org/10.1016/j.ijhydene.2021.03.069

6. Dehane A., Merouani S., Hamdaoui O., Abdellattif M.H., Jeon B.-H., Benguerba Y. (2021b), A full mechanistic and kinetics analysis of carbon tetrachloride (CCl4) sono-conversion: Liquid temperature effect, Journal of Environmental Chemical Engineering, 9(6): 106555, https://doi.org/10.1016/j.jece.2021.106555

7. Ferkou H., Merouani S., Hamdaoui O., Rezgui Y., Guemini M. (2015), Comprehensive experimental and numerical investigations of the effect of frequency and acoustic intensity on the sonolytic degradation of naphthol blue black in water, Ultrasonics Sonochemistry, 26: 30–39, https://doi.org/10.1016/j.ultsonch.2015.02.004

8. Grigor’ev A.I., Zharov A.N. (2000), Stability of the equilibrium states of a charged bubble in a dielectric liquid, Technical Physics, 45(4): 389–395, https://doi.org/10.1134/1.1259640

9. Hongray T., Ashok B., Balakrishnan J. (2014), Effect of charge on the dynamics of an acoustically forced bubble, Nonlinearity, 27(6): 1157–1179, https://doi.org/10.1088/0951-7715/27/6/1157

10. Hongray T., Ashok B., Balakrishnan J. (2015), Oscillatory dynamics of a charged microbubble under ultrasound, Pramana – Journal of Physics, 84(4): 517–541, https://doi.org/10.1007/s12043-014-0846-y

11. Kalmár C., Klapcsik K., Hegedus F. (2020), Relationship between the radial dynamics and the chemical production of a harmonically driven spherical bubble, Ultrasonics Sonochemistry, 64: 104989, https://doi.org/10.1016/j.ultsonch.2020.104989

12. Kerboua K., Hamdaoui O., Islam M.H., Alghyamah A., Hansen H.E., Pollet B.G. (2021), Low carbon ultrasonic production of alternate fuel: Operational and mechanistic concerns of the sonochemical process of hydrogen generation under various scenarios, International Journal of Hydrogen Energy, 46(53): 26770–26787, https://doi.org/10.1016/j.ijhydene.2021.05.191

13. Lv L., Liu F. (2023), Numerical investigation of sonochemical production in a single bubble under dualfrequency acoustic excitation, Physica Scripta, 98(11): 115240, https://doi.org/10.1088/1402-4896/acfeb1

14. Lv L., Zhang Y.X., Zhang Y.N., Zhang Y.N. (2019), Experimental investigations of the particle motions induced by a laser-generated cavitation bubble, Ultrasonics Sonochemistry, 56: 63–73, https://doi.org/10.1016/j.ultsonch.2019.03.019

15. Lee H.-B., Choi P.-K. (2020), Electrification of sonoluminescing single bubble, Journal of Physical Chemistry B, 124(15): 3145–3151, https://doi.org/10.1021/acs.jpcb.0c00956

16. Lei Y.-J., Zhang J., Tian Y., Yao J., Duan Q.-S., Zuo W. (2020), Enhanced degradation of total petroleum hydrocarbons in real soil by dual-frequency ultrasound-activated persulfate, Science of the Total Environment, 748: 141414, https://doi.org/10.1016/j.scitotenv 2020.141414.

17. Merouani S., Hamdaoui O., Rezgui Y., Guemini M. (2014), Energy analysis during acoustic bubble oscillations: Relationship between bubble energy and sonochemical parameters, Ultrasonics, 54(1): 227–232, https://doi.org/10.1016/j.ultras.2013.04.014

18. Nazari-Mahroo K., Pasandideh K., Navid H.A., Sadighi-Bonabi R. (2018), Influence of liquid compressibility on the dynamics of single bubble sonoluminescence, Physics Letters A, 382(30): 1962–1967, https://doi.org/10.1016/j.physleta.2018.04.058

19. Nazari-Mahroo K., Pasandideh K., Navid H.A., Sadighi-Bonabi R. (2020), Influence of liquid density variation on the bubble and gas dynamics of a single acoustic cavitation bubble, Ultrasonics, 102: 106034, https://doi.org/10.1016/j.ultras.2019.106034

20. Oh J.M., Kim P.J., Kang I.S. (2001), Chaotic oscillation of a bubble in a weakly viscous dielectric fluid under electric fields, Physics of Fluids, 13(10): 2820–2830, https://doi.org/10.1063/1.1400135

21. Pokhrel N., Vabbina P.K., Pala N. (2016), Sonochemistry: Science and engineering, Ultrasonics Sonochemistry, 29: 104–128, https://doi.org/10.1016/j.ultsonch.2015.07.023

22. Phukan A., Kharphanbuh S.M., Nath A. (2023), An empirical experimental investigation on the effect of an external electric field on the behaviour of laser-induced cavitation bubbles, Physical Chemistry Chemical Physics, 25: 2477–2485, https://doi.org/10.1039/d2cp05561a

23. Sezen S., Uzun D., Turan O., Atlar M. (2021), Influence of roughness on propeller performance with a view to mitigating tip vortex cavitation, Ocean Engineering, 239: 109703, https://doi.org/10.1016/j.oceaneng.2021 109703.

24. Shaw S.J., Spelt P.D.M., Matar O.K. (2009), Electrically induced bubble deformation, translation and collapse, Journal of Engineering Mathematics, 65(4): 291–310, https://doi.org/10.1007/s10665-009-9314-y

25. Spelt P.D.M., Matar O.K. (2006), The collapse of a bubble in an electric field, Physical Review E, 74(4): 046309, https://doi.org/10.1103/PhysRevE.74.046309

26. Takahashi M. (2005), Potential of microbubbles in aqueous solutions: Electrical properties of the gaswater interface, Journal of Physical Chemistry B, 109(46): 21858–21864, https://doi.org/10.1021/jp0445270

27. Tian L., Zhang Y.-X., Yin J.-Y., Lv L., Zhang J.-Y., Zhu J.-J. (2023), Study on the liquid jet and shock wave produced by a near-wall cavitation bubble containing a small amount of non-condensable gas, International Communications in Heat and Mass Transfer, 145(Part A): 106815, https://doi.org/10.1016/j.icheatmasstransfer 2023.106815.

28. Torres R.A., Pétrier P., Combet E., Carrier M., Pulgarin C. (2008), Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products, Ultrasonics Sonochemistry, 15(4): 605–611, https://doi.org/10.1016/j.ultsonch.2007.07.003

29. Wang C., Zhang Y., Liu Z., Yuan Z. (2022), Multiobjective optimization of a two-stage liquefied natural gas cryogenic submerged pump-turbine in pump mode to reduce flow loss and cavitation, Journal of Energy Storage, 52(Part C): 105064, https://doi.org/10.1016/j.est.2022.105064

30. Wang X., Ning Z., Lv M., Wu P., Sun C., Liu Y. (2023), Transition mechanisms of translational motions of bubbles in an ultrasonic field, Ultrasonics Sonochemistry, 92: 106271, https://doi.org/10.1016/j.ultsonch.2022.106271

31. Yang C., Dabros T., Li D., Czarnecki J., Masliyah J.H. (2001), Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method, Journal of Colloid and Interface Science, 243(1): 128–135, https://doi.org/10.1006/jcis.2001.7842

32. Zhang Y., Zhang Y., Li S. (2016), The secondary Bjerknes force between two under dual-frequency acoustic excitation, Ultrasonics Sonochemistry, 29: 129–145, https://doi.org/10.1016/j.ultsonch.2015.08.022

33. Zilonova E., Solovchuk M., Sheu T.W.H. (2018), Bubble dynamics in viscoelastic soft tissue in highintensity focal ultrasound thermal therapy, Ultrasonics Sonochemistry, 40(Part A): 900–911, https://doi.org/10.1016/j.ultsonch.2017.08.017

Other articles by the same author(s)