10.24425/aoa.2025.153649
Inference of Bubble Size Distribution in Sediments Based on Sounding by Chirp Signals
References
Anderson A.L., Abegg F., Hawkins J.A., Duncan M.E., Lyons A.P. (1998), Bubble populations and acoustic interaction with the gassy floor of Eckernforde Bay, Continental Shelf Research, 18(14–15): 1807–1838, https://doi.org/10.1016/S0278-4343(98)00059-4.
Anderson A.L., Hampton L.D. (1980a), Acoustics of gas bearing sediments. I. Background, The Journal of the Acoustical Society of America, 67(6): 1865–1889, https://doi.org/10.1121/1.384453.
Anderson A.L., Hampton L.D. (1980b), Acoustics of gas bearing sediments. II. Measurements and models, The Journal of the Acoustical Society of America, 67(6): 1890–1903, https://doi.org/10.1121/1.384454.
Best A.I., Tuffin M.D.J., Dix J.K., Bull J.M. (2004), Tidal height and frequency dependence of acoustic velocity and attenuation in shallow gassy marine sediments, Journal of Geophysical Research: Solid Earth, 109(B8): 589–600, https://doi.org/10.1029/2003JB002748.
Chen J. et al. (2023), Elastic wave velocity of marine sediments with free gas: Insights from CT-acoustic observation and theoretical analysis, Marine and Petroleum Geology, 150: 106169, https://doi.org/10.1016/j.marpetgeo.2023.106169.
Commander K.W., McDonald R.J. (1991), Finite-element solution of the inverse problem in bubble swarm acoustics, The Journal of the Acoustical Society of America, 89(2): 592–597, https://doi.org/10.1121/1.400671.
Dogan H., White P. R., Leighton T.G. (2015), Acoustic inversion for gas bubble distributions in marine sediments: Mercury results, Seabed and Sediment Acoustics, https://doi.org/10.25144/16045.
Edrington T.S., Calloway T.M. (1984), Sound speed and attenuation measurements in gassy sediments in the Gulf of Mexico, Geophysics, 49(3): 297–299, https://doi.org/10.1190/1.1441662.
Fleischer P., Orsi T., Richardson M., Anderson A. (2001), Distribution of free gas in marine sediments: A global overview, Geo-Marine Letters, 21: 103–122, https://doi.org/10.1007/s003670100072.
Fonseca L., Mayer L., Orange D., Driscoll N. (2002), The high-frequency backscattering angular response of gassy sediments: Model/data comparison from the Eel River Margin, California, The Journal of the Acoustical Society of America, 111(6): 2621–2631, https://doi.org/10.1121/1.1471911.
Karpov S.V., Klusek Z., Matveev A.L., Potapov A.I., Sutin A.M. (1996), Nonlinear interaction of acoustic waves in gas-saturated marine sediments, Acoustical Physics, 42(4): 464–470.
Leighton T.G. (2007), Theory for acoustic propagation in marine sediment containing gas bubbles which may pulsate in a non-stationary nonlinear manner, Geophysics Research Letters, 34(17): 607, https://doi.org/10.1029/2007GL030803.
Leighton T.G., Robb G.B.N. (2008), Preliminary mapping of void fractions and sound speeds in gassy marine sediments from subbottom profiles, The Journal of the Acoustical Society of America, 124(5): EL313–EL320, https://doi.org/10.1121/1.2993744.
Mantouka A., Dogan H., White P.R., Leighton T.G. (2016), Modelling acoustic scattering, sound speed, and attenuation in gassy soft marine sediments, The Journal of the Acoustical Society of America, 140(1): 276–282, https://doi.org/10.1121/1.4954753.
Richardson M.D., Davis A.M. (1998), Modeling methane-rich sediments of Eckernforde Bay, Continental Shelf Research, 18(14–15): 1671–1688, https://doi.org/10.1016/S0278-4343(98)00074-0.
Shankar U., Sinha B., Thakur N.K., Khanna R. (2005), Amplitude-versus-offset modeling of the bottom simulating reflection associated with submarine gas hydrates, Marine Geophysical Research, 26(1): 29–35, https://doi.org/10.1007/s11001-005-2134-1.
Shankar U., Thakur N.K., Ashalatha B. (2006), Fluid flow related features as an indicator of potential gas hydrate zone: Western continental margin of India, Marine Geophysical Research, 27(3): 217–224, https://doi.org/10.1007/s11001-006-9001-6.
Yu S., Huang Y., Liu B., Wang F., Zheng G. (2015), A wide-band method for sound speed and attenuation measurement in sediments, Acta Acustica, 40(5): 682–694, https://doi.org/10.15949/j.cnki.0371-0025.2015.05.009.
Tóth Z., Spiess V., Keil H. (2015), Frequency-dependence in seismo-acoustic imaging of shallow free gas due to gas bubble resonance, Journal of Geophysical Research-Solid Earth, 120(12): 8056–8072, https://doi.org/10.1002/2015JB012523.
Wilkens R.H., Richardson M.D. (1998), The influence of gas bubbles on sediment acoustic properties: In situ, laboratory, and theoretical results from Eckernforde Bay, Baltic sea, Continental Shelf Research, 18(14): 1859–1892, https://doi.org/10.1016/S0278-4343(98)00061-2.
Yarina M., Katsnelson B., Godin O.A. (2023), Modal structure of the sound field in a shallow-water waveguide with a gassy sediment layer: Experiment and theory, The Journal of the Acoustical Society of America, 153(3): A375–A375, https://doi.org/10.1121/10.0019231.
Zhang D., Yang J., Wang H., Li X. (2023), Prediction model of strength properties of marine gas-bearing sediments based on compressional wave velocity, Applied Ocean Research, 135: 103562, https://doi.org/10.1016/j.apor.2023.103562.
Zheng G.Y., Huang Y.W. (2016), Effect of linear bubble vibration on wave propagation in unsaturated porous medium containing air bubbles, Acta Physica Sinica, 65(23): 234301, https://doi.org/10.7498/aps.65.234301.
Zheng G.Y., Huang Y. W., Hua J., Xu X., Wang F. (2017), A corrected effective density fluid model for gassy sediments, The Journal of the Acoustical Society of America, 141(1): EL32–EL37, https://doi.org/10.1121/1.4973616.
DOI: 10.24425/aoa.2025.153649