Archives of Acoustics, 49, 4, pp. 613–624, 2024
10.24425/aoa.2024.148803

An Algorithm for Ultrasonic Identification of Ceramic Materials and Virtual Prototype Realization

Yu LIU
Shaanxi Key Laboratory of Ultrasonic, School of Physics and Information Technology Shaanxi Normal University
China

Xiping HE
Shaanxi Key Laboratory of Ultrasonic, School of Physics and Information Technology Shaanxi Normal University
China

Shengping HE
High-Tech. Institute
China

To prevent important items from being replaced by a forgery, an ultrasonic fingerprint identification algorithm is proposed and an identification program is developed. A virtual prototype for the ultrasonic identification of ceramics is developed based on an ultrasonic detection card. This virtual prototype allows for the simultaneous transmission and acquisition of signals. Numerous experimental tests were conducted using this virtual prototype. The results demonstrate that the virtual prototype achieves accurate identification of ceramics. This virtual prototype lays a good foundation for the development of intelligent, automated, integrated, and miniaturized ultrasonic identification systems.
Keywords: ceramic material; ultrasonic testing; ultrasonic scattering; ultrasonic fingerprint; virtual prototype
Full Text: PDF
Copyright © 2024 The Author(s). This work is licensed under the Creative Commons Attribution 4.0 International CC BY 4.0.

References

Badidi B.A., Lebaili S., Benchaala A. (2003), Grain size influence on ultrasonic velocities and attenuation, NDT & E International, 36(1): 1–5, doi: 10.1016/S0963-8695(02)00043-9.

Buenos A.A., Jr P.P., Mei P.R., Santos A.A. (2014), Influence of grain size on the propagation of LCR waves in low carbon steel, Journal of Nondestructive Evaluation, 33: 562–570, doi: 10.1007/s10921-014-0252-x.

Dejoie C., Tamura N., Kunz M., Goudeau P., Sciau P. (2015), Complementary use of monochromatic and white-beam X-ray micro-diffraction for the investigation of ancient materials, Journal of Applied Crystallography, 48: 1522–1533, doi: 10.1107/S1600576715014983.

Figueiredo E., Silva R.J.C., Araújo M.F., Martinez J.C.S. (2010), Identification of ancient gilding technology and late bronze age metallurgy by EDXRF, Micro-EDXRF, SEM-EDS and metallographic techniques, Microchimica Acta, 168: 283–291, doi: 10.1007/s00604-009-0284-6.

Hirao M., Aoki K., Fukuoka H. (1987), Texture of polycrystalline metals characterized by ultrasonic velocity measurements, Journal of the Acoustical Society of America, 81(5): 1434–1440, doi: 10.1121/1.394495.

Laux D., Cros B., Despaux G., Baron D. (2002), Ultrasonic study of UO2: Effects of porosity and grain size on ultrasonic attenuation and velocities, Journal of Nuclear Materials, 300(2–3): 192–197, doi: 10.1016/S0022-3115(01)00747-4.

Li J., Yang L., Rokhlin S.I. (2014), Effect of texture and grain shape on ultrasonic backscattering in polycrystals, Ultrasonics, 54(7): 178–1803, doi: 10.1016/j.ultras.2014.02.020.

Murthy G.V.S., Ghosh S., Das M., Das G., Ghosh R.N. (2008), Correlation between ultrasonic velocity and indentation-based mechanical properties with microstructure in Nimonic 263, Materials Science and Engineering: A, 488(1–2): 398–405, doi: 10.1016/j.msea.2007.11.017.

Olinger C.T., Lyon M.J., Stanbro W.D., Mullen M.F., Sinha D.N. (1993), Acoustic resonance spectroscopy in nuclear safeguards, [in:] 34th Annual Meeting of the Institute of Nuclear Materials Management, https://www.osti.gov/biblio/61350.

Özkan V., Sarpün I.H., Erol A., Yönetken A. (2013) Influence of mean grain size with ultrasonic velocity on microhardness of B4C-Fe-Ni composite, Journal of Alloys and Compounds, 574(15): 512–519, doi: 10.1016/j.jallcom.2013.05.097.

Padeletti G., Fermo P. (2010), A scientific approach to the attribution problem of renaissance ceramic productions based on chemical and mineralogical markers, Applied Physics A, 100: 771–784, doi: 10.1007/s00339-010-5689-x.

Palanichamy P., Joseph A., Jayakumar T., Raj B. (1995), Ultrasonic velocity measurements for estimation of grain size in austenitic stainless steel, NDT & E International, 28(3): 179–185, doi: 10.1016/0963-8695(95)00011-L.

Sarpün H.I., Kılıçkaya S.M. (2005), Mean grain size determination in marbles by ultrasonic first backwall echo height measurements, NDT & E International, 39(1): 82–86, doi: 10.1016/j.ndteint.2005.06.010.

Sciau P., Leon Y., Goudeau P., Fakra S.C., Webbd S., Mehta A. (2011), Reverse engineering the ancient ceramic technology based on X-ray fluorescence spectromicroscopy, Journal of Analytical Atomic Spectrometry, 26(5): 969–976, doi: 10.1039/C0JA00212G.

Shi S., Liu Z.G., Sun J.T., Zhang M., Du G.S., Li D. (2015), Study of errors in ultrasonic heat meter measurements caused by impurities of water based on ultrasonic attenuation, Journal of Hydrodynamics, 27: 141–149, doi: 10.1016/S1001-6058(15)60466-8.

Smith R.L. (1982), The effect of grain size distribution on the frequency dependence of the ultrasonic attenuation in polycrystalline materials, Ultrasonics, 20(5): 211–214, doi: 10.1016/0041-624X(82)90021-X.

Vijayalakshmi K., Muthupandi V., Jayachitra R. (2011), Influence of heat treatment on the microstructure, ultrasonic attenuation and hardness of SAF 2205 duplex stainless steel, Materials Science and Engineering A, 529(25): 447–451, doi: 10.1016/j.msea.2011.09.059.

Yang L., Li J., Lobkis O.I., Rokhlin S.I. (2012), Ultrasonic propagation and scattering in duplex microstructures with application to titanium alloys, Journal of Nondestructive Evaluation, 31: 270–283, doi: 10.1007/s10921-012-0141-0.




DOI: 10.24425/aoa.2024.148803