Archives of Acoustics, 49, 2, pp. 287–295, 2024
10.24425/aoa.2024.148783

A Side Lobe Level Reduction Method Using Simulated Annealing Algorithm in a Uniform Arc Array

Song-Il KANG
Kim Il Sung University
Korea, Democratic People's Republic of

Kyong-Sim U
Kim Il Sung University
Korea, Democratic People's Republic of

Kyong-Chol CHOE
Kim Il Sung University
Korea, Democratic People's Republic of

Yong-Kwang RI
Kim Il Sung University
Korea, Democratic People's Republic of

Hyok-Il KYE
Kim Il Sung University

In general, the amplitude-weighting method for an acoustic transducer array is widely used to improve the array directivity and reject disturbances. This paper presents a method to effectively reduce the side lobe level while minimizing the main lobe width increase. This is done using the simulated annealing algorithm (SAA) for a uniformly spaced arc array of omnidirectional underwater acoustic transducers, even at low signal-to-noise ratio (SNR). We propose a new cost function for the SAA and obtain the weighting coefficients for all array elements using the SAA, and next compare them with various amplitude weighting methods. Through simulation and comparison, it is verified that the proposed method is effective in beamforming of the uniform arc array of underwater acoustic transducers.
Keywords: underwater acoustic transducer array; beamforming; simulated annealing algorithm; side lobe level reduction
Full Text: PDF
Copyright © 2023 The Author(s). This work is licensed under the Creative Commons Attribution 4.0 International CC BY 4.0.

References

Albagory Y., Alraddady F. (2021), An efficient approach for side lobe level reduction based on recursive sequential damping, Symmetry, 13(3): 480, doi: 10.3390/sym13030480.

Cardone G., Cincotti G., Pappalardo M. (2002), Design of wide band arrays for low side-lobe level beam patterns by simulated annealing, [in:] IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49(8): 1050–1059, doi: 10.1109/TUFFC.2002.1026017.

Chen W., Gu Z., Ma X., Zhang S., Han Z., Zhong Y. (2019), Robust optimization of vibro-acoustics system based on an elliptical basis function neural network, Applied Acoustics, 145: 41–51, doi: 10.1016/j.apacoust.2018.09.013.

Cretu N., Pop M.I., Rosca I.C. (2010), Acoustic design by simulated annealing algorithm, Physics Procedia, 3(1): 489–495, doi: 10.1016/j.phpro.2010.01.064.

Dessouky M., Sharshar H., Albagory Y. (2006), Efficient side lobe reduction technique for small-sized concentric circular arrays, Progress In Electromagnetics Research – PIER, 65: 187–200, doi: 10.2528/PIER06092503.

Dessouky M., Sharshar H., Albagory Y. (2007), An approach for Dolph-Chebyshev uniform concentric circular arrays, Journal of Electromagnetic Waves and Applications, 21(6): 781–794, doi: 10.1163/156939307780749075.

Gintaras P., Tomkevicius A., Ostreika A. (2019), Hybridizing simulated annealing with variable neighborhood search for bipartite graph crossing minimization, Applied Mathematics and Computation, 348: 84–101, doi: 10.1016/j.amc.2018.11.051.

Hong G., Zuckermann M., Harris R., Grant M. (1991), A fast algorithm for simulated annealing, Physica Scripta, 1991(T38): 40–44, doi: 10.1088/0031-8949/1991/T38/010.

Kirkpatrick S., Gelatt Jr. C.D., Vecchi M.P. (1983), Optimization by simulated annealing, Science, 220(4598): 671–680, doi: 10.1126/science.220.4598.671.

Li H., Liu Y., Sun G., Wang A., Liang S. (2017), Beam pattern synthesis based on improved biogeography-based optimization for reducing sidelobe level, Computers and Electronical Engineering, 60: 161–174, doi: 10.1016/j.compeleceng.2017.01.003.

Li Q. (2011), Digital Sonar Design in Underwater Acoustics: Principles and Applications, pp. 238–242, Zhejiang University Press, Hangzhou.

Nofal M., Aljahdali S., Albagory Y. (2013), Tapered beamforming for concentric ring arrays, AEU – International Journal of Electronics and Communications, 67(1): 58–63, doi: 10.1016/j.aeue.2012.06.005.

Rasdi Rere L.M., Mohamad I.F., Aniati M.A. (2015), Simulated annealing algorithm for deep learning, Procedia Computer Science, 72: 137–144, doi: 10.1016/j.procs.2015.12.114.

Rucksana Begum S., Ramarao G. (2015), Synthesis of non uniform linear arrays using Dolph-Chebyshev polynomial by reducing side lobe level based on modulating parameter array factor, International Journal of Advance Research in Science and Engineering, 4(8): 65–72.

Sarker M.A., Hosaain M.S., Masud M.S. (2016), Robust beamforming synthesis technique for low side lobe level using taylor excited antenna array, [in:] Proceedings of the 2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering, doi: 10.1109/ICECTE.2016.7879566.

Schmerr Jr. L.W. (2015), Fundamentals of Ultrasonic Phased Arrays, Springer Cham, pp. 60–65.

Singh U., Salgotra R. (2018), Synthesis of linear antenna array using flower pollination algorithm, Neural Computing & Applications, 29: 435–445, doi: 10.1007/s00521-016-2457-7.

Van Luyen T., Vu Bang Giang T. (2017), Interference suppression of ULA antennas by phaseonly control using bat algorithm, [in:] IEEE Antennas and Wireless Propagation Letters, 16: 3038–3042, doi: 10.1109/LAWP.2017.2759318.

Zangene A., Dalili Oskouei H.R., Nourhoseini M. (2014), Reduction of side lobe level in non-uniform circular antenna arrays using the simulated annealing algorithm, Journal of Electrical and Electronics Engineering Research, 6(2): 6–12, doi: 10.5897/JEEER2014.0504.




DOI: 10.24425/aoa.2024.148783